Content:

BG – Biogeosciences

BG2 – Tropical ecosystems – biomes of global significance in transition

EGU21-11283 | vPICO presentations | BG2 | Highlight

How Weather Events Modify Amazonian Surface Aerosol Particle Size Distributions

Luiz A. T. Machado, Mira Pöhlker, Paulo Artaxo, Micael Cecchini, Florian Ditas, Marco A. M. Franco, Leslie Kremper, Meinrat O. Andreae, Ivan Saraiva, Ulrich Pöschl, and Christopher Pöhlker

In the last years, several studies were published evaluating aerosol-cloud-precipitation interactions. These studies improved the knowledge and reduced the uncertainties in the quantification of the aerosol aerosol-cloud interactions. However, there were only very few attempts to describe how clouds modify the aerosol properties. The main goal of this study is to evaluate the effect of weather events on the Particle Size Distribution (PSD) at the Amazon Tall Tower Observatory (ATTO). This research combines different types of datasets, all co-located at the ATTO towers. Basically, the data were obtained from the new generation of GOES satellites, GOES-16, the SIPAM S Band radar and two Scanning Mobility Particle Sizers (SMPS) installed at the heights of 60 and 325 m from 2017 to 2020. In addition, the LAP 3000 radar wind profile recently installed at the ATTO- Campina site was employed to evaluate the vertical distribution of the vertical velocity. The combination of these datasets allows to explore changes in PSD due to the different meteorological processes. The diurnal cycle shows an increase of nucleation particles and decrease in Aitken and accumulation modes during the night. The early morning is the time of minimum mass concentration. From the early morning to the middle of the afternoon, a contrary behaviour is observed, where the concentration of nucleation particles decreases and Aitken and accumulation mode increase, characterizing a typical particle growth process. In the late afternoon, when rain starts, PSD begin to have the night behaviour described above. Composite studies were computed to evaluate how the PSD evolve during rainfall events. The composite from lighting density shows a large increase in nucleation particles from around 100 minutes before the maximum lighting density, reaching maximum values nearly 200 minutes later. The nucleation particles growth rate increases exponentially with the thunderstorm intensity. Aitken and accumulation modes have a different behaviour, with decreasing number concentration from around 100 minutes before the maximum lighting activity and reaching the minimum concentration at the time of maximum lighting activity. This effect could be related to the more intense downdraft in thunderstorms that intensify the transport of ultrafine particles from the upper atmosphere as described in recent studies using GoAmazon and ACRIDICON-CHUVA data. Another possibility could be the transport of O3 and NO2 column densities during thunderstorms events, helping the oxidation of volatile organic component forming secondary organic aerosol at the surface. This is an open question and needs further studies specifically designed to understand the chemical processes occurring near-surface during intense rainfall events. The first data from the radar wind profile installed at the ATTO-Campina site was employed to compute the vertical distribution of the vertical velocity. The downdrafts are mainly located below 10km, but the layer of maximum concentration of ultrafine particles is mainly above 10km. In addition, the number concentration of nucleation particles at 60m is around twice the value at 325 m, in contrast to former studies showing an increase in ultrafine particles with height. CAFE-Brazil, scheduled for 2022, will be an opportunity to study these open questions.

How to cite: T. Machado, L. A., Pöhlker, M., Artaxo, P., Cecchini, M., Ditas, F., M. Franco, M. A., Kremper, L., Andreae, M. O., Saraiva, I., Pöschl, U., and Pöhlker, C.: How Weather Events Modify Amazonian Surface Aerosol Particle Size Distributions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11283, https://doi.org/10.5194/egusphere-egu21-11283, 2021.

EGU21-12971 | vPICO presentations | BG2

Influence of Atmospheric Stability on the flow dynamics within and above a dense Amazonian forest

Luca Mortarini, Cléo Quaresma Dias-Júnior, Otavio Acevedo, Pablo Oliveira, Daiane Brondani, Umberto Giostra, Matthias Sörgel, Anywhere Tsokankunku, Alessandro Araújo, Luiz Augusto Toledo Machado, and Daniela Cava

This study provides a detailed analysis of the influence of atmospheric stratification on the flow dynamics above and within a dense forest for a 19-days campaign at the Amazon Tall Tower Observatory (ATTO) site. Observations taken at seven levels within and above the forest along an 81-meter and a 325-meter towers allow a unique investigation of the vertical evolution of the turbulent field in the roughness sublayer and in the surface layer above it.

Five different stability classes were defined on the basis of the behavior of turbulent heat, momentum and CO2 fluxes and variance ratio as a function of h/L stability parameter (where h is the canopy height and L is the Obukhov length). The novelty is the identification of a ‘super-stable’ (SS) regime (h/L>3) characterized by extremely low wind speeds, the almost completely suppression of turbulence and a clear dominance of submeso motions both above and within the forest.

The obtained data classification was used to study the influence of atmospheric stratification on the vertical profiles of turbulent statistics. The spectral characteristics of coherent structures and of submeso motions (that may influence the energy and mass exchange above the Amazon forest) have been analyzed by wavelet analyses. The role of the main structures in momentum, heat and CO2 transport at the different levels inside and above the forest and in different diabatic conditions was thoroughly investigated through multiresolution and quadrant analyses.

In unstable and neutral stability, the flow above the canopy appears modulated by ejections, whereas downward and intermittent sweeps dominate the transport inside the canopy. In the roughness sublayer (z £ 2h) the coherent structures dominating the transport within and above the canopy have a characteristic temporal scale of about 100 sec, whereas above this layer the transport is mainly driven by larger scale convection (temporal scale of about 15 min).

In stable conditions the height of roughness sublayer progressively decreases with increasing stability reaching the minimum value (z<1.35h) in the SS regime. Above the canopy the flow is clearly dominated by ejections but characterized by a higher intermittency mainly in SS conditions. On the other hand, the rapid shear stress absorption in the highest part of the vegetation produces a less clear dominance of sweeps and a less defined role of odd and even quadrants inside the canopy in the transport of momentum, heat and CO2. In the weakly stable regime (0.15<h/L<1) transport is dominated in the roughness sublayer by canopy coherent structures with a characteristic temporal scale of about 60 sec. As stability increases the influence of low-frequency (submeso) processes, with a temporal scale of 20-30 min, on flow dynamics progressively increases and becomes dominant in the SS regime where the buoyancy strongly dampens or completely inhibits turbulent structures whereas the large-scale oscillations propagate in the interior of the canopy modulating the heat and CO2 transport.

 

How to cite: Mortarini, L., Quaresma Dias-Júnior, C., Acevedo, O., Oliveira, P., Brondani, D., Giostra, U., Sörgel, M., Tsokankunku, A., Araújo, A., Toledo Machado, L. A., and Cava, D.: Influence of Atmospheric Stability on the flow dynamics within and above a dense Amazonian forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12971, https://doi.org/10.5194/egusphere-egu21-12971, 2021.

EGU21-961 | vPICO presentations | BG2

River Breezes in the Central Amazon: Cluster Analysis of Meteorological and Chemical Data Sets Collected by an Unmanned Aerial Vehicle

Tianning Zhao, Jianhuai Ye, Igor Ribeiro, Yongjing Ma, Hui-Ming Hung, Carla Batista, Matthew Stewart, Jessica dos Santos Silva, Ricardo Godoi, Jordi Vilà-Guerau de Arellano, Rodrigo de Souza, and Scot Martin

Local atmospheric circulation induced by wide rivers in Amazonia can strongly affect the transport of urban, industrial, fire, and forest emissions. Herein, a copter-type unmanned aerial vehicle (UAV) operated from a boat was used to collect vertical profiles of meteorological parameters and chemical concentrations during Sep-Oct 2019 of the dry season. Sensor packages mounted on the UAV measured wind speed and direction together with concentrations of carbon monoxide (CO) and total oxidants (Ox, defined as O3 + NO2). Multivariate statistical analysis identified distinguishing patterns for meteorological variables. The occurrence of river breeze circulations was linked to meteorological conditions from in-situ measurement and satellite images. Vertical profiles of chemical concentrations both from in-situ measurements and large eddy simulations confirmed that under some conditions a river breeze can facilitate pollutant mixing perpendicular to the river orientation. The results of this study advance an urgent need to quantify the occurrence and the properties of river breeze circulations in respect to microscale chemical dispersion, air quality, and human health.

How to cite: Zhao, T., Ye, J., Ribeiro, I., Ma, Y., Hung, H.-M., Batista, C., Stewart, M., dos Santos Silva, J., Godoi, R., Vilà-Guerau de Arellano, J., de Souza, R., and Martin, S.: River Breezes in the Central Amazon: Cluster Analysis of Meteorological and Chemical Data Sets Collected by an Unmanned Aerial Vehicle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-961, https://doi.org/10.5194/egusphere-egu21-961, 2021.

EGU21-12869 | vPICO presentations | BG2

Understanding in and above canopy-atmosphere interactions by combining large-eddy simulations with a comprehensive observational set

Xabier Pedruzo-Bagazgoitia, Arnold F. Moene, Huug Ouwersloot, Tobias Gerken, Luiz A.T. Machado, Scot T. Martin, Edward G. Patton, Matthias Sörgel, Paul C. Stoy, Marcia A. Yamasoe, and Jordi Vilà-Guerau de Arellano

The vegetated canopy plays a key role in regulating the surface fluxes and, therefore, the global energy, water and carbon cycles. In particular, vulnerable ecosystems like the Amazonia basin can be very sensitive to changes in vegetation that exert subsequent shifts in the partition of the energy, water and carbon in and above the canopy. Despite this relevance, most 3D atmospheric models represent the vegetated canopy as a flat 2D layer with, at most, a rough imitation of its effect in the atmospheric boundary layer through a modified roughness length. Thus, the representations often describe quite crudely the surface fluxes. In this work, particular emphasis is placed in the biophysical processes that take place within the canopy and its impact above. Our approach is to represent the coupling of the flow between the canopy and the atmosphere including the following processes: radiative transfer, photosynthesis, soil evaporation and CO2 respiration, combined with the mostly explicit atmospheric turbulence within and above the canopy. To this end, we implemented in LES a detailed multi-layer canopy model that solves the leaf energy balance for sunlit and shaded leaves independently, regulating the exchange of heat, moisture and carbon between the leaves and the air around. This allows us to connect the mechanistically represented processes occurring at the leaf level and strongly regulated by the transfer of diffuse and direct radiation within the canopy to the turbulent mixing explicitly resolved at the meter scale.

We test and validate this combined photosynthesis-turbulence-canopy model by simulating a representative clear day transitioning to shallow cumulus. We based our evaluation on observations by the GoAmazon2014/5 campaign in Brazil in 2014. More specifically, we systematically validate the in-canopy radiation profiles; sources, sinks and turbulent fluxes of moisture, heat and CO2, and main state variables within the canopy, and also study the effects of these in the air above. Preliminary results show an encouraging satisfactory match to the observed evolution of the profiles. As a first exploration and demonstration of the capabilities of the model, we test the effects of a coarser in-canopy resolution, a different radiation scheme and the use of a more simple 2D canopy representation.

How to cite: Pedruzo-Bagazgoitia, X., Moene, A. F., Ouwersloot, H., Gerken, T., Machado, L. A. T., Martin, S. T., Patton, E. G., Sörgel, M., Stoy, P. C., Yamasoe, M. A., and Vilà-Guerau de Arellano, J.: Understanding in and above canopy-atmosphere interactions by combining large-eddy simulations with a comprehensive observational set, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12869, https://doi.org/10.5194/egusphere-egu21-12869, 2021.

EGU21-15847 | vPICO presentations | BG2

The Amazonian Low-Level Jet and its effect on Ozone concentrations above the rain forest

Stefan Wolff, David Walter, Anywhere Tsokankunku, Daiane Brondani, Fernando Rossato, Sam Jones, Sebastian Brill, Eva Pfannerstill, Achim Edtbauer, Rodrigo Souza, Marta de Oliveira Sá, Alessandro C. de Araújo, Cléo Q. Dias-Júnior, Christopher Pöhlker, and Matthias Sörgel

The pristine Amazon rainforest is a unique place to study ozone (O3) deposition rates and tropospheric transport, due to the absence of nearby sources of anthropogenic pollution. Parts of the low background O3 are considered to be transported from the stratosphere into the troposphere. This occurs due to general entrainment of stratospheric air at the tropopause. Within the troposphere, downdrafts provide effective vertical mixing and are known to increase surface O3 values. Low-level jets can also enhance O3 concentrations due to long range transport and locally induced mixing in the nocturnal boundary layer. Therefore, we study these phenomena based on long term datasets from 2012 to present from tall measurements towers (80 m and 325 m).

Ozone mixing ratios were measured at the ATTO site (Amazon Tall Tower Observatory) in the Central Amazon (02°08’38.8’’S, 58°59’59.5’’W) since 2012 at 8 different heights between 5 cm and 80 meters and additional measurements from 80 m up to 325 meters are running since 2017. From 2015 to 2017, 3-dimensional wind measurements have been performed in 150 meters height in 10 Hz sampling rate, showing evidences for the formation of a nocturnal low-level jet (LLJ), which leads to higher turbulent mixing inside the residual layer/ stable nocturnal layer. We were comparing the nocturnal LLJ with downdrafts of air due to strong thunderstorms which led to increases of O3 as well. We are analyzing these events regarding their in-canopy air exchange, their frequency and seasonality and comparing them with the effects of the nocturnal LLJ. As the data series comprises more than eight years of data we are also analyzing the interannual variability.

How to cite: Wolff, S., Walter, D., Tsokankunku, A., Brondani, D., Rossato, F., Jones, S., Brill, S., Pfannerstill, E., Edtbauer, A., Souza, R., de Oliveira Sá, M., de Araújo, A. C., Dias-Júnior, C. Q., Pöhlker, C., and Sörgel, M.: The Amazonian Low-Level Jet and its effect on Ozone concentrations above the rain forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15847, https://doi.org/10.5194/egusphere-egu21-15847, 2021.

EGU21-13468 | vPICO presentations | BG2 | Highlight

Tropical forest CH4: from termite mounds to tower  measurements

Hella van Asperen, Thorsten Warneke, Alessandro C De Araújo, Bruce Forsberg, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Marta Sá, Paulo Teixeira, Robson Azevedo de Oliveira, Leila Leal, Veber Moura, João Rafael Alves-Oliveira, Santiago Botia, Jost Lavrič, Shujiro Komiya, Arnoud Frumau, Arjan Hensen, Danielle van Dinther, Pim van den Bulk, and Justus Notholt

Methane (CH4) is one of the most important anthropogenic greenhouse gases.  Despite its importance, natural sources of methane, such as tropical wetlands and termites, are still not well understood and a large source of uncertainty in the tropical CH4 budget. The Amazon rainforest is a key region for the (global) CH4 budget but, due to its remote location, continous CH4 concentration and flux measurements are still rare.

The 50 m high K34 tower (field site ZF2) is located in a pristine ‘Terra Firme’ tropical forest region 60 km northwest of Manaus (Brazil), and is located next to a waterlogged valley, a possible location for anaerobic CH4 production. In October 2018, in addition to the existing EC CO2 system, an in-situ FTIR-analyzer (measuring CO2, CO, CH4, N2O and δ13CO2) was set up to measure tower profile concentrations, above and below the canopy, continuously. By analyses of vertical and temporal nighttime concentrations patterns, an emission estimate for all gases could be made, and an ecosystem emission of ~1 nmol CH4 m-2 s-1  was estimated. In addition, by use of different types of flux chambers, possible  CH4 sinks and sources such as soils, trees, water and termite mounds were measured.

By combining tower and flux chamber measurements, the role and magnitude of different ecosystem sources could be assessed. In this presentation, an overview of the measured CH4 forest concentrations and fluxes will be given.

How to cite: van Asperen, H., Warneke, T., C De Araújo, A., Forsberg, B., Ramos de Oliveira, L., de Lima Xavier, T., Sá, M., Teixeira, P., Azevedo de Oliveira, R., Leal, L., Moura, V., Rafael Alves-Oliveira, J., Botia, S., Lavrič, J., Komiya, S., Frumau, A., Hensen, A., van Dinther, D., van den Bulk, P., and Notholt, J.: Tropical forest CH4: from termite mounds to tower  measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13468, https://doi.org/10.5194/egusphere-egu21-13468, 2021.

EGU21-831 | vPICO presentations | BG2

Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon

Kristell Hergoualc’h, Nelda Dezzeo, Louis Verchot, Christopher Martius, Jeffrey van Lent, Jhon Del Aguila Pasquel, and Mariela Lopez

Mauritia flexuosa palm swamp, the prevailing Peruvian Amazon peatland ecosystem, is

extensively threatened by degradation. The unsustainable practice of cutting whole

palms for fruit extraction modifies forest's structure and composition and eventually

alters peat-derived greenhouse gas (GHG) emissions. We evaluated the spatio-temporal

variability of soil N2O and CH4 fluxes and environmental controls along a palm swamp

degradation gradient formed by one undegraded site (Intact), one moderately degraded

site (mDeg) and one heavily degraded site (hDeg). Microscale variability differentiated

hummocks supporting live or cut palms from surrounding hollows. Macroscale analysis

considered structural changes in vegetation and soil microtopography as impacted

by degradation. Variables were monitored monthly over 3 years to evaluate intra- and

inter-annual variability. Degradation induced microscale changes in N2O and CH4 emission

trends and controls. Site-scale average annual CH4 emissions were similar along the

degradation gradient (225.6 ± 50.7, 160.5 ± 65.9 and 169.4 ± 20.7 kg C ha−1 year−1 at

the Intact, mDeg and hDeg sites, respectively). Site-scale average annual N2O emissions

(kg N ha−1 year−1) were lower at the mDeg site (0.5 ± 0.1) than at the Intact (1.3 ± 0.6) and

hDeg sites (1.1 ± 0.4), but the difference seemed linked to heterogeneous fluctuations

in soil water-filled pore space (WFPS) along the forest complex rather than to degradation.

Monthly and annual emissions were mainly controlled by variations in WFPS, water

table level (WT) and net nitrification for N2O; WT, air temperature and net nitrification

for CH4. Site-scale N2O emissions remained steady over years, whereas CH4 emissions

rose exponentially with increased precipitation. While the minor impact of degradation

on palm swamp peatland N2O and CH4 fluxes should be tested elsewhere, the evidenced

large and variable CH4 emissions and significant N2O emissions call for improved modeling

of GHG dynamics in tropical peatlands to test their response to climate changes.

How to cite: Hergoualc’h, K., Dezzeo, N., Verchot, L., Martius, C., van Lent, J., Del Aguila Pasquel, J., and Lopez, M.: Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-831, https://doi.org/10.5194/egusphere-egu21-831, 2021.

EGU21-13194 | vPICO presentations | BG2 | Highlight

Pyrogenic carbon and forest dynamics during drought in Amazonian forests

Laura Vedovato, Lidiany Carvalho, Luiz Aragão, and Ted Feldpausch

During extreme drought events, aboveground biomass (AGB) dynamics in Amazonian forests are altered through reduced productivity and increased tree mortality and carbon loss. Tree adaptations developed in response to historical drought may reduce the severity of carbon loss. Past droughts were likely associated with fire, which produced Pyrogenic Carbon (PyC), a form of carbon formed by the incomplete combustion of biomass burn and fossil fuel. PyC has specific properties that improve soil fertility and water holding capacity and decrease aluminium toxicity, among others. PyC can be found in different concentrations across the Amazon Basin, since it can be produced by local fires and aerosol deposition. It is unknown whether PyC could explain tree adaptations or contributes to Amazon forest dynamics, especially for extreme drought events. We hypothesize that PyC in soil can serve as a proxy of fire history and fire/drought adaptations and also support the forest during drought events because of its properties, decreasing mortality rates and maintaining rates of AGB gain equivalent to a non-extreme drought year. To evaluate this hypothesis, we used a dataset with more than 70 plots with repeat censuses distributed across the Amazon Basin and classified extreme drought events using maximum cumulative water deficit (MCWD) analysis. Soil samples were collected from the same plots during an intensive fieldwork campaign and PyC was quantified by hydrogen pyrolysis (HyPy). Forest plots were classified into high and low PyC based on the median across the whole dataset. Our preliminary results show that during extreme drought events, plots that have a greater concentration of PyC had significantly higher rates of AGB gain when compared with plots with lower concentrations of PyC (t-test, p < 0.05). During non-extreme drought years there was no significant difference in rates of AGB gain between plots with different concentrations of PyC. When we focus on plots with lower concentrations of PyC there is a significant decrease in rates of AGB gain during drought years compared to non-extreme drought years (t-test, p < 0.05). However, in plots with high concentrations of PyC there is no significant difference in rates of AGB gain, showing trees are able to maintain normal forest dynamics during extreme drought years. We conclude that PyC has an important role in mediating drought resistance and productivity in Amazonian forests.

How to cite: Vedovato, L., Carvalho, L., Aragão, L., and Feldpausch, T.: Pyrogenic carbon and forest dynamics during drought in Amazonian forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13194, https://doi.org/10.5194/egusphere-egu21-13194, 2021.

EGU21-7956 | vPICO presentations | BG2

Quantifying the spatial patterns of Secondary Forest carbon sequestration potential in the Brazilian Amazon

Viola Heinrich, Ricardo Dalagnol, Henrique Cassol, Thais Rosan, Catherine Torres de Almeida, Celso Silva Junior, Welsey Campanharo, Joanna House, Stephen Sitch, Tristram Hales, Marcos Adami, Liana Anderson, and Luiz Aragão

Overall, global forests are expected to contribute about a quarter of pledged mitigation under the Paris Agreement, by limiting deforestation and by encouraging forest regrowth.

Secondary Forests in the Neo-tropics have a large climate mitigation potential, given their ability to sequester carbon up to 20 times faster than old-growth forests. However, this rate does not account for the spatial patterns in secondary forest regrowth influenced by regional and local-scale environmental and anthropogenic disturbance drivers.

Secondary Forests in the Brazilian Amazon are expected to play a key role in achieving the goals of the Paris Agreement, however, the Amazon is a large and geographically complex region such that regrowth rates are not uniform across the biome.

To understand the impact of key drivers we used a multi-satellite data approach with the aim of understanding the spatial variations in secondary forest regrowth in the Brazilian Amazon. We mapped secondary forest area and age using a land-use-land-cover dataset – MapBiomas – and, combined with the European Space Agency Aboveground Carbon dataset, constructed regional regrowth curves for the year 2017.

We found large variations in the regrowth rates across the Brazilian Amazon due to large-scale environmental drivers such as rainfall and shortwave-radiation. Regrowth rates are similar to previous pan-Amazonian estimates in the North-West (3 ±1.0 MgC ha-1 yr-1), which are double than those in the North-East Amazon (1.3 ±0.3 MgC ha-1 yr-1). The impact of anthropogenic disturbances, namely fire and repeated deforestation prior to the most recent regrowth only reduces the regrowth by 20% in the North-West (2.4 ±0.8 MgC ha-1 yr-1) compared to 55% in the North-East (0.8 ±0.8 MgC ha-1 yr-1). Overall, secondary forest carbon stock of 294 TgC in the year 2017, could have been 8% higher with avoided fires and repeat deforestation. We found that the 2017 area of secondary forest, which occupies only ~4% of the Brazilian Amazon biome, can contribute significantly (~5.5%) to Brazil’s net emissions reduction targets, accumulating ~19.0 TgC yr-1until 2030 if the current area of secondary forest is maintained (13.8 Mha). However,this value reduces rapidly to less than 1% if only secondary forests older than 20 years are preserved (2.2 Mha).

Preserving the remaining old-growth forest carbon stock and implementing legal mechanisms to protect and expand secondary forest areas are key to realising the potential of secondary forest as a nature-based climate change mitigation solution.

How to cite: Heinrich, V., Dalagnol, R., Cassol, H., Rosan, T., Torres de Almeida, C., Silva Junior, C., Campanharo, W., House, J., Sitch, S., Hales, T., Adami, M., Anderson, L., and Aragão, L.: Quantifying the spatial patterns of Secondary Forest carbon sequestration potential in the Brazilian Amazon, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7956, https://doi.org/10.5194/egusphere-egu21-7956, 2021.

EGU21-14109 | vPICO presentations | BG2

Analysis of bioaerosol emission patterns of tropical fungi in the Amazon region

Sebastian Brill, Nina Löbs, Cybelli G. G. Barbosa, Juliana F. de Camargo, David Walter, Florian Ditas, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Ricardo H. M. Godoi, Stefan Wolff, Meike Piepenbring, Jürgen Kesselmeier, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber

Primary biological aerosol particles (PBAP), better known as bioaerosols, are considered to play a role in atmospheric and climate influencing processes. Fungal spores, as a part of PBAP, account for a large fraction of coarse particulate matter in some ecosystems, as for example the Amazon rainforest. In such highly diverse ecosystems, fungi play key roles as mycorrhizal fungi for nutrient uptake of plants and as decomposers in nutrient and water cycling, and thus their community structure strongly influences local ecosystem conditions. Despite this relevance, fungal spore emission patterns under natural conditions and the corresponding triggering factors are not well characterized, yet. In this study, we present a laboratory and field measurement techniques to quantify and analyze bioaerosol emission patterns and the effect of precipitation on fungal spore emission.

For investigations under field conditions, the particle emissions of fungi (Agaricomycetes) were characterized at their site of growth in the field using an optical particle sizer and a data logger. Particle concentrations and their size distribution (0.3 to 10 µm), as well as the microclimatic temperature and humidity were measured in close vicinity to the fungal fruiting body. Generally, field measurements were performed over a time span of 24 h with some exceptions ranging up to 6 days. For laboratory measurements, a newly developed glass chamber system was used to measure particle emissions of fungi under controlled conditions. During the chamber measurements, the humidity and temperature conditions were varied and recorded with a datalogger. To simulate precipitation events, the fruiting bodies were sprayed with water between measurement sections and particle emissions were monitored before and after moistening.

First measurements of fungi under field and lab conditions showed that high humidity values were necessary to trigger fungal spore emissions. In many cases, precipitation events and the moisture status of the fungus and substrate had an influence on spore release. Based on the results of 47 field measurements, it was possible to establish a function simulating the spore emission patterns of fungi during their diurnal emission cycle. During field measurements, an emission of up to 55,000 spores per second was recorded directly at the fungus, which, according to the function, may correspond to emissions of up to 2.8 x 109 spores per day. Chamber measurements showed that spore emissions generally started 2-3 hours after artificial moistening.

Increasing deforestation is expected to cause drier conditions and to increase the possibility of droughts, which will have an impact on the species composition and quantity of fungi in the Amazon. A combination of our field and lab emission data is expected to allow a new interpretation of bioaerosol emissions and composition in the Amazon, which can be used as a baseline to analyze the potential relevance of bioaerosols in regional atmosphere and climate processes.

How to cite: Brill, S., Löbs, N., Barbosa, C. G. G., de Camargo, J. F., Walter, D., Ditas, F., de Oliveira Sá, M., de Araújo, A. C., de Oliveira, L. R., Godoi, R. H. M., Wolff, S., Piepenbring, M., Kesselmeier, J., Artaxo, P., Andreae, M. O., Pöschl, U., Pöhlker, C., and Weber, B.: Analysis of bioaerosol emission patterns of tropical fungi in the Amazon region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14109, https://doi.org/10.5194/egusphere-egu21-14109, 2021.

EGU21-8739 | vPICO presentations | BG2

Beta effect of eCO2 can cause as much rainfall decrease as large-scale deforestation in the Amazon

David Lapola, Gilvan Sampaio, Marília Shimizu, Carlos Guimarães-Júnior, Felipe Alexandre, Manoel Cardoso, Tomas Domingues, Anja Rammig, Celso von Randow, and Luiz Rezende

Amazon region’s climate is particularly sensitive to surface processes and properties such as heat fluxes and vegetation coverage. Rainfall is a key expression of such land surface-atmosphere interactions in the region due to its strong dependence on forest transpiration. While a large number of past studies have shown the impacts of large-scale deforestation on annual rainfall, studies on the isolated effects of elevated atmospheric CO2 concentration (eCO2) on plant physiology (i.e. the β effect), for example on canopy transpiration and rainfall, are scarcer. Here we make a systematic comparison of the plant physiological effects of eCO2 and deforestation on Amazon rainfall. We use the CPTEC-Brazilian Atmospheric Model (BAM) with dynamic vegetation under a 1.5xCO2 and a 100% substitution of the forest by pasture grassland, with all other conditions held similar between the two scenarios. We find that both scenarios result in equivalent average annual rainfall reductions (Physiology: -252 mm,-12%; Deforestation: -292 mm, -13%) that are well above observed Amazon rainfall interannual variability of 5.1%. Rainfall decrease in the two scenarios are caused by a reduction of approximately 20% of canopy transpiration, but for different reasons: eCO2-driven reduction of stomatal conductance in the Physiology run; decreased leaf area index of pasture (-66%) and its dry-season lower surface vegetation coverage in the Deforestation run. Walker circulation is strengthened in the two scenarios (with enhanced convection over the Andes and a weak subsidence branch over east Amazon) but, again, through different mechanisms: enhanced west winds from the Pacific and reduced easterlies entering the basin in Physiology, and strongly increased easterlies in Deforestation. Although our results for the Deforestation scenario are in agreement with previous observational and modelling studies, the lack of direct field-based ecosystem-level experimental evidence on the effect of eCO2 in moisture fluxes of tropical forests confers a substantial level of uncertainty to this and any other projections on the physiological effect of eCO2 on Amazon rainfall. Furthermore, our results denote the incurred responsibilities of both Amazonian and non- Amazonian countries to mitigate potential future climatic change and its impacts in the region driven either by local deforestation (to be tackled by Amazonian countries) or global CO2 emissions (to be handled by all countries).

How to cite: Lapola, D., Sampaio, G., Shimizu, M., Guimarães-Júnior, C., Alexandre, F., Cardoso, M., Domingues, T., Rammig, A., von Randow, C., and Rezende, L.: Beta effect of eCO2 can cause as much rainfall decrease as large-scale deforestation in the Amazon, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8739, https://doi.org/10.5194/egusphere-egu21-8739, 2021.

EGU21-8937 | vPICO presentations | BG2

Analysis of determinants of forest - savanna transition in the northern South America

Santiago Valencia, Juan Camilo Villegas, and Juan F. Salazar

Forest - savanna transition is the most widespread and perhaps more dynamic ecotone in the tropics, and extremely sensitive to climate and environmental change. Both kinds of tropical ecosystems are globally strategic and their presence and dynamics have important ecological, climatic and biogeochemical implications, even at the global scale. However, the processes and mechanisms that control this transition vary among regions and remain not fully understood. In general, this transition is influenced by multiple interactions between vegetation and environmental factors such as climate, soil properties, fire, and herbivory. However, the magnitude of these effects can vary substantially across continents, which can result in different responses to environmental change. For this reason, more regional studies are needed to describe and understand the factors and interactions that control forest - savanna transition, particularly in Northern South America, where climate alone has failed to explain this transition. Based on a combination of LiDAR and satellite-derived data, we developed a statistical analysis on the interactive effects of rainfall, soil properties, and fire on the forest - savanna transition in Northern South America, in the savanna region between Colombia and Venezuela, using tree cover as an indicator variable that differentiates forest from savanna. Specifically, we analyze the relationships of tree cover (from GEDI) with soil sand content (from SoilGrids), fire frequency (from Fire_CCI v5.1) as well as three rainfall variability components (from CHIRPS): mean dry-season rainfall, length of the dry season, and frequency of rainy days within the dry season. Our results show that tree cover increased with mean dry-season rainfall and frequency of rainy days within the dry season, whereas it decreased with increased fire frequency. In particular, mean dry-season rainfall followed by fire frequency are the most important predictors of tree cover gradient in the transition. Importantly, our results also suggest that areas with high annual rainfall (2000 to 2800 mm) have low tree cover (i.e. savanna) if the local rainfall climatology consists of infrequent (< 0.35) and low total rainfall (< 650 mm) in the dry season. This highlights the role of water availability and fire disturbance in determining the limits between forest and the second largest area of savanna in South America. Further, our results support that future projections for forest - savanna transition should include not only changes in mean annual rainfall but also changes in rainfall variability, which is expected to be more impacted by climate change. 

How to cite: Valencia, S., Villegas, J. C., and Salazar, J. F.: Analysis of determinants of forest - savanna transition in the northern South America, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8937, https://doi.org/10.5194/egusphere-egu21-8937, 2021.

EGU21-4121 | vPICO presentations | BG2

Soil organic carbon stocks under different páramo vegetation covers in Ecuador’s northern Andes

Marlon Calispa, Raphaël van Ypersele, Benoît Pereira, Sebastián Páez-Bimos, Veerle Vanacker, Marcos Villacís, Armando Molina, Bert de Bièvre, Teresa Muñoz, and Pierre Delmelle

The Ecuadorian páramo, a neotropical ecosystem located in the upper Andes, acts as a constant source of high-quality water. It also stores significant amounts of C at the regional scale. In this region, volcanic ash soils sustain most of the paramo, and C storage results partly from their propensity to accumulate organic matter. Vegetation type is known to influence the balance between plant C inputs and soil C losses, ultimately affecting the soil organic C (SOC) content and stock. Tussock-forming grass (spp. Calamagrostis Intermedia; TU), cushion-like plants (spp. Azorella pedunculata; CU) and shrubs and trees (Polylepis stands) are commonly found in the páramo. Our understanding of SOC stocks and dynamics in the páramo remains limited, despite mounting concerns that human activities are increasingly affecting vegetation and potentially, the capacity of these ecosystems to store C.

Here, we compare the organic C content and stock in soils under tussock-forming grass (spp. Calamagrostis Intermedia; TU) and soils under cushion-like plants (spp. Azorella pedunculata; CU). The study took place at Jatunhuayco, a watershed on the western slopes of Antisana volcano in the northern Ecuadorian Andes. Two areas of similar size (~0.35 km2) were surveyed. Fourty soil samples were collected randomly in each area to depths varying from 10 to 30 cm (A horizon) and from 30 to 75 cm (2Ab horizon). The soils are Vitric Andosols and the 2Ab horizon corresponds to a soil buried by the tephra fall from the Quilotoa eruption about 800 yr. BP. Sixteen intact soil samples were collected in Kopecky's cylinders for bulk density (BD) determination of each horizon.

The average SOC content in the A horizon of the CU sites (9.4±0.5%) is significantly higher (Mann-Whitney U test, p<0.05) than that of the TU sites (8.0±0.4%), probably reflecting a larger input of root biomass from the cushion-forming plants. The 2Ab horizon contains less organic C (i.e. TU: 4.3±0.3% and CU: 4.0±0.4%) than the A horizon, but the SOC contents are undistinguishable between the two vegetation types. This suggests that the influence of vegetation type on SOC is limited to the A horizon. The average SOC stocks (in the first 30 cm from the soil) for TU and CU are 20.04±1.1 and 18.23±1.0 kg/m2,respectively. These values are almost two times greater than the global average reported for Vitric Andosols (~8.2 kg/m2 ), but are lower than the estimates obtained for some wetter Andean páramos (22.5±5 kg/m2, 270% higher rainfall) from Ecuador. Our stock values further indicate that vegetation type has a limited effect on C storage in the young volcanic ash soils found at Jatunhuyaco. Despite a higher SOC content, the CU soils store a stock of organic C similar to that estimated for the TU soils. This likely reflects the comparatively lower BD of the former soils (650±100 vs. 840±30 kg/m3). Additional studies are needed in order to establish the vegetation-related factors driving the SOC content and stability in the TU and CU soils.

How to cite: Calispa, M., van Ypersele, R., Pereira, B., Páez-Bimos, S., Vanacker, V., Villacís, M., Molina, A., de Bièvre, B., Muñoz, T., and Delmelle, P.: Soil organic carbon stocks under different páramo vegetation covers in Ecuador’s northern Andes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4121, https://doi.org/10.5194/egusphere-egu21-4121, 2021.

EGU21-13301 | vPICO presentations | BG2

Meteorological and fire impacts on tropospheric ozone concentration over tropical forest in the Congo Basin

Inês Vieira, Hans Verbeeck, Félicien Meunier, Marc Peaucelle, Lodewijk Lefevre, Alexander Cheesman, Stephen Sitch, José Mbifo, Pascal Boeckx, and Marijn Bauters

Tropospheric ozone is a greenhouse gas, and high tropospheric ozone levels can directly impact plant growth and human health. In the Congo basin, simulations predict high ozone concentrations, induced by high ozone precursor (VOC and NOx) concentrations and high solar irradiation, which trigger the chemical reactions that form ozone. Additionally, biomass burning activities are widespread on the African continent, playing a crucial role in ozone precursor production. How these potentially high ozone levels impact tropical forest primary productivity remains poorly understood, and field-based ozone monitoring is completely lacking from the Congo basin. This study intends to show preliminary results from the first full year of in situ measurements of ozone concentration in the Congo Basin (i.e., Yangambi, Democratic Republic of the Congo). We show the relationships between meteorological variables (temperature, precipitation, radiation, wind direction and speed), fire occurrence (derived from remote sensing products) and ozone concentrations at a new continuous monitoring station in the heart of the Congo Basin. First results show higher daily mean ozone levels (e.g. 43 ppb registered in January 2020) during dry season months (December-February). We identify a strong diurnal cycle, where minimum values of ozone (almost near zero) are registered during night hours, and maximum values (near 100 ppb) are registered during the daytime. We also verify that around 2.5% of the ozone measurements exceeds a toxicity level (potential for ozone to damage vegetation) of 40 ppb. In the longer term, these measurements should improve the accuracy of future model simulations in the Congo Basin and will be used to assess the impact of ozone on the tropical forest’s primary productivity.

How to cite: Vieira, I., Verbeeck, H., Meunier, F., Peaucelle, M., Lefevre, L., Cheesman, A., Sitch, S., Mbifo, J., Boeckx, P., and Bauters, M.: Meteorological and fire impacts on tropospheric ozone concentration over tropical forest in the Congo Basin, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13301, https://doi.org/10.5194/egusphere-egu21-13301, 2021.

EGU21-7704 | vPICO presentations | BG2

Greenhouse gas fluxes from an oil palm plantation on mineral soil in Indonesia undergoing riparian restoration 

Stella White, Ribka Sionita Tarigan, Anak Agung Ketut Aryawan, Edgar Turner, Sarah Luke, Pujianto Pujianto, Jean-Pierre Caliman, and Julia Drewer

Oil palm (OP) growers are under pressure to reduce their environmental impact. Ecosystem function and biodiversity are at the forefront of the issue, but what effect do changes in management practices have on greenhouse gas (GHG) fluxes from plantations? 

The Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project is a collaboration between the University of Cambridge and the SMART Research Institute in Riau, Indonesia. This project explores the ecological changes resulting from the restoration of riparian margins between plantations and watercourses. Four management strategies were applied on both sides of a river to create 50m riparian buffers, 400m in length: (1) A control treatment of no restoration, the removal of mature OP and replanting of young OP to the river margin; (2) Little to no agricultural management of mature OP; (3) Clearance of mature OP and enrichment planting with native forest trees; (4) Little or no agricultural management of mature OP and enrichment planting with native forest trees. Here we present a specific objective to investigate the effect of riparian restoration – and related changes in soil characteristics, structure and vegetation cover – on fluxes of N2O, CH4 and CO2 from mineral soils.

The experimental site began as a mature OP plantation, with monthly background measurements taken between January and April 2019. Palms were felled in April 2019 and monthly sampling was resumed when replanting and restoration began, in October 2019. We measured GHGs using static chambers; 6 in each riparian treatment and 16 in the actual OP plantation, 40 chambers in total. Samples were analysed using GC-FID/µECD.

Background measurements before felling showed high variability, but indicated no difference between the four experimental plots and the rest of the plantation. Fluxes measured following replanting were also highly variable, with no significant differences observed between treatments. N2O fluxes were relatively low before felling as the mature palms were no longer fertilised. Higher emissions were seen in the disturbed immature OP and forest tree treatments following replanting. Though the sites appeared to recover quickly and emission fluxes decreased after a few months, presumably as the soil settled and new vegetation began to grow. CH4 uptake was seen in the immature OP treatment immediately after replanting. In subsequent months no clear trends of CH4 uptake or emission were observed, with the greatest variability generally seen in the forest tree treatment. CH4 emissions increased in October 2020 with the beginning of the rainy season, most notably in mature OP and mature OP with forest tree treatments. Following restoration CO2 emissions were higher in treatments with established plant communities – mature OP and mature OP with forest trees.

These results suggest that riparian restoration had no significant effect on GHG fluxes from mineral soils, and would not alter the overall GHG budget of a plantation. If there is no additional GHG burden and riparian restoration results in enhancing biodiversity and ecosystem services as well as improving water quality, it will be a viable management option to improve the environmental impact of an OP plantation.

How to cite: White, S., Sionita Tarigan, R., Ketut Aryawan, A. A., Turner, E., Luke, S., Pujianto, P., Caliman, J.-P., and Drewer, J.: Greenhouse gas fluxes from an oil palm plantation on mineral soil in Indonesia undergoing riparian restoration , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7704, https://doi.org/10.5194/egusphere-egu21-7704, 2021.

EGU21-15996 | vPICO presentations | BG2 | Highlight

Refined past, current and future greenhouse gas footprints of palm oil production

Ana Meijide, Cristina de la Rúa, Martin Ehbrecht, and Alexander Röll

Oil palm (Elaeis guineensis) is the most important oil crop in the world, with more than 85% of the global production coming from Indonesia and Malaysia. However, knowledge of country-wide past, current and likely future greenhouse gas (GHG) footprints from palm oil production remains largely incomplete. Over the past year, first studies reporting measurements of net ecosystem carbon dioxide (CO2) fluxes in oil palm plantations of different ages and on different soil types became available. Combining the recent CO2 flux estimates with existing measurements on methane and nitrous oxide fluxes allows for a refined quantification of the GHG footprint of palm oil production over the whole plantation life cycle.

To derive country-wide GHG emissions from palm oil production for both Indonesia and Malaysia, we applied the refined GHG footprint estimates to oil palm area extents. Therein, we differentiated between mineral and peat soils, second- and first-generation plantations and within the latter category also among previous land-use systems from which conversion to oil palm likely occurred. For deriving the current (2020) proportions for each category, we combined FAO data with existing remotely sensed maps on oil palm extent and tree density as well as peatland and intact forest layers. These area proportions were then applied to available historic (1970 – 2010) and future (2030 – 2050) oil palm extent estimates as a business-as-usual scenario (BAU), complemented by alternative scenarios. GHG footprint estimates comprise all GHG emissions from palm oil production, i.e. from land-use change, cultivation, milling and use.

Our refined approach estimates the 2020 GHG emissions from palm oil production at 1011 Tg CO2-eq. yr-1 for Indonesia and at 261 Tg CO2-eq. yr-1 for Malaysia. Our results show that while plantations on peatland only represented 17% and 15% of the total plantation area in 2020 for Indonesia and Malaysia, they accounted for 73% and 72% of the total GHG emissions from palm oil production. Emissions in 1980 and 2000 were estimated to be only 1% and 14% of the 2020 palm oil emissions for Indonesia, but already 24% and 96% for Malaysia due to the earlier oil palm expansion. Projected emissions for 2050, assuming further oil palm expansion on suitable land and constant yields from 2020 on, represent 64% of the 2020 value for Indonesia and 97% for Malaysia under a BAU expansion scenario. These lower or constant GHG emissions for future scenarios despite assumed increases in cultivated area are the consequence of lower GHG emissions in second and subsequent rotation cycles. For both countries, the 2050 BAU emissions could be reduced by more than 50% by halting all conversion of peatlands and forests to oil palm from 2020 on, and by more than 75% when additionally restoring all peatlands currently under oil palm to forest until 2050. Closing yield gaps could potentially lead to further emissions savings.   

How to cite: Meijide, A., de la Rúa, C., Ehbrecht, M., and Röll, A.: Refined past, current and future greenhouse gas footprints of palm oil production, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15996, https://doi.org/10.5194/egusphere-egu21-15996, 2021.

EGU21-10765 | vPICO presentations | BG2

Using Airborne Laser Scanning to characterize different land uses in a tropical landscape based on their structural complexity

Nicoló Camarretta, Martin Ehbrecht, Arne Wenzel, Mohd Zuhdi, Miryam S. Merk, Michael Schlund, Alexander Knohl, and Stefan Erasmi

Accurate characterization of land use and land cover (LULC) is important in a rapidly changing environment such as the Indonesian tropics. Over the past 30 years, native tropical forests have been cleared and replaced by fast-growing cash-crops, such as oil palm and rubber plantations. This change in land use dramatically alters the vegetation structure of the entire region. Vegetation structural complexity is highly variable in tropical forests, and provides habitat to a large number of native species. In addition, vegetation structure has an impact on micro-climate and the exchange of greenhouse gases (GHG), water and energy. Measuring vegetation structure in the field can be costly and time consuming, particularly in remote, inaccessible areas of tropical forest. In contrast, Airborne Laser Scanning (ALS) can provide very detailed three-dimensional information on forest structure without the need to reach remote areas in the field. Here, we aim to study the potential of ALS-derived measures of structural complexity as ecological indicators to highlight differences in forest structure across a gradient of LULC in Sumatra, Indonesia. We analysed the structural complexity of four main LULC types relevant to the region: tropical secondary forests, rubber agroforests, oil palm plantations and shrublands. Several structural metrics have been extracted from ALS data over 136 circular 0.1 ha plots (34 plots per LULC type): top height, height percentiles, rumple index, leaf area index (LAI), effective number of layers (ENL), vegetation cover, number of gaps. Results from a Principal Component Analysis (PCA) indicated number of gaps to be a major driver associated with the occurrence of oil palm plantations, while higher values of key structural metrics, such as top height, LAI and ENL were strongly linked with the presence of secondary tropical forest plots. Furthermore, a clear separation in metrics behaviour between forest and oil palm plots was evident from the pairwise comparison of these metrics, with rubber and shrubland plots behaving similarly to either forests or oil palm plantings according to different metrics. Our results show clear distinctions in several structural attributes among different LULC, which indicate the need for careful considerations regarding the impact of land-use change on ecosystem functioning, biodiversity and climate.

How to cite: Camarretta, N., Ehbrecht, M., Wenzel, A., Zuhdi, M., Merk, M. S., Schlund, M., Knohl, A., and Erasmi, S.: Using Airborne Laser Scanning to characterize different land uses in a tropical landscape based on their structural complexity, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10765, https://doi.org/10.5194/egusphere-egu21-10765, 2021.

EGU21-11776 | vPICO presentations | BG2

Agriculture effects on geochemical soil properties and stability of soil organic carbon on tropical Andosols

Sastrika Anindita, Steven Sleutel, and Peter Finke

The impact of soil age on geochemical properties and carbon cycling has been studied via chronosequences. However, only few studies have addressed how land-use and soil age might interactively shape properties of Andosols and in turn their capability to retain organic carbon (OC). Geochemical soil analyses and laboratory incubation experiments were carried out to assess soil characteristics and mineralization of soil organic carbon (SOC) in Indonesian soils with two contrasting land uses, viz. pine forest and horticulture. Both of these land uses are the results of conversion of primary forest which had similar parent materials, soil age, as well as weathering intensity. Results showed that intensive agricultural practices (+ 40-50 years) did not result in a significant loss of SOC or the increase of bulk density compared to forest. On the other hand, they were found to increase pH, exchangeable cations, base saturation, and most strikingly non-crystalline materials (i.e. Alo + ½ Feo) leading to phenotype formation in agricultural soils. Positive correlations were found between non-crystalline materials with properties such as soil specific surface area and micropores volume, and it was also positively correlated with SOC, particularly in the subsoil. This study highlighted the resilience of Andosols to soil degradation under agricultural practices and its ability to stabilize SOC.

How to cite: Anindita, S., Sleutel, S., and Finke, P.: Agriculture effects on geochemical soil properties and stability of soil organic carbon on tropical Andosols, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11776, https://doi.org/10.5194/egusphere-egu21-11776, 2021.

EGU21-8240 | vPICO presentations | BG2

Reuse of Pineapple Residue in Philippine Agriculture: determination of the net ecosystem C balance for a CAM plant in a pot-scale experiment

Reena Macagga, Shrijana Vaidya, Danica Antonijevic, Marten Schmidt, Matthias Lueck, Mihály Jancsó, Juergen Augustin, Pearl Sanchez, and Mathias Hoffmann

The Philippines is one of the world’s leading producers of pineapples, wherein production is comprised mostly of small family farms that are less than 2 hectares in size. As by-product, they generate a large amount of plant residues (e.g., crowns and stems) that are commonly left at the edge of the field. This practice releases substantial amount of greenhouse gas (GHG) emissions and neglects the potential value of pineapple residue. Enabling a waste treatment by returning them to the field through incorporation or mulching holds the potential to maintain soil fertility, reduce climate impact, secure yield stability, and achieving a high resource efficiency by closing material cycles locally. It may also increase soil organic carbon stock (SOC) and reduce greenhouse gas (GHG) emissions. To date, however, the knowledge about this is still very sparse.

The rePRISING project aims to demonstrate that returning pineapple residue either through mulching or incorporation to the field may help promote the closing of nutrient-cycles (C/N/P/K) locally, thus helping to increase soil fertility and soil C sequestration, while reducing GHG emissions. Within the project, the recycling of pineapple residue together with various local organic and inorganic amendments will be studied during a two-year field experiment using the manual closed chamber method. The field study will be supplemented by pot-scale greenhouse and incubation experiments, used inter alia to determine baseline GHG emissions and carbon budgets of pineapple cultivation systems and residue treatments.

Here we present first results of a pot experiment performed during winter 2020-2021 used to develop a suitable procedure for the in-situ determination of dynamic net ecosystem C balances (NECB) for pineapple cultivation systems. This will be further utilized for upcoming field study. This is challenging in so far as pineapple plants use the Crassulacean acid metabolism (CAM photosynthesis) and the manual closed chamber method has not yet been applied to determine NECB from CAM plants.

Keywords: nutrient-cycling, carbon sequestration, greenhouse gas (GHG) emissions, pineapple residue, climate change mitigation

How to cite: Macagga, R., Vaidya, S., Antonijevic, D., Schmidt, M., Lueck, M., Jancsó, M., Augustin, J., Sanchez, P., and Hoffmann, M.: Reuse of Pineapple Residue in Philippine Agriculture: determination of the net ecosystem C balance for a CAM plant in a pot-scale experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8240, https://doi.org/10.5194/egusphere-egu21-8240, 2021.

EGU21-16162 | vPICO presentations | BG2

Assessment of the dissolved inorganic and organic carbon flux in Cauvery, a tropical river of Southern India.

RamyaPriya Ramesh and Elango Lakshmanan

The carbon fluxes in rivers plays a critical role in the global carbon cycle but its role is always understated. The tropical rivers alone accounts for about 70% of global riverine carbon fluxes due to their large areal extent, varying climatic conditions and land use. Studies on the dissolved carbon fluxes in non-perennial tropical rivers are limited, but it holds much importance as that of perennial rivers. Hence, the present study was carried out with an objective to understand about the inorganic and organic carbon fluxes in a large non-perennial tropical river of Southern India. The samples were collected from 28 locations along the river thrice in a year from 2013-2020 and were analysed for major ions, DIC and DOC. The concentration of DIC in the river water in most of the locations is greater than that of DOC. The DOC concentration is greater at pristine locations thereby decreasing along the flow direction of the river, whereas the DIC concentration increases along the flow direction. The spatial and temporal variability in DOC and DIC concentrations is attributed due to the changes in the rainfall, river flow, climate, lithology, land use patterns, in the catchment. The DIC concentration was found to be majorly governed by silicate and carbonate weathering along with biogenic process, mineralisation and other river process, whereas the primary production, microbial process along with soil organic carbon influences the DOC concentration in the rivers. Thus, this study identifies the sources of DIC and DOC in rivers and the processes which influences the carbon export to the sea.

How to cite: Ramesh, R. and Lakshmanan, E.: Assessment of the dissolved inorganic and organic carbon flux in Cauvery, a tropical river of Southern India., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16162, https://doi.org/10.5194/egusphere-egu21-16162, 2021.

EGU21-4075 | vPICO presentations | BG2

The role of hydrological processes on enhanced weathering for carbon sequestration in soils in tropical areas

Giuseppe Cipolla, Salvatore Calabrese, Leonardo Valerio Noto, and Amilcare Porporato

To mitigate global warming, a noticeable research effort is being devoted to NCS (Natural Climate Solutions) as means to reduce greenhouse gas emissions or sequester carbon within the oceans or terrestrial environments by exploiting natural processes. Enhanced weathering is a NCS that aims to increase the weathering reaction rates of silicate minerals, by amending soils with crushed reactive minerals. Various studies have shown that this technique is favored by hot and humid climates (i.e., tropical ecosystems), since weathering reactions are mostly effective under high temperature and soil moisture. Despite olivine dissolution dynamics in laboratory conditions are quite well known, understanding and modeling them in field is still a challenge. Indeed, apart from some pot experiments involving soils of agricultural fields, only few weathering models are available. Given the urgency of the problem, models play a very important role for extrapolating results of laboratory and field experiments in both time and space, as well as for quantifying the impact of hydroclimatic fluctuations on the involved biogeochemical processes.

The present study explores the role of hydrological processes on long-term Forsterite dissolution, a highly reactive silicate mineral also known as Mg-olivine or simply olivine. Toward this goal, we present a novel dynamic mass balance model coupling ecohydrological and biogeochemical dynamics, including mineral dissolution. Results under different climate scenarios highlight that hydrological fluctuations lead to hysteretic patterns of weathering rate with soil moisture, meaning that the process maintains a memory of past events (i.e., dry or wet periods). The model allows to explore the twofold role of organic matter on enhanced weathering; indeed, while its decomposition is a source of CO2, organic matter also increases the soil CEC, thus buffering changes in soil pH. Carbon sequestration and nutrients availability due to enhanced weathering are quantified, in this study, as a function of MAP (Mean Annual Precipitation). Average CO2 that reacts with olivine can exceed 40 t ha-1 y-1 for MAP higher than 2000 mm, condition that is always reached in the tropics. This CO2 can be found as dissolved in soil water in the form of bicarbonate (HCO3-) and carbonate (CO32-) ions and will be leached away from the domain, eventually reaching the ocean. In presence of tropical climate olivine application also leads to an increase of soil pH and nutrients availability, especially calcium and magnesium, which in turn can enhance plant productivity. This study paves the way for a potential integration of enhanced weathering in agroecosystem management practices, especially in humid tropical regions since these are characterized by high MAP and temperature.

How to cite: Cipolla, G., Calabrese, S., Noto, L. V., and Porporato, A.: The role of hydrological processes on enhanced weathering for carbon sequestration in soils in tropical areas, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4075, https://doi.org/10.5194/egusphere-egu21-4075, 2021.

BG3 – Land use and land cover change effects on surface biogeophysics, biogeochemistry and climate

EGU21-1654 | vPICO presentations | BG3

European Forest Management Portfolios Optimized for Uncertain Future Climate

Konstantin Gregor, Thomas Knoke, Andreas Krause, Mats Lindeskog, and Anja Rammig

Forests are considered a major player in climate change mitigation since they influence local and global climate through biogeochemical and biogeophysical feedbacks. However, they are themselves vulnerable to future environmental changes. Thus, forest management needs to focus on both mitigation and adaptation. The special challenge is that decisions on management strategies must be taken today while still a broad range of emission pathways is possible, and a good decision regarding one assumed pathway might turn out to be a bad decision when a different one materializes.

With our study we try to aid this decision-making process by finding management portfolios that provide relevant ecosystem functions such as local and global climate regulation, water availability, flood protection, and timber production for a wide range of future climate scenarios. To simulate according ecosystem processes and functions, we run the dynamic vegetation model LPJ-GUESS for the most relevant forest types across Europe for four different RCPs and five different management options. We analyze our simulation outputs using robust optimization techniques to determine optimal forest management portfolios for each 0.5° grid cell in Europe that ensure a balanced provision of all considered ecosystem functions in the future under any of the four RCPs.

Generally, our simulations and optimizations show that diversified management portfolios are most suitable to provide the set of considered ecosystem functions in all climate scenarios everywhere in Europe. While the portfolios show different compositions in different regions, they are quite similar in adjacent grid cells. The suggested future forest composition in Europe tends to be fairly close to present day values except for Northern Europe where a much higher proportion of deciduous types is proposed.

Management as high forest (trees emerging from seeds) remains the most important form of management. The proposed share of coppice management is much higher in Central and Northern Europe (~20%) than in Southern Europe, where its disadvantages (e.g., high water consumption and its non-suitability to provide long-lived wood products) are more pronounced.

A succession of ~30% of managed forest to natural forest is proposed by the optimization as it provides highest carbon storage and surface roughness values. However, this infeasibly high share is reduced if the provision of wood harvest is valued higher in the optimization compared to the other ecosystem functions.

Current public focus on forests lies often on their potential for carbon sequestration, but future forest management must also address the other services that they provide. This work gives insights on how this may be done.

How to cite: Gregor, K., Knoke, T., Krause, A., Lindeskog, M., and Rammig, A.: European Forest Management Portfolios Optimized for Uncertain Future Climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1654, https://doi.org/10.5194/egusphere-egu21-1654, 2021.

EGU21-2818 | vPICO presentations | BG3

Biogeophysical effects of idealised land cover and land management changes on the climate

Steven De Hertog, Inne Vanderkelen, Felix Havermann, Suqi Guo, Julia Pongratz, Iris Manola, Dim Coumou, Edouard Davin, Sonia Seneviratne, Quentin Lejeune, Inga Menke, Carl-Friedrich Schleussner, and Wim Thiery

Land cover and land management (LCLM) changes have been highlighted for their critical role in low-end warming scenarios, both in terms of global mitigation and local adaptation. Yet the overall potential of LCLM options and their combination is still poorly understood. Here we model the climatic effects of four LCLM options using three state-of-the-art Earth system models, including the Community Earth System Model (CESM), the Max Planck Institute Earth System Model (MPI-ESM) and the European Consortium Earth System Model (EC-EARTH). The considered LCLM options represent idealized conditions:(i) a fully afforested world, (ii) a fully deforested world, (ii) a fully afforested world with extensive wood harvesting, and (iv) a fully deforested world with extensive irrigation. In these idealized sensitivity experiments, ran under present-day climate conditions, the effects of the different LCLM strategies represent an upper bound of the potential for global mitigation and local adaptation. To disentangle the local and non-local effects from the LCLM changes, a checkerboard perturbation, as proposed by Winckler et al. (2017) is applied.

Our first results show that deforestation leads to a pronounced warming in 2m air temperature in CESM over most regions, being most pronounced in the tropics (up to 4°C). In contrast, in the boreal regions of North America and Asia, deforestation causes a ~1°C cooling in 2m air temperature. In CESM, the local effect seems to dominate the temperature response from deforestation, while the resulting non-local effect overall has a smaller magnitude. This contrasts to the effect from afforestation, of which the non-local component dominates the 2m air temperature signal. Afforestation indeed shows a strong local cooling in the tropics and a slight local warming in the temperate and boreal regions, yet, the local cooling is regionally offset by  a global, non-local warming of up to 2 °C. In a next step, we will extend this analysis to the ensemble of Earth system models and increase our process-based understanding of these results and their implications on hot extremes as well as the effects on other temperature metrics (surface temperature and temperature of the lowest level of atmospheric column). Finally, we will perform a subgrid-scale comparison of the effects of LCLM on temperature.

References:

Winckler, J., Reick, C.H., Pongratz, J., 2017. Robust identification of local biogeophysical effects of land-cover change in a global climate model, American Meteorological society, 30(2), DOI: 10.1175/JCLI-D-16-0067.1

How to cite: De Hertog, S., Vanderkelen, I., Havermann, F., Guo, S., Pongratz, J., Manola, I., Coumou, D., Davin, E., Seneviratne, S., Lejeune, Q., Menke, I., Schleussner, C.-F., and Thiery, W.: Biogeophysical effects of idealised land cover and land management changes on the climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2818, https://doi.org/10.5194/egusphere-egu21-2818, 2021.

EGU21-3552 | vPICO presentations | BG3

Assessing global biogeophysical effects of reconstructed land use and land cover change on climate since 1950 using a coupled land–atmosphere–ocean model

Huilin Huang, Yongkang Xue, Nagaraju Chilukoti, Ye Liu, Gang Chen, and Ismaila Diallo

Land use and land cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global biogeophysical LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ.

How to cite: Huang, H., Xue, Y., Chilukoti, N., Liu, Y., Chen, G., and Diallo, I.: Assessing global biogeophysical effects of reconstructed land use and land cover change on climate since 1950 using a coupled land–atmosphere–ocean model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3552, https://doi.org/10.5194/egusphere-egu21-3552, 2021.

EGU21-5789 | vPICO presentations | BG3

Integrating Land Cover and Land Management feedbacks into climate models: an emulator approach

Quentin Lejeune, Shruti Nath, Carl Schleussner, Jonas Schwaab, and Sonia Seneviratne

The role of Land Cover and Land Management (LCLM) changes in shaping the climate has garnered increasing interest, particularly in light of its potential for climate adaptation and mitigation. Earth System Models (ESMs), however, have hitherto handled LCLM-climate interactions as a unidirectional process, lacking explicit treatment of LCLM-Climate feedbacks. These feedbacks nevertheless are linked to extreme climate events such as heat waves and drought, which in turn carry economic costs through worker productivity, crop yields and food prices. It is thus essential to integrate LCLM processes and their feedbacks into a ESMs, in order to build consistent storylines for future development pathways that take into account their potential for adaptation and mitigation. Emulators represent a computationally cheap but effective way of approximating ESM with an added advantage of agility in scenario exploration. Here we outline an emulator approach to represent LCLM-Climate feedbacks based on a framework developed by Beusch et al. (2020). The emulator provides monthly, spatially explicit data from yearly global mean temperature and uses Generalised Additive Models (GAMs) to represent LCLM-Climate feedbacks. The emulator is to be used in the LAnd MAnagement for CLImate Mitigation and Adaptation (LAMACLIMA) project, and is trained on dedicated ESM simulations that isolate the effects of key land management practices focussed on by LAMACLIMA: irrigation, de/reforestation and wood. Key variables produced by the emulator include temperature, Wet Bulb Globe Temperature and labour productivity.

 

Beusch, L., Gudmundsson, L., & Seneviratne, S. I. (2020). Emulating Earth System Model temperatures: from global mean temperature trajectories to grid-point level realizations on land. Earth System Dynamics, 11(1), 139–159. https://doi.org/10.5194/esd-11-139-2020

How to cite: Lejeune, Q., Nath, S., Schleussner, C., Schwaab, J., and Seneviratne, S.: Integrating Land Cover and Land Management feedbacks into climate models: an emulator approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5789, https://doi.org/10.5194/egusphere-egu21-5789, 2021.

EGU21-6002 | vPICO presentations | BG3

Carbon storage in soils and plant biomass under future climate and land use pressures

Dmitry Yumashev, Victoria Janes-Bassett, John Redhead, Ed Rowe, and Jessica Davies

It is widely accepted in the scientific, business and policy communities that meeting the Paris Agreement targets will require a large-scale deployment of negative emission technologies and practices. As a result, nature-based climate solutions, including carbon sequestration (Cseq) in soils and forests, have received much attention in the literature recently. Several national and global assessments have identified considerable potential for terrestrial Cseq, while other studies have raised doubts regarding its practical limits in the face of the likely future pressures from climate change and land use change. In general, the existing Cseq assessments lack sensitivity to climate change, perspective on local land use and nutrient limitations. Accounting for these factors requires process-based modelling, and is feasible only at national to regional scales at present, underpinned by a wide body of local evidence. Here, we apply an integrated terrestrial C-N-P cycle model (N14CP) with representative ranges of high-resolution climate and land use scenarios to estimate Cseq potential in temperate regions, using the UK as a national-scale example. Meeting realistic UK targets for grassland restoration and forestation over the next 30 years is estimated to sequester an additional 120 TgC by 2100 (similar to current annual UK greenhouse gas emissions), conditional on climate change of <2°C. Conversely, UK arable expansion would reduce Cseq by a similar magnitude, while alternative arable management practices such as extensive rotations with grass leys would have a comparatively small effect on country-wide Cseq outcomes. Most importantly, the simulations suggest that warmer climates will cause net reductions in Cseq as soil carbon losses exceed gains from increased plant productivity. Our analysis concludes that concerted land use change can make a moderate contribution to Cseq, but this is dependent on us cutting emissions from fossil fuels, soil degradation and deforestation in line with a <2°C pathway.

How to cite: Yumashev, D., Janes-Bassett, V., Redhead, J., Rowe, E., and Davies, J.: Carbon storage in soils and plant biomass under future climate and land use pressures, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6002, https://doi.org/10.5194/egusphere-egu21-6002, 2021.

EGU21-7085 | vPICO presentations | BG3

The Role of El Niño in Modulating the Effects of Deforestation in the Maritime Continent

Tinghui lee and Minhui lo

The deforestation rate in the Maritime Continent (MC) has been accelerating during the past several decades. Understanding the changes in local hydro-climatological cycles as deforestation takes place is essential because the MC is suffering from frequent and extreme droughts and fires, which often occur during the dry season and are more severe during El Niños. Therefore, this study explores how deforestation affects the hydrological cycle and precipitation in the MC during El Niños, focusing on the boreal autumn season and using the coupled atmosphere-land model simulations. It is found that the precipitation over the MC increases in the deforestation experiments, and the precipitation responses can be magnified during El Niño events. A strong subsidence anomaly associated with El Niño does not prevent enhanced convection associated with local deforestation. Instead, the subsidence reduces the cloud cover in the MC region during El Niño, which increases the incoming solar radiation and increases surface temperatures. Under a warmer environment induced by El Niño, the nonlinear biogeophysical feedbacks associated with deforestation also play a critical role in more substantial land surface warming. A warmer land surface induces a more unstable atmospheric environment associated with a tendency toward enhanced local convection and lateral moisture convergence. This study highlights how the different mean climate states may modulate the impact of local land-use changes on hydroclimatological cycles in the Maritime Continent, and sheds light on the state of our knowledge of interactions between the local land surface and remote large-scale atmospheric circulations.

How to cite: lee, T. and lo, M.: The Role of El Niño in Modulating the Effects of Deforestation in the Maritime Continent, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7085, https://doi.org/10.5194/egusphere-egu21-7085, 2021.

EGU21-7715 | vPICO presentations | BG3

Reconciling different approaches to quantifying surface cooling induced by afforestation in China using satellite observations

Huanhuan Wang, Chao Yue, Sebastiaan Luyssaert, Jie Zhao, and Hongfei Zhao

Forest cover change can cause strong local biophysical feedbacks on climate. Satellite observations of land surface temperature (T) and land cover distribution or forest cover change have been widely used to examine the effects of afforestation/deforestation on local surface temperature change (ΔT). However, different approaches were used by previous analyses to quantifying ΔT, and it remains unclear whether results of ΔT by these approaches are comparable. We identified three influential approaches to quantifying ΔT used by previous studies, namely the actual ΔT resulting from actual changes in forest coverage over time and accounting for changes in background climate (ΔTa proposed by Alkama and Cescatti, 2016), potential ΔT by hypothesizing potential shifts between non-forest and forest at given native spatial resolutions of satellite products (ΔTp1 by Li et al., 2015), and potential ΔT, but using the singular value decomposition technique to derive ΔT by hypothesizing a shift between a 100% complete non-forest and 100% forest (ΔTp2 by Duveiller et al., 2019). China realized large-scale afforestation making it a suitable test case to compare satellite-based approaches for estimating ΔT following afforestation. We hypothesize that (1) ΔTa depends on the fraction of ground area that’s been afforested (Faff). (2) The relative magnitude between different approaches should be: ΔTa < ΔTp1 < ΔTp2. (3) When ΔTa is extended to a hypothetical case that Faff reaches 100%, it should be comparable to ΔTp1 or ΔTp2. We used multiple satellite observation products to test these hypotheses. The results show that the magnitude of actual daytime surface cooling by afforestation (ΔTa) increases with Faff, and is significantly lower than ΔTp1 and ΔTp2. But no significant difference was found between ΔTp1 and ΔTp2. A linear regression model established between ΔTa and Faff extends the ΔTa, when Faff reaches 100%, to a comparable magnitude than ΔTp1 and ΔTp2. Our study thus highlights the importance to consider the actual surface cooling impact by afforestation projects in contrast to the potential effects, and provides a first study to reconcile different approaches to quantify the land surface temperature change due to afforestation.

How to cite: Wang, H., Yue, C., Luyssaert, S., Zhao, J., and Zhao, H.: Reconciling different approaches to quantifying surface cooling induced by afforestation in China using satellite observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7715, https://doi.org/10.5194/egusphere-egu21-7715, 2021.

EGU21-8053 | vPICO presentations | BG3

Comparison of modelled radiation budgets with observations over lichens and shrubs at Mount Imingfjell, Norway

Anastasiia Vasiakina, Hans Renssen, and Peter Aartsma

Mountains are some of the most inaccessible regions, where not many weather stations located due to the high altitudes. Thus, the amount of available mountain meteorological data is limited. One of the modern solutions to data insufficiency is modelling. However, it remains challenging to assess how well a model simulates local climate conditions.

The main goal of this study was to check the model accuracy by comparing its results to observed data, with a focus on the radiation budget.

The Community Land Model 4.5 (CLM4.5) provided by the University of Oslo was used. It is a one-dimensional model and the default land component in the Community Earth System Model 1.2. CLM4.5 simulates various biogeophysical and biogeochemical processes based on surface energy, water, and carbon balances [Oleson et al. 2013]. Here, the model was run from 1901 to 2014 in the offline mode, meaning it was getting input from a pre-existing dataset. Modelled fluxes from the radiation budget, such as incoming (Kin) and outgoing shortwave (Kout) radiation, incoming (Lin) and outgoing (Lout) longwave radiation, net all-wave (Q*), net shortwave (K*) and net longwave (L*) radiation, were used for compassion with observations.

A 2.5×0.2 km site on Mount Imingfjell (1191 m) in southern Norway was selected as the study object. Different microclimatic parameters, including radiation fluxes, were measured separately over lichens and shrubs for 44 days in the 2018-2019 summers [Aartsma et al. 2020]. These vegetation types were chosen to understand the differences between them and see the potential impact of “shrubification” on surface albedo. Since there was no time overlap between modelled and observed data, we had to make datasets more comparable. 44 days from field data were used to create composite datasets that represent three temperature regimes based on data from the nearest weather station: “cold”, “normal” and “warm”. Each observation was assigned to one of these temperature regimes. In CLM4.5, recently available years were analysed to find ones with average summer temperatures closest to the stated temperature regimes. Statistical analysis, such as a two-sample t-test, was performed to see if there were any significant differences between the datasets.

T-tests showed that modelled Kin, Lin and K* were always similar to measurements, except for Lin and K* in “cold” conditions. CLM4.5 Kout differed from observed ones in almost all regimes. Simulated L*, Q* and Lout varied between temperature conditions and vegetation types. Still, about 70% of the modelled fluxes closely resembled the shrub ones, while only around 50% resembled lichens. Modelled albedo was also closer to shrub albedo.

In conclusion, CLM4.5 most likely modelled credible values for radiation fluxes, but further research is needed for greater clarity.

References

1. Aartsma, P., Asplund, J., Odland, A., Reinhardt, S., & Renssen, H. (2020). Surface albedo of alpine lichen heaths and shrub vegetation. Arctic, Antarctic, and Alpine Research, 52(1), 312-322.

2. Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C., . . . Yang, Z.-L. (2013). Technical description of version 4.5 of the Community Land Model (CLM).

How to cite: Vasiakina, A., Renssen, H., and Aartsma, P.: Comparison of modelled radiation budgets with observations over lichens and shrubs at Mount Imingfjell, Norway, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8053, https://doi.org/10.5194/egusphere-egu21-8053, 2021.

EGU21-9690 | vPICO presentations | BG3

Global consistency in response of terrestrial ecosystem respiration to temperature

Huanyuan Zhang, Zhiyuan Zhang, Zikun Cui, Feng Tao, Ziwei Chen, Yaxuan Chang, Vincenzo Magliulo, Georg Wohlfahrt, and Dongsheng Zhao

Many studies have been carried out to quantify the trend of terrestrial ecosystem respiration (Re) in a warming world, but a conclusive answer has not yet been confirmed because the temperature sensitivity of Re was found inconsistent under different scales or regarding different types of respiratory flux.  Aiming at clarifying the relationship between temperature and Re across different scales, we proposed a method to counteract the confounding effect and applied nine empirical models to a 1,387 site-years FLUXNET dataset.  Regarding the temperature sensitivity of half-hourly Re records, we found a surprisingly consistent result that the sigmoid functions outcompeted other statistical models in almost all datasets (account for 82%), and on average, achieved a staggering R2 value of 0.92, indicating the positive correlation between Re and temperature on fine time scale (within one site-year dataset).  Even though Re of all biomes followed sigmoid functions, the parameters of the S-curve varied strongly across sites.  This explains why measured Q10 value (an index denote temperature sensitivity) largely depends on observation season and site.  Furthermore, on the interannual variation of Re, we did not find any relationship between mean annual temperature (MAT) and mean annual Re within any site, which implies that the small year-to-year variation of the sigmoid pattern is large enough to counteract the warming effect on Re.  This study thereby put forward a conceptual model to integrate the relationship between temperature and Re under different scales. It also provided evidences to support the argument that the relationship between MAT and mean annual Re (i.e., respiration under global warming) should not be inferred from studies on other temporal or spatial scales.

How to cite: Zhang, H., Zhang, Z., Cui, Z., Tao, F., Chen, Z., Chang, Y., Magliulo, V., Wohlfahrt, G., and Zhao, D.: Global consistency in response of terrestrial ecosystem respiration to temperature, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9690, https://doi.org/10.5194/egusphere-egu21-9690, 2021.

EGU21-9826 | vPICO presentations | BG3

Simulated biogeochemical effects of idealized land cover and land management changes

Suqi Guo, Julia Pongratz, Felix Havermann, Steven De Hertog, Wim Thiery, Iris Manola, Dim Coumou, Quentin Lejeune, and Carl-Friedrich Schleussner

Land cover and land management (LCLM) changes are important sources and sinks for anthropogenic CO2 fluxes. Current earth system models (ESMs) are capable to simulate the globally most sensitive LCLM changes (strong effects or large spatial extent in the earth system) such as de- and afforestation, wood harvest and irrigation, however, a comprehensive analysis between these ESMs is still absent. The present study aims to quantify the biogeochemical effects of forest cover changes, wood harvesting and irrigation of croplands on the global carbon cycle.

 

Therefore, we conducted coupled atmosphere-ocean-land experiments of idealized global deforestation with and without cropland irrigation as well as global re-/afforestation with and without wood harvest over a 150-year period under present day solar and trace gas forcing. All experiments were simulated by three different ESMs (MPI-ESM, EC-EARTH and CESM) to quantify inter-model uncertainty and potentially uncover specific model biases. The analysis focuses on the transient response of land carbon fluxes and pools after an abrupt LCLM practice change, in order to track the emergence of signals that could potentially mitigate climate change. Additionally, we want to unravel model differences concerning the temporal dynamics of LCLM change effects. Since greenhouse gases (GHG) concentration is kept constant at present-day level, the climate changes here arise from the biogeophysical effects of LCLM changes. We use a checkerboard approach to separate local and non-local components of the climate changes as proposed by Winckler et al., 2017, i.e. we separate the changes in climate induced locally by the LCLM changes from those induced remotely by advection and changes in atmospheric circulation.

 

First results with the MPI-ESM show that immediate global deforestation starting from present-day land-use distribution causes a 824 GtC loss of the total land carbon pool throughout the simulation period of 150 years, about 46% of which stem from tropical regions (17°S–17°N). Land carbon stocks are not balanced until the end of the simulation, which indicates that the land will continue to emit CO2 to the atmosphere and a long-term commitment by deforestation for climate change. Non-local effects lead to a loss of 26 GtC from land, again with largest losses found for the tropical regions. Even though it is a small part compared to the total loss (local plus non-local effect), it reveals potentially substantial consequences that LCLM changes at large scale can have unintendedly on other regions, including remote pristine ones, through biogeophysical climate change.

How to cite: Guo, S., Pongratz, J., Havermann, F., De Hertog, S., Thiery, W., Manola, I., Coumou, D., Lejeune, Q., and Schleussner, C.-F.: Simulated biogeochemical effects of idealized land cover and land management changes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9826, https://doi.org/10.5194/egusphere-egu21-9826, 2021.

Land-use change (LU) is a major regional climate forcing that affects carbon-water-energy fluxes and, therefore, near-surface air temperature. Although there are uncertainties in LU impacts in the historical climate, there is a growing consensus towards a cooling influence in the mid-latitudes. However, how a drier and warmer land surface condition in the future climate can change the LU impacts are not investigated well.

We use a comprehensive set of five coupled climate models from the CMIP6-LUMIP project to assess the changing influence of the LU change. We use two methodologies: (1) direct method – where LU impacts are estimated by subtracting the ‘no-LU’ climate experiment from the control experiment that includes LU, and (2) Kumar et al., 2013 (K13) method where LU impacts are estimated by comparing climate change impacts between LU and no-LU neighboring regions.

First, we compared the LU impacts in the historical climate and between the direct method and K13 methods using the multi-model analysis. In the North America LU change region, the direct method shows a cooling impact of (-0.14 ± 0.13°C). The K13 methods show a smaller cooling impact (-0.09 ± 0.08°C). In terms of energy balance, the direct method shows a reduction of net shortwave radiation (-0.82 ± 0.91 watts/m2) the K13 method shows a cleaner result of (-1.25 ± 0.60 watts/m2), as expected. We suspect that a more substantial influence of the LU change in the direct method is due to large-scale circulation driven response or due to the internal variability that has been canceled out in the K13 method.

Next, we extend the K13 method to assess the LU impacts in the future climate. Direct methods are not available for the future climate experiment in CMIP6-LUMIP datasets. We find that a cooling impact of LU change has become statistically insignificant in the future climate (-0.17 ± 0.19°C). A similar influence is also found in the reduction of the net shortwave radiation (-1.92 ± 3.34 watts/m2). We also found that climate change impacts on temperature are an order of magnitude greater than LU impact in the future climate. Hence, we hypothesize that higher warming has contributed to the larger uncertainty in LU impacts. We will also discuss LU impacts in Eurasia and Indian subcontinent.

 

 

Reference

Kumar, S., Dirmeyer, P. A., Merwade, V., DelSole, T., Adams, J. M., & Niyogi, D. (2013). Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. Journal of Geophysical Research: Atmospheres, 118(12), 6337-6353.

How to cite: Singh, A. and Kumar, S.: Increased uncertainty in Land-Use change impacts on temperature due to Global Warming in CMIP6-LUMIP experiments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10313, https://doi.org/10.5194/egusphere-egu21-10313, 2021.

EGU21-10471 | vPICO presentations | BG3

Local and non-local climatic impacts of land use across scales

Liang Chen

It has been widely recognized that land use/land cover changes have great potential to influence climate at different scales. However, their local and non-local impacts have not been well understood. First, previous studies are limited by the assumption that the local impacts of land use do not modify the atmospheric background states. Second, land-use impacts may vary if simulations are conducted at a different spatial scale. In this study, we investigate the local and non-local impacts of historical land use using the Community Earth System Model version 2, and explore the possible influence of model resolutions on the local and non-local impacts. The local and non-local impacts of land use are separated using atmospheric nudging, in which the horizontal winds in the upper atmosphere are forced to follow the ERA-Interim reanalysis, whereas the nudging strength is zero at the surface. The multi-resolution experiments suggest that the local impacts of land use are consistent at different spatial scales, but the non-local impacts are influenced by the model resolution. We will also discuss the local and non-local impacts of land use on climate extremes across scales. This study presents a new way to distinguish the local and non-local impacts and highlights the uncertainty in simulated land-use impact in climate studies. 

How to cite: Chen, L.: Local and non-local climatic impacts of land use across scales, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10471, https://doi.org/10.5194/egusphere-egu21-10471, 2021.

EGU21-11207 | vPICO presentations | BG3

Assessing the effects of climate and land use land cover changes on recent carbon storage in terrestrial ecosystem using model-satellite approach over Wallonia, Belgium

Arpita Verma, Louis Francois, Ingrid Jacquemin, Merja Tölle, Huan Zhang, and Benjamin Lanssens

The use of a dynamic vegetation model, CARAIB, to estimate carbon sequestration from land-use and land-cover change (LULCC) offers a new approach for spatial and temporal details of carbon sink and for terrestrial ecosystem productivity affected by LULCC. Using the remote sensing satellite imagery (Landsat) we explore the role of land use land cover change (LULCC) in modifying the terrestrial carbon sequestration. We have constructed our LULCC data over Wallonia, Belgium, and compared it with the ground-based statistical data. However, the results from the satellite base LULCC are overestimating the forest data due to the single isolated trees. We know forests play an important role in mitigating climate change by capturing and sequestering atmospheric carbon. Overall, the conversion of land and increase in urban land can impact the environment. Moreover, quantitative estimation of the temporal and spatial pattern of carbon storage with the change in land use land cover is critical to estimate. The objective of this study is to estimate the inter-annual variability in carbon sequestration with the change in land use land cover. Here, with the CARAIB dynamic vegetation model, we perform simulations using remote sensing satellite-based LULCC data to analyse the sensitivity of the carbon sequestration. We propose a new method of using satellite and machine learning-based observation to reconstruct historical LULCC. It will quantify the spatial and temporal variability of land-use change during the 1985-2020 periods over Wallonia, Belgium at high resolution. This study will give the space to analyse past information and hence calibrate the dynamic vegetation model to minimize uncertainty in the future projection (until 2070). Further, we will also analyse the change in other climate variables, such as CO2, temperature, etc. Overall, this study allows us to understand the effect of changing land-use patterns and to constrain the model with an improved input dataset which minimizes the uncertainty in model estimation.

How to cite: Verma, A., Francois, L., Jacquemin, I., Tölle, M., Zhang, H., and Lanssens, B.: Assessing the effects of climate and land use land cover changes on recent carbon storage in terrestrial ecosystem using model-satellite approach over Wallonia, Belgium, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11207, https://doi.org/10.5194/egusphere-egu21-11207, 2021.

EGU21-12112 | vPICO presentations | BG3

Updated land use and land cover change (LULCC) emission estimates based on new high-resolution LULCC forcing data

Raphael Ganzenmüller, Selma Bultan, Karina Winkler, Richard Fuchs, and Julia Pongratz

Land use and land cover change (LULCC) has a significant role for the global carbon cycle. Despite big improvements in LULCC emission modelling, related uncertainties remain relatively high. Major uncertainties in quantifying LULCC emissions stem from uncertainties in underlying LULCC datasets. The novel, high-resolution (~1 km×1 km) LULCC dataset HIstoric Land Dynamics Assessment+ (HILDA+) reflects gross transitions derived from multiple remote sensing products and offers an alternative to existing land use change datasets, serving as forcing for process-based and bookkeeping models. By incorporating HILDA+ in the “bookkeeping of land use emissions” (BLUE) model, which is one of the three bookkeeping models used in the Global Carbon Budget 2020, we gain a different temporal and spatial perspective on LULCC estimates and related sources of uncertainty. 

We compare our results to emission estimates based on LUH2, which is broadly used as LULCC forcing for process-based and bookkeeping models. First results of our analysis show overall lower LULCC emissions for the estimates based on HILDA+. For the time period 1990-2019, mean yearly emission estimates based on HILDA+ are 0.595 GtC yr−1 compared to 1.368 GtC yr−1 based on LUH2. Reasons are lower emissions from cropland expansion and less carbon uptake from vegetation regrowth after abandonment of managed land (i.e. a smaller carbon sink). Furthermore, fewer discontinuities in the BLUE runs with the HILDA+ forcing compared to the LUH2-based estimates suggests a better representation of land use dynamics and their effects. Overall, the simulations based on HILDA+ capture spatial heterogeneity to a greater degree and provide a more detailed picture of local sources and sinks, which is crucial for (1) a better representation of component fluxes (e.g. deforestation, degradation) and (2) effective mitigation and adaptation policies.

How to cite: Ganzenmüller, R., Bultan, S., Winkler, K., Fuchs, R., and Pongratz, J.: Updated land use and land cover change (LULCC) emission estimates based on new high-resolution LULCC forcing data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12112, https://doi.org/10.5194/egusphere-egu21-12112, 2021.

EGU21-12561 | vPICO presentations | BG3

Evaluation of soil carbon dynamics after land use change in CMIP6 land models using chronosequences

Victor Brovkin, Lena Boysen, David Wårlind, Daniele Peano, Anne Sofie Lansø, Christine Delire, Eleanor Burke, Christopher Poeplau, and Axel Don

Land surface models are used to provide global estimates of soil organic carbon (SOC) changes after past and future land use change (LUC). To evaluate how well the models capture decadal scale changes in SOC after LUC, we provide the first consistent comparison of simulated time series of LUC by six land models all of which participated in the Coupled Model Intercomparison Project Phase 6 (CMIP6) with soil carbon chronosequences (SCC). For this comparison we use SOC measurements of adjacent plots at four high-quality data sites in temperate and tropical regions. We find that initial SOC stocks differ among models due to different approaches to represent SOC. Models generally meet the direction of SOC change after reforestation of cropland but the amplitude and rate of changes vary strongly among them. Further, models simulate SOC losses after deforestation for crop or grassland too slow due to the lack of crop harvest impacts in the models or an overestimation of the SOC recovery on grassland. The representation of management, especially nitrogen levels is important to capture drops in SOC after land abandonment for forest regrowth. Crop harvest and fire management are important to match SOC dynamics but more difficult to quantify as SCC hardly report on these events. Based on our findings, we identify strengths and propose potential improvements of the applied models in simulating SOC changes after LUC.

How to cite: Brovkin, V., Boysen, L., Wårlind, D., Peano, D., Lansø, A. S., Delire, C., Burke, E., Poeplau, C., and Don, A.: Evaluation of soil carbon dynamics after land use change in CMIP6 land models using chronosequences, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12561, https://doi.org/10.5194/egusphere-egu21-12561, 2021.

EGU21-13361 | vPICO presentations | BG3

Global Carbon Fluxes Induced by Agriculture-Related Land-Use and Land Cover Change Activities

Atul Jain, Xiaoming Xu, and Shijie Shu

The aim of this study is to estimate the net carbon fluxes from agriculture-related land-use and land cover change (LULCC) activities, which are referred to as emissions from the land due to human activities. These include land use (LU, e.g., farmland for food and feed production, including management) and land cover changes (LCC, e.g., deforestation for and reforestation of agricultural land, and conversion of grasslands and pastureland to agriculture land or vice versa). Agriculture land-use practices could be a source of atmospheric CO2. However, the management of agricultural practices may reduce carbon emissions and increase soil carbon sequestration. Simultaneously, land-cover change activities clear existing ecosystems, their biomass and disturb the soil, generating carbon emissions. Previous earth system models usually have a simple or no representation of land agriculture practices, such as planting crops, fertilization, irrigation, harvesting grains for food and livestock-feed, recovering crop residue for feed and other usages, and grazing, livestock-feed, and manure cycle. This study uses a land surface model with spatially heterogeneous representations of such agricultural land use activities, in addition to land cover change, such as the change from forest to agricultural land. Our study shows the net agricultural land area increase of 0.11 million hectares/yr during 2007-2013, including 2.12 million hectares/yr of other land converted to agricultural land and 2.01 million hectares/yr of agricultural land converted to other lands. The results show that global net carbon flux due to agriculture-related LULCC is 2.26 Pg C/yr (net emission), consisting of 38% due to land-use activities and 62% due to land cover change. South America (22%), North America (19%), and South and Southeast Asia (13%) are the top contributing regions for net carbon flux induced by LULCC. South America has contributed the most flux from land cover change (18%), while North America has generated the most carbon flux due to land-use activities (12%) among all macro geopolitical regions.  By quantifying the carbon fluxes induced by different agriculture activities this study provides a complete estimate of the yearly carbon cycle in the agriculture system at the spatial scale, which may improve the representations of agriculture land use activities in Earth System Models.

How to cite: Jain, A., Xu, X., and Shu, S.: Global Carbon Fluxes Induced by Agriculture-Related Land-Use and Land Cover Change Activities, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13361, https://doi.org/10.5194/egusphere-egu21-13361, 2021.

EGU21-13385 | vPICO presentations | BG3

Observational and Modeling Analysis of Land-Atmosphere Interactions over Adjacent Irrigated and Rainfed Cropland During the GRAINEX Field Campaign.

Eric Rappin, Rezaul Mahmood, Nair Udaysankar, and Roger Pielke Sr.

Continued scientific study has revealed that land use and land cover change play a key role in climate and that the application of irrigation is an important biogeophysical contributor to climate modification across spatial scales. The Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 to investigate Land-Atmosphere interactions just prior to and through the growing season across adjacent, but distinctly unique, soil moisture regimes (contrasting irrigated and rainfed fields). GRAINEX was uniquely designed for the development and analysis of an extensive observational dataset for comprehensive process studies of Land-Atmosphere interactions, by focusing on irrigated and rainfed croplands in a ~100 x 100 km domain in southeastern Nebraska. Observation platforms included multiple NCAR EOL Integrated Surface Flux Systems and Integrated Sounding Systems, NCAR CSWR Doppler Radar on Wheels, 1200 radiosonde balloon launches from 5 sites, the NASA GREX airborne L-Band radiometer, and 75 University of Alabama-Huntsville Environmental Monitoring Economic Monitoring Sensor Hubs (EMESH mesonet stations). The presentation will provide an overview of the field campaign, the dataset collected, and investigate the contrast of L-A intractions across an irrigation gradient through observations and mesoscale/microscale modeling on timescales ranging from the diurnal to the seasonal. Attention will be given to how variations in the land surface state, as a function of irrigation fraction, impacts near-surface meteorology and atmospheric boundary layer evolution at local and regional scales.

How to cite: Rappin, E., Mahmood, R., Udaysankar, N., and Pielke Sr., R.: Observational and Modeling Analysis of Land-Atmosphere Interactions over Adjacent Irrigated and Rainfed Cropland During the GRAINEX Field Campaign., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13385, https://doi.org/10.5194/egusphere-egu21-13385, 2021.

BG6 – Sustainable phosphorus management and recovery: linking phosphorus and other element/material cycles

EGU21-14897 | vPICO presentations | BG6 | Highlight

Towards a history of Holocene P dynamics for the Northern Hemisphere using lake sediment geochemical records

Madeleine Moyle, John Boyle, and Richard Chiverrell

Present day phosphorus (P) enrichment and accelerated P cycling are changes superimposed on a dynamic Holocene history of landscape recovery from glaciation, changes in climate, and long-term low-intensity human activity. Knowledge of the changing role of human activity in driving long-term P dynamics is essential for understanding landscape P export and managing both terrestrial and aquatic environments.

Here we apply a simple process model to published lake sediment geochemical P records from 24 sites distributed across the Northern Hemisphere, producing Holocene records of landscape P yield and reconstructions of lake water TP concentrations. These records are a first attempt to produce values for average P export for the Northern Hemisphere over the Holocene, which can be used for constraining long-term landscape P cycling models.

Individual site trajectories of reconstructed Holocene landscape P yield and lake water TP varied systematically, with differences attributable to landscape development history, in turn driven by climate, human impact and other local factors. Three distinct traits are apparent across the records. Mountain sites with minimal direct human impact show falling Holocene P supply, and conform to conceptual models of natural soil development (Trait 1). Lowland sites  where substantial (pre-)historic agriculture was present show progressively increasing Holocene P supply (Trait 2). Lowland sites may also show a rapid acceleration in P supply over the last few centuries, where high intensity land use, including settlements and farming, are present (Trait 3).

This long-term perspective is pivotal to understanding drivers of change in coupled terrestrial and aquatic P cycling. Our reconstructions of long-term lake water TP are particularly useful for target-driven management of aquatic systems.

How to cite: Moyle, M., Boyle, J., and Chiverrell, R.: Towards a history of Holocene P dynamics for the Northern Hemisphere using lake sediment geochemical records, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14897, https://doi.org/10.5194/egusphere-egu21-14897, 2021.

Lake sediment records offer the opportunity to quantify past changes in catchment P exports, information essential if we are to understand the long-term drivers that control P cycling. However, the interpretation of such records generally depends on the assumption that sediment P concentration profiles remain intact after burial. This assumption appears to be in conflict with the phenomenon of internal P loading, whereby P is exported from sediment to the water column. Here we apply a simple long-term mass balance model to published sediment record data from Søbygaard, a site that has an exceptionally high internal P loading, and an exceptionally well-studied sediment P record (Søndergaard and Jeppesen, 2019). Repeat cores collected from 1985 to 2004 constrain the temporal evolution of a sediment P peak arising from past sewage inflows, providing a critical test of our modelling approach. We find that useful sediment inference of long-term mean lake water TP is preserved in the sediment record, and predict also useful inference of long-term mean external P loading. Limitation on temporal resolution of the records is examined.

How to cite: Boyle, J. and Moyle, M.: Using lake sediment P records to estimate internal and external P loading and historic long-term lake water mean TP: a case study using published records from Søbygaard Sø, Denmark., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13278, https://doi.org/10.5194/egusphere-egu21-13278, 2021.

EGU21-13066 | vPICO presentations | BG6

Statistical study of sedimentary phosphorus content in French reservoirs and identification of P variability driving factors 

Claire Lix, Marion Rabiet, Malgorzata Grybos, Pierre-Alain Danis, Anne Blondeau, François Louvet, and Véronique Deluchat

Phosphorus (P), an essential element for living organisms, is often considered as the limiting factor of eutrophication in aquatic environments, especially in reservoirs. In order to limit their environmental degradation and to meet the requirements of good ecological quality imposed by the European Water Framework Directive (WFD), actions have been implemented in the past decades to reduce the exogenous P influx to reservoirs. However, despite the decrease in external P inputs to the water from agriculture and domestic wastewater, eutrophication keeps expanding due to sedimentary P flux to the water column. Assessing the quality of sediments in reservoirs and the risk of of sedimentary P transfer to the water column is therefore a major issue. The POMOSED project aims to investigate the relevance of the WFD regulatory parameters, monitored since 2005, in the evaluation of sediment quality with respect to P. This work presents an inventory of sedimentary P contents in French reservoirs and identifies the factors contributing to the observed P variability from the physico-chemical sedimentary composition and the reservoirs and watersheds characteristics.

Statistical analyses were conducted on sedimentary composition data (total phosphorus (TP), iron (Fe), manganese (Mn), aluminium (Al), Kjeldahl nitrogen (NTK) and organic carbon (OC)) from 219 French reservoirs. The characteristics of their watersheds (geology, altitude, agricultural and artificial surfaces, …) and their morphology (e.g. depth,  surface area, …) were also included in the statistical analyses.

The sediments showed large variability in the TP concentration varying from 172 to 4350 mg.kg-1 with mean and median values of 1310 and 1060 mg.kg-1 respectively. The variability of sedimentary TP was observed both spatially and temporally. We highlighted significant correlations of PT content with Fe, Al, NTK and OC. We pointed out that the geological substratum, the level of anthropization of the watershed and the depth of the reservoirs are driving factors for TP concentration in sediments. Therefore, the WFD monitoring allows to distinguish several typologies of sediment with respect to TP. The typologies inducing an enrichment in TP of the sediments are crystalline substrate sediments rich in Fe and OC, deep reservoirs inducing anoxia development and an anthropized watershed. However, an enrichment in TP of the sediments does not necessarily indicate an anthropic pressure as shown by the influence of geology and the composition of sediments. These results might be included into multiple linear models linking PT concentrations to the other elements concentrations (CO and Fe) and the different factors (geology > anthropization > reservoir depth).

How to cite: Lix, C., Rabiet, M., Grybos, M., Danis, P.-A., Blondeau, A., Louvet, F., and Deluchat, V.: Statistical study of sedimentary phosphorus content in French reservoirs and identification of P variability driving factors , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13066, https://doi.org/10.5194/egusphere-egu21-13066, 2021.

EGU21-11061 | vPICO presentations | BG6

Population structure of magnetotactic bacteria forming intracellular polyphosphates in the water column of Lake Pavin, a freshwater ferruginous environment

Cécile Bidaud, Caroline L. Monteil, Nicolas Menguy, Vincent Busigny, Didier Jézéquel, Eric Viollier, Cynthia Travert, Fériel Skouri-Panet, Karim Benzerara, Christopher T. Lefevre, and Elodie Duprat

Phosphorus (P) is essential to life but a limiting nutrient in many ecosystems. Understanding the role of microorganisms in P cycling, especially the processes of P uptake and storage, is a major environmental issue.  Only few models with a high capability to sequester P are known, mostly in marine environments. We thus need to improve our knowledge about other model of sequestration and especially in freshwater environments.

Freshwater magnetotactic bacteria (MTB) affiliated to the Magnetococcaceae family have been identified within the water column of Lake Pavin in France [3]. Similarly, to the marine sulfoxidizers Thiomargarita and Beggiatoa [1, 2], they accumulate intracellular polyphosphates (PolyP) to a uniquely high extent, up to 90% of their cell volume. However, the MTB cocci inhabiting the water column of Lake Pavin harbor the specific capability to store P as PolyP below the oxygen detection limit (pO2 < 0.1%). Preliminary results tend to indicate that these MTB cocci represent the major population of MTB located right under the oxic-anoxic interface, in a zone of strong chemical and redox gradients. These gradients allow the study of the impacts of varying chemical conditions on the structuration of MTB populations and on the PolyP sequestration capability of MTB cocci.

We combined a variety of methods to identify the different MTB populations as a function of the water column depth and characterize their potential biogeochemical niches.

We used a new sampling system, an online pumping system, that allowed us to reach a better spatial (vertical) resolution [4], down to 20 cm. This sampling system was coupled to the measure of the physicochemical parameters of the water column (e.g. pO2, pH, redox, conductivity, FDOM, turbidity). We were therefore able to better estimate the impact of the chemical parameters on the MTB. We then sampled the water to measure the geochemical parameters using ICP-OES and to characterize MTB via optical and electron microscopy. Optical microscopy permitted the identification of the main populations of MTB and their concentrations, while electron microscopy allowed the characterization of the different magnetosome organisation and PolyP accumulation capability. We evidenced the stratification of the two main populations of MTB sequestrating two distinct sets of elements (PolyP and counterions, or amorphous calcium carbonates, respectively) and inhabiting different niches whose specific geochemical parameters were identifies using multivariate statistics.

Different environmental conditions, such as the concentration of dissolved sulfate, are correlated to the MTB cocci abundance. Moreover, the proportion of MTB cocci accumulating PolyP is negatively correlated to the concentration of dissolved sulfur. These results bring into light the potential link between the sulfur metabolism of these bacteria and their capability to sequestrate P as PolyP. Moreover, our reccurent observations of intracellular sulfur granules suggest that this new bacterial model for P sequestration below the oxygen detection limit are sulfoxidizers,

Genomic analyses will be done in the future to allow further comprehension on molecular mecanisms and PolyP formation.

[1] Brock J, Schulz-Vogt HN. (2011) ISME Journal 5, 497-506. [2] Mubmann M et al. (2007) PLoS Biology 5(9), e230. [3] Rivas-Lamelo S et al. (2017) Geochem. Persp. Let. 5, 35–41. [4] Busigny et al., 2021 Env. Microbiol. 1462-2920 .

 

How to cite: Bidaud, C., Monteil, C. L., Menguy, N., Busigny, V., Jézéquel, D., Viollier, E., Travert, C., Skouri-Panet, F., Benzerara, K., Lefevre, C. T., and Duprat, E.: Population structure of magnetotactic bacteria forming intracellular polyphosphates in the water column of Lake Pavin, a freshwater ferruginous environment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11061, https://doi.org/10.5194/egusphere-egu21-11061, 2021.

EGU21-13910 | vPICO presentations | BG6

Investigating Fast- and Slow-settling Phosphorus Fractions in Lakes using Steady-state Modeling

Hamed Khorasani and Zhenduo Zhu

Phosphorus (P) is the key and limiting nutrient in the eutrophication of freshwater resources. Modeling P retention in lakes using steady-state mass balance models (i.e. Vollenweider-type models) provides insights into the lake P management and a simple method for large-scale assessments of P in lakes. One of the basic problems in the mass balance modeling of P in lakes is the removal of P from the lake water column by settling. A fraction of the incoming P into the lake from the watershed is associated with fast-settling particles (e.g. sediment particles) that result in the removal of that fraction of P quickly at the lake entrance. However, existing models considering a constant fraction of fast-settling TP for all lakes are shown to result in overestimation of the retention of P in lakes with short hydraulic residence time. In this study, we combine a hypothesis of the fast- and slow-settling P fractions into the steady-state mass balance models of P retention in lakes. We use a large database of lakes to calibrate the model and evaluate the hypothesis. The results of this work can be used for the improvement of the prediction power of P retention models in lakes and help to better understand the processes of P cycling in lakes.

How to cite: Khorasani, H. and Zhu, Z.: Investigating Fast- and Slow-settling Phosphorus Fractions in Lakes using Steady-state Modeling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13910, https://doi.org/10.5194/egusphere-egu21-13910, 2021.

EGU21-14068 | vPICO presentations | BG6

Phosphorus recycling and retention in Lake of the Woods: Reactive-transport diagenetic modeling across spatial and temporal Scales

Md Samrat Alam, Arthur Zastepa, and Maria Dittrich

The dynamics of sediment phosphorus (P) remobilization and recycling in many polymictic systems due to distinct external and internal loading conditions are poorly understood. Here we used a multifaceted approach of quantifying sediment P binding forms and corresponding metal contents in sediment cores down to 30 cm from 8 different locations at Lake of Woods (LOW) in different seasons. We also measured pH, redox potential and dissolved oxygen uptake across the sediment-water interface and the concentration of nutrient and metals in pore water at different depths. Additionally, we applied a reaction-transport diagenetic model to construct the spatial and temporal trend of internal P loading in response to environmental variations. The summer diffusive fluxes of P ranged between 3 and 83 µmol m-2 d-1 whereas the winter fluxes were lower ranged from 0.1 to 0.35 µmol m-2 d-1. P recycling efficiency were 13% to 77%. P bound to redox sensitive iron (Fe)-P binding forms in sediments were the major source of P release in all stations, while P immobilization is controlled by redox-insensitive calcium (Ca)-P phases. The modeling results supported the notion that P release was mostly driven by the diagenetic recycling of redox sensitive and organic bound P.

How to cite: Alam, M. S., Zastepa, A., and Dittrich, M.: Phosphorus recycling and retention in Lake of the Woods: Reactive-transport diagenetic modeling across spatial and temporal Scales, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14068, https://doi.org/10.5194/egusphere-egu21-14068, 2021.

EGU21-3317 | vPICO presentations | BG6

P-TRAP – Reducing diffuse phosphorus input to surface waters

Thilo Behrends and Sylvia Walter

Phosphate (P) as an essential resource for food production is becoming scarce. Its uncontrolled loss from agricultural areas is in conflict with the principles of a circular economy. Enhanced loading of surface waters with P is the main cause for eutrophication and presents a key challenge in meeting the objectives of the EU Water Framework Directive. Understanding and controlling environmental P fluxes therefore is key to target both problems, to develop new methods and approaches to manage environmental P fluxes, and to improve surface water quality.

In March 2019 the EU Marie Sklodowska-Curie Innovative Training Network P-TRAP has been launched. P-TRAP establishes a framework of partners from multiple science and engineering disciplines. Integration of non-academic partners from various stakeholder groups into the P-TRAP consortium paves the way for direct implementation of the acquired knowledge. The project is targeting the diffuse flux of phosphate (P) into surface waters, i.e. the problems of understanding and controlling environmental P fluxes. P-TRAP aims to develop new methods and approaches to trap P in drained agricultural areas and in the sediments of eutrophic lakes. Trapping of P involves the application of iron(Fe)-containing by-products from drinking water treatment. P-TRAP aspires the ideas of a circular economy and aims at recovering the retained P in agricultural systems. Novel microbial technologies will be developed to convert P-loaded Fe-minerals into marketable fertilizers whose suitability will be evaluated. The P-TRAP technologies have in common that they rely on the naturally strong connection between P and Fe and the innovative P-TRAP strategies will be underpinned by process-orientated investigations on the behaviour of P during the transformation of Fe minerals. The latter are key in trapping and recycling of P in agricultural systems and lakes. Here we will present the structure and the planned research of the project, including a first overview of achievements of the first two years. 

How to cite: Behrends, T. and Walter, S.: P-TRAP – Reducing diffuse phosphorus input to surface waters, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3317, https://doi.org/10.5194/egusphere-egu21-3317, 2021.

EGU21-13645 | vPICO presentations | BG6

Kinetics and mechanism of phosphate release upon sulfidation of phosphate-containing lepidocrocite

Mingkai Ma, Andreas Voegelin, and Thilo Behrends

Sulfidation of Fe(III) (hydr)oxides plays an important role in the phosphate(P) cycle in oceans and lakes. P has a strong affinity to Fe(III) (hydr)oxides and can either become incorporated via coprecipitation or adsorb onto the solid’s surface. Consequently, P enters aquatic sediments often associated with Fe(III) (hydr)oxides. In the sediments, when sulfidic conditions are prevalent, the reaction of Fe(III) (hydr)oxides with sulfide can lead to the formation of Fe(II) sulfides and P release. The released P can, in turn, diffuse upwards into the overlying water and thus aggravate eutrophication in water bodies.  Although it is generally expected that P is released during the sulfidation of P containing Fe(III) (hydr)oxides, questions remain whether part of the P could be re-adsorbed onto the products of the sulfidation reaction, or trigger the formation of vivianite [1] (Fe3(PO4)2 · 8H2O). Furthermore, it is still unclear how the rates of P release are related to the progress of the sulfidation reaction.

In order to study the P dynamics during sulfidation, we performed experiments in flow-through reactors with P-bearing lepidocrocite (γ-FeOOH). The inflow solution contained sulfide and we monitored P, dissolved S(-II) and Fe(II) in the outflow to follow the progress of sulfide consumption and P release. Sulfide concentrations in the outflow of reactors containing lepidocrocite with adsorbed P tended to be lower than in the outflow of reactors with lepidocrocite but no P. Consequently, the preliminary results indicate that consumption rates of sulfide by the reaction with lepidocrocite were lower when P was present, implying that adsorbed P reduced the rates of sulfidation. At the beginning of the experiment, P concentrations in the outflow remained low, then started to increase and reached a steady state after passing several reactor volumes. This indicates that P was not instantaneously released upon sulfide adsorption but only as lepidocrocite sulfidation progressed. At the end of the experiment, the fraction of P released from the reactor was significantly lower than the fraction of lepidocrocite that had reacted with sulfide(calculated from cumulative sulfide consumption and solid phase characterization). This implies that part of the P has been retained in the solid phase despite the reductive transformation of lepidocrocite. The underlying mechanisms of P retention and the complex relationship between the rates of sulfide consumption and P release will be discussed.

References

[1] Jilbert and Slomp, 2013. Geochimica et Cosmochimica Acta 107, 155-169.

How to cite: Ma, M., Voegelin, A., and Behrends, T.: Kinetics and mechanism of phosphate release upon sulfidation of phosphate-containing lepidocrocite, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13645, https://doi.org/10.5194/egusphere-egu21-13645, 2021.

EGU21-4941 | vPICO presentations | BG6 | Highlight

Effects of Fe addition on sediment P dynamics in a eutrophic lake

Melanie Münch, Rianne van Kaam, Karel As, Stefan Peiffer, Gerard ter Heerdt, Caroline P. Slomp, and Thilo Behrends

The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.

In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.

In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.

The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.

Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.

How to cite: Münch, M., van Kaam, R., As, K., Peiffer, S., ter Heerdt, G., Slomp, C. P., and Behrends, T.: Effects of Fe addition on sediment P dynamics in a eutrophic lake, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4941, https://doi.org/10.5194/egusphere-egu21-4941, 2021.

EGU21-6188 | vPICO presentations | BG6 | Highlight

Investigating methods of phosphorus recovery from eutrophic lakes through hypolimnetic withdrawal and purification

Soila Silvonen, Juha Niemistö, Jerry Myyryläinen, Simo Huotari, Leena Nurminen, Jukka Horppila, and Tom Jilbert

As global reserves of phosphorus (P) become scarce, recycling of P will be key to sustainable food production in future. The hypolimnetic withdrawal and purification circuit (HWPC) is a novel method that aims to remove and capture P accumulated in the near-bottom water of eutrophic lakes. Similar to the basic principle of wastewater treatment, the lake water is treated for the precipitation of P and other elements, and the formed particles are collected in a filtering unit while the purified water flows back into the lake. The method has been tested in a pilot project at Lake Kymijärvi, southern Finland.

In the current study, we observed the efficiency of three different water treatments in the HWPC in terms of P precipitation: 1) water aeration; 2) aeration + Ca(OH)2 addition; 3) aeration + tannin-based biopolymer addition. Moreover, we studied the chemical composition of the precipitate formed in each treatment to understand its potential for P recycling. The aim of the study was to provide a better understanding to further develop and apply techniques to recover and recycle P from eutrophic lakes.

How to cite: Silvonen, S., Niemistö, J., Myyryläinen, J., Huotari, S., Nurminen, L., Horppila, J., and Jilbert, T.: Investigating methods of phosphorus recovery from eutrophic lakes through hypolimnetic withdrawal and purification, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6188, https://doi.org/10.5194/egusphere-egu21-6188, 2021.

EGU21-13281 | vPICO presentations | BG6

Effects of aging and transformation of Fe(III)-precipitates on the retention of co-precipitated phosphate

Ville Nenonen, Ralf Kaegi, Stephan J. Hug, Stefan Mangold, Jörg Göttlicher, Lenny Winkel, and Andreas Voegelin

The cycling of phosphorus in terrestrial and aquatic systems is tightly coupled to the redox-cycling of iron (Fe). The oxidation of dissolved Fe(II) in natural waters leads to the precipitation of amorphous to poorly crystalline Fe(III)-solids that can bind phosphate (P) and other nutrients as well as toxic compounds. The EU project P-TRAP is aimed at developing methods to reduce diffuse P inputs into surface waters to mitigate eutrophication, by using Fe-rich byproducts from water treatment (https://h2020-p-trap.eu/). Within this project, we study mechanistic aspects of the formation and transformation of P-containing Fe(III)-precipitates and their implications for P retention in soils and water filters.

Freshly formed Fe(III)-precipitates are metastable and can transform into more stable phases over time. This may lead to the release of co-precipitated P. In laboratory experiments, we assessed how Ca, Mg, silicate (Si) and P impact on the formation and transformation of Fe oxidation products (at 0.5 mM Fe) and their P retention in synthetic bicarbonate-buffered groundwater. The time-resolved experiments were performed in electrolyte solutions containing Na, Ca, or Mg as electrolyte cation, without or with Si (at molar Si/Fe of 1), and P (P/Fe of 0.3 and 0.05). Changes in dissolved element concentrations over time were linked to changes in the structure and composition of the Fe(III)-solids; with Fe coordination probed by X-ray absorption spectroscopy, mineralogy by X-ray diffraction, and nano-scale morphology and composition heterogeneity by transmission electron microscopy with energy-dispersive X-ray detection.

The freshly-formed Fe(III)-precipitates were mixtures of amorphous Fe(III)-phosphate with either poorly-crystalline lepidocrocite (without Si) or Si-containing ferrihydrite (with Si). Increases in dissolved P during aging were largest in Na electrolytes without Ca, Mg or Si, and were linked to the transformation of amorphous Fe(III)-phosphate into lepidocrocite with a lower P retention capacity than Fe(III)-phosphate. In Ca- and to a lesser extent Mg-containing electrolytes, the Ca or Mg stabilized the amorphous Fe(III)-phosphate and thereby reduced P release over time. The presence of Si increased initial P uptake and inhibited P release during aging by causing the formation of Si-ferrihydrite with higher P sorption capacity than lepidocrocite formed in the absence of Si. In conclusion, the extents to which P is trapped by fresh Fe(III)-precipitates and released during aging can be attributed to the individual and coupled impacts of Ca, Mg and Si on Fe(III)-precipitate structure, stability and transformation.

In continuing work, we aim to expand our work to study how organic compounds impact on the formation and colloidal stability of Fe(III)-precipitates and P retention.

How to cite: Nenonen, V., Kaegi, R., Hug, S. J., Mangold, S., Göttlicher, J., Winkel, L., and Voegelin, A.: Effects of aging and transformation of Fe(III)-precipitates on the retention of co-precipitated phosphate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13281, https://doi.org/10.5194/egusphere-egu21-13281, 2021.

EGU21-2716 | vPICO presentations | BG6

PO4 recovery using mixtures of biochar and carbonate materials

Carlotta Carlini, Antonio Primante, Nicolas Greggio, Enrico Balugani, Andrea Contin, and Diego Marazza

The recovery of PO4 from wastewaters by using biochar proves not to be completely satisfactory. The surface of the biochar is typically negatively charged, which prevents the adsorption of PO4. For this reason, mixtures of biochar and natural carbonate materials have been tested as a novel sorbent material for PO4 recovery from both synthetic-and waste- water. The goal of the research is to obtain a PO4 based complex starting from natural second-generation materials such as food industry byproducts, plants and other residues to prepare fertilisers compliant to the component material category CMC 6 defined in the Regulation (EU) 2019/1009/EU It has to be noted that natural carbonate materials are not pure CaCO3, but present small impurities that contribute to modify their properties. Therefore, the use of carbonate materials obtained from different sources can lead to different performances when it comes to PO4 removal from wastewaters.

In this work we present results of PO4 removal obtained from a mixture of biomass and different carbonate materials. The mixture has been treated through a specific thermal protocol to obtain two different calcium-oxide rich charcoals here named composites C1 and C2. Initially, each composite was added to synthetic waters with different PO4 concentration, with a composite:water ratio of 1:1000. The initial concentrations of PO4 were 10, 100 and 1000 mg/l. After treatment with the composite, regardless of whether C1 or C2 was used, the PO4 concentration in the waters with initial concentration of 10 and 100 mg/L was nearly zero, with pH values at equilibrium around 11.9. The treatment of the water with initial PO4 concentration of 1000 mg/l shows a reduction of 20% and 40% with C1 and C2, respectively, with final pH values around 7.8.

After addition of the composites to the water, the solutions present very high pH values except for the water with the highest concentration. Although this is an optimal situation for the removal of PO4, it leads to two problems. First, the filtered water is not suitable for direct disposition in sewers, since the pH is higher than the limit established by the wastewater legislation (9.5). Second, a pH value larger than 9 determines the precipitation of PO4 regardless of the presence of the composite, which suggests that the PO4 is not adsorbed by the composites, thus not leading to the desired complex

In order to quantify the exact amount of PO4 adsorbed by the composite, the experiments have been repeated under controlled pH, keeping it around a value of 7 by the use of a mild acid. In this condition, after 1h treatment, 50% of phosphate was removed and bound to the composite

The work intends to present the results at laboratory scale and next steps at higher TRL.

How to cite: Carlini, C., Primante, A., Greggio, N., Balugani, E., Contin, A., and Marazza, D.: PO4 recovery using mixtures of biochar and carbonate materials, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2716, https://doi.org/10.5194/egusphere-egu21-2716, 2021.

EGU21-12798 | vPICO presentations | BG6

Biogeochemical mechanisms influencing the bioavailability of P and Fe from vivianite

Rouven Metz, Naresh Kumar, Walter Schenkeveld, and Stephan Kraemer

The vital element phosphorus (P) invokes two extremes in the environment; (i) scarcity, as a non-renewable resource and as a poorly bioavailable limiting nutrient for plants, and (ii) excess, as cause of eutrophication in surface waters. To tackle both these problems, the inter-relationship between the P and the iron (Fe) cycle is widely discussed with a special interest in the ferrous iron-phosphate mineral vivianite (Fe(II)3(PO4)2*8H2O). Vivianite forms naturally in sub-/anoxic environments with high Fe(II) and PO4 concentrations, and is a sink to the dissolved P concentration. On the other hand, vivianite has been proposed as a P source through application as a slow-release Fe-P fertilizer prepared from recycled P. However, vivianite is a metastable mineral under oxic conditions; it readily oxidizes, notably changing color from white to dark blue/purple. This transformation changes the properties of the mineral (surface), and thus its suitability as a fertilizer.

We investigated the oxidation and dissolution of vivianite under different environmental conditions with the aim of developing a mechanistic and kinetic model that relates the oxidation process with dissolution rates.  Moreover, the effect of secondary mineral precipitation on the ‘net’ availability of P and Fe for soil organisms was also studied. Quantifying dissolution rates and secondary mineral formation under environmentally relevant conditions provides the fundamental knowledge needed to assess the suitability of vivianite as Fe and P fertilizer. This information is also paramount to the idea of a circular economy concept: starting with the reduction of P loads of (waste) waters and using the byproduct vivianite as P source for fertilization.

How to cite: Metz, R., Kumar, N., Schenkeveld, W., and Kraemer, S.: Biogeochemical mechanisms influencing the bioavailability of P and Fe from vivianite, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12798, https://doi.org/10.5194/egusphere-egu21-12798, 2021.

EGU21-16487 | vPICO presentations | BG6

Soil phosphorus, biology and time: A case for publishing inconclusive data, and the undeniable relevance of tennis balls

Phil Haygarth, Malika Mezeli, Timothy George, Roy Neilson, and Martin Blackwell

EGU21-16486 | vPICO presentations | BG6

Biosolids Incorporation in Mediterranean Soils Increase Phosphate Adsorption

Yaniv Freiberg, Pinchas Fine, Michael Borisover, and Shahar Baram

Contradictory data exists on the impact of biosolids incorporation on ortho-phosphate (IP) binding to arid and semi-arid Mediterranean soils. We used two mature organic amendments (OA) with low IP solubility to study the effect of OAs addition on the IP adsorption parameters of Mediterranean soils. Seven soils, encompassing a wide range of mechanical, chemical and mineralogical properties, were mixed with a biosolids compost (DSC) at 9:1 ratio (w/w dry weight basis). The soils and mixtures were either incubated for seven years under constant temperature (30℃) and moisture content (80% of 30 kPa tension) or were unincubated. IP adsorption parameters were also measured in not-incubated soil DSC mixtures at 97:3 ratio. In all the soils, DSC addition significantly increased the IP adsorption capacities (by Langmuir's model) from 126 to 397 mg IP kg-1 in the soils to 254 through 669 mg IP kg-1 in the soil-DSC-mixtures. The increased capacities were accompanied by a significant decrease in the adsorption affinities, from values of 0.12 to 1.02 L kg-1 in the soils to 0.05 and 0.25 L kg-1 in the mixtures. Biosolids addition at 97:3 ratio had a similar effect on the IP adsorption parameters as the 9:1 ratio. These two IP adsorption parameters continued to change along the incubation. The other OA tested was a municipal solid waste compost (MSWC), which was mixed with two montmorillonitic soils at 97:3 ratio (soil:OA), one with high lime and low Al/Fe-oxides contents and the other with low lime and high Al/Fe-oxides content. OA addition increased the IP adsorption capacity in the lime-rich soil, while it did not affect the other. Overall, our results show that the solid matrix of the two OA's used by us embodied IP adsorption sites, most likely through metal bridging with Ca2+, which increases the total adsorption capacity of the soil-OA mixture. Concomitantly, DOM from the OAs competes with IP on adsorption sites reducing the soil's adsorption capacity. The magnitude of each one of these two processes depends on the soil and the added OA characteristic and will determine the overall change in the soil's capability to retain IP after biosolids incorporation.

 

How to cite: Freiberg, Y., Fine, P., Borisover, M., and Baram, S.: Biosolids Incorporation in Mediterranean Soils Increase Phosphate Adsorption, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16486, https://doi.org/10.5194/egusphere-egu21-16486, 2021.

Understanding how the solubility of forms of inorganic and organically-complexed phosphorus (P) in agricultural soil is affected by inputs of organic matter (OM) could inform decisions on sustainable future farming practices. Different forms of OM provide organic P, carbon (C) and other nutrients to the system at different rates, depending upon their recalcitrance to decomposition, and the stoichiometric balance of elements between soil, OM amendment and microbial requirements.

 

We describe an 18-month pot experiment that tested the hypothesis that additions of organic matter will affect the solubility of P forms in soil. Mesocosms (~30 kg soil) of two agricultural top-soils, of moderate and low P availability, were amended with a commercial humic soil amendment (lignite) or crop residue (barley straw) at two addition levels. Treatments with/without chemical P fertilizer were superimposed on OM treatments. The system was planted with Lolium perenne (perennial rye grass) and exposed to a natural rain and temperature regime. Leachate was collected and analyzed for soluble P, nitrogen and dissolved organic C (DOC) at 6 weekly intervals in order to investigate solubility over time. Destructive sampling at the end of the experiment yielded plant and soil samples for comparison of C, N and P stoichiometry between the treatments.

 

Initial results showed increases in leachate DOC relating to crop residue OM treatments and a positive effect of P fertilizer on plant biomass in the low P soil. Concentrations of dissolved P in leachate were higher in the moderately P-sorbing soil compared to the highly P-sorbing soil. Ongoing analysis includes measures of biological activity including soil microbial biomass C, N and P by fumigation-extraction and soil phosphatase activity. Chemical measures include total C, N and P, soil carbon forms using Fourier-transform infrared spectroscopy (FTIR), total organic P and water and acid ammonium oxalate extractions. Interpretation of the final results will consider how the release of C and nutrients from OM and their subsequent impact on the system, are controlled by microbial activity and macronutrient stoichiometry. These results should help to inform future research into improving P utilization in agriculture through balancing nutrient ratios to regulate nutrient cycling. Such research seeks to improve agronomic P efficiencies alongside wider benefits associated with the drive to increase soil C.

How to cite: Tweedie, A., Haygarth, P. M., and Stutter, M.: Is the solubility of inorganic and organically complexed phosphorus in agricultural soils affected by chemical fertilizer and organic carbon additions?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7075, https://doi.org/10.5194/egusphere-egu21-7075, 2021.

Phosphorus solubilisation with varying drying and rewetting stresses under four contrasting soils from different regions of China  

Nyamdavaa Mongol1, Jianbo Shen2, Philip M. Haygarth1  

  

1Lancaster Environment  Centre, Lancaster University, Lancaster, LA1 4YW, United Kingdom.  

2Department of Plant Nutrition, China Agriculture University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, PR China  

  

Abstract 

We tested the hypothesis that agricultural soils with a recent history of drying and rewetting (DRW) can trigger phosphorus (P) solubilisation in the rhizosphere, with a subsequent growth response of maize (Zea mays). Specifically, it aimed at investigating a possible delayed effect of DRW stresses on the soils by studying the relationship between P solubilisation in the rhizosphere, plant P acquisition and performance, and root growth under different types of agricultural soils with the previous history of a series of DRW events. The soils were collected from four different agricultural regions of China, Shandong, Chongqing, Heilongjiang and Beijing (sieved <2 mm), and then treated with four varying cycles of DRW events prior to the experiment to raise levels of soil biotic and abiotic activities. A controlled pot experiment was conducted in order to establish the Olsen’s P concentration in the soil, maize shoot P concentrations, root morphology and other rhizosphere parameters, for a duration of 43 days after planting. The results show a positive relationship between plant biomass, plant P concentration and Olsen`s P. The effect was most clearly demonstrated by the level of plant growth and their biological performance in the rhizosphere, as the plants responded better in the soil with a DRW background than to a soil that did not have a history of DRW in the past. Notably, the most positive results were obtained from the Haplic Phaeozems soil of Heilongjiang, leading to an acceptance of the hypothesis. However, the soluble P concentration and plant growth response varied depending on P application rates and soil types.  

 

How to cite: Mongol, N.: Phosphorus solubilisation with varying drying and rewetting stresses under four contrasting soils from different regions of China , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13596, https://doi.org/10.5194/egusphere-egu21-13596, 2021.

EGU21-15873 | vPICO presentations | BG6 | Highlight

Time to re-think agricultural phosphorus modelling for the 2020s  

Jennifer M. Davies, Victoria Janes-Bassett, Martin Blackwell, Andrew Burgess, Jessica Davies, and Philip M. Haygarth

Phosphorus (P) is critical to our food production systems with many crop systems dependent on continual inputs to meet yield demands. However, a consequence of the widespread application of P to agricultural soils in the past 60 years has led to concerns about the long-term sustainability of P fertiliser supply and to P being transferred from soil systems to watercourses, causing diffuse pollution. This highlights the multi-scaled and interdisciplinary nature of the past, present and future of P management.  

The aim of this research is to define a starting framework to consider the best ways to develop a model that addresses the contemporary understanding of P processes, integrating the needs of the crop, with biogeochemical and hydrological modelling considerations, going beyond P transfer to the role of P in both food and water challenges.  

So, this review explores some of the current P models and the future opportunities for expanding their representation of P processes in agricultural systems. This goes beyond nesting existing models and reshapes approaches to posing research and modelling questions to achieve P models that cross disciplinary boundaries and have meaning and usability in practice. As part of this contribution, we welcome modellers and P scientists to come forward and help drive this complex issue of P in agriculture. 

How to cite: Davies, J. M., Janes-Bassett, V., Blackwell, M., Burgess, A., Davies, J., and Haygarth, P. M.: Time to re-think agricultural phosphorus modelling for the 2020s  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15873, https://doi.org/10.5194/egusphere-egu21-15873, 2021.

EGU21-3037 | vPICO presentations | BG6

Integrated carbon-nitrogen-phosphorus cycling for sustainable agriculture – a knowledge gap and investigation of the role of phosphatase enzymes

Victoria Janes-Bassett, Phil Haygarth, Martin Blackwell, Malika Mezeli, Gavin Stewart, Gordon Blair, and Jess Davies

Phosphorus is closely linked to other nutrient cycles, notably carbon and nitrogen, therefore, to understand potential risks to food production models are required that simulate integrated nutrient cycling over long timescales. The soil-plant system model N14CP meets these requirements and simulates both semi-natural and agricultural environments. N14CP has been validated both spatially and temporally across a range of long-term agricultural experimental sites comparing soil C, N and P, and crop yields, and in most instances performs well. However, under experimental conditions where N is applied in the absence of P, the model indicates exhaustion of P reserves and a decline in yields that is not observed at these sites, highlighting a gap in the model process representation. Potential sources of this ‘missing P’ such as enhanced atmospheric deposition, weathering and flexible plant stoichiometries were explored yet cannot account for this deficit. We hypothesise that access of organic P through other mechanisms not fully represented within the model, such as phosphatase enzymes, could be part of this explanation.

In order to test this, we conducted a meta-analysis of phosphatase enzyme activity in agricultural settings, comparing response to P sufficient and deficient conditions. Results suggest phosphatase enzyme activity is higher in P deficient conditions compared to inorganic P addition, yet lower compared to organic P addition. Meta-regression analysis indicates magnitude of P addition and pH of substrate are significant factors influencing enzyme response. However, due to numerous additional processes and adaption strategies in response to P deficiency and the difficulty isolating the role of phosphatase enzymes it is not possible to determine the degree to which this mechanism alone accounts for the missing P. We discuss the continuing need for additional empirical evidence to understand the cycling of organic P, and the development of models to include these processes to inform sustainable land management and ensure long-term food security.

How to cite: Janes-Bassett, V., Haygarth, P., Blackwell, M., Mezeli, M., Stewart, G., Blair, G., and Davies, J.: Integrated carbon-nitrogen-phosphorus cycling for sustainable agriculture – a knowledge gap and investigation of the role of phosphatase enzymes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3037, https://doi.org/10.5194/egusphere-egu21-3037, 2021.

EGU21-3071 | vPICO presentations | BG6

Phosphorus in Aeolian desert dust deposits can be captured, dissolved, and absorbed by plant leaves

Ran Erel, Sudeep Tiwari, Ilana Shtein, and Avner Gross

Phosphorus (P) limitation is prevalent around the world,primarily because most soil P have low bioavailability. In P poor ecosystems, deposition of P-rich desert dust is recognized as a major component of the P cycle. The acknowledged paradigm is that plants acquire P deposited in soil primarily via their roots. We tested whether, and to what extent, plants acquire P directly from dust deposited on their leaves and what are the underlining uptake mechanisms of insoluble P. P-rich dust was applied to P sufficient and P deficient chickpea, maize and wheat plants and was compared to plants which received inert silica powder. Foliar application of dust doubled the growth of P stressed chickpea and wheat, two crops originating near the Syrian Desert. P deficiency enhanced the acquisition of insoluble P through series of leaf modifications that increased foliar dust capture, acidified the leaf surface and, in chickpea, enhanced exudation of P-solubilizing organic acids. In in-situ trials, we demonstrated that the modifications of leaf pH and exudation of oxalic and malic acids substantially promoted P solubilisation from dust.  Foliar responses did not occur in maize and in P sufficient plants which displayed only a marginal response to dust. Our results demonstrate that foliar uptake of P from dust can be an alternative P acquisition pathway in P-deficient plants. Interestingly, the abovementioned foliar responses are comparable to known P uptake root responses. Given that P limitation is almost universal, foliar P uptake pathway will have significant ecological and agricultural implications.

How to cite: Erel, R., Tiwari, S., Shtein, I., and Gross, A.: Phosphorus in Aeolian desert dust deposits can be captured, dissolved, and absorbed by plant leaves, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3071, https://doi.org/10.5194/egusphere-egu21-3071, 2021.

EGU21-10508 | vPICO presentations | BG6

Phosphorus limit to the CO2 fertilization effect in tropical rainforests as informed from a coupled biogeochemical model

Zhuonan Wang, Hanqin Tian, Shufen Pan, Hao Shi, Jia Yang, Latif Kalin, Christopher Anderson, and Naishen Liang

Tropical rainforests play an important role in sequestering carbon (C) and mitigating climate warming. Many terrestrial biosphere models (TBMs) estimate productivity increase in tropical rainforests due to the CO2 fertilization effect. However, most TBMs neglect phosphorus (P) limitation on tropical rainforest productivity. Here, we used a process-based Dynamic Land Ecosystem Model with coupled C-N-P dynamics (DLEM-CNP) with varied Vcmax­25 to examine how P limitation has affected C fluxes of tropical rainforests to environmental and anthropogenic factors, including N deposition, land-use changes, climate variability, and atmospheric CO2, during 1860-2018. The model results showed that consideration of the P cycle reduced the response of tropical rainforests gross primary production (GPP) by 25% and 39%, net primary production (NPP) by 25% and 43%, and net ecosystem production (NEP) by 21% and 41% to the CO2 fertilization effect relative to CN-only and C-only models. The DLEM-CNP estimated that the tropical rainforests had a GPP of 41.1 + 0.5 Pg C year-1, NPP of 19.7 + 0.3 Pg C year-1 and NEP of 0.44 + 0.34 Pg C year-1 under 1860-2018 environmental conditions. Factorial experiments with DLEM-CNP suggested that deforestation has stronger impacts on GPP and NPP reduction compared to the enhanced GPP and NPP benefiting from the CO2 fertilization effect. Additionally, tropical rainforests NEP showed a continuously increasing trend owing to the CO2 fertilization effect. Our study highlights the importance of P limitation on the C cycle and the weakened CO2 fertilization effect due to nutrients limitation in the tropical rainforests.

How to cite: Wang, Z., Tian, H., Pan, S., Shi, H., Yang, J., Kalin, L., Anderson, C., and Liang, N.: Phosphorus limit to the CO2 fertilization effect in tropical rainforests as informed from a coupled biogeochemical model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10508, https://doi.org/10.5194/egusphere-egu21-10508, 2021.

BG10 – Hydrocarbon seepage – from past records to modern examples and models to evaluate the future

EGU21-480 | vPICO presentations | BG10

Methane emission from seeps of West Siberian middle taiga river floodplains

Aleksandr Sabrekov, Irina Terentieva, Yuriy Litti, Mikhail Glagolev, and Ilya Filippov

Natural gas seepage is considered as a strong methane source influencing future climate predictions and creating local fire and explosion hazards. Recently numerous methane seeps were found in West Siberian middle taiga (WSMT) river floodplains. Seepage occurs in unvegetated spots and areas of saturated quicksand deposits and in the bottom of river stream beds. Based on location and size seeps found in WSMT can be classified in three groups: 1) single seeps and seep puddles away from river stream bed, 2) seep chains along the river streams, including seeps inside stream bed, 3) seep fields with numerous holes, funnels and craters with area up to several thousands m2. Origin of methane in these seeps is still not fully understood and methane emission from them is also not quantified. We aimed to fill these gaps during 2019-2020 August-September field campaigns.

To reveal the origin of seeping gas hydrocarbons concentration, methane carbon and hydrogen stable isotope ratios and methane radiocarbon concentration were measured in a gas sampled throughout the study region (250 km in north-south and 400 km in east-west directions). To compare characteristics of methane from seeps and from wetlands gas dissolved in wetland pore water and peat for incubation studies were sampled on a depth of 1-2 m in three representative bogs near seeps. During anaerobic peat incubation the dynamics of methane (including carbon stable isotope ratios), hydrogen, carbon dioxide and low-molecular fatty acids concentrations were monitored. Methane emission was estimated in the same three bogs using both static chamber method (provided a benchmark) and ecosystem-scale inverse modelling (backward Lagrangian simulation).

Obtained data indicate modern biogenic origin for the methane seeping in WSMT. Similarity in isotope signatures between methane from wetlands and seeps suggests lateral transport of methane through groundwater from raised bogs to seeps in floodplains. Methane produced in the upper layer of raised bogs emits to the atmosphere mainly through the root transport while in deeper layers vertical methane migration is limited. Raised bogs are widely developed in WSMT and cover about half of the total region area. We conclude that methane seeping observed in WSMT floodplains is caused by the lateral groundwater transport downward from the watershed to the floodplain.

Methane emission estimates for three seep fields made by chamber method and inverse modelling were in a good correspondence, although inverse modelling fluxes are 20-40% higher. Methane flux for investigated fields ranges from tens to hundreds mgCH4·m-2·h-1 with a strong difference (up to order of magnitude) between different fields.

This study improves understanding of the insufficiently investigated element of the methane biogeochemical cycle – transport through the groundwater when methane avoids oxidation in the unsaturated surface layer of the wetland. Emission from seeps can make a valuable contribution to the regional methane flux. Potential reaching of a lower explosive limit for methane concentration should be taken into account during planning of groundwater use.

This study was supported by a grant of the Russian Science Foundation (№ 19-77-10074).

How to cite: Sabrekov, A., Terentieva, I., Litti, Y., Glagolev, M., and Filippov, I.: Methane emission from seeps of West Siberian middle taiga river floodplains, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-480, https://doi.org/10.5194/egusphere-egu21-480, 2021.

Gas-charged sediments of shallow water bodies are significant sources of atmospheric methane, an important greenhouse gas. Past accounts of gas bubbles developed in shallow aquatic sediments (and in their surrogates) have reported a controversial occurrence of vertical as well as horizontal bubbles topologies. Within the framework of tensile fracturing of muddy sediment produced by the growing bubbles, the vertical orientation of bubbles is well understood, however factors controlling horizontal bubble growth are largely unclear. This study is conducted by employing a mechanical/reaction–transport numerical model, which couples diffusion-led expansion of gas bubble and elastic-fracture mechanical response of sediment to its growth. Muddy sediment is assumed to exhibit a transverse anisotropy in fracture toughness (a property describing an easiness of breaking the inter particle bonds), attributed to partial or full alignment of plate-like clay particles. Our results demonstrate that bubbles growing in isotropic sediment develop a vertically oriented topology and start their ascent once reaching their mature sizes. Under an increasing measure of anisotropy, the bubbles grow horizontally at the initial stages, however at later stages they start evolving in vertical direction as well, under influence of gravity, and eventually initiate their vertical ascent as well. Our results suggest an explanation of apparent conundrum about preferred orientations of bubbles in muddy sediments. Laterally growing bubbles produced in anisotropic sediment are able to coalesce with neighboring ones and form interconnected permeable horizontal gas networks, as observed in some lab experiments. For the first time, our results reveal that anisotropy-led initial lateral bubble growth can also play a crucial role in accumulating gas reserve from long distances around large and small scale seeps and outlets, at continental margins and inland water bodies sediments. Additionally, horizontal bubbles tend to be stationary (in contrast to the vertical bubbles) thus being responsible for high gas storage (or retention) capability of aquatic sediments.

How to cite: Painuly, A. and Katsman, R.: Influence of anisotropy in sediment mechanical properties on CH4 bubble growth topology and migration pattern in muddy aquatic sediments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-583, https://doi.org/10.5194/egusphere-egu21-583, 2021.

EGU21-963 | vPICO presentations | BG10

Meiobenthos as indicator of gaseous hydrocarbons reservoirs existing under the seabed of the Black Sea

Valentina Yanko, Anna Kravchuk, Irina Kulakova, and Tatiana Kondariuk

This presentation represents a case study that reviews research into the relationship between meiobenthos distribution and concentrations of hydrocarbon gases (HG), primarily methane, in the sediments of the northwestern part of the Black Sea, including gases released by mud volcanoes and gas seeps. Evidence forming the basis of this research comes from meiobenthos here represented by 29 species of benthic foraminifers, 7 species of ostracods, and 44 species of nematodes. The potential use of these meiobenthic organisms as indicators of gaseous hydrocarbons reservoirs existing under the seabed is evaluated according to two linked axes, namely the dual analysis of abiotic factors (physical and chemical parameters of the water column, gasmetrical, geochemical, lithological, and mineralogical properties of the sediments) and biotic characteristics (quantitative and taxonomic composition of foraminifers, nematodes, and ostracods). Studies of this kind have been directed toward developing interdisciplinary methods to improve the search for HG accumulations, especially methane, under the seabed. Development of such methods might have substantial socio-economic importance for the economy of Ukraine as well as that of other Black Sea countries, and such methods might also contribute to the sustainable development of Black Sea ecosystems.

How to cite: Yanko, V., Kravchuk, A., Kulakova, I., and Kondariuk, T.: Meiobenthos as indicator of gaseous hydrocarbons reservoirs existing under the seabed of the Black Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-963, https://doi.org/10.5194/egusphere-egu21-963, 2021.

EGU21-1807 | vPICO presentations | BG10

Mathematical model of a non-stationary process of accumulation of gas hydrates, confined to deep-water mud volcanoes

Alexey L. Sobisevich, Elena I. Suetnova, and Ruslan A. Zhostkov

Large amounts of methane hydrate locked up within marine sediments are associated to mud volcanoes. We have investigated by means of mathematical modeling the unsteady process of accumulation of gas hydrates associated with the processes of mud volcanism. A mathematical model has been developed. The system of equations of the model describes the interrelated processes of filtration of gas-saturated fluid, thermal regime and pressure, and accumulation of gas hydrates in the seabed in the zone of thermobaric stability of gas hydrates. The numerical simulation of the accumulation of gas hydrates in the seabed in the deep structures of underwater mud volcanoes has been carried out using the realistic physical parameters values. The influence of the depth of the feeding reservoir and the pressure in it on the evolution of gas hydrate accumulations associated with deep-sea mud volcanoes is quantitatively analyzed. Modeling quantitatively showed that the hydrate saturation in the zones of underwater mud volcanoes is variable and its evolution depends on the geophysical properties of the bottom environment (temperature gradient, porosity, permeability, physical properties of sediments) and the depth of the mud reservoir and pressure in it. The volume of accumulated gas hydrates depends on the duration of the non-stationary process of accumulation between eruptions of a mud volcano. The rate of hydrate accumulation is tens and hundreds times the rate of hydrate accumulation in sedimentary basins of passive continental margins.

How to cite: Sobisevich, A. L., Suetnova, E. I., and Zhostkov, R. A.: Mathematical model of a non-stationary process of accumulation of gas hydrates, confined to deep-water mud volcanoes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1807, https://doi.org/10.5194/egusphere-egu21-1807, 2021.

EGU21-5628 | vPICO presentations | BG10

Wintertime Methane Emission From the Barents and Kara Seas and Sea of Okhotsk: Satellite Evidence.

Leonid Yurganov, Dustin Carroll, Andrey Pnyushkov, Igor Polyakov, and Hong Zhang

Existence of strong seabed sources of methane, including gas hydrates, in the Arctic and sub-Arctic seas with proven oil/gas deposits is well documented. Enhanced concentrations of dissolved methane in deep layers are widely observed. Many of marine sources are highly sensitive to climate change; however, the Arctic methane sea-to-air flux remains poorly understood: harsh natural conditions prevent in-situ measurements during winter. Satellite remote sensing, based on terrestrial outgoing Thermal IR radiation measurements, provides a novel alternative to those efforts. We present year-round methane data from 3 orbital sounders since 2002. Those data confirm that negligible amounts of methane are fluxed from the seabed to the atmosphere during summer. In summer, the water column is strongly stratified from sea-ice melt and solar warming. As a result, ~90% of dissolved methane is oxidized by bacteria. Conversely, some marine areas are characterized by positive atmospheric methane anomalies that begin in November. During winter, ocean stratification weakens, convection and winter storms mix the water column efficiently. We also find that the amplitudes of the seasonal cycles over Kara and Okhotsk Seas have increased during last 18 years due to winter concentration growth. There may be several factors responsible for sea-air flux: growing emission from clathrates due to warming, changes in methane transport from the seabed to the surface, changes in microbial oxidation, ice cover, etc. Finally, methane remote sensing results are compared to available observations of temperature in deep ocean layers, estimates of Mixed Layer Depth, and satellite microwave sea-ice cover measurements.

 

How to cite: Yurganov, L., Carroll, D., Pnyushkov, A., Polyakov, I., and Zhang, H.: Wintertime Methane Emission From the Barents and Kara Seas and Sea of Okhotsk: Satellite Evidence., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5628, https://doi.org/10.5194/egusphere-egu21-5628, 2021.

EGU21-2545 | vPICO presentations | BG10

Leaky salt: pipe trails record the history of cross-evaporite fluid escape in the northern Levant Basin, Eastern Mediterranean

Davide Oppo, Sian Evans, Christopher A-L Jackson, David Iacopini, SM Mainul Kabir, and Vittorio Maselli

Hydrocarbon escape systems can be regionally active on multi-million-year timescales. However, reconstructing the timing and evolution of repeated escape events can be challenging because their expression may overlap in time and space. In the northern Levant Basin, eastern Mediterranean, distinct fluid escape episodes from common leakage points formed discrete, cross-evaporite fluid escape pipes, which are preserved in the stratigraphic record due to the coeval Messinian salt tectonics.

The pipes consistently originate at the crest of prominent sub-salt anticlines, where thinning and hydrofracturing of overlying salt permitted focused fluid flow. Sequential pipes are arranged in several kilometers-long trails that were progressively deformed due to basinward gravity-gliding of salt and its overburden. The correlation of the oldest pipes within 12 trails suggests that margin-wide fluid escape started in the Late Pliocene/Early Pleistocene, coincident with a major phase of uplift of the Levant margin. We interpret that the consequent transfer of overpressure from the deeper basin areas triggered seal failure and cross-evaporite fluid flow. We infer that other triggers, mainly associated with the Messinian Salinity Crisis and compressive tectonics, played a secondary role in the northern Levant Basin. Further phases of fluid escape are unique to each anticline and, despite a common initial cause, long-term fluid escape proceeded independently according to structure-specific characteristics, such as the local dynamics of fluid migration and anticline geometry.

Whereas cross-evaporite fluid escape in the southern Levant Basin is mainly attributed to the Messinian Salinity Crisis and compaction disequilibrium, we argue that these mechanisms do not apply to the northern Levant Basin; here, fluid escape was mainly driven by the tectonic evolution of the margin. Within this context, our study shows that the causes of cross-evaporite fluid escape can vary over time, act in synergy, and have different impacts in different areas of large salt basins.

How to cite: Oppo, D., Evans, S., Jackson, C. A.-L., Iacopini, D., Kabir, S. M., and Maselli, V.: Leaky salt: pipe trails record the history of cross-evaporite fluid escape in the northern Levant Basin, Eastern Mediterranean, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2545, https://doi.org/10.5194/egusphere-egu21-2545, 2021.

EGU21-8529 | vPICO presentations | BG10

Gas hydrate destabilization and sea-level changes: insights from Miocene seep carbonate deposits of the northern Apennines (Italy)

Daniela Fontana, Stefano Conti, Chiara Fioroni, and Claudio Argentino

The effects of global warming on marine gas hydrate stability along continental margins is still unclear and discussed within the scientific community. Long-term datasets can be obtained from the geological record and might help us better understand how gas-hydrate reservoirs responds to climate changes. Present-day gas hydrates are frequently associated or interlayered with authigenic carbonates, called clathrites, which have been sampled from many continental margins worldwide. These carbonates show peculiar structures, such as vacuolar or vuggy-like fabrics, and are marked by light δ13C and heavy δ18O isotopic values. Evidences of paleo-gas hydrate occurrence are recorded in paleo-clathrites hosted in Miocene deposits of the Apennine chain, Italy, and formed in different positions of the paleo foreland system: in wedge-top basins, along the outer slope of the accretionary prism, and at the leading edge of the deformational front. The accurate nannofossil biostratigraphy of sediment hosting paleo-clathrites in the northern Apennines allowed us to ascribe them to different Miocene nannofossil zones, concentrated in three main intervals: in the Langhian (MNN5a), in the upper Serravallian-lower Tortonian (MNN6b-MNN7) and the upper Tortonian-lowermost Messinian (MNN10-MNN11). By comparing paleo-clathrite distributions with 3rd order eustatic curves, they seem to match phases of sea-level lowering associated with cold periods. Therefore, we suggest that the drop in the hydraulic pressure on the plumbing system during sea-level lowering shifted the bottom of the gas hydrate stability zone to shallower depths, inducing paleo gas-hydrate destabilization. The uplift of the different sectors of the wedge-top foredeep system during tectonic migration might have amplified the effect of the concomitant eustatic sea-level drop, reducing the hydrostatic load on the seafloor and triggering gas-hydrate decomposition. We suggest that Miocene climate-induced sea-level changes played a role in controlling gas hydrate stability and methane emissions along the northern Apennine paleo-wedge, with hydrate destabilization roughly matching with sea-level drops and cooling events.

 

How to cite: Fontana, D., Conti, S., Fioroni, C., and Argentino, C.: Gas hydrate destabilization and sea-level changes: insights from Miocene seep carbonate deposits of the northern Apennines (Italy), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8529, https://doi.org/10.5194/egusphere-egu21-8529, 2021.

EGU21-9321 | vPICO presentations | BG10

Using video images to study Haima cold seep bubble plumes

Kun Zhang, Haibin Song, Hongbin Wang, Yi Gong, Wenhao Fan, Yongxian Guan, Jun Tao, and Minghui Geng

Cold seep is a widespread geological process mainly caused by hydrocarbon fluid migration. Methane bubble plumes released from cold seeps are often observed at the seafloor. These methane bubbles might be released into the atmosphere and have a huge effect on climate changes. It is of great significance for understanding the fate of these methane bubble plumes.

Many kinds of methods have been used to observe the methane bubble plumes, e.g., acoustical, geochemical, and optical methods. Video imaging is a kind of optical methods widely used in methane bubble plume studies. Compared to other methods, video imaging is a non-intrusive, high-resolution, and quick-collected method. Many studies have estimated bubbles' size, rise velocities, behavior, and the fate of bubbles by analyzing video images manually. However, manual analysis is time-consuming, one dimension, and has not been able to determine temporospatial changes in a two-dimension profile perspective.

In this study, we applied the manual analysis method and the particle image velocimetry (PIV) method to analyze in-situ video image sequences of Haima cold seep bubble plumes, a newly discovered, active cold seep in the Qiongdongnan Basin of the northern South China Sea during 2019. Quantitative and temporospatial change information about the plume flow filed is obtained. The results show that the sizes of bubbles in the plume range from 2.556 ~ 4.624 mm, with a rising velocity of ~ 0.26 m/s. The flux for an individual bubble stream is ~ 94.8 ml/min. The flow velocity field of the bubble plume is consistent with the manual analysis, and it reveals that the bubble plume's flow field is a multiscale turbulent flow field. The bubble plumes are usually V-shaped. Through carrying the adjacent water column, the bubble plumes swell and change rapidly. The direction and velocity of the bubble plume flow change with time, and its streamlines are sinuous. The max velocity of the bubble plume flow field changes at a 6.6 s period cycle.

Although there is some indetermination, our results show that the PIV method is feasible for calculating the bubble plume flow field and that it has some unique advantages, e.g., it is fast, non-invasive, it provides two-dimension temporospatial change images, and it has a high resolution. The images of the bubble plume flow field provide a new perspective to observe the cold seep systems. We hope that this method can be improved and widely applied in cold seep plume studies in the future.

How to cite: Zhang, K., Song, H., Wang, H., Gong, Y., Fan, W., Guan, Y., Tao, J., and Geng, M.: Using video images to study Haima cold seep bubble plumes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9321, https://doi.org/10.5194/egusphere-egu21-9321, 2021.

EGU21-10216 | vPICO presentations | BG10

On the lack of widespread bottom simulating reflectors in the Mediterranean Basin

Cristina Corradin, Angelo Camerlenghi, Michela Giustiniani, Umberta Tinivella, and Claudia Bertoni

In the Mediterranean Basin, gas hydrate bottom simulating reflectors (BSR) are absent, with very few and spatially limited exceptions occurring in Eastern Mediterranean mud volcanoes and in the Nile deep sea fan. This is in spite of widespread occurrence of hydrocarbon gases in the subsurface, mainly biogenic methane, from a wide range of stratigraphic intervals.
In this study we model the methane hydrate stability field using all available information on DSDP and ODP boreholes in the Western Mediterranean and in the Levant Basin, including the downhole changes of pore water salinity. The models take into account the consequent pore water density changes and use known estimates of geothermal gradient. None of the drilled sites were located on seismic profiles in which a BSR is present.
The modelled base of the stability field of methane hydrates is located variably within, below, or even above the drilled sedimentary section (the latter case implies that it is located in the water column). We discuss the results in terms of geodynamic environments, areal distribution of Messinian evaporites, upward ion diffusion from Messinian evaporites, organic carbon content, and the peculiar thermal structure of the Mediterranean water column.
We conclude that the cumulative effects of geological and geochemical environments make the Mediterranean Basin a region that is unfavorable to the existence of BSRs in the seismic record, and most likely to the existence of natural gas hydrates below the seabed.

How to cite: Corradin, C., Camerlenghi, A., Giustiniani, M., Tinivella, U., and Bertoni, C.: On the lack of widespread bottom simulating reflectors in the Mediterranean Basin, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10216, https://doi.org/10.5194/egusphere-egu21-10216, 2021.

EGU21-10621 | vPICO presentations | BG10

Dynamics of methane seepage at Leirdjupet Fault Complex (SW Barents Sea) since last deglaciation and possible future scenarios

Claudio Argentino, Kate Waghorn, Sunil Vadakkepuliyambatta, Stéphane Polteau, Stefan Bünz, and Giuliana Panieri

Methane emissions from Arctic continental margins may increase due to global warming. Present-day ocean fluxes seem to provide a minor contribution to the atmosphere methane pool, but large uncertainties still remain on the magnitude of future emissions from methane seeps and gas hydrate-bearing sediments. The Barents Sea is a natural laboratory to study the evolution of methane seeps in relation to climate change, as it recorded several phases of ice-sheet advance and retreat during the Pleistocene. Glaciations and its concurrent denudation of the Barents Sea influenced the subsurface, causing reservoir expansion and fracturing, thereby driving hydrocarbon (mostly gas) migration which resulted in a sustained regional fluid flow system. New data from this area can shed light on future response of other high-latitude continental shelves worldwide. Here, we present reconstructed methane emission dynamics at Leirdjupet Fault Complex (LFC), SW Barents Sea, since last deglaciation (occurred after ~19 cal Ka BP). The geochemical composition of sediment cores indicate prolonged methane emissions, which started after 14.5 cal Ka BP. Geochemical proxies for anaerobic oxidation of methane in the sediment (barium, calcium and sulfur enrichments, isotopic composition of foraminifera) indicate an overall decrease in seepage intensity over the Holocene toward present-day conditions. Methane-derived authigenic carbonates with aragonite mineralogy and heavy δ18O signature recorded an episode of gas hydrate destabilization in this region. Paleo-hydrate stability models suggest that this event was triggered by the influx of warm Atlantic water and isostatic uplift linked to the retreat of the Barents Sea Ice Sheet. Present-day distribution of methane seeps at LFC is strongly linked to underlying faults. Methane hydrates are stable in the southern part of the investigated seepage area and might respond to a future increase in bottom water temperatures.

How to cite: Argentino, C., Waghorn, K., Vadakkepuliyambatta, S., Polteau, S., Bünz, S., and Panieri, G.: Dynamics of methane seepage at Leirdjupet Fault Complex (SW Barents Sea) since last deglaciation and possible future scenarios, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10621, https://doi.org/10.5194/egusphere-egu21-10621, 2021.

EGU21-13179 | vPICO presentations | BG10

Seasonal variability of natural methane seepage offshore Western Svalbard

Manuel Moser, Knut Ola Dølven, and Bénédicte Ferré

BG11 – Remote sensing for forest applications

EGU21-2117 | vPICO presentations | BG11

Abiotic forest disturbances in Europe: mapping distribution and trends from space

Cornelius Senf, Julius Sebald, and Rupert Seidl
Abiotic forest disturbances are an important driver of ecosystem dynamics around the globe. In Europe, storms and fires have been identified as the most important abiotic disturbances. Yet, how strongly these agents drive local disturbance regimes compared to other agents (e.g., biotic, human) remains unresolved. Furthermore, whether storms and fires are responsible for the observed increase in forest disturbances in Europe is debated. We here provide a first quantitative assessment of storm and fire disturbances in Europe 1986-2020 using Landsat remote sensing data. For more than 30 million disturbance patches mapped across Europe, we determined whether they were caused by storm or fire, using a random forest classifier and a large reference dataset of true disturbance occurrence. Differentiation between abiotic and other disturbances was made possible by using a set of neighborhood metrics, describing the spatial autocorrelation of each disturbance patch within its local surrounding landscape. This approach allowed for mapping both storm and fire disturbances in a spatially explicit manner. The maps show high correlation with national data and local case studies, but provide a seamless wall-to-wall picture of abiotic disturbance distribution. We subsequently analyzed patterns of abiotic disturbance prevalence (i.e., the share of storm and fire disturbances on the overall area disturbed) in space and time. Storm- and fire-related disturbances each accounted for approximately 7 % of all disturbances recorded in Europe in the period 1986-2020. Storm-related disturbances were most prevalent in western and central Europe, and especially mountain regions, where they locally account for >50% of all canopy disturbances. We however also identified storm-related disturbance hotspots in south-eastern and eastern Europe. Fire-related disturbances were a major driver of forest dynamics in southern and south-eastern Europe, but individual fires also occurred in eastern and northern Europe. Only very limited areas in Europe were affected by disturbances of both agents. The prevalence of storm-related disturbances increased over time. No trend in the prevalence of fire-related disturbances was detected, but several high-intensity fire years related to local drought conditions could be identified. We conclude that abiotic disturbances are an important driver of forest dynamics in Europe, but that their influence varies substantially by region. Our analyses suggest that an increase in storm-related disturbances could be an important driver of Europe’s changing forest disturbance regimes, but weaker evidence is present for fires.

How to cite: Senf, C., Sebald, J., and Seidl, R.: Abiotic forest disturbances in Europe: mapping distribution and trends from space, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2117, https://doi.org/10.5194/egusphere-egu21-2117, 2021.

EGU21-16177 | vPICO presentations | BG11 | Highlight

Forest disturbances detection in Vietnam, Cambodia and Laos using Sentinel-1 data

Stéphane Mermoz, Alexandre Bouvet, Marie Ballère, Thierry Koleck, and Thuy Le Toan

Over the last 25 years, the world’s forests have undergone substantial changes. Deforestation and forest degradation in particular contribute greatly to biodiversity loss through habitat destruction, soil erosion, terrestrial water cycle disturbances and anthropogenic CO2 emissions. In certain regions and countries, the changes have been more rapid, which is the case in the Greater Mekong sub-region recognized as deforestation hotspot (FAO, 2020). In this region, illegal and unsustainable logging and conversion of forests for agriculture, construction of dams and infrastructure are the direct causes of deforestation. Effective tools are therefore urgently needed to survey illegal logging operations which cause widespread concern in the region.

Monitoring systems based on optical data, such as the UMD/GLAD Deforestation alerts implemented on the Global Forest Watch platform, are limited by the important cloud cover which causes delays in the detections. However, it has been demonstrated in the last few years that forest losses can be timely monitored using dense time series of (synthetic aperture) radar data acquired by Sentinel-1 satellites, developed in the frame of the European Union’s Earth observation Copernicus programme. Ballère et al. (2021) showed for example that 80% of the forest losses due to gold mining in French Guiana are detected first by Sentinel-1-based forest loss detection methods compared with optical-based methods, sometimes by several months. Methods based on Sentinel-1 have been successfully applied at the local scale (Bouvet et al., 2018, Reiche et al., 2018) and can be adapted and tested at the national scale (Ballère et al., 2020).

We show here the main results of the SOFT project funded by ESA in the frame of the EO Science for Society open calls. The overall SOFT project goal is to provide validated forest loss maps every month over Vietnam, Cambodia and Laos with a minimum mapping unit of 0.04 ha, using Sentinel-1 data. The results confirm the analysis of the deforestation fronts published recently by the WWF (Pacheco et al., 2021), showing that Eastern Cambodia, and Southern and Northern Laos are currently forest disturbances hotspots.

 

References:

Ballère et al., (2021). SAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery. Remote Sensing of Environment, 252, 112159.

Bouvet et al., (2018). Use of the SAR shadowing effect for deforestation detection with Sentinel-1 time series. Remote Sensing, 10(8), 1250.

FAO. Global Forest Resources Assessment; Technical Report; Food and Agriculture Association of the United-States: Rome, Italy, 2020.

Pacheco et al., 2021. Deforestation fronts: Drivers and responses in a changing world. WWF, Gland, Switzerland

Reiche et al., (2018). Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, 204, 147-161.

How to cite: Mermoz, S., Bouvet, A., Ballère, M., Koleck, T., and Le Toan, T.: Forest disturbances detection in Vietnam, Cambodia and Laos using Sentinel-1 data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16177, https://doi.org/10.5194/egusphere-egu21-16177, 2021.

EGU21-16015 | vPICO presentations | BG11 | Highlight

Near-real-time identification of the drivers of deforestation in French Guiana

Marie Ballere, Stephane Mermoz, Alexandre Bouvet, Thierry Koleck, and Thuy Le Toan

Tropical forests account more than 50% of recorded terrestrial biodiversity and play an important role in carbon storage and the water cycle. The degradation of tropical forests presents an immediate danger for the global environment and biodiversity. Monitoring of deforestation and understanding its drivers are challenging tasks that are essential to measures of reduction of deforestation.

Many researches have been carried out on the detection of deforestation using remote sensing data, and there are several operational systems that work. Those systems are mostly based on optical data, but they show big delays in detections due to the persistent cloud cover in the tropics. Since 2014, Sentinel-1 provides SAR images every 6 to 12 days, insensitive to cloud cover. Deforestation detection methods based on SAR images have increased and start to be operational (Bouvet et al. 2018, Reiche et al. 2021). They allow for faster and more accurate mapping. For example, Ballere et al. 2021 shows that 80% of gold-mining-related deforestation in French Guiana is first detected by a SAR-based method, before the optical method, most often offset by several months.

However, the detection of disturbances in itself is not sufficient for measures to halt deforestation. Finer et al. 2017 defined a 5 steps protocol in order to help the near-real-time monitoring to be effective, the first step being the detection. Then comes the prioritization of data: this can be done by integrating spatial data such as protected areas or specific areas of interest. The third step is the identification of the drivers. This usually involves human-work.

We present here an automatic method for the identification of the drivers of deforestation in French Guiana (gold mining, urbanization, small-scale agriculture and forest exploitation), and show its results. It is based on geographical and morphological indicators, and makes it possible not to wait for another image after the detection step. The method has the potential to be integrated into an operational system for French Guiana.

How to cite: Ballere, M., Mermoz, S., Bouvet, A., Koleck, T., and Le Toan, T.: Near-real-time identification of the drivers of deforestation in French Guiana, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16015, https://doi.org/10.5194/egusphere-egu21-16015, 2021.

EGU21-9033 | vPICO presentations | BG11

Derivating forest structure from Sentinel-1 time series to assist forest fire risk assessments

Moritz Bruggisser, Wouter Dorigo, Alena Dostálová, Markus Hollaus, Claudio Navacchi, Stefan Schlaffer, and Norbert Pfeifer

The assessment of forest fire risk has recently gained interest in countries of Central Europe and the alpine region since the occurrence of forest fires is expected to increase with a changing climate. Information on forest fuel structure, which is related to forest structure, is a key component in such assessments. Forest structure information can be derived from airborne laser scanning (ALS) data, whose value for the derivation of respective metrics at a high accuracy level has been demonstrated in numerous studies over the last years.

Yet, the temporal resolution of ALS data is low as flight missions are typically carried out in time intervals of five to ten years in Central Europe. ALS-derived forest structure descriptors for fire risk assessments, therefore, are often outdated. Open access earth observation data offer the potential to fill these information gaps. Data provided by synthetic aperture radar (SAR) sensors, in particular, are of interest in this context since this technology has a known sensitivity to the vegetation structure and acquires data independent of weather or daylight conditions.

In our study, we investigate the potential to derive forest structure descriptors from time series of Sentinel-1 (S-1) SAR data for a deciduous forest site in the Eastern part of Austria. We focus on forest stand height and fractional cover, which is a measure for forest density, as both of these components impact forest fire propagation and ignition. The two structure metrics are estimated using a random forest (RF) model, which takes a total of 36 predictors as input, which we compute from the S-1 time series. The model is trained using ALS-derived structure metrics acquired during the same year as the S-1 data.

We estimated stand height with a root mean square error (RMSE) of 4.76 m and a bias of 0.09 m at 100 m resolution, while the RMSE for the fractional cover estimation is 0.08 with a bias of zero at the same resolution. The spatial comparison of the structure predictions with the ALS reference further shows that the general structure is well reproduced. Yet, fine scale variations cannot be completely reproduced by the S1-derived structure products, and the height of tall stands and very dense canopy parts are underestimated. Due to the high correlation of the predicted values to the reference (Pearson’s R of 0.88 and 0.94 for the stand height and the fractional cover, respectively), we consider S-1 time series in combination with ALS data with low temporal resolution and machine learning techniques to be a reliable data source and workflow for regularly (e.g. < yearly) updating ALS structure information in an operational way.

How to cite: Bruggisser, M., Dorigo, W., Dostálová, A., Hollaus, M., Navacchi, C., Schlaffer, S., and Pfeifer, N.: Derivating forest structure from Sentinel-1 time series to assist forest fire risk assessments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9033, https://doi.org/10.5194/egusphere-egu21-9033, 2021.

EGU21-3147 | vPICO presentations | BG11

Quantifying Local-scale Forest Degradation Intensity from Charcoal Production Using a Fusion of GEDI and Landsat Data

Mengyu Liang, Laura Duncanson, and Fernando Sedano

Deforestation and degradation are two major threats to the global forest that jeopardize their functions to store carbon and mitigate climate change. Forest degradation undermines the health and functions of the forest to perform ecosystem services and is a stepping stone to deforestation. However, forest degradation has not been sufficiently monitored and quantified due to the varying intensity of disturbance and usually inconsistent spectral signals reflected in optical remote sensing. Drivers of forest degradation can be natural and/or human-related, and charcoal production is a key driver of forest degradation in sub-Saharan Africa due to the high demands for charcoal for energy consumption and the increasing rate of population growth and urbanization. In this study, we focus on charcoal production-driven forest degradation that occurred at the Mabalane district in Southern Mozambique from 2008 to 2018. We intend to demonstrate the potential of combining Global Ecosystem Dynamics Investigation (GEDI) data and Landsat time stacks for inspecting the changes in forest structure and aboveground biomass (AGB). To do so, we categorize the degraded forest by the year of disturbance based on a disturbance map produced for the study area for 2008-2018 by Sedano et al. (2019) and analyze the first year of publicly-released GEDI data to characterize forest structure and AGB at different disturbance classes. We also compare the GEDI L4A biomass with three other global and continental AGB products to understand the pre-disturbance biomass storage and the degradation patterns. Lastly, we build an empirical model between GEDI biomass and Landsat spectral bands and vegetation indices to quantify the biomass removal and regrowth from 10-year charcoal production. Uncertainties from the GEDI-Landsat models are estimated using Monte Carlo Simulations to propagate errors. The study improves the current understanding of forest degradation and carbon dynamics associated with it in tropical dry forests of sub-Saharan Africa. It also demonstrates the potential of combining spaceborne lidar missions and Landsat archives to facilitate accurate mapping of forest structural and AGB change in the degraded forest at a local scale. 

How to cite: Liang, M., Duncanson, L., and Sedano, F.: Quantifying Local-scale Forest Degradation Intensity from Charcoal Production Using a Fusion of GEDI and Landsat Data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3147, https://doi.org/10.5194/egusphere-egu21-3147, 2021.

EGU21-10719 | vPICO presentations | BG11

Mapping catastrophic ice damage in forested area: a case study for a deciduous forest in Hungary

László Zoltán, Zoltán Friedl, Balázs Székely, Vivien Pacskó, Ildikó Orbán, Eszter Tanács, Bálint Magyar, Dániel Kristóf, and Tibor Standovár

In December 2014 a catastrophic ice disturbance affected the forests of the Börzsöny Mts., Hungary. Planning salvage logging is an urgent task after such events. The use of Earth Observation (EO) data in near real-time could facilitate such planning at a critical time. However, conventional remote sensing studies apply data of passive multispectral sensors, hence the earliest post-event canopy cover damages could be examined only after foliation. Synthetic Aperture Radar (SAR) is an active remote sensing technique, which could be used for the detection of forest disturbances even outside the vegetation period. Due to its 12 days revisit time Sentinel-1 may play an important role in the fast detection of the damaged forests in the case of such events. In this work, we analyze the potential of Sentinel-1 SAR data in mapping natural disturbances in forests, through the 2014 ice break event.

We made 4 classifications with the different combination of the following variables: radar backscatter coefficients, polarimetric descriptors, interferometric coherence and optical data. We put great emphasis on the reference datasets: 3 types of field-based reference datasets were used, which include re-surveys (explicit data on changes). Based on the field data and orthophoto comparison the damaged patches were delineated manually as the most reliable reference.

We have found that none of the classifications were suitable for identifying the crown loss damages properly, but all of them were capable to detect the uproot damages. The classification using all of the variables proved to be the most reliable. The interferometric coherence with the polarimetric radar data provided the best information compared to the classification including optical data.

How to cite: Zoltán, L., Friedl, Z., Székely, B., Pacskó, V., Orbán, I., Tanács, E., Magyar, B., Kristóf, D., and Standovár, T.: Mapping catastrophic ice damage in forested area: a case study for a deciduous forest in Hungary, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10719, https://doi.org/10.5194/egusphere-egu21-10719, 2021.

EGU21-8297 | vPICO presentations | BG11

Automatic Tree Crown Feature Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in an Urban Forest

Robert Minařík, Jakub Langhammer, and Theodora Lendzioch

Multispectral imaging using unmanned aerial systems (UAS) enables rapid and accurate detection of pest insect infestations, which are an increasing threat to midlatitude natural forests. Pest detection at the level of an individual tree is of particular importance in mixed forests, where it enables a sensible forest management approach. Moreover, urban forests may be affected more seriously because an urban environment produces additional stressors. The stressors include changes in forest soil properties, tree species diversity, higher temperatures, and carbon dioxide content. The stressed trees are then optimal material for a bark beetle feeding. Therefore, it is necessary to use an appropriate method for the detection of individual infested trees.

In this contribution, we present a novel method for individual tree crown delineation (ITCD) followed by feature extraction to detect a bark beetle disturbance in a mixed urban forest using a photogrammetric point cloud (PPC) and a multispectral orthomosaic. An excess green index (ExG) threshold mask was applied before the ITCD to separate targeted coniferous trees from deciduous trees and backgrounds. The individual crowns of conifer trees were automatically delineated as (i) a full tree crown using marker-controlled watershed segmentation (MCWS), Dalponte2016, and Li 2012 region growing algorithms or (ii) a buffer around a treetop from the masked PPC.

We statistically compared selected spectral and elevation features extracted from automatically delineated crowns of each method to reference tree crowns to distinguish between the forest disturbance classes and two tree species. Moreover, the effect of PPC density on the ITCD accuracy and feature extraction was investigated. The ExG threshold mask application resulted in the excellent separability of targeted conifer trees and the increasing shape similarity of automatically delineated crowns compared to reference tree crowns. The results revealed a strong effect of PPC density on treetop detection and ITCD. If the PPC density is sufficient (> 10 points/m2), the automatically delineated crowns produced by Dalponte2016, MCWS, and Li 2012 methods are comparable, and the extracted feature statistics insignificantly differ from reference tree crowns. The buffer method is less suitable for detecting a bark beetle disturbance in the mixed forest because of the simplicity of crown delineation. It caused significant differences in extracted feature statistics compared to reference tree crowns. Therefore, the point density was found to be more significant than the algorithm used.

We conclude that the automatic methods may constitute a reliable substitute for the time-consuming manual tree crown delineation in tree-based bark beetle disturbance detection and sanitation of individual infested trees using the suggested methodology and high-density (>20 points/m2, 10 points/m2 minimum) PPC.

How to cite: Minařík, R., Langhammer, J., and Lendzioch, T.: Automatic Tree Crown Feature Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in an Urban Forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8297, https://doi.org/10.5194/egusphere-egu21-8297, 2021.

EGU21-15731 | vPICO presentations | BG11

Mapping present-day mountain treeline pattern based on high-resolution remote sensing images

Xinyue He, Zhenzhong Zeng, Dominick Spracklen, Joseph Holden, and Alan D. Ziegler

Mountain forests, widely distributed around the world, are hotspots of biodiversity and provide important environmental services by conserving water and soil, regulating river flow and storing carbon. The upper altitudinal limits of trees is defined as the treeline. Some field investigations indicate that treelines around the world are moving upward as a response to global climate change. However, to date, a high-resolution spatial map of global mountain treeline position is still lacking. In this study, we develop an algorithm to detect the present-day tree line positions in mountain regions globally, via integrating a high-resolution tree distribution dataset with a high-resolution digital elevation model. The results are validated with even finer resolution remote sensing images in Google Earth. We analyse a range of climate datasets to understand important climate drivers of the present-day tree line position. Further, we explore the change in Normalized Difference Vegetation Index (NDVI) within the buffer zone of the treeline to determine how the treeline position has shifted in the last three decades. By providing the first global mountain treeline distribution, our analysis will help to reveal how mountain forests are responding to climate change globally, and to detect how the responses vary regionally.

How to cite: He, X., Zeng, Z., Spracklen, D., Holden, J., and Ziegler, A. D.: Mapping present-day mountain treeline pattern based on high-resolution remote sensing images, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15731, https://doi.org/10.5194/egusphere-egu21-15731, 2021.

EGU21-11209 | vPICO presentations | BG11

Wide-area shrub forest map based on multi-sensor data and active learning

Marius Rüetschi, Dominique Weber, Tiziana L. Koch, David Small, and Lars T. Waser

In the past few decades, the occurrence of shrub forest dominated by the two species Green alder (Alnus viridis) and Dwarf mountain pine (Pinus mugo) has increased in the Swiss Alps. Up-to-date and area-wide information on its distribution is required for countrywide forest reporting (5 % of Swiss forest consists of shrub forest) and of great interest to the forestry sector. Such information helps to better understand forest succession and supports the evaluation and management of protection forests. Until now, this information has been based on estimates from the Swiss National Forest Inventory (NFI). Due to their sampling scheme that uses a regular grid, these data are not area-wide maps. However, new developments in remote sensing techniques in combination with high spatial and temporal resolution data have facilitated the production of maps over large areas, e.g. the whole of Switzerland (41’285 km2).

To map the shrub forest areas, we developed an approach that uses a Random Forest (RF) model, active learning techniques and data from multiple remote sensing sources. The training data was produced via aerial image interpretation of areas covered by shrub forest. We used predictor data from different sensors and technologies, complementing each other by their diverse sensitivity to properties of shrub forests. These data included airborne Digital Terrain (DTM) and Vegetation Height Models (VHM), and spaceborne Synthetic Aperture Radar (SAR) backscatter from the Sentinel-1 constellation and multispectral imagery from Sentinel-2. To improve mapping quality, an iterative and semi-automatic active learning technique was used to generate further training data.

The above outlined workflow enabled the production of a shrub forest map for the whole of Switzerland with a spatial resolution of 10 m. An accuracy assessment was performed using independent validation data of a total of 7’640 regularly distributed NFI plots. Mean shrub forest cover per plot (50 m x 50 m) was slightly underestimated by 1.5 % with a root mean square error of 10 %. The influence of the active learning was observed and revealed higher accuracies after each additional iteration of training data production. The proposed approach underscores the potential of multi-sensor data combined with active learning techniques to provide cost-effective and area-wide information on the occurrence of shrub forest in a manner complementary to the NFI measurements.

How to cite: Rüetschi, M., Weber, D., Koch, T. L., Small, D., and Waser, L. T.: Wide-area shrub forest map based on multi-sensor data and active learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11209, https://doi.org/10.5194/egusphere-egu21-11209, 2021.

Although forests cover about one third of global land surface, forests act as important biophysical, biogeochemical, hydrological, economic and cultural roles in the Earth systems. Forests contribute up to 75% of terrestrial gross primary production and store more carbon in forest biomass and soil compared to the atmosphere. Forest aboveground biomass (AGB) plays a crucial role in regional and global ecological balance. However, due to the difficulties in measuring forest biomass in the field at regional scales, a quantitative estimation with high accuracy of forest AGB by linking remote sensing is still a challenge, particularly in mountainous region. Thus, we combined the Landsat 8 OLI and Sentinel-2B data to estimate subalpine forest AGB using linear regression (LR), and two machine learning approaches - random forest (RF) and extreme gradient boosting (XGBoost), with the linkage of field observations in Jiuzhaigou National Nature Reserve, Eastern Tibet Plateau. A 10-fold cross validation (CV) method was used to evaluate the model accuracy, and then the proximity between the predicted value and the actual value was compared. The model efficiency (pseudo R2) and root mean square error (RMSE) were used as the accuracy evaluation criteria. Based on 54 field observations, results showed that mean forest AGB was 180.6 Mg ha-1with a strong spatial variability from 61.7 to 475.1 Mg ha-1. AGB varied significantly among forest types that AGB in coniferous forests was significantly higher than coniferous mixed forests and broad-leaved forests. Landsat 8 OLI and Sentinel-2B imagery were successfully applied to estimate AGB separately or combined. Integrating the Landsat 8 OLI and Sentinel-2B imagery significantly improved model efficiency for different modelling approaches. For the regression algorithms, machine learning method outperformed the linear regression. Among LR, RF and XGBoost approaches, XGBoost performed best with a model efficiency (R2) of 0.71 and root mean square error values of 46 Mg ha-1 and subsequently used for spatial modelling. Modelled results indicated a strong spatial variability in AGB, with a total 6.6×106 Mg across the study area. AGB distribution in the study area had obvious spatial characteristics, which was closely related to the elevation. It was mainly concentrated in the north and central areas, while in the southern region the AGB was relatively low, which was contrary to the trend of the elevation variation in the study area where the terrain was high in the south and low in the north. Our study highlighted a potential way to improve the estimate accuracy of forest AGB in mountainous region by integrating the Landsat 8 OLI and Sentinel-2B data using machine learning algorithms.

How to cite: Luo, K., Tang, X., Liu, L., Luo, X., and Li, J.: Machine learning based estimation of aboveground biomass in subalpine forests using Landsat 8 OLI and Sentinel-2B images in Jiuzhaigou National Nature Reserve, Eastern Tibet Plateau, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4616, https://doi.org/10.5194/egusphere-egu21-4616, 2021.

EGU21-5111 | vPICO presentations | BG11

Estimation of aboveground plant water storage using Sentinel-2 images in a semi-arid area

Liang Liu, Shaoda Li, Xinrui Luo, Wunian Yang, Yuhang Zhang, Junjie Lei, Guo Chen, and Xiaolu Tang

Aboveground plant water storage (APWS), the total of water storing in aboveground parts of plant, has the function of sustaining the balance between water loss by transpiration and water gain of root uptake. APWS is also essential for plants and hydrological cycle, particularly for semi-arid areas, where water availability is limited. However, APWS varies spatially due to the heterogeneity of natural areas that are composed of a large variety of vegetation types, and studies on the spatial variability of APWS are quite limited in semi-arid areas. To fill this knowledge gap, we established 55 inventory plots with 36 plots in forests and 19 plots in shrubs to detect the spatial variability of APWS using a Random Forest (RF) algorithm and Sentinel-2 images in Mao County, China. Field observations indicated that APWS varied significantly with ecosystems, with the highest APWS in forests. Regardless of ecosystem type, mean APWS in Mao Country was 117.63 Mg ha-1. 10-fold cross-validation suggested that the RF model could reasonably predict APWS (model efficiency = 0.68, root mean square error = 54 Mg ha-1), enabling to capture the spatial variability of APWS. A robust spatial variability of APWS was observed with the highest APWS in forests located high altitude areas, while the lowest APWS was found in shrubs located in low altitude areas. Total APWS was 3.39×107 Mg across the whole study area, which could be used as a valuable natural resource for the semi-arid area. Our study successfully explored the spatial variability of APWS, suggesting the capability of detecting APWS using Sentinel-2 and providing essential data evidence for environmental protection for semi-arid areas.

How to cite: Liu, L., Li, S., Luo, X., Yang, W., Zhang, Y., Lei, J., Chen, G., and Tang, X.: Estimation of aboveground plant water storage using Sentinel-2 images in a semi-arid area, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5111, https://doi.org/10.5194/egusphere-egu21-5111, 2021.

EGU21-9189 | vPICO presentations | BG11

Using high-resolution UAV spectral images to disentangle soil, shade, and tree contributions to satellite vegetation indices in sparse dry forests

Huanhuan Wang, Jonathan Muller, Fedor Tatarinov, Eyal Rotenberg, and Dan Yakir

Remote sensing (RS) techniques have great potentials for earth surface monitoring. Nevertheless, for most low to moderate resolution satellites, the problem of mixed pixels with information from the vegetation of interest and the background surfaces can cause large biases in signals and also in their interpretations. This is especially so in low-density forests and semi-arid ecosystems. Ground-level multispectral instruments reduce these effects by measuring at close range to the canopy. However, little work has been published on partitioning the contributions from vegetation and the background elements for both approaches.

This work was motivated by the observed mismatch between data for the same ecosystem from Landsat 8 satellite and Skye radiometer installed on a flux tower in a low-density semi-arid pine forest from 2013-2019. Data from both sources showed similar seasonal patterns in NDVI, but large differences in the reflectance bands. This was most prominent in the NIR reflectance, which showed an opposite seasonal cycle in the two sensors. Thus, similar changes in NDVI were produced by different signals. We hypothesized that the different contributions of the surface components (canopy, shaded areas, and exposed soil) in the footprint areas of the two sensors can explain, and can help correct, these differences.  

Multispectral images with a spatial resolution of 5 cm were captured monthly using an Unmanned Aerial Vehicle (UAV) from April 2018 to November 2019. Reflectance-based algorithms were developed to identify and estimate the fraction and reflectance from the canopy, shaded areas, and open soil. This information was, in turn, applied in the equivalent nadir-viewing satellite pixel. For the tower-based Skye footprint, the same quantities were calculated from its 90° angle of view and the 3D canopy data.

The results showed a canopy fraction of 45% and 95% in the Landsat 8 and Skye footprints. The remaining soil fraction showed a similar seasonal cycle in NDVI as the canopy, but different in the NIR reflectance. The partition between exposed and shaded soil was related to the sun angle, with the exposed soil having a NIR seasonal cycle opposite to that of the vegetation (correlating with soil moisture), and shaded soil having a weak NIR signal variably diluting the overall pixel NIR signal. Differences in the red reflectance were smaller with less effects on the seasonal NDVI cycles.

The results demonstrated firstly, that accounting for the fractional contributions of the surface components can reconcile differences between satellite and ground-based RS. Secondly, vegetation indices such as NDVI obtained by satellite RS in low-density forests can provide misleading information, despite its apparent correlation with certain vegetation variables.

How to cite: Wang, H., Muller, J., Tatarinov, F., Rotenberg, E., and Yakir, D.: Using high-resolution UAV spectral images to disentangle soil, shade, and tree contributions to satellite vegetation indices in sparse dry forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9189, https://doi.org/10.5194/egusphere-egu21-9189, 2021.

EGU21-11098 | vPICO presentations | BG11

Evapotranspiration intensification over unchanged temperate vegetation in the Baltic states is being driven by climate shifts 

Bruno Montibeller, Jaak Jaagus, Ülo Mander, and Evelyn Uuemaa

Shifts in climate driven by anthropogenic land use and land cover change are expected to alter various land–atmosphere interactions. Evapotranspiration (ET) is one of these processes and plays a fundamental role in the hydrologic cycle. Using gridded reanalysis and remote sensing data, we investigated the spatiotemporal trends of precipitation, temperature, and ET for croplands and forest areas in the Baltic states where these land cover type had not changed from 2000 to 2018. We focused on ET but investigated the spatiotemporal trends for the three variables at monthly, seasonal, and annual time scales during this period to quantify trade-offs among months and seasons. We used the Mann-Kendall test and Sen’s slope to calculate the trends and rate of change for the three variables. Although precipitation showed fewer statistically significant increasing and decreasing trends due to its high variability, temperature showed only increasing trends in all time scales. The increasing trends were concentrated in late spring (May, +0.14ºC per year), summer (June and August, +0.10ºC), and early autumn (September, +0.13ºC). For unchanged forest and cropland areas, we found no statistically significant ET trends. However, Sen’s slope indicated increasing ET in April, May, June, and September for forest areas and in May and June for cropland. Our results indicate that during the study period, the temperature changes may have lengthened the growing season, which affected the ET patterns of forest and cropland areas. The results also provide important insights into the regional water balance, specially for critical periods where the ET rates increase while precipitation decrease (May, June. and July). Moreover, our study also complements the findings of other studies over the Baltic states.

How to cite: Montibeller, B., Jaagus, J., Mander, Ü., and Uuemaa, E.: Evapotranspiration intensification over unchanged temperate vegetation in the Baltic states is being driven by climate shifts , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11098, https://doi.org/10.5194/egusphere-egu21-11098, 2021.

EGU21-14211 | vPICO presentations | BG11

Potential of Sentinel and high resolution EO data for monitoring nature protection in cities – the SeMoNa22 project

Anna Iglseder, Markus Immitzer, Christoph Bauerhansl, Hannes Hoffert-Hösl, Klaus Kramer, Andreas Kasper, Maria Elisabeth Schnetz, Hubert Lehner, and Markus Hollaus

At the end of the 1980s the Municipal Department for Environmental Protection of Vienna - MA 22 initiated a detailed biotope mapping on the basis of the Viennese nature conservation law. Approximately 40 % of Vienna’s city area were covered, however only 2 % of the densely populated areas. This biotope mapping was the basis for the biotope types mapping (2005-2011) and of the green areas monitoring (2005). An update of these surveys has been planned in order to meet the various requirements of urban nature conservation and the national and international, respectively, legal monitoring and reporting obligations.

Since the 1970s the municipality of Vienna has built up a comprehensive database and uses state-of-the-art methods for collecting geodata carrying out services for surveying, airborne imaging and laser-scanning. Currently systems for mobile mapping, oblique aerial photos and a surveying flight with a single photon LiDAR system are being implemented or prepared. Because of the numerous high-resolution data available within the municipality and limitations mainly in spatial resolution of satellite data, the City of Vienna saw no need or benefit in integrating satellite images until now.

However, satellite data are now available within the European Copernicus program, which have considerable potential for monitoring green spaces and biotope types due to their high temporal resolution and the large number of spectral channels and SAR data. For the first time, the Sentinel-1 mission offers a combination of high spatial resolution in Interferometric Wide Swath (IW) recording mode and high temporal coverage of up to four shots every 12 days in cross-polarization in the C-band. The Sentinel-2 satellites deliver multispectral data in 10 channels every 5 days with spatial resolutions of 10 or 20 m.

Within the SeMoNa22 project, various indicators are derived for the Vienna urban area (2015-2020) and used for object-oriented mapping and classification of biotope types and characterization of the green space:

  • Sentinel-1 data (→ time series on the annual cycles in the backscattering properties of the vegetation, phenology),

  • Sentinel-2 data (→ multispectral time series via parameters for habitat classification / vegetation indices),

  • High-resolution earth observation data (airborne laser scanning (ALS), image matching, orthophoto → various parameter describing the horizontal and vertical vegetation structure).

The main goals of SeMoNa22 is to explore efficient and effective ways of knowing if, how and to what extent the data collected can form the basis and become an integrative part of urban conservation monitoring. For this purpose, combinations of different earth observation data (satellite- and aircraft- supported or terrestrial sensors) and existing structured fieldwork data collections (species mapping, soil parameters, meteorology) are examined by means of pixel- and object-oriented methods of remote sensing and image processing. The study is done for several test sites in Vienna covering different ecosystems. In this contribution the ongoing SeMoNa22 project will be presented and first results will be shown and discussed.

How to cite: Iglseder, A., Immitzer, M., Bauerhansl, C., Hoffert-Hösl, H., Kramer, K., Kasper, A., Schnetz, M. E., Lehner, H., and Hollaus, M.: Potential of Sentinel and high resolution EO data for monitoring nature protection in cities – the SeMoNa22 project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14211, https://doi.org/10.5194/egusphere-egu21-14211, 2021.

EGU21-15106 | vPICO presentations | BG11

SiDroForest  Siberian Drone-mapped Forest inventory

Femke van Geffen, Birgit Heim, Ulrike Herzschuh, Luidmila Pestryakova, Evgenii Zakharov, Ronny Hänsch, Begüm Demir, Birgit Kleinschmit, Michael Förster, and Stefan Kruse

To gain a better understanding of global carbon storage and albedo feedback mechanisms it is important to have insights into high latitude vegetation change. Boreal forest compositions are changing in response to changes in climate, which in turn can lead to feedbacks in regional and global climate through altered carbon cycles and albedo dynamics. Circumpolar boreal forests represent close to 30% of all forested area on the planet, between 900 and 1,200 million ha. These forests are located primarily in Alaska, Canada, and Russia. Due to the remote location of these forests and the short seasons without snow, data collected on the boreal vegetation is limited. 

The proposed dataset is an attempt to remedy data scarcity whilst providing adjusted data for machine learning practices.We present a dataset containing diverse formats of forest structure information that covers two important vegetation transition zones in Siberia: the Evergreen - Summergreen transition zone in Central Yakutia and the northern treeline in Chukotka (NE Siberia).

This dataset contains data from the locations covered by fieldwork was performed by the Alfred Wegener Institute for Polar and Marine research, (AWI) and the North-Eastern Federal University of Yakutsk​ (NEFU). The fieldwork upscaled through the addition of Red Green Blue(RGB) UAV (Unmanned Aerial Vehicle) camera data and Sentinel-2 satellite data cropped to a 5 km radius around the fieldwork sites. The dataset is created with the aim of providing ground truth validation and training data to be used in various vegetation related machine learning tasks .

The dataset contains:

1.Labelled individual trees per 30x30 m plot assigned in field work with additional data on species, height, crown width, and biomass.

2.Structure from Motion (SfM)point clouds that provide 3D information about the forest structure, included generated Canopy Height Model (CHM), Digital Elevation Model (DEM) and a Digital Surface Model (DSM) per 50x50 m.

3.Multispectral Sentinel-2 satellite data (10 m ) cropped to a 5km radius with generated a NDVI(normalized difference vegetation index), available in three seasons: Early Summer, Peak Summer and Late Summer.

4.Extracted tree crowns with species information and a synthetically generated large (10.000 samples) dataset for training machine leaning algorithms.

The dataset will be made publicly available on the data repository PANGAEA.

How to cite: van Geffen, F., Heim, B., Herzschuh, U., Pestryakova, L., Zakharov, E., Hänsch, R., Demir, B., Kleinschmit, B., Förster, M., and Kruse, S.: SiDroForest  Siberian Drone-mapped Forest inventory, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15106, https://doi.org/10.5194/egusphere-egu21-15106, 2021.

EGU21-16273 | vPICO presentations | BG11

Detecting a keystone species European aspen in boreal forests with airborne hyperspectral, LiDAR and UAV data with machine learning methods

Timo Kumpula, Janne Mäyrä, Anton Kuzmin, Arto Viinikka, Sonja Kivinen, Topi Tanhuanpää, Pekka Hurskainen, Sarita Keski-Saari, Peter Kullberg, Laura Poikolainen, Pasi Korpelainen, Aleksi Ritakallio, Sakari Tuominen, and Petteri Vihervaara

Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. Different proxy variables indicating species richness and quality of the sites are essential for efficient detecting and monitoring forest biodiversity. European aspen (Populus tremula L.) is a minor deciduous tree species with a high importance in maintaining biodiversity in boreal forests. Large aspen trees host hundreds of species, many of them classified as threatened. However, accurate fine-scale spatial data on aspen occurrence remains scarce and incomprehensive.

 

We studied detection of aspen using different remote sensing techniques in Evo, southern Finland. Our study area of 83 km2 contains both managed and protected southern boreal forests characterized by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), whereas European aspen has a relatively sparse and scattered occurrence in the area. We collected high-resolution airborne hyperspectral and airborne laser scanning data covering the whole study area and ultra-high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors from selected parts of the area. We tested the discrimination of aspen from other species at tree level using different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks).

 

Airborne hyperspectral and lidar data gave excellent results with machine learning and deep learning classification methods The highest classification accuracies for aspen varied between 91-92% (F1-score). The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm) (Viinikka et al. 2020; Mäyrä et al 2021). Aspen detection using RGB and multispectral data also gave good results (highest F1-score of aspen = 87%) (Kuzmin et al 2021). Different remote sensing data enabled production of a spatially explicit map of aspen occurrence in the study area. Information on aspen occurrence and abundance can significantly contribute to biodiversity management and conservation efforts in boreal forests. Our results can be further utilized in upscaling efforts aiming at aspen detection over larger geographical areas using satellite images.

How to cite: Kumpula, T., Mäyrä, J., Kuzmin, A., Viinikka, A., Kivinen, S., Tanhuanpää, T., Hurskainen, P., Keski-Saari, S., Kullberg, P., Poikolainen, L., Korpelainen, P., Ritakallio, A., Tuominen, S., and Vihervaara, P.: Detecting a keystone species European aspen in boreal forests with airborne hyperspectral, LiDAR and UAV data with machine learning methods, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16273, https://doi.org/10.5194/egusphere-egu21-16273, 2021.

EGU21-12980 | vPICO presentations | BG11

Quantitative measurements of pigments in coniferous by the method of differential optical absorption spectroscopy

Ilya Bruchkouski, Volha Siliuk, Sviatlana Guliaeva, and Hleb Litvinovich

The relative concentrations of photosynthetic and photoprotective pigments provide important information about the physiological state of the plant and are determined, among other things, by the lighting regime and the presence of nutrients. Relative composition of the pigments is depending on the physiological response of the plant to external influences. In most cases, when an on-line in-situ analysis is required, only the main pigments are measured: Chla, Chlb and a rough estimate of the "total carotenoids" in higher plants, but such an estimate may not always be reliable. Differential Optical Absorption Spectroscopy (DOAS) is known for its applications for the trace gases measurements in the atmosphere sciences; however, no application has been found for the determination of color pigments for plant extracts. For the correct application of the DOAS method, it is necessary to determine the appropriate optical thickness of the sample under study, the fitting intervals for analysis, as well as a set of absorption cross sections for the target pigments.

Purpose of the work is to determine the appropriate settings for the retrieval of concentrations of colored pigments employing the DOAS method by investigating the sample of pine and spruce needles extraction. The relevance of the work consists in the development of a new method for analyzing transmission spectra, which does not require the creation of specialized software, since programs for analyzing spectra by the DOAS method are available.

For the spectra registration, Solar M150 spectrometer with Hamamatsu S7031-1006S detector has been used, the transmission spectra recorded in the 330 - 750 nm range, and pure acetone employed as a solvent. The paper presents the results of DOAS-analysis of extracts of various coniferous samples, from which it was possible to retrieve the contents of Cha, Chb, B,b-carotene, B,e-carotene, and small amounts of Phaeophytin-a, Neoxanthin. Optimal settings for the DOAS-analysis and experimental setup details for photosynthetic and photoprotective pigments retrieval are discussed.

How to cite: Bruchkouski, I., Siliuk, V., Guliaeva, S., and Litvinovich, H.: Quantitative measurements of pigments in coniferous by the method of differential optical absorption spectroscopy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12980, https://doi.org/10.5194/egusphere-egu21-12980, 2021.

EGU21-83 | vPICO presentations | BG11

Heterogenous Patterns in Leaf Phenology Across a Climate Gradient in Maritime Canada Observed through Phenocams

Lynsay Spafford and Andrew H. MacDougall

Leaf phenology, the timing of leaf life cycle events, is a vital indicator of terrestrial biosphere function. The influence of global change upon leafing phenology in mid to high latitude regions is uncertain due to a complex interaction of drivers and lack of temporally and spatially resolved baseline data.  Leaf phenology has been observed manually for millennia, and through satellite platforms for decades. A novel technique of monitoring leaf phenology known as near remote sensing employing time-lapse photography at the canopy level (or phenocams) allows for objective observations with high temporal and spatial resolution. We deployed 13 solar-powered time-lapse camera stations across a climate gradient in Nova Scotia, Canada to observe leaf phenology of locally abundant species including more than 300 individuals over the 2019 and 2020 growing seasons. To examine the influence of thermal, photoperiodic, and genetic drivers, our remote phenology monitoring stations were situated in comparative edaphic and topographic contexts and complemented with relative humidity and ambient temperature sensors. We observed variability in the timing of leaf budburst, peak of season greenness, redness, senescence, and abscission between and within species, despite similar degrees of environmental forcing. Moving forward, we will apply our insights to develop species specific process based models of leaf phenology, and test the wider application of our techniques to observational records from other regions. This work demonstrates the complexity of environmental influence upon leaf phenology, as well as the utility of phenocams in monitoring leafing phenology in remote regions of Maritime Canada.

How to cite: Spafford, L. and MacDougall, A. H.: Heterogenous Patterns in Leaf Phenology Across a Climate Gradient in Maritime Canada Observed through Phenocams, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-83, https://doi.org/10.5194/egusphere-egu21-83, 2021.

EGU21-14341 | vPICO presentations | BG11

The identification of meaningful variables from Sentinel-2 time series data for effective tree species classification

Tiziana L. Koch, Marius Rüetschi, and Lars T. Waser

Sentinel-2 time series provide large amounts of data and information which can be easily used to classify tree species with machine learning algorithms. In addition to the original Sentinel-2 bands, further data such as indices, phenological metrics or even synthetical images can be derived. While tree species classifications highly benefit from such additional data resulting in improved prediction accuracy, severe drawbacks have to be considered - For large data sets, large storage is needed, the computation time expands and a linkage to ecological or phenological reasons behind the usage of these variables can hardly be drawn. Therefore, the implemented variables should be limited to the ones, which are meaningful and on the same time providing the best prediction accuracy. To identify meaningful variables from original Sentinel-2 images and the additionally calculated data first we used basic correlation analyses and subsequently feature selection methods in combination with the commonly used Random Forest algorithm. We classified the most common forest tree species in the Swiss canton of Grisons, which is mountainous and characterized by diverse landscapes. The presented approach will lead to higher efficiency for classifying tree species and additionally provides potential conclusions regarding ecological patterns beyond the distinction of tree species by remote sensing data. Moreover, the proposed approach can also be used to improve classifications or predictions of other outcome variables for vegetated areas with Sentinel-2.

How to cite: Koch, T. L., Rüetschi, M., and Waser, L. T.: The identification of meaningful variables from Sentinel-2 time series data for effective tree species classification, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14341, https://doi.org/10.5194/egusphere-egu21-14341, 2021.

EGU21-12957 | vPICO presentations | BG11

Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks

Felix Schiefer, Teja Kattenborn, Annett Frick, Julian Frey, Peter Schall, Barbara Koch, and Sebastian Schmidtlein

With consumer-grade unmanned aerial vehicles (UAVs) on the rise, which enable easy, time-flexible, and cost-effective acquisition of very high-resolution RGB data, the mapping of forest tree species using solely RGB imagery is of high interest, as it does not rely on sophisticated sensors, does not require extensive calibration and preprocessing and, therefore, enables the application by a wide audience. In combination with convolutional neural networks (CNNs), which particularly exploit spatial patterns and, therefore, highly benfit from very high-resolution remote sensing, this offers great potential for accurately mapping forest tree species.

Here, we present the findings of our recent study, in which we used very high-resolution RGB imagery from UAVs in combination with CNNs for the mapping of forest tree species. In this study, we used multicopter UAVs to obtain very high-resolution (<2 cm) RGB imagery over 51 ha of temperate forests in the Southern Black Forest region, and the Hainich National Park in Germany. To fully harness the end-to-end learning capabilities of CNNs, we used a semantic segmentation approach (U-net) that concurrently segments and classifies tree species from imagery. With a diverse dataset in terms of study areas, site conditions, illumination properties, and phenology, we accurately mapped nine tree species, three genus-level classes, deadwood, and forest floor (mean F1-score 0.73). We found that a coarser spatial resolution substantially reduced the model accuracy (mean F1-score of 0.26 at 32 cm resolution) and that larger tile sizes during CNN training negatively affected the model accuracies for underrepresented classes. Additional height information from normalized digital surface models slightly increased the model accuracy but simultaneously increased computational complexity and data requirements. Our results highlight the key role that UAVs can play in the mapping of forest tree species, given that air- and spaceborne remote sensing currently does not provide comparable spatial resolutions. Given the end-to-end learning capabilites of CNNs extensive preprocessing becomes partly obsolete, whereas the use of a large and diverse dataset facilitates a high degree of generalization of the CNN, thus fostering transferability. The synergy of high-resolution UAV imagery and CNN provide a fast and flexible yet accurate means of mapping forest tree species.

In this contribution, we will give an outlook on how the combination of UAV imagery and CNNs can be integrated with multitemporal satellite imagery (Sentinel-1 and Sentinel-2) in order to extrapolate the UAV-based tree species maps to larger areas.

How to cite: Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., and Schmidtlein, S.: Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12957, https://doi.org/10.5194/egusphere-egu21-12957, 2021.

EGU21-15269 | vPICO presentations | BG11

Drying out conifers classification employing TripleSat satellite data

Hleb Litvinovich, Sviatlana Guliaeva, Ilya Bruchkouski, Volha Siliuk, and Leanid Katkouski

Drying out of coniferous trees (Picea abies) due to bark beetle infestation and other diseases leads to a high rate of conifers mortality. The coniferous forests in Belarus are largely exposed to damage by the bark beetle, the early symptoms of which are the changes in the color and loss of shine of the needles.  

Purpose of the work is to identify drying out stages combining the TripleSat multispectral satellite data (spatial resolution 3.2 m MS, 0.8 m PAN, bands R, G, B, NIR) for the test coniferous forest area in Belarus (53.65419º N, 27.640213º E) with quasi-synchronous airborne photo-spectral measurements which have been used as a reference data. Airborne measurements of reflectance coefficient function of underlying coniferous trees have been carried out by employing two spectrometers (wavelength range 400-900 nm, spectral resolution 4.3 nm) and photo-camera (visible range, FOV 50º) mounted on board of Diamond DA40NG aircraft in nadir geometry.  

Airborne RGB-images have been used for visual identification of the type of underlying surface and for subsequent training data set formation. Training data consist of several sets (10 – 20) of vegetation indexes for each type of underlying surface. The linear discriminant analysis (LDA) classification algorithm has been applied in this study for distinguishing the conifers drying out stages. A set of vegetation indices evaluated for each reflectance coefficient function has been applied as input data for LDA classification algorithm.

LDA classification algorithm has been employed to the TripleSat image for identification drying out stages of coniferous trees. The reference data for LDA classification algorithm of the TripleSat image included the combination of coordinates and corresponding types of underlying surface obtained from the results of the airborne experiment classification. A set of vegetation indices has been derived for each pixel of the image and used as input data for LDA algorithm; also vegetation indices calculated for the reference pixels have been applied for training data set formation.

The classification accuracy of three conifers drying out stages based on the airborne experiment is estimated to be in a range of 27 - 74%. The verification of TripleSat classification results has been performed by visual comparison with high resolution aerial images.

How to cite: Litvinovich, H., Guliaeva, S., Bruchkouski, I., Siliuk, V., and Katkouski, L.: Drying out conifers classification employing TripleSat satellite data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15269, https://doi.org/10.5194/egusphere-egu21-15269, 2021.

EGU21-9197 | vPICO presentations | BG11

Presenting the GeForse approach to create synthetic LiDAR data from simulated forest stands to optimize forest inventories

Fabian E. Fassnacht, Jannika Schäfer, Hannah Weiser, Lukas Winiwarter, Nina Krašovec, Hooman Latifi, and Bernhard Höfle

LiDAR-based forest inventories focusing on estimating and mapping structure-related forest inventory variables across large areas have reached operationality. In the commonly applied area-based approach, a set of field-measured inventory plots is combined with spatially co-located airborne laserscanning data to train empirical models that can then be used to predict the target metric over the entire area covered by LiDAR data.

The area-based approach was found to produce reliable estimates for structure-related forest inventory metrics such as wood volume and biomass across many forest types. However, the current workflows still leave space for improvement that may result in cost-reduction with respect to data acquisition or improved accuracies. This is particularly relevant as the area-based approach is increasingly used in operational forestry settings. To further optimize existing workflows, experiments are required that need large amounts of forest inventory data (e.g., to examine the effect of sample size or the field inventory design on the model performances) or multiple LiDAR acquisitions (e.g., to identify optimal/cost-efficient acquisition settings). The acquisition of these types of data is cost-intensive and is hence often limited to small extents within scientific experiments.

Here, we present the ”GeForse - Generating Synthetic Forest Remote Sensing Data” approach to create synthetic LiDAR datasets suitable for such optimization studies. GeForse combines a database of single-tree models consisting of point clouds extracted from real LiDAR data with the outputs of a spatially explicit, single tree-based forest growth simulator (in this case SILVA). For each simulated tree, we insert a real point-cloud tree with properties (species, crown diameter, height) matching the properties of the simulated tree. This results in a synthetic 3D forest with a realistic 3D-structure where the inventory metrics of each tree are known. This 3D forest then serves as input to the “Heidelberg LiDAR Operations Simulator” (HELIOS++, https://github.com/3dgeo-heidelberg/helios) and thereby enables the simulation of LiDAR acquisition flights with varying acquisition settings and flight trajectories. In combination with the “full inventory” of all trees in the simulated forest, this enables a wide variety of sensitivity analyses.

In this contribution, we give an overview of the complete GeForse approach from extracting the tree models, to generating the 3D forest and simulating LiDAR flights over the 3D forest using HELIOS++. Further, we present a brief case-study where this approach was applied to optimize certain aspects of area-based forest inventory approaches using LiDAR data from a forest area in central Europe. Finally, we provide an outlook on future application fields of the GeForse approach.

How to cite: Fassnacht, F. E., Schäfer, J., Weiser, H., Winiwarter, L., Krašovec, N., Latifi, H., and Höfle, B.: Presenting the GeForse approach to create synthetic LiDAR data from simulated forest stands to optimize forest inventories, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9197, https://doi.org/10.5194/egusphere-egu21-9197, 2021.

EGU21-9178 | vPICO presentations | BG11

Virtual laser scanning (VLS) in forestry – Investigating appropriate 3D forest representations for LiDAR simulations with HELIOS++

Hannah Weiser, Lukas Winiwarter, Jannika Schäfer, Fabian Ewald Fassnacht, Katharina Anders, Alberto Manuel Esmorís Pena, and Bernhard Höfle

Virtual laser scanning (VLS) is a valuable method to complement expensive laser scanning data acquisition in the field. VLS refers to the simulation of LiDAR to create 3D point clouds from models of scenes, platforms and sensors mimicking real world acquisitions. In forestry, this can be used to generate training and testing data with complete ground truth for algorithms performing essential tasks such as tree detection or tree species classification. Furthermore, VLS allows for the in-depth investigation of the influence of different acquisition parameters on the point clouds and thus also the behaviour of algorithms, which is important when relating point cloud metrics to forest inventory variables. Finally, VLS can be used for acquisition planning and optimisation, as different configurations can be tested regarding their ability to create data of the required quality with minimal effort. For these purposes, we developed the open source Heidelberg LiDAR Operations Simulator HELIOS++ (written in C++) which is available on GitHub (https://github.com/3dgeo-heidelberg/helios), as a precompiled command line tool, and as Python package (pyhelios). HELIOS++ provides a high-fidelity framework for full 3D laser scanning simulations with multiple platforms and a flexible system to represent the scene. HELIOS++ models the beam divergence and supports the recording of the full waveform.

One important premise for the usefulness of VLS data is the use of an adequate 3D scene in the simulation. In this context, we conducted a study investigating point clouds simulated based on opaque voxel-based forest models computed from terrestrial laser scanning data using different voxel sizes. Coupling the LiDAR simulation with a database containing point clouds of single trees from terrestrial, UAV-borne and airborne acquisitions, allowed us to compare metrics derived from real and simulated data. Furthermore, by including the tree neighbourhood in the scene, we were able to consider occlusion effects between the trees.

We found that the voxel size is an important parameter, where values of e.g. 0.25 m lead to unrealistic occlusion effects of the mid- and understory, as only few gaps remain in the forest models through which the laser beam can pass. This results in fewer multiple returns, the vertical point distribution is shifted upwards, and tree metrics such as crown projection area and crown base height are estimated poorly. Smaller voxel sizes are therefore preferable, though the appropriate voxel size depends on the resolution of the input point cloud. With very small voxels, the voxel model may become too transparent. To achieve realistic simulations without the need for a high number of voxels we suggest variable downscaling of voxel cubes based on appropriate local metrics such as the plant area density. This approach decreases the computational requirements for the simulation, as fewer primitives are present in the scene. In our study, the use of such scaled voxels derived for a grid size of 0.25 m achieves equally and partly more reliable estimates of point cloud and tree metrics than regular voxels at fixed side lengths of 0.05 and 0.02 m.

How to cite: Weiser, H., Winiwarter, L., Schäfer, J., Fassnacht, F. E., Anders, K., Esmorís Pena, A. M., and Höfle, B.: Virtual laser scanning (VLS) in forestry – Investigating appropriate 3D forest representations for LiDAR simulations with HELIOS++, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9178, https://doi.org/10.5194/egusphere-egu21-9178, 2021.

EGU21-5399 | vPICO presentations | BG11

Above Ground Biomass References for Urban Trees from Terrestrial Laser Scanning Data

Daniel Kükenbrink, Oliver Gardi, Felix Morsdorf, Esther Thürig, Andreas Schellenberger, and Lukas Mathys

Trees supply a multitude of ecosystem services (e.g. carbon storage, suppression of air pollution, oxygen, shade, recreation etc.) not only in forested areas but also in urban landscapes. Many of these services are positively correlated with tree size and structure. The assessment of carbon storage potential via the quantification of above ground biomass (AGB) is of special importance. However, quantification of AGB is difficult and applied allometries are often based on forest trees, which are subject to very different growing conditions, competition and form compared to urban trees. In this contribution, we highlight the potential of terrestrial laser scanning (TLS) techniques to extract high detailed information on tree structure and AGB with a focus on urban trees.

A total of 55 urban trees distributed over eight cities in Switzerland were measured using TLS and traditional forest inventory techniques before they were felled and weighted. Tree structure, volumes and AGB from the TLS point clouds were extracted using Quantitative Structure Modelling (QSM). TLS derived AGB estimates were compared to allometric estimates dependent on diameter at breast height only. The allometric models were established within the Swiss National Forest Inventory and are therefore optimised for forest trees.

TLS derived AGB estimates showed good performance when compared to destructively harvested references with an R2 of 0.954 (RMSE = 556 kg), compared to an R2 of 0.837 (RMSE = 1159 kg) for allometrically derived AGB estimates. A correlation analysis showed that different TLS derived wood volume estimates as well as trunk diameters and tree crown metrics show high correlation in describing total wood AGB.

The presented results show that TLS based wood volume estimates show high potential to estimate tree AGB independent of tree species, size and form. This allows us to retrieve highly accurate, non-destructive AGB estimates that could be used to establish new allometric equations without the need of extensive destructive harvest.

How to cite: Kükenbrink, D., Gardi, O., Morsdorf, F., Thürig, E., Schellenberger, A., and Mathys, L.: Above Ground Biomass References for Urban Trees from Terrestrial Laser Scanning Data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5399, https://doi.org/10.5194/egusphere-egu21-5399, 2021.

While automated, lidar-based tree delineation has proven successful for
conifer-dominated forests, deciduous tree stands remain a challenge.  But
automatic and reliable segmentation of trees at large spatial scales is a
prerequisite for a supervised classification into tree species. We propose an
aspect driven tree segmentation that clusters local elevation minima across
different aspects. These clusters define tree outlines that respect tree
inherent local elevation minima. We validate this approach with more than
25.000 mapped trees of the Sanssouci Park, Potsdam, using an airborne lidar
point cloud collected in 2018, and various terrestrial lidar scans for a large
fraction of the same park. Further, we demonstrate the tree segmentation by
supervised tree species classifications for the most common tree species using
random forests and Gaussian process classifiers with geometric parameters
derived from individual tree crowns.

How to cite: Rheinwalt, A. and Bookhagen, B.: Tree segmentation and classification of deciduous park trees in Sanssouci Park, Potsdam, Germany, using airborne and terrestrial lidar point clouds, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8689, https://doi.org/10.5194/egusphere-egu21-8689, 2021.

EGU21-12755 | vPICO presentations | BG11

Forest fuel assessment by LiDAR data. A case study in NE Italy

Flavio Taccaliti, Lorenzo Venturini, Niccolò Marchi, and Emanuele Lingua

Fuel management is a crucial action to maintain wildland fires under the threshold of manageability; hence, in order to allocate resources in the best way, wildland fuel mapping is regarded as a necessary tool by land managers. Several studies have used Aerial Laser Scanner (ALS) data to estimate forest fuels characteristics at plot level, but few have extended such estimates at a zonal level.

In the context of the EU Interreg Project CROSSIT SAFER, a test of the possibilities of ALS data to predict fuels attributes has been performed in three different areas: an alpine basin, a coastal wildland-urban interface and a karstic highland. Eighteen sampling plots have been laid out over 6 forest categories, with a special focus on Pinus nigra J. F. Arnold artificial forests. Low density (average 4 points/m2) discrete return LiDAR data has been analysed with FUSION, a free point cloud analysis software tailored to forestry purposes; field and remote sensing data have been connected with simple statistical modelling and results have been spatialised over the case study areas to provide wall-to-wall inputs for FLAMMAP fire behaviour simulation software.

Resulting maps can be of relevance for land managers to better highlight the most vulnerable or fire prone areas at a mesoscale administrative level. Limitations and room for improvement are pointed out, in the view that land management should keep updated with the latest technology available.

How to cite: Taccaliti, F., Venturini, L., Marchi, N., and Lingua, E.: Forest fuel assessment by LiDAR data. A case study in NE Italy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12755, https://doi.org/10.5194/egusphere-egu21-12755, 2021.

EGU21-14694 | vPICO presentations | BG11

Experiments with unsupervised analysis of lacunarity curves of LiDAR point clouds in forested areas

Adam Kania and Balázs Székely

Calculation of lacunarity of voxelized point clouds has been proven to be an effective characterization of the structure of empty spaces in a feature space. The natural and planted forests show various horizontal and mosaic structures in terms of distribution of void spaces; illumination, wind characteristics, predator-prey visibility, and other ecological conditions are influenced by the spatial distribution of features and intercalated volumes.

The lacunarity functions however define a 4-D dataset even if the input voxels are considered as layers of pixels. Furthermore, the large orders of magnitudes that the lacunarity values may vary in, causes difficulties in the evaluation. To overcome these problems, effective user-friendly methods are required.

The input point cloud is voxelized/rasterized, and the raster data (set of 2D rasters or volumetric 3D raster) are the intermediate preprocessed input data. The calculation of the lacunarity functions is done using sets of defined window sizes and steps (step is a shift of the calculation windows over the raster in x-y direction). The results are available as a set of raster layers that can be viewed and analysed directly: in this project we use an interactive tool to calculate and present results on an interactive map viewer.

As the lacunarity calculation is very time-consuming, special attention has been paid to optimize the computation, speeding up the generation of the output by orders of magnitudes. The intermediate multivariate dataset is then stored for further processing or visualization. Selected raw lacunarity values/curves or extracted components can be used for classification/regression using provided forestry-related reference data. The user can run a number of dimensionality-reduction algorithms to extract significant components of the lacunarity curves (PCA, non-negative factorization, SVD, ICA) and analyse resulting components (overlaid on a raster map). These derivatives of lacunarity values and components are visualized by mapping to RGB channels, applying a color-palette, or rendered using mixtures of colors from multiple-color palettes. The user can also generate a short animated video are generated on-the-fly and can be viewed interactively. A web browser connection is also in development.

How to cite: Kania, A. and Székely, B.: Experiments with unsupervised analysis of lacunarity curves of LiDAR point clouds in forested areas, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14694, https://doi.org/10.5194/egusphere-egu21-14694, 2021.

EGU21-13509 | vPICO presentations | BG11

A stepwise approach for deriving timber assortment of trees from Terrestrial Laser Scanning data

Cesar Alvites, Giovanni Santopuoli, Markus Hollaus, Norbert Pfeifer, Mauro Maesano, Federico Valerio Moresi, Marco Marchetti, and Bruno Lasserre

Forest ecosystems represent an important source of income for landowners and at the same time an important source of ecosystem services for the society. Quantitative and qualitative information about timber assortments are particularly important to support sustainable forest management, representing a crucial prerequisite for active forest management. To date, the most accurate methods for assessing the timber assortments availability within forest stands are destructives, and the development of an effective method for deriving these estimates on standing trees is highly needed. This is particularly more evident for mixed forests, which are often subject of the conflict between conservation and productive functions.

This study aims to introduce a stepwise approach for timber assortment estimation and classification using TLS data. The approach consists of four steps: a) timber-leave discrimination, b) tree detection, c) stem reconstruction, and d) timber assortment estimation and classification. The study was carried out in a mixed tree-species and multi-layered Mediterranean forests, observing 178 trees of twelve different species, wherein 66 out of 178 were large trees, with a diameter at breast height higher than 20 cm.

Results indicate that the discrimination between timber and leaves reached 0.98 for accuracy using Random Forest algorithm. All trees with a diameter at breast height higher than 30 cm were correctly identified. The overall detection accuracy was 84.40 % (SD± = 4.7%). Best detection accuracy was found for A. lobelii, S. torminalis, F. excelsior, Q. cerris, A. campestre and F. sylvatica (higher than 84.3%) tree species. 47 out of 66 detected large stems were correctly reconstructed. The stepwise approach allows to classify 168 logs (134 merchantable logs and 34 non-merchantable) extracted from 47 stems through the automatic functions (i.e. cylinder-fitting approach), with an accuracy ranging between 75% (134 out of 179 reference merchantable logs) and 85% (34 out of 40 reference merchantable logs). The overall reconstruction accuracy was 71.40 % (SD± = 17.1%). Best reconstruction accuracy was found for Q. cerris, A. opalus and F. excelsior (higher than 43.5%). Concerning the timber assortment 134 out of 179 merchantable logs were classified in one of the 15 assortment types (i.e. A+, A0, A-). The whole predicted logs were classified in 11 assortment types, so eleven out of 15 assortment types were correctly matched between predicted and reference data. The classification of merchantable logs was more accurate for eight assortment types (A-, B-, B0, B+, C-, D-, D+ and Fuelwood-), which was ±2 merchantable logs. The abovementioned results support the feasibility of this stepwise approach for calculating the timber assortment of standing trees, ensuring the valorisation of the productivity of forest characterized by tree species richness and heterogeneous stand structure.

How to cite: Alvites, C., Santopuoli, G., Hollaus, M., Pfeifer, N., Maesano, M., Moresi, F. V., Marchetti, M., and Lasserre, B.: A stepwise approach for deriving timber assortment of trees from Terrestrial Laser Scanning data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13509, https://doi.org/10.5194/egusphere-egu21-13509, 2021.

EGU21-15628 | vPICO presentations | BG11

Density-Based Individual Tree Detection from Three-Dimensional Point Clouds

Carlo Camporeale, Melissa Latella, and Fabio Sola

The use of three-dimensional point clouds in forestry is steadily increasing. Numerous algorithms to detect individual trees from point clouds and derive some fundamental inventory parameters have been proposed so far, but they usually provide higher accuracy in coniferous stands than in deciduous one. In the latter kind of stands, indeed, the tree identification is hampered by the geometrical round shape of the crowns, the interlacing branches of adjacent trees and the usual presence of understory vegetation.

In an attempt to overcome these limitations, we developed an algorithm that is innovatively based on the areal point density of the three-dimensional cloud and that provides the height and coordinates of all the trees within a region of interest.

In this work, we apply the algorithm to different situations, ranging from the regularly-arranged plantations to the very interlaced crowns of the naturally established stands, demonstrating how it is able to correctly detect most of the trees and recreate a map of their spatial distribution. We also test its capability to deal with relatively low point density and explore the possibility to use it to recreate time series of vegetation biomass. Finally, we discuss the algorithm’s limitations and potentialities, particularly focusing on its coupling to other existing tools to deal with a wider range of applications in forestry and land management.

 

How to cite: Camporeale, C., Latella, M., and Sola, F.: Density-Based Individual Tree Detection from Three-Dimensional Point Clouds, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15628, https://doi.org/10.5194/egusphere-egu21-15628, 2021.

EGU21-2226 | vPICO presentations | BG11

Detection of drainage ditches using high-resolution LIDAR data in the Swedish forest

Siddhartho S. Paul, Anneli M. Ågren, and William Lidberg

Drainage ditches are common in boreal forests and provide better soil aeration and tree growth by draining the wet soils. Peatland drainage in the last century has created about 1 million km of artificial streams in Sweden, making it one of the most widespread human-induced environmental disturbances. This extensive use of ditches over a long period resulted in a major shift in forest hydrology and impacted the ecosystem functions. Therefore, there is a pressing need for an accurate database of forest ditches so that sustainable management can be practiced to improve the overall functioning of the forest ecosystem. Comparisons with national field datasets show that existing maps only show a small fraction (<10%) of the ditches across the country. To address this knowledge gap, we applied AI methods on high-resolution (1 m) LIDAR data to map drainage ditches in a subset of the Swedish forest. We developed a suite of topographic indices and analyzed those with machine learning and deep learning algorithms to perform automatic ditch detection. Both models produced reasonably accurate results and a substantial improvement over the existing maps in terms of ditch detection. The impoundment index and high pass medium filter from the digital elevation model were among the top predictors of drainage ditches. The study introduced a new avenue for accurate detection of forest ditches across the whole country. Our AI-generated maps of ditches provide effective tools for the restoration of degraded land and support ditch cleaning operations to increase forest growth.

How to cite: Paul, S. S., Ågren, A. M., and Lidberg, W.: Detection of drainage ditches using high-resolution LIDAR data in the Swedish forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2226, https://doi.org/10.5194/egusphere-egu21-2226, 2021.

EGU21-10677 | vPICO presentations | BG11

A new drone laser scanning benchmark dataset for characterization of single-tree and forest biophysical properties

Puliti Stefano, Grant D. Pears, Michael S. Watt, Edward Mitchard, Iain McNicol, Magnus Bremer, Martin Rutzinger, Peter Surovy, Luke Wallace, Markus Hollaus, and Rasmus Astrup

Survey-grade drone laser scanners suitable for unmanned aerial vehicles (UAV-LS) allow the efficient collection of finely detailed three-dimensional information of tree structures. This data type allows forests to be resolved into discrete individual trees and has shown promising results in providing accurate in-situ observations of key forestry variables. New and improved approaches for analyzing UAV-LS point clouds have to be developed to transform the vast amounts of data from UAV-LS into actionable insights and decision support. Many different studies have explored various methods for automating single tree detection, segmentation, parsing into different tree components, and measurement of biophysical variables (e.g., diameter at breast height). Despite the considerable efforts dedicated to developing automated ways to process UAV-LS data into useful data, current methods tend to be tailored to small datasets, and it remains challenging to evaluate the performance of different algorithms based on a consistent validation dataset. To fill this knowledge gap and to further advance our ability to measure forests from UAV-LS data, we present a new benchmarking dataset. This data is composed of manually labelled UAV-LS data acquired a number of continents and biomes which span tropical to boreal forests. The UAV-LS data was collected exclusively used survey-grade sensors such as the Riegl VUX and mini-VUX series which are characterized by a point density in the range 1 – 10 k points m2. Currently, such data represent the state-of-the-art in aerial laser scanning data. The benchmark data consists of a library of single-tree point clouds, aggregated to sample plots, with each point classified as either stem, branch, or leaves. With the objective of releasing such a benchmark dataset as a public asset, in the future, researchers will be able to leverage such pre-existing labelled trees for developing new methods to measure forests from UAV-LS data. The availability of benchmarking datasets represents an important driver for enabling the development of robust and accurate methods. Such a benchmarking dataset will also be important for a consistent comparison of existing or future algorithms which will guide future method development.

How to cite: Stefano, P., Pears, G. D., Watt, M. S., Mitchard, E., McNicol, I., Bremer, M., Rutzinger, M., Surovy, P., Wallace, L., Hollaus, M., and Astrup, R.: A new drone laser scanning benchmark dataset for characterization of single-tree and forest biophysical properties, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10677, https://doi.org/10.5194/egusphere-egu21-10677, 2021.

BG1.1 – Fire in the Earth system: interactions with land, atmosphere and society

EGU21-610 | vPICO presentations | BG1.1

Evaluation of critical atmospheric patterns for the occurrence of forest fires in a climate change context in the northwest of Argentine Patagonia.

Verónica Dankiewicz, Matilde M. Rusticucci, and Soledad M. Collazo

Forest fires are a global phenomenon and result from complex interactions between weather and climate conditions, ignition sources, and humans. Understanding these relationships will contribute to the development of management strategies for their mitigation and adaptation. In the context of climate change, fire hazard conditions are expected to increase in many regions of the world due to projected changes in climate, which include an increase in temperatures and the occurrence of more intense droughts. In Argentina, northwestern Patagonia is an area very sensitive to these changes because of its climate, vegetation, the urbanizations highly exposed to fires, and the proximity of two of the largest and oldest National Parks in the country. The main objective of this work is to analyze the possible influence of climate change on some atmospheric patterns related to fire danger in northwestern Argentine Patagonia. The data were obtained from two CMIP5 global climate models CSIRO-Mk3-6-0 and GFDL-ESM2G and the CMIP5 multimodel ensemble, in the historical experiment and two representative concentration pathways: RCP2.6 and RCP8.5. The data used in this study cover the region's fire season (FS), from September to April, and were divided into five periods of 20 years each, a historical period (1986-2005), which was compared with four future periods: near (2021-2040), medium (2041-2060), far (2061-2080) and very far (2081-2100). The statistical distribution of the monthly composite fields of the FS was studied for some of the main fire drivers: sea surface temperature in the region of the index EN3.4 (SST EN3.4), sea level pressure anomalies ​​(SLP), surface air temperature anomalies (TAS), the Antarctic Oscillation Index (AOI) and monthly accumulated precipitation (PR). In addition, the partial correlation coefficient was calculated to determine the independent contribution of each atmospheric variable to the Fire Weather Index (FWI), used as a proxy for the mean FS danger. As a result, we observed that SST EN3.4 is the only one that could indicate a reduction in fire danger in the future, although no variable presented a significant contribution to the FWI with respect to the others. In the RCP8.5 scenario, greater fire danger is projected by the TAS, the PR, the SLP, and relative by the AOI, while in the RCP2.6 scenario, only the TAS shows influence leading to an increase, which would be offset by the opposite influence of SST EN3.4 for the same periods in this scenario. In conclusion, in RCP8.5 it could be assumed that there is a trend towards an increase in fire danger given the influence in this sense of most of the variables analyzed, but not in RCP2.6 where there would be no significant changes.

How to cite: Dankiewicz, V., Rusticucci, M. M., and Collazo, S. M.: Evaluation of critical atmospheric patterns for the occurrence of forest fires in a climate change context in the northwest of Argentine Patagonia., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-610, https://doi.org/10.5194/egusphere-egu21-610, 2021.

EGU21-466 | vPICO presentations | BG1.1

Analysis of dry conditions compared with wildfires: an application in Calabria (Southern Italy)

Roberto Coscarelli, Enric Aguilar, Sergio Vicente-Serrano, and Fabio Zimbo

All over the world wildfires destroy property and vegetation and can have an adverse effect on slope stability and soil erosion. Even though the number and the size of wildfires are often related to changes in land cover, population, and fire management practices, climatic and soil conditions remain the main factors influencing the extension of burnt areas. The goal of the EC Project INDECS, in which this study has been carried out, is to develop an integrated approach to produce a series of climate indicators aimed at the high priority sectors of the Global Framework for Climate Services of the World Meteorological Organization (agriculture, risk reduction, energy, health, water), with the addition of tourism. The study area is Calabria, a region of Southern Italy frequently affected by wildfires. In this research, data about the burnt areas (monthly data of extension - in hectares - and the number of fires in the period 2008-2018), provided by means of the module “Rapid Damage Assessment” (R.D.A.) of E.F.F.I.S. (European Forest Fire Information System) have been compared with the Keetch-Byram Drought Index (KBDI). This index, ranging between 0 and 203.2 (extreme dry condition of the soil), is used all over the world for monitoring and forecasting forest fires. The index was calculated with the daily rainfall and temperature data of 79 stations presenting complete and homogeneous databases. The monthly mean values were evaluated and the KBDI values were averaged for each province, given that the data of the wild fires are available for each of the five provinces of the region. The comparison results show that the peaks of the burnt areas almost always correspond with the highest of the KDBI values. Analogous results were obtained considering the number of fires. It is important to highlight that the results can be influenced by the following factors: a) the KBDI monthly mean value is evaluated by means of a database with a variable number of monthly values owing to missing data; b) the extension of the burnt areas is determined by the efficiency of the fire monitoring system and by the rapidity of first response operations; c) the RDA module database of EFFIS is referred to burnt areas with an extension greater than 30 hectares (in Europe, these fires are about 75-80% of the total fires) and does not contain differences between natural fires and human-induced fires. However, the obtained results can help to predict the impacts that tendencies of the KBDI patterns can have on the territory as an extension of burnt areas. In this way, the present study gives a useful service for agriculture and risk reduction sectors.

Acknowledgments:

The Project INDECIS is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).

How to cite: Coscarelli, R., Aguilar, E., Vicente-Serrano, S., and Zimbo, F.: Analysis of dry conditions compared with wildfires: an application in Calabria (Southern Italy), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-466, https://doi.org/10.5194/egusphere-egu21-466, 2021.

EGU21-9268 | vPICO presentations | BG1.1 | Highlight

Marine heatwaves in the dynamics of the Pantanal´s historical drought and unprecedented fires

Dirk Thielen, Paolo Ramoni-Perazzi, Marco Marquez, José I. Quintero, Wilmer Rojas, Mary L. Puche, Irma A. Soto-Werschitz, Kai Thielen, Ana Nunes, and Renata Libonati

Fire is a natural disturbance in the Neotropical savannas, and rather frequent in the relatively
dry and well-drained seasonal savannas of the Brazilian Cerrado. The neighboring Pantanal, on
the other hand, is a seasonally flooded savanna and the largest wetland in the world (≈138,000
km 2 ). Due to its wetter condition, fires in the Pantanal are much less frequent and spatially
restricted. But, given an ongoing extreme drought, the 2020’s fires in the Pantanal have been
unprecedented in extent and duration: About one third (≈45,000 km 2 ) of the area of this
important wetland has gone up in flames since last January. Regarding this historical drought,
climate change has been identified as one of the most important threats to the Pantanal.
Reductions in precipitation may cause significant disturbances in its ecological functioning,
affecting hydrological, floodplain inundation dynamics, as well as fire regime. Climate change
models from a recent study (Thielen et al. 2020, doi:10.1371/journal.pone.0227437) indicate
that, for the Pantanal, extended severe droughts are to be expected from the warming of Sea
Surface Temperatures (SST) at Northern Hemisphere oceans.
The present study analyses the spatial and temporal dynamics of precipitations during the
series 1981-2020 in the Upper Paraguay River Basin (UPRB), which comprises the Pantanal and
the neighboring Highlands, along with a co-evaluation of the SST trends at three oceanic
regions from Northern Hemisphere. Precipitation anomalies were analyzed by mean of the
Standardized Precipitation Drought Index (SPDI) based on the 1981-2010 climate normals.
Results show that for the UPRB, negative precipitation anomalies occur in pulses lasting
several years. A drought starting in 2019 has been the strongest and most extended on record,
persistently reaching the Extremely Dry condition (SPDI≤-2.0) during 2020. As early as Mar,
over 64% of the Pantanal is affected by such drought, and around 83% by Dec. For the UPRB,
four distinctive groups of subregions were identified according to their temporal dynamics of
mean SPDI values, mainly during Sep2019/Feb2020 and Mar2020/Dec2020. Here, precipitation
anomalies from southernmost subregions of the Pantanal were less intense and even not
affected by the drought.
As for SST, the Northeast Pacific region (PAC-NE) showed the most important dynamics. In this
region, SSTs have been anomalously warm since Jun 2019, with 64% of the time SSTA
surpassing the 90 th percentile: reaching the Heatwave condition. With a lead of one to two
months, PAC-NE showed the strongest (and negative) correlation with precipitation at UPRB
(r=-0.87) during Jan2019 to Dec2020. There is a significant trend for an increase in SST at the

Northeast Pacific, a trend that will certainly generate a rather continuous Heatwave in PAC-NE.
As a result, one expects an extension of the current extreme drought in the Pantanal area, at
least during 2021, and the intensification of fires with unprecedented duration and intensity,
extending now to areas historically flooded or perhumid. Concomitantly, we predict a most
definite impact on non-fire-resistant vegetation cover, as well as ecosystem functioning and
biodiversity.

How to cite: Thielen, D., Ramoni-Perazzi, P., Marquez, M., Quintero, J. I., Rojas, W., L. Puche, M., Soto-Werschitz, I. A., Thielen, K., Nunes, A., and Libonati, R.: Marine heatwaves in the dynamics of the Pantanal´s historical drought and unprecedented fires, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9268, https://doi.org/10.5194/egusphere-egu21-9268, 2021.

EGU21-10273 | vPICO presentations | BG1.1 | Highlight

Managing Fire to Avoid Wildfires in Fire-prone Ecosystems

Isabel Belloni Schmidt

Fire-prone ecosystems evolved and have been managed by humans with fire for
millennia. Ignoring these socioecological realities, zero-fire policies have been
implemented in fire-prone ecosystems across the world. These inappropriate policies are
mainly originated from a forest-centered perception that fire is an essentially negative
and anthropogenic disturbance. The attempts to exclude fires have generated deleterious
ecological impacts, high fire-fighting costs, damage to properties and human lives in
grasslands, savannas and Mediterranean-type ecosystems. These zero-fire policies also
generate conflicts between governments and local communities who use fire to manage
the landscape, food production and livestock raising. Excluding fires from fire-prone
ecosystems may lead to changes ecosystem functioning and biodiversity due to woody
encroachment and/or fuel load accumulation. In regions where soil conditions allow
grasslands can be invaded by trees, changing vegetation structure and their ability to
provide ecosystem services, especially water production. In most fire-prone ecosystems,
fuel load accumulates, and the long-time unburned areas become time bombs waiting
for the next ignition source to cause disastrous wildfires. Fire bans disrupt traditional
fire management practices and commonly lead to more irresponsible uses of fire, since
local communities continue to depend on fire for their productive areas but use fire in
furtive ways to avoid criminalization. In combination with large areas with high and
homogeneous fuel loads, this leads to large, hard to control and highly impacting
wildfires, especially during late-dry season, when fires tend cause more severe impacts.
After decades under these scenarios, zero-fire policies have been substituted by active
fire management policies in fire-prone ecosystems in many countries in Africa, Latin
America, in the US and Australia, among other countries. Fire management policies
should be adapted for each regional socioecological context and allow for the active use
of fires for landscape management, biodiversity conservation and/or productive
activities. The Brazilian savanna (Cerrado) is the most biodiverse and threaten savanna
in the world and has been managed under zero-fire policy for decades. It is a tropical
humid savanna (1,500mm mean annual precipitation) where large (&gt;10,000 hectares),
frequent (2-4 years fire interval) late-dry season wildfires are common, including in
Protect Areas (PA) dedicated to biodiversity conservation and traditional communities’
livelihoods. In 2014, a pilot Integrated Fire Management (IFM) program has been
implemented in three Cerrado PAs. The program considers local uses of fire,
implements prescribed burns and landscape management planning aiming to (i) change
the main season of burnings (from late- to early- and mid-dry season); (ii) protect fire-
sensitive vegetation, such as riparian forests, from fires; (iii) decrease firefighting costs;
(iv) reduce conflicts with local communities and (v) lower greenhouse gases emissions.
The IFM program has since been implemented in more than 30 federal PA, including
Indigenous Territories., where this approach has successfully achieved its main
objectives. The present challenge is to expand IFM actions to the state and especially
private -owned lands, which will allow for a significant change in wildfire patterns
across the whole 2 million km 2 of the Brazilian savanna.

How to cite: Schmidt, I. B.: Managing Fire to Avoid Wildfires in Fire-prone Ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10273, https://doi.org/10.5194/egusphere-egu21-10273, 2021.

At the beginning of August 2018 Portugal experienced extreme fire prone meteorological conditions with very hot and dry air, driven by the occurrence of a severe fire event in Southern Portugal, noun as Monchique wildfire. The severe wildfire probability occurrence was re-enhanced by the substantial fuel amount accumulated since the last extreme wildfire occurred over this region in August 2003. On the 2nd August 2018, extreme fire danger conditions were predicted for Monchique region and the fire started on the 3rd and lasting till the 10th of August, with the evacuation of people from several villages and the associated burnt area of 27000 ha (ICNF, https://www.icnf.pt/). This event posed hard challenges on suppression activities due to its exceptional severity, related to high values of fire radiative energy released. This work aims to study the driving factors of Monchique wildfire in 2018 and assessing the usefulness of fire probabilistic products disseminated up to 72 hours in advance, as an early warning tool in fire prevention and suppression activities. The assessment of fire danger conditions was done based on ensemble forecasts fire products of the Ensemble Prediction System (EPS), provided by Copernicus Atmosphere Monitoring Service (CAMS); and based on fire danger metrics produced by Copernicus Emergency Management Service (CEMS) for the European Forest Fire Information System (EFFIS). Fire Weather Index (FWI) and Fine Fuel Moisture Code (FFMC) were selected from the Canadian Forest Fire Weather Indices System (CFFWIS) to describe the meteorological fire danger of Monchique event.

The assessment of fire severity was based on the Fire Radiative Energy (FRE) released by the fire, computed from the Fire Radiative Power (FRP) product delivered in near real-time by EUMETSAT Land Surface Analysis Satellite Applications Facility (LSA SAF) (https://landsaf.ipma.pt/en).

FWI and FFMC ensemble results based on CAMS dataset, 24 hours before the ignition, showed Monchique region above the 95th percentile of the ensemble, with ensemble maximum values, for both indices, being achieved on the period 6th-9th August 2018. FWI and FFMC, obtained from ERA5 data, registered the highest daily anomalies on the 3rd August 2018, recording values that are classified from very high to the extreme over Monchique region. The fire severity/intensity assessment based on the FRE product showed very high amounts of energy released during this fire event, daily maximum amounts of 10000 MW during 5th -8th August. Total FRP (MW) and FRE (GJ) values accumulated per pixel over the duration of the event achieved maximum values of 7x104 and 6x104, respectively, in certain pixels, illustrating the severity of this event and the hard challenge that was developed on suppression activities by Portuguese authorities.  Therefore, obtained results show that selected products were able to properly assess fire danger and fire severity for Monchique region over those days.

Acknowledgments: This study was performed within the framework of the LSA-SAF, co-funded by EUMETSAT and was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project FIRECAST (PCIF/GRF/0204/2017).

How to cite: Durao, R., Alonso, C., and Gouveia, C.: Are fire probabilistic products an effective early warning tool in the management of prevention fire activities? – the case of Monchique 2018 wildfire., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10133, https://doi.org/10.5194/egusphere-egu21-10133, 2021.

EGU21-7200 | vPICO presentations | BG1.1

Assessing the wildfire activity in protected areas of the Amazon basin

Emmanuel Da Ponte, Fermin Alcasena, Tejas Bhagwat, and Zhongyang Hu

Despite  growing concerns regarding the Amazonian wildfires, the magnitude of the problem is poorly understood. In this study, we assessed the wildfire activity in the  protected natural sites (n= 428) of Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Peru, Suriname, and Venezuela, encompassing an area of 1.4 million km2 of the Amazon basin. A 250 m resolution spectroradiometer sensor imaging (MODIS) was used to obtain land-use/land-cover (MODIS land use land cover product) changes and derive the wildfire activity data (ignition locations and burned areas (MODIS active fire products)) from 2001 to 2018. First, we characterized the mean fire return interval, wildfire occurrence, and empiric burn probability. Then, we implemented a transmission analysis to assess the burned area from incoming fires. We used transmission analysis to characterize the land use and anthropic activities associated to fire ignition locations across the different countries. On average, 867 km 2 of natural forests were burned in protected natural sites annually, and about 85 incoming fires per year from neighboring areas accounted for 10.5% (9,128 ha) of the burned area. The most affected countries were Brazil (53%), Bolivia (24%), and Venezuela (16%).Considerable amount of fire ignition points were detected in open savannas (29%) and grasslands (41%) , where the fire is periodically used to clear extensive grazing properties. The incoming fires from savannas were responsible for burning the largest forest areas within protected sites, affecting as much as 9,800 ha in a single fire event. In conclusion, we  discuss the potential implications of the main socioeconomic factors and environmental policies that could explain increasing trends of burned areas. Wildfire risk mitigation strategies include the fire ignition prevention in developed areas, fire use regulation in rural communities, increased fuels management efforts in the buffer areas surrounding natural sites, and the early detection system that may facilitate a rapid and effective fire control response. Our analysis and quantitative outcomes describing the fire activity represent a sound science-based approach for an well defined wildfire management within the protected areas of the Amazonian basin.

How to cite: Da Ponte, E., Alcasena, F., Bhagwat, T., and Hu, Z.: Assessing the wildfire activity in protected areas of the Amazon basin, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7200, https://doi.org/10.5194/egusphere-egu21-7200, 2021.

EGU21-12237 | vPICO presentations | BG1.1

Identifying key drivers of peat-fires across Kalimantan’s ex‑Mega Rice Project area using machine learning

Alexander Horton, Vili Virkki, Anu Lounela, Jukka Miettinen, and Matti Kummu

Throughout Indonesia - ecological degradation, agricultural expansion, and the digging of draining canals has compromised the integrity and functioning of large swathes of peatland forest, leaving behind a fragmented landscape of scrubland, successional forest, and newly established plantations. These landscapes are susceptible to extensive and intensive wildfires that rage out of control each year. One of the most affected regions is the ex-Mega Rice Project (EMRP) area in Central Kalimantan on the island of Borneo, where 1 million ha of peatland forest were cleared and 4000 km of canals were dug between 1996-1998, in an attempt to initiate large scale industrial rice cultivation. This led to disturbances to the underlying hydrology, the local ecology, and the ability of the local population to maintain a livelihood, who’s efforts are thwarted each year but the returning wildfires.

Directing  fire prevention and mitigation efforts requires a detailed understanding of the main drivers of fire distribution and the conditions of initiation. To this end, we have developed a fire susceptibility model using machine learning (XGBoost random forest) that characterises the relationships between key predictor variables and the distribution of historic fire locations. Using the model, we determine the relative importance of each predictor variable in controlling the initiation and spread of fires. We included land-cover classifications, a forest clearance index, vegetation indices , drought indexes, distances to infrastructure , topography, and peat depth, as well as the Oceanic Niño Index (ONI). The model was trained to separate burnt areas from not burnt areas using point samples of predictor variables taken from both, and then tested by applying the model across the entire study area for all years. The model performance consistently scores highly in both accuracy and precision across all years (>0.75 and >0.68 respectively), though recall metrics are much lower (>0.25).

Our results confirm the anthropogenic dependence of extreme fire events in the region, with the distance to settlements, and distance to canals consistently weighted as some of the most important driving factors within the model structure. In combination, the vegetation indices were the strongest indicators of fire prevalence. Ours is the first analysis in the region to encompass the full range of driving factors within a single model that captures the inter-annual variation as well as the spatial distribution of peatland fires. Our results can be used to target the root causes of fire initiation and propagation to better construct regulation and rehabilitation efforts to mitigate future wildfires.

How to cite: Horton, A., Virkki, V., Lounela, A., Miettinen, J., and Kummu, M.: Identifying key drivers of peat-fires across Kalimantan’s ex‑Mega Rice Project area using machine learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12237, https://doi.org/10.5194/egusphere-egu21-12237, 2021.

Abstract:  In prior published work with reconstructions of early and late 20th century forest landscapes, we were surprised by the large amount of historical meadows, shrubfields, sparse woodlands, and bare ground (hereafter, nonforests) we observed on forest-capable biophysical settings. We also noted a trend of forest encroachment and densification in the late 20th-century. Here, using LANDFIRE remotely sensed, existing vegetation height and cover, and environmental site potential map layers for seven western provinces--rescaled to match the grain of photogrammetric data--we quantitatively compare the area and patch size distributions of early- (E20th), late 20th-century (L20th), and early 21st-century (E21st) nonforest conditions. Our results showed a trend of increasing nonforest area from the E20th to E21st-century and declining forested area in most provinces, with increases occurring primarily in the larger patch sizes. Our results coupled with other reburn modeling research suggest that extensive nonforest patchworks are intimately linked to forest landscape resilience, which is changing in uncharacteristic ways in some provinces. For example, in the Northern and Southern Cascade, and Blue Mountains provinces, we see an uncharacteristic coarsening of the grain by recent fires, while in the Upper Klamath province, we see a return to a large fire event-driven system. In a physical science sense, our results suggest that fire-prone forests -- in the largest context -- function as stored potential energy, and there is an ongoing tug-of-war waged over space and time between factors growing and removing forests. Nonforests on forest capable sites represent areas where stored potential energy has been reduced. Modern changes we observe in forested area foreshadow changes we can expect with climate warming.

How to cite: Hessburg, P.: Patch Sizes, Area, and Spatial Distribution of Nonforests Are Vital Ingredients to Fire-Adapted Western US Forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-743, https://doi.org/10.5194/egusphere-egu21-743, 2021.

EGU21-16467 | vPICO presentations | BG1.1

Spatial patterns of fire patch size and shape complexity in the Brazilian savanna

Joana Nogueira, Julia Rodrigues, Jan Lehmann, Hanna Meyer, and Renata Libonati

Fire events on a landscape scale are a widespread global phenomenon that influences the interactions between atmosphere and biosphere. Global burned area (BA) products derived from satellite images are used in dynamic vegetation fire modules to estimate greenhouse gas emissions, available fuel biomass and anthropic factors driving fire spread. Fire size and shape complexity from individual fire events can provide better estimates of fuel consumption, fire intensity, post fire vegetation recovery and their effects on landscape changes to better understand regional fire dynamics. Especially in the Brazilian savannas (Cerrado), a mosaic of heterogeneous vegetation where has prevailed an official “zero-fire” policy for decades leading to an increase in large wildfires, intensified also by rapid changes of land use using fire to land clearing in agriculture and livestock purposes. In this way, we aim to assess the fire size and shape patterns in Cerrado from 2013 to 2015, identifying each fire patch event from Landsat BA product and calculating its fire features with landscape metrics. We calculated its surface area to evaluate fire size and the metrics of shape index, core area and eccentricity from an ellipse fitting from burned pixels to estimate the fire shape complexity. The study focused on 48 Landsat path/row scenes and the analysis final compared the fire features of overlapped patches between the years. The total number of coincident fire patches is higher between the years 2013 and 2015 than 2013-2014 and 2014-2015. Large fires are found in the north and east regions for all comparisons. In this region, high core area values are consistent for having large areas of burnt patches and low shape index values and more elongated patches revealed a low fire shape complexity. These results demonstrate a greater burned area in the north, where the remaining native vegetation and less fragmented landscapes allow the fire to spread, when associated with favorable meteorological conditions. However, with the implementation of a new agricultural frontier in 2015, this region is under greater anthropic pressure with positive trends to land use. In the south, the fire shapes are already more complex and smaller because they are from agricultural areas historically developed, and consequently the landscape is more fragmented. Our results demonstrate a distinct spatial pattern of fire shape and size in Cerrado related to fragmentation of landscape and fire use to land cleaning. This information can help the modelling estimates of fire spread processes driven by topography, orientation of watersheds or dominant winds at local level, contributing to understanding the feedback with land cover/use, climate and biophysical characteristics at regional level to develop strategies for fire management.

Acknowledges: J.N is funded by the 'Women in Research'-fellowship program (WWU Münster) and within the context of BIOBRAS Project “Research-based learning in neglected biodiverse ecosystems of Brazil”; funding by DAAD (number 57393735); validation dataset was performed under the Andurá project (number 441971/2018–0) funding by CNPq

How to cite: Nogueira, J., Rodrigues, J., Lehmann, J., Meyer, H., and Libonati, R.: Spatial patterns of fire patch size and shape complexity in the Brazilian savanna, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16467, https://doi.org/10.5194/egusphere-egu21-16467, 2021.

EGU21-6347 | vPICO presentations | BG1.1

South American fires and their impacts on ecosystems increase with continued emissions

Chantelle Burton, Douglas Kelley, Chris Jones, Richard Betts, Manoel Cardoso, and Liana Anderson

Unprecedented fire events in recent years are leading to a demand for improved understanding of how climate change is already affecting fires, and how this could change in the future. Increased fire activity in South America is one of the most concerning of all the recent events, given the potential impacts on local health and the global climate from loss of large carbon stores under future environmental change. However, due to the complexity of interactions and feedbacks, and lack of complete representation of fire biogeochemistry in many climate models, there is currently low agreement on whether climate change will cause fires to become more or less frequent in the future, and what impact this will have on ecosystems. Here we use the latest climate simulations from the UK Earth System Model UKESM1 to understand feedbacks in fire, dynamic vegetation, and terrestrial carbon stores using the fire-enabled land surface model JULES-INFERNO, taking into account future scenarios of change in emissions and land use. Based on evaluation of the modelling framework performance for the present day, we address the specific policy-relevant question: how much fire-induced carbon loss will there be over South America at different global warming levels in the future? We find that burned area and fire emissions are projected to increase in the future due to hotter and drier conditions, which leads to large reductions in carbon storage especially when combined with increasing land-use conversion. The model simulates a 38% loss of carbon at 4°C under the highest emission scenario, which could be reduced to 8% if temperature rise is limited to 1.5°C. Our results provide a critical assessment of ecosystem resilience under future climate change, and could inform the way fire and land-use is managed in the future to reduce the most deleterious impacts of climate change.

How to cite: Burton, C., Kelley, D., Jones, C., Betts, R., Cardoso, M., and Anderson, L.: South American fires and their impacts on ecosystems increase with continued emissions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6347, https://doi.org/10.5194/egusphere-egu21-6347, 2021.

EGU21-5812 | vPICO presentations | BG1.1

Uncertainties in biomass burning emission estimates and their impact on air pollution model predictions over Africa

Idir Bouarar, Angelika Heil, Adrien Deroubaix, Auke Visser, Folkert Boersma, and Guy Brasseur

Africa is the biggest continental source of biomass burning (BB) emissions. The large fluxes of chemical pollutants and aerosol emitted during intense BB events can strongly alter tropospheric chemistry and cloud dynamics and can result in widespread air pollution. Available BB emission inventories differ in terms of satellite sensor data and assumptions and methodologies used to estimate emission fluxes, and show substantial differences in emission totals and spatial and temporal patterns. The omission of small fires (<100 ha) by most satellite products is one key factor on the accuracy of the emission inventories.

The ESA Fire_CCI project has released the first burned area product for Africa from 20 m Sentinel satellite information (FireCCISFD11). Here we present new BB emission estimates for Africa based on FireCCISFD11. By resolving small fires, this inventory (Fire_CCI) yields 60 to 110% higher burning rates in 2016 than the MODIS-based products such as GFED4s, GFED4, MCD64A1 Collection 6, FireCCI51 and FINN. We perform WRF-Chem model simulation with three BB emission inventories (FINN, GFED4s and Fire_CCI) for summer 2016 corresponding with the DACCIWA aircraft campaign, which took place in June-July 2016 over Africa. We investigate the impact of uncertainties in BB emission estimates on air pollution model predictions using measurements of chemical species and aerosols from DACCIWA, NO2 and CO data from OMI and MOPITT satellites, respectively, and ground-based AOD observations from the Aeronet network. We furthermore assess the ability of the model in terms of the representation of transport of BB air masses and of the representation of chemical composition in such plumes.

How to cite: Bouarar, I., Heil, A., Deroubaix, A., Visser, A., Boersma, F., and Brasseur, G.: Uncertainties in biomass burning emission estimates and their impact on air pollution model predictions over Africa, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5812, https://doi.org/10.5194/egusphere-egu21-5812, 2021.

EGU21-7066 | vPICO presentations | BG1.1

Cost-benefit analysis of alternatives to mitigate the air quality and health impacts from agricultural residue burning in India

Ruoyu Lan, Sebastian Eastham, Leslie Norford, and Steven Barrett

Poor air quality in India affects the health of millions living in one of the most populated regions in the world. Agricultural residue burning as a common way to remove crop waste and make fields for the next planting season contributes to this problem and, despite attempts to reduce agricultural fires, remains a recurring issue due to a lack of viable alternatives. As India population grows, more food production will be needed, with yet more crop residue to burn. Sustainable and economically feasible interventions are therefore needed to mitigate the impact of agricultural residue burning. To support policy-making, an adjoint modeling approach has been applied to estimate how air quality and health impacts respond to changes in specific time and location of burning, and how effective potential mitigation options might be in reducing them.

This work extends based upon these initial findings and seeks to provide a cost-benefit analysis of alternatives to agricultural residue burning using the GEOS-Chem adjoint model. With a multi-year assessment that accounts for the impact of inter-annual variability of meteorology, the public cost presented in terms of the monetary valuation of air quality damages resulting from population exposure and health impacts due to emissions of agricultural burning,  and the private returns presented in terms of the individual profit from crop cultivation for farmers in India, are quantified in order to better understand the potential trade-offs between air quality improvement and economic benefit.

The end results focusing on northwestern India during the post-monsoon rice residue burning season, where the majority of agricultural fires in India come from, show that appropriate measures, including crop diversification, agricultural mechanization and shifting the time of burning, may help avoid air quality damages from agricultural residue burning without risking the income of farmers. Proper incentive mechanisms such as subsidies for investment cost and compensation for human effort may further facilitate the best possible outcomes. These findings help inform better decision-making to mitigate the impacts of agricultural fires and reduce the uncertainties regarding sustainable agricultural practices not just for India but also for regions and countries facing similar issues.

How to cite: Lan, R., Eastham, S., Norford, L., and Barrett, S.: Cost-benefit analysis of alternatives to mitigate the air quality and health impacts from agricultural residue burning in India, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7066, https://doi.org/10.5194/egusphere-egu21-7066, 2021.

EGU21-13143 | vPICO presentations | BG1.1

Evidence of secondary organic aerosols formation by non-methane hydrocarbons condensation in cold Pyro-cumulonimbus (pyroCb) outflows

Katherine Benedict, Kyle Gorkowski, James Lee, Isobel Simpson, Barbara Barletta, Donald Blake, Glenn Diskin, Joseph Katich, Joshua Schwarz, Jon Reisner, and Manvendra Dubey

Particle and trace gas emissions can undergo rapid changes in the atmosphere as a result of evaporation, condensation, and coagulation processes that are driven by dynamics and photochemistry.  Here we analyze the fate of non-methane hydrocarbons (NMHCs) gases emitted by intense fires associated with pyroCbs towers that rise and cool rapidly and undergo relatively little dilution as they loft smoke into the upper troposphere and lower stratosphere.  We use airborne observations of plumes from the Williams Flats Fire over the continental United States taken during 2019 FIREX-AQ campaign.  Trace gas data from both fresh boundary smoke and PyroCb-lofted smoke from this fire are compared to that from smoke plumes that stayed at lower altitudes to constrain the roles of condensation, cloud processing and photochemistry in the outflow of pyroCbs.  In the pyroCb outflows we observe lower CO normalized NMHCs mixing ratios with low vapor pressure compared to the boundary layer samples while for high vapor pressure compounds there is little difference between the CO normalized NMHC mixing ratios observed in the different fresh smoke plumes.  Associated with this decrease in condensable NMHCs we find an increase in particle concentrations, specifically at large sizes (~350nm). These multiple observational facts are used to estimate the secondary organic aerosol production by NMHC condensation in pyroCb.  Further analysis of FIREX-AQ data will be used to elucidate the roles of solubility and photochemistry on SOA formation in pyroCbs. These FIREX-AQ results will be used to inform cloud resolving large eddy simulation (LES, HIGRAD) to examine deep convective fire impacts on long range smoke impacts on climate and air quality.

How to cite: Benedict, K., Gorkowski, K., Lee, J., Simpson, I., Barletta, B., Blake, D., Diskin, G., Katich, J., Schwarz, J., Reisner, J., and Dubey, M.: Evidence of secondary organic aerosols formation by non-methane hydrocarbons condensation in cold Pyro-cumulonimbus (pyroCb) outflows, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13143, https://doi.org/10.5194/egusphere-egu21-13143, 2021.

EGU21-16504 | vPICO presentations | BG1.1

The WMO Vegetation Fire and Smoke Pollution Warning Advisory and Assessment System (VFSP-WAS): Concept, current capabilities, research and development challenges and the way ahead

Alexander Baklanov, Boon Ning Chew, Ariane Frassoni, Christopher Gan, Johann Georg Goldammer, Melita Keywood, Stéphane Mangeon, Patrick M. Manseau, and Radenko Pavlovic

Vegetation fires – including the application of fire in land use, land-use change and uncontrolled wildfire – affect the functioning of the Earth System and impose significant threats to public health and security.  This paper presents the concept of a Vegetation Fire and Smoke Pollution Warning Advisory and Assessment System (VFSP-WAS*). It describes the scientific rationale for the system and provides guidance for addressing the issues of vegetation fire and smoke pollution, including key research challenges. The paper  proposes the establishment of VFSP-WAS regional centers and describes  Potential examples of  this VFSP-WAS concept are described from two regions in (South-East Asia and North America) where regional centers will partner with Regional Fire Monitoring / Fire Management Resource Centers.

*) https://community.wmo.int/activity-areas/gaw/science/modelling-applications/vfsp-was 

How to cite: Baklanov, A., Chew, B. N., Frassoni, A., Gan, C., Goldammer, J. G., Keywood, M., Mangeon, S., Manseau, P. M., and Pavlovic, R.: The WMO Vegetation Fire and Smoke Pollution Warning Advisory and Assessment System (VFSP-WAS): Concept, current capabilities, research and development challenges and the way ahead, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16504, https://doi.org/10.5194/egusphere-egu21-16504, 2021.

EGU21-10702 | vPICO presentations | BG1.1

Fire regime impacts on post-fire diurnal land surface temperature change over North American boreal forest

Jie Zhao, Chao Yue, Philippe Ciais, Xin Hou, and Qi Tian

Wildfire is the most prevalent natural disturbance in the North American boreal (BNA) forest and can cause post-fire land surface temperature change (ΔLSTfire) through biophysical processes. Fire regimes, such as fire severity, fire intensity and percentage of burned area (PBA), might affect ΔLSTfire through their impacts on post-fire vegetation damage. However, the difference of the influence of different fire regimes on the ΔLSTfire has not been quantified in previous studies, despite ongoing and projected changes in fire regimes in BNA in association with climate change. Here we employed satellite observations and a space-and-time approach to investigate diurnal ΔLSTfire one year after fire across BNA. We further examined potential impacts of three fire regimes (i.e., fire intensity, fire severity and PBA) and latitude on ΔLSTfire by simple linear regression analysis and multiple linear regression analysis in a stepwise manner. Our results demonstrated pronounced asymmetry in diurnal ΔLSTfire, characterized by daytime warming in contrast to nighttime cooling over most BNA. Such diurnal ΔLSTfire also exhibits a clear latitudinal pattern, with stronger daytime warming and nighttime cooling one year after fire in lower latitudes, whereas in high latitudes fire effects are almost neutral. Among the fire regimes, fire severity accounted for the most (43.65%) of the variation of daytime ΔLSTfire, followed by PBA (11.6%) and fire intensity (8.5%). The latitude is an important factor affecting the influence of fire regimes on daytime ΔLSTfire. The sensitivity of fire intensity and PBA impact on daytime ΔLSTfire decreases with latitude. But only fire severity had a significant effect on nighttime ΔLSTfire among three fire regimes. Our results highlight important fire regime impacts on daytime ΔLSTfire, which might play a critical role in catalyzing future boreal climate change through positive feedbacks between fire regime and post-fire surface warming.

How to cite: Zhao, J., Yue, C., Ciais, P., Hou, X., and Tian, Q.: Fire regime impacts on post-fire diurnal land surface temperature change over North American boreal forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10702, https://doi.org/10.5194/egusphere-egu21-10702, 2021.

EGU21-15880 | vPICO presentations | BG1.1 | Highlight

The impacts of catastrophic 2019/20 Australian wildfires on erosion and water quality: the case of Sydney’s main water supply

Stefan H. Doerr, Jonay Neris, Cristina Santin, Roger Lew, Peter R. Robichaud, William J. Elliot, Sarah A. Lewis, Gary Sheridan, Ann-Marie Rohlfs, Quinn Ollivier, and Lorena Oliveira

The 2019/20 Australian wildfires burned the largest forested area in Australia´s recorded history, with major environmental and socio-economic consequences. These included extensive ash and soil erosion events which threatened water quality in parts on eastern Australia.  

The second largest fire was the 280,000 ha Green Wattle Creek Fire, which burned large forested areas of the Warragamba catchment. This protected catchment provides critical ecosystem services for Lake Burragorang, Australia’s largest urban supply reservoir delivering ~85 % of the water used in Greater Sydney. 

The fire caused major challenges for maintaining the supply of clean water to the Greater Sydney region (> 5 million consumers). Shortly after the fire was contained, an extreme rainfall event (up to ~276 mm in 72 h), caused extensive ash and sediment delivery into the reservoir.

Here we (i) summarise the effects of this unpreceded fire seasons on erosion and water quality in general and (ii) report on the interactions between science and land management to quantify predict and mitigate the risk to water supply for the Greater Sydney region. The latter included assessments of fire severity, ash quantities and their pollutant content using remote sensing and ground measurements, as well as the application and further development of a new modelling tool,  WEPPcloud-Wildfire Ash Transport and Risk tool (WEPPcloud-WATAR - https://wepp.cloud -). This tool allows predicting probabilities for sediment, ash and contaminant transport for different rainfall scenarios, and aided the identification of risk hotspots to focus post-fire erosion mitigation measures.  

Risk modelling, on-ground monitoring and operational mitigation measures ensured the continuity of safe water supply to Greater Sydney. This collaborative interaction between scientists and water managers, that also allowed the refinement of the model capabilities and its outputs, exemplifies the successful outcomes that can be achieved through the close collaboration between science and end-users.   

How to cite: Doerr, S. H., Neris, J., Santin, C., Lew, R., Robichaud, P. R., Elliot, W. J., Lewis, S. A., Sheridan, G., Rohlfs, A.-M., Ollivier, Q., and Oliveira, L.: The impacts of catastrophic 2019/20 Australian wildfires on erosion and water quality: the case of Sydney’s main water supply, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15880, https://doi.org/10.5194/egusphere-egu21-15880, 2021.

EGU21-9502 | vPICO presentations | BG1.1

Advancing representation of anthropogenic fire in dynamic global vegetation models

James Millington, Oliver Perkins, Matthew Kasoar, and Apostolos Voulgarakis

It is now commonly-understood that improved understanding of global fire regimes demands better representation of anthropogenic fire in dynamic global vegetation models (DGVMs). However, currently there is no clear agreement on how human activity should be incorporated into fire-enabled DGVMs and existing models exhibit large differences in the sensitivities of socio-economic variables. Furthermore, existing approaches are limited to empirical statistical relations between fire regime variables and globally available socio-economic indicators such as population density or GDP. Although there has been some limited representation in global models of the contrasting ways in which different classes of actors use or manage fires, we argue that fruitful progress in advancing representation of anthropogenic fire in DGVMs will come by building on agent-based modelling approaches. Here, we report on our progress developing a global agent-based representation of anthropogenic fire and its coupling with the JULES-INFERNO fire-enabled DGVM.  

Our modelling of anthropogenic fire adopts an approach that classifies ‘agent functional types’ (AFTs) to represent human fire activity based on land use/cover and Stephen Pyne’s fire development stages. For example, the ‘swidden’ AFT represents shifting cultivation farmers managing cropland and secondary vegetation in a pre-industrial development setting. This approach is based on the assumption that anthropogenic fire use and management is primarily a function of land use but influenced by socio-economic context, leading different AFTs to produce qualitatively distinct fire regimes. The literature empirically supports this assumption, however data on human fire interactions are fragmented across many academic fields (including anthropology, geography, land economics). Therefore, we developed a Database of Anthropogenic Fire Impacts (DAFI) containing 1798 case studies of fire use/management from 519 publications, covering more than 100 countries and all major biomes (except Arctic/Antarctic). We discuss DAFI development, patterns in the resulting data, and possible applications. Specifically, DAFI is used with ancillary data (e.g. biophysical, socio-economic indicators), classification and regression methods to test and refine our initial AFT classification, characterise AFT fire variables, and distribute AFTs spatially. Our model will then simulate AFT distributions for alternative scenarios of change (e.g. specified by the Shared Socioeconomic Pathways). 

Coupling distinct models can be achieved in a variety of ways, but broadly we can distinguish between ‘loose’ coupling in which information flow is uni-directional, and ‘tight’ coupling in which information flows are integrated with feedbacks and dynamic updating. Our intention is to tightly couple our AFT model with JULES-INFERNO, such that fire use and suppression behaviours from the former influence simulated fire ignitions and burned area in the latter. Reciprocally, total burned area simulated by JULES-INFERNO will feedback to influence spatial distribution of AFTs in the next time step, modifying anthropogenic fire patterns for the next step of DGVM simulation. We discuss the potential for this tight model coupling to capture socio-ecological feedbacks in fire regimes, as well as  possible pitfalls and steps needed to test and verify model outputs. These are early steps in an important journey to improve representation of anthropogenic fire in DGVMs.

How to cite: Millington, J., Perkins, O., Kasoar, M., and Voulgarakis, A.: Advancing representation of anthropogenic fire in dynamic global vegetation models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9502, https://doi.org/10.5194/egusphere-egu21-9502, 2021.

EGU21-15526 | vPICO presentations | BG1.1

Projected changes in pyroconvective conditions in the Iberian Peninsula at the end of the 21st century

Martín Senande-Rivera and Gonzalo Miguez-Macho

Extreme wildfire events associated with strong pyroconvection have gained the attention of the scientific community and the society in recent years. Strong convection in the fire plume can influence fire behaviour, as downdrafts can cause abrupt variations in surface wind direction and speed that can result in bursts of unexpected fire propagation. Climate change is expected to increase the length of the fire season and the extreme wildfire potential, so the risk of pyroconvection occurence might be also altered. Here, we analyse atmospheric stability and near-surface fire weather conditions in the Iberian Peninsula at the end of the 21st century to assess the projected changes in pyroconvective risk during favourable weather conditions for wildfire spread.  

How to cite: Senande-Rivera, M. and Miguez-Macho, G.: Projected changes in pyroconvective conditions in the Iberian Peninsula at the end of the 21st century, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15526, https://doi.org/10.5194/egusphere-egu21-15526, 2021.

EGU21-12863 | vPICO presentations | BG1.1

Performance Evaluation of Fire Risk Map from LSA-SAF over Mediterranean region in 2020

Catarina Alonso and Célia Gouveia

Forest fires have always been present in Mediterranean ecosystems; as such, they constitute a major ecological and socioeconomical issue. Despite being mostly of anthropogenic origin, the influence of the recent increase in temperature and evapotranspiration is associated with an increase in the frequency and severity of wildfires in the region. Large fires are promoted by the occurrence of high temperatures and episodes of drought that may lead to total burnt areas being several times larger than the average, such as the burnt areas in Portugal in 2003 and 2005, and Greece in 2007. The fire season of 2017 in Portugal has been catastrophic by most accounts. The authorities reported more than 100 human fatalities, with about 500.000ha of estimated burnt area, which corresponds to the maximum record since 1980. 

The Land Surface Analysis Satellite Applications Facility (LSA SAF) from EUMETSAT operationally disseminates a set of fire related products for the Mediterranean region. The Fire Radiative Power product (FRP-PIXEL) is delivered in near real-time since 2004 with a 15-min temporal resolution. In this work, daily Fire Radiative Energy (FRE) is computed for the Mediterranean region. The Fire Risk Map (FRM) product combines information from the operational forecasts from ECMWF and vegetation state from SEVIRI to derive forecasts of the risk of fire for the Mediterranean region. The FRM algorithm computes the daily values of the set of components of the Canadian Forest Fire Weather Index System (CFFWIS) for Mediterranean Europe, together with levels of fire danger associated with probabilities of occurrence of fires exceeding specified magnitudes. The FRM can be an important tool to support the management of forest fires and the decision making of prescribed burning within the framework of agricultural and forest management practices.

This work aims to assess the performance of the FRM product during 2020 over the Mediterranean region using FRE estimates. In particular, we aim to evaluate if the more severe and intense fires occurred in areas of high fire risk and high probability of occurrence of extreme fires, as obtained using FRM products. This analysis is made for different countries in the Mediterranean Basin, namely Portugal, Spain, Italy, and Greece. Results reveal a good performance of FRM over the Mediterranean region during 2020; however, better results were observed for the fire season in the Iberian Peninsula than for Italy.

Acknowledgements: This study was performed within the framework of the LSA-SAF, co-funded by EUMETSAT This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under projects FIRECAST (PCIF/GRF/0204/2017) and IMPECAF (PTDC/CTA-CLI/28902/2017).

How to cite: Alonso, C. and Gouveia, C.: Performance Evaluation of Fire Risk Map from LSA-SAF over Mediterranean region in 2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12863, https://doi.org/10.5194/egusphere-egu21-12863, 2021.

EGU21-14602 | vPICO presentations | BG1.1

Evaluation of the reliability of the high-resolution WRF fire danger forecasts in Poland

Marta Gruszczynska, Alan Mandal, Grzegorz Nykiel, Tomasz Strzyzewski, Weronika Wronska, Adam Jaczewski, and Mariusz Figurski

Fires negatively affect the composition and structure of fauna and flora, as well as the quality of air, soils and water. They cause economic losses and pose a risk to human life. Poland is at the forefront of European countries in terms of forest fires. Therefore, Institute of Meteorology and Water Management - National Research Institute (IMWM-NIR) implemented fire danger forecast system based on high-resolution (2.5 km) Weather Research and Forecast (WRF) model. Forecasted meteorological data are used to calculate parameters of Canadian Forest Fire Weather Index (FWI) System: Fire Weather Index (FWI), Initial Spread Index (ISI), Buildup Index (BUI), Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), and Drought Code (DC). Each parameter is presented in one of the classes corresponding to the fire danger – from low to extreme. In this way, a daily 24- and 48-hour fire danger forecasts are generated for the whole area of Poland and presented on IMWM-NIR meteorological website (meteo.imgw.pl).

In this presentation we show analyses of reliability of implemented FWI system. For this purpose, data reprocessing from March to September 2019 were made. Also data on fires occurrence on forest lands: time of occurrence, characteristics and location, from the resources of the State Fire Service were collected. Finally, for the selected period, we obtained a dataset of about 8 thousand events for which we assigned values of FWI parameters. Generally, based on our analysis, correlation between number of fires and averaged value of FWI amounted over 0.8. We found out, the correlation coefficient calculated for regions differ. The correlation is higher in central and northern Poland compared to the eastern part of the country, which also correspond to the number of fires. This may be related to the different forest structure - there is a higher proportion of broadleaf forests in the east. The comparison of 24- and 48-hour forecasts showed that they have similar reliability.

How to cite: Gruszczynska, M., Mandal, A., Nykiel, G., Strzyzewski, T., Wronska, W., Jaczewski, A., and Figurski, M.: Evaluation of the reliability of the high-resolution WRF fire danger forecasts in Poland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14602, https://doi.org/10.5194/egusphere-egu21-14602, 2021.

EGU21-9834 | vPICO presentations | BG1.1

Fire-related forest properties observed using Landsat and radar data

Ramesh Ningthoujam, Nayane Cristina Candida dos Santos Prestes, Ted R. Feldpausch, Martin Wooster, Sandy P. Harrison, and Iain Colin Prentice

Fire is an important cause of disturbance in terrestrial ecosystems and can have a major impact on biodiversity. Long-term forest plot monitoring in Mato Grosso state (Brazil) indicates lowest species diversity in plots that have been burned multiple times and increasing species richness with time since the last fire. Furthermore, there is a strong positive relationship between species richness and basal area in unburnt and once-burnt plots, especially in the large tree stratum. We used high-resolution Landsat and PALSAR data at varying spatio-temporal (single and bi-temporal) scales to (a) assess Vegetation Indices sensitive to varying fire severity for different tropical forest species; (b) quantify fire severity and basal area/ biomass changes (1999, 2006, 2010, 2013); and (c) quantify the sensitivity of L-band backscatter to fuel load, moisture content and basal area/ biomass dynamics.

How to cite: Ningthoujam, R., Prestes, N. C. C. D. S., Feldpausch, T. R., Wooster, M., Harrison, S. P., and Prentice, I. C.: Fire-related forest properties observed using Landsat and radar data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9834, https://doi.org/10.5194/egusphere-egu21-9834, 2021.

EGU21-16431 | vPICO presentations | BG1.1

Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan

Tadas Nikonovas, Allan Spessa, Stefan Doerr, Gareth Clay, and Symon Mezbuhaddin

Deforestation in Indonesia in recent decades has made increasingly large parts of the region vulnerable to fires. Burning is particularly widespread in deforested peatlands, and it leads to globally significant carbon emissions. Here we use satellite-based observations to assess loss and fragmentation of primary forests and associated changes in fire regimes in Sumatra and Kalimantan between 2001 and 2019. We find that fires did not penetrate undisturbed primary forest areas deeper than two kilometres from the forest edge irrespective of drought conditions. However, fire-resistant forest now covers only 3% of peatlands and 4.5% of non-peatlands; the majority of the remaining primary forests are severely fragmented or degraded due to proximity to the forest edge. We conclude that protection and regeneration of the remaining blocks of contiguous primary forest, as well as peatland restoration, are urgently needed to mitigate the impacts of potentially more frequent fire events under future global warming.

How to cite: Nikonovas, T., Spessa, A., Doerr, S., Clay, G., and Mezbuhaddin, S.: Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16431, https://doi.org/10.5194/egusphere-egu21-16431, 2021.

EGU21-16351 | vPICO presentations | BG1.1

Diurnal Observations of Wildfires Boundary Layer Dynamics and Aerosol Plume Convection using Stereo-Imaging Techniques

Mariel Friberg, Dong Wu, James Carr, James Limbacher, Yufei Zou, and Susan O'Neill

Wildfires have posed increasing risks to human health and loss of life and property. Observations of wildfire remain limited, particularly the plume variables such as injection height and wind velocity critical to assessing wildfire impacts. Lack of adequate spatiotemporal coverage and measurement accuracy hinder predictability and initialization needed by weather and chemical transport models. The new observations from the emerging stereo wind and aerosol imaging techniques with LEO-GEO and GEO-GEO satellites offer an unprecedented opportunity to study wildfire dynamics and evolution processes in great detail. The diurnal coverage of the GEO-GEO winds stereo products (Carr et al., 2020, 2019, 2018) and the daytime coverage (and detail) of GEO multi-angle aerosol products (Limbacher et al., 2021; In Prep) can capture and further our understanding of intense wildfire dynamics (e.g., pyroCb), planetary boundary layer (PBL) variations, and direction of aerosol loadings. Using two new satellite-based stereoscopic tracking algorithms, we compare stereo observations directly with the Coupled WRF-CMAQ simulations (Zou et al., 2019) to diagnose the modeled plume injection height and wind velocity, and aerosol properties (Friberg et al., 2021; In Prep). The validated LEO-GEO winds and height algorithm provides plume dynamics data with an accuracy of 200 m vertical resolution for plume height and 0.5 m/s for plume speed. Using these stereo algorithms, we can determine if fire plumes stay within or shoot above PBL, which plays a critical role in plume transport and air quality. From the GEO-based observations of dynamic wildfire aerosol loading dispersion, height, and winds, we can track wildfire development at a sub-hourly frequency and capture extreme and/or rare events such as pyroCb that often occur in a short period of time and are largely missed by LEO satellites.

 

References:

Carr, J.L., Wu, D.L., Daniels, J., Friberg, M.D., Bresky, W., Madani, H. “GEO-GEO Stereo-Tracking of Atmospheric Motion Vectors (AMVs) from the Geostationary Ring,” Remote Sensing, 2020 https://doi.org/10.3390/rs12223779

Carr, J.L., D.L. Wu, R.E. Wolfe, H. Madani, G. Lin, B. Tan, “Joint 3D-Wind Retrievals with Stereoscopic Views from MODIS and GOES,” Remote Sensing, 2019, Satellite Winds Special Issue https://doi.org/10.3390/rs11182100

Carr, J.L., D.L. Wu, M.A. Kelly, and J. Gong, “MISR-GOES 3D Winds: Implications for Future LEO-GEO and LEO-LEO Winds,” Remote Sensing, 2018, MISR Special Issue. https://www.mdpi.com/2072-4292/10/12/1885

Limbacher, J. A., R. A. Kahn, and M. D. Friberg “A Multi-Angle Geostationary Aerosol Retrieval Algorithm,” 2021 [In Prep].

Zou, Y., O’Neill, S.M., Larkin, N.K., Alvarado, E.C., Solomon, R., Mass, C., Liu, Y., Odman, M.T., Shen, H. “Machine learning based integration of high-resolution wildfire smoke simulations and observations for regional health impact assessment. International Journal of Environmental Research and Public Health, 2019. https://doi.org/10.3390/ijerph16122137

Friberg, M.D., Wu, D.L., Carr, J.L., Limbacher, J. A., Zou, Y., O’Neill, S. “Diurnal Observations of Wildfires Boundary Layer Dynamics and Aerosol Plume Convection using Stereo-Imaging Techniques,” 2021 [In Prep].

How to cite: Friberg, M., Wu, D., Carr, J., Limbacher, J., Zou, Y., and O'Neill, S.: Diurnal Observations of Wildfires Boundary Layer Dynamics and Aerosol Plume Convection using Stereo-Imaging Techniques, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16351, https://doi.org/10.5194/egusphere-egu21-16351, 2021.

EGU21-16198 | vPICO presentations | BG1.1

Geospatial analysis of Arctic fires in the MODIS era: 2003–2020

Thomas Smith, Jessica McCarty, Merritt Turetsky, and Mark Parrington

MODIS has provided an 18-year continuous record of global fire activity. Here we present a geospatial analysis of MODIS hotspots in the high latitudes of the northern hemisphere from 2003 through to 2020. By combining the hotspot data with multiple land-cover datasets relating to vegetation cover, permafrost, and peat, we investigate boreal and tundra wildfire regimes, including an assessment of a significant northwards shift and increase in fire activity in 2019 and 2020. We focus on the distribution of hotspots on high latitude peatlands and permafrost and the associated difficulties in confirming residual smouldering compustion of peat soils using current remote sensing technology.

How to cite: Smith, T., McCarty, J., Turetsky, M., and Parrington, M.: Geospatial analysis of Arctic fires in the MODIS era: 2003–2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16198, https://doi.org/10.5194/egusphere-egu21-16198, 2021.

EGU21-13273 | vPICO presentations | BG1.1 | Highlight

Monitoring Arctic and high-latitude wildfires in 2019 and 2020

Mark Parrington, Jessica McCarty, Thomas Smith, Merritt Turetsky, Francesca Di Giuseppe, Claudia Vitolo, Sebastien Garrigues, Melanie Ades, Anna Agusti-Panareda, Jerome Barre, Richard Engelen, Johannes Flemming, Antje Inness, Zak Kipling, Vincent-Henri Peuch, Martin Wooster, Tianran Zhang, Mark De Jong, and Freja Vamborg

The boreal summers of 2019 and 2020 were witness to extensive high northern latitude wildfire activity, most notably within the Arctic Circle across eastern Russia. Near-real-time monitoring of the wildfire activity, based on satellite observations of active fires, showed widespread and persistent fires at a scale that had not been observed in the previous years that satellite observations are available. The European Centre for Medium-Range Weather Forecasts (ECMWF) through its operation of, and contribution to, different Copernicus Services is in a unique position to provide detailed information to monitor high-latitude wildfire activity, including their evolution and potential impacts, when they occur. Fire weather forecasts from the Copernicus Emergency Management Service (CEMS), and surface climate anomalies from the Copernicus Climate Change Service (C3S) both provide context to the environmental conditions required for wildfires to persist. Analyses based on observations of fire radiative power, along with analyses and forecasts of associated atmospheric pollutants, from the Copernicus Atmosphere Monitoring Service (CAMS) aid in quantifying the scale and intensity in near-real-time and the subsequent atmospheric impacts. We present an analysis of Arctic and high northern latitude wildfires during the summers of 2019 and 2020, reviewing the underlying meteorological/climatological conditions, the estimated emissions and transport of smoke constituents over the Arctic Ocean. We will show that the different datasets, while being relatively independent, show a strong correspondence and provide a wealth of information required to monitor and provide context for wildfire activity.

How to cite: Parrington, M., McCarty, J., Smith, T., Turetsky, M., Di Giuseppe, F., Vitolo, C., Garrigues, S., Ades, M., Agusti-Panareda, A., Barre, J., Engelen, R., Flemming, J., Inness, A., Kipling, Z., Peuch, V.-H., Wooster, M., Zhang, T., De Jong, M., and Vamborg, F.: Monitoring Arctic and high-latitude wildfires in 2019 and 2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13273, https://doi.org/10.5194/egusphere-egu21-13273, 2021.

EGU21-6404 | vPICO presentations | BG1.1 | Highlight

Intensifying fire regimes in the arctic-boreal zone: recent changes, global implications, and possible solutions

Brendan Rogers, Molly Elder, Peter Frumhoff, Thomas Gasser, Elena Kukavskaya, Erin MacDonald, Michelle Mack, Susan Natali, Carly Phillips, Rebecca Scholten, Rachael Treharne, Sander Veraverbeke, and Xanthe Walker

Across much of the high latitudes, wildfires have been increasing in frequency, area burned, and severity in response to longer fire seasons, more severe fire weather, and increased ignitions. These fires not only affect the tundra and boreal forests they burn, but also global climate due to the high levels of carbon emitted during combustion that take decades to re-aggrade. Carbon emissions from high latitude fires are generally not included in global models that inform policy nor emissions reductions commitments from relevant countries. In this presentation we describe recent progress and critical unknowns related to intensifying fire regimes in high latitude ecosystems, with a particular focus on (i) trends in burned area and large fire years; (ii) changing ignitions sources including lightning, human, and overwintering fires; (iii) patterns and drivers of carbon emissions, including interactions with permafrost; (iv) implications for global carbon budgets; and (v) potential climate mitigation through increased resources for carbon-focused fire management.

How to cite: Rogers, B., Elder, M., Frumhoff, P., Gasser, T., Kukavskaya, E., MacDonald, E., Mack, M., Natali, S., Phillips, C., Scholten, R., Treharne, R., Veraverbeke, S., and Walker, X.: Intensifying fire regimes in the arctic-boreal zone: recent changes, global implications, and possible solutions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6404, https://doi.org/10.5194/egusphere-egu21-6404, 2021.

EGU21-1355 | vPICO presentations | BG1.1

Drivers of carbon emissions and active layer thickening from boreal wildfires in a continuous permafrost region of Northeast Siberia

Clement J.F. Delcourt, Linar Akhmetzyanov, Brian Izbicki, Elena A. Kukavskaya, Michelle C. Mack, Trofim C. Maximov, Roman E. Petrov, Brendan M. Rogers, Ute Sass-Klaassen, Rebecca C. Scholten, Tatiana A. Shestakova, Dave van Wees, and Sander Veraverbeke

The circumpolar boreal biome is affected by increases in fire frequency and severity associated with climate warming. About 30% of the world’s terrestrial carbon (C) is stored in the boreal region. Fires can produce large C emissions when substantial amounts of aboveground and belowground biomass and soil organic matter are combusted. Quantification and understanding of the drivers of C combustion is crucial to better assess the role of boreal fires in the global carbon cycle.

Despite the fact that the majority of boreal burned area occurs on the Eurasian continent, relatively few measurements of C combustion have been made in Eurasian boreal ecosystems. Here we synthetized data from 41 field sites collected during the summer of 2019 in Eastern Siberian larch forests. C combustion from surface and stand-replacing fires varied between 1.54 and 5.38 kg C/m2. Belowground pools contributed in average to 73.9% of total C combustion. C combustion was higher in open larch-dominated forests (Larix cajanderi) and open forests with a mixture of larch and pine (Pinus sylvestris). High severity crown fires were observed in dense larch-dominated forests, yet C combustion was in average 23% lower than in the open stands. To our knowledge, this study is the first to quantify C combustion from wildfires in a continuous permafrost terrain in Northeast Siberia. We also investigated the effects of fire weather and pre-fire stand characteristics (e.g., stand age, drainage conditions, overstory tree species composition) on C combustion.

Because fires can also have a longer-term impact on permafrost environments through changes in surface energy balance and ground thermal regime, we also quantified active layer deepening in our study area. We measured thaw depth in 13 burned and 6 unburned sites one year after the fire. We explored the interactions between fire, vegetation, drainage conditions, and thaw depth. Our study shows that fire deepens the active layer, yet the magnitude of the effect is controlled by vegetation characteristics and topo-edaphic factors. Our findings provide insight to feedbacks between climate warming and boreal fires in permafrost-underlain larch forests in Siberia.

How to cite: Delcourt, C. J. F., Akhmetzyanov, L., Izbicki, B., Kukavskaya, E. A., Mack, M. C., Maximov, T. C., Petrov, R. E., Rogers, B. M., Sass-Klaassen, U., Scholten, R. C., Shestakova, T. A., van Wees, D., and Veraverbeke, S.: Drivers of carbon emissions and active layer thickening from boreal wildfires in a continuous permafrost region of Northeast Siberia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1355, https://doi.org/10.5194/egusphere-egu21-1355, 2021.

EGU21-2518 | vPICO presentations | BG1.1

Evaluating the differenced Normalized Burn Ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian larch forests

Alisha Combee, Clément J.F Delcourt, Brian Izbicki, Michelle C. Mack, Trofim C. Maximov, Roman E. Petrov, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Dave van Wees, and Sander Veraverbeke

Fire severity is a key fire regime characteristic with high ecological and carbon cycle relevance. Broadly defined, fire severity is a measure of the immediate impacts of a fire on the landscape, including the destruction and combustion of live vegetation and dead organic matter. Prior studies on boreal forest fires have mainly focused on mapping severity in North America’s boreal forests. However, the dominant tree species and their impacts on fire regimes are strikingly different between boreal North America and Siberia. Here we used Sentinel-2 satellite imagery to test the potential for using the most common spectral index for assessing fire severity, the differenced Normalized Burn Ratio (dNBR), over two fire scars and 41 field plots in Northeast Siberia. These field plots, sampled in the summer of 2019, corresponded to three different forest types: dense larch-dominated (Larix cajanderii) forest, open larch-dominated forest and open forest with a mixture of larch and pine (Pinus sylvestris). For this evaluation, the dNBR was compared to field measurements of the Geo Composite Burn Index (GeoCBI) and burn depth. The dNBR performed better when the field data were grouped by forest type (e.g. GeoCBI- dNBR R2 = 0.38 (p < 0.01) for all plots and 0.49 (p < 0.001) for open larch forest). The GeoCBI provides a holistic field assessment of fire severity, yet it is dominated by the effect of fire on vegetation. Nevertheless, the GeoCBI correlated reasonably well with the depth of burning in the organic soil (R2 = 0.11, p < 0.05 for all plots). This relationship also varied among forest types, and was the highest for the dense larch forests (burn depth- GeoCBI R2 = 0.27, p < 0.05). The dNBR showed some potential as a predictor for burn depth, especially in the dense larch forests (burn depth- dNBR R2 = 0.31, p < 0.05). This is line with previous studies in boreal North America. More research is needed to refine spaceborne fire severity assessments in the larch forests of Northeast Siberia, including assessments of additional fire scars and integration of dNBR with other geospatial proxies of fire severity.

 

How to cite: Combee, A., Delcourt, C. J. F., Izbicki, B., Mack, M. C., Maximov, T. C., Petrov, R. E., Rogers, B. M., Scholten, R. C., Shestakova, T. A., van Wees, D., and Veraverbeke, S.: Evaluating the differenced Normalized Burn Ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian larch forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2518, https://doi.org/10.5194/egusphere-egu21-2518, 2021.

EGU21-2355 | vPICO presentations | BG1.1

Carbon emissions from fires in permafrost peatlands

Sander Veraverbeke, Clement Delcourt, Gustaf Granath, Elena Kukavskaya, Michelle Mack, Joachim Strengbom, Xanthe Walker, Thomas Hessilt, Brendan Rogers, and Rebecca Scholten

Increases in arctic and boreal fires can switch these biomes from a long-term carbon (C) sink to a source through direct fire emissions and longer-term emissions from soil respiration. Landscapes of intermediate drainage tend to experience the highest C combustion, dominated by soil C emissions, because of relatively thick and periodically dry organic soils. These landscapes may also induce a climate warming feedback through combustion and post-fire respiration of legacy C – soil C that had escaped burning in the previous fire – including from permafrost thaw and degradation. Data shortages from fires in tundra ecosystems and Eurasian boreal forests limit our understanding of C emissions from arctic-boreal fires. Interactions between fire, topography, vegetation, soil and permafrost need to be considered when estimating climate feedbacks of arctic-boreal fires.

How to cite: Veraverbeke, S., Delcourt, C., Granath, G., Kukavskaya, E., Mack, M., Strengbom, J., Walker, X., Hessilt, T., Rogers, B., and Scholten, R.: Carbon emissions from fires in permafrost peatlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2355, https://doi.org/10.5194/egusphere-egu21-2355, 2021.

EGU21-2218 | vPICO presentations | BG1.1

Future increases in lightning-ignited boreal fires from conjunct increases in dry fuels and lightning

Thomas Duchnik Hessilt, Guido van der Werf, John T. Abatzoglou, Rebecca C. Scholten, and Sander Veraverbeke

Fire is the most important landscape disturbance in the boreal forest of North America. The boreal region is the largest terrestrial biome and stores approximately 35 % of the global soil carbon (C). Burned area has increased over the last decades and is projected to increase further in the future, potentially altering boreal forest ecosystems from a net sink of C to a source of C. Approximately 90 % of the burned area in the region originates from wildfires ignited by lightning strikes. It is therefore important to understand the drivers of lightning-induced wildfires to evaluate the consequences of possible future changes in lightning activity and ignition efficiency. Here, we evaluated lightning ignition efficiency, i.e. the probability that a lightning strike starts a fire, for Alaska and Northwest Territories between 2001 and 2018 in function of three sets of drivers: lightning characteristics, topography, and fire weather. Further, we projected the lightning ignition efficiency under the RCP8.5 scenario and combined it with predictions of future lightning activity to assess future lightning ignition.
            The logistic model demonstrated an overwhelming influence of fire weather on lightning ignition efficiency (area under the curve > 0.83), whereas lightning characteristics and topography contributed relatively little to the model performance. We found that short-term drying of the organic soils is the most important requirement for a lightning strike to start a fire. The average lightning ignition efficiency for Alaska and Northwest Territories increased with 54 ± 32 % and 44 ± 44 by 2100. Combined with future projections of lightning activity, we predicted a total increase in lightning ignition of up to 230 ± 20 % and 92 ± 56 % for Alaska and Northwest Territories by 2100. Future increases in lightning ignitions in the boreal forest will likely induce additional burned areas in regions with C-rich peatland and permafrost soils. Our research showed that the increased availability of dry fuels and increases in lightning will reinforce each other leading to more boreal fires and consequent C emissions.

How to cite: Hessilt, T. D., van der Werf, G., Abatzoglou, J. T., Scholten, R. C., and Veraverbeke, S.: Future increases in lightning-ignited boreal fires from conjunct increases in dry fuels and lightning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2218, https://doi.org/10.5194/egusphere-egu21-2218, 2021.

EGU21-3735 | vPICO presentations | BG1.1

Exploring environmental factors driving wildfire occurrences in Alaskan tundra

Jiaying He, Tatiana Loboda, Nancy French, and Dong Chen

Tundra fires are common across the pan-Arctic region, particularly in Alaska. Fires lead to significant impacts on terrestrial carbon balance and ecosystem functioning in the tundra. They can even affect the forage availability of herbivorous wildlife and living resources of local human communities. Also, interactions between fire and climate change can enhance the fire impacts on the Arctic ecosystems. However, the drivers and mechanisms of wildland fire occurrences in Alaskan tundra are still poorly understood. Research on modeling contemporary fire probability in the tundra is also lacking. This study focuses on exploring the critical environmental factors controlling wildfire occurrences in Alaskan tundra and modeled the fire ignition probability, accounting for ignition source, fuel types, fire weather conditions, and topography. The fractional cover maps of fuel type components developed Chapter 2 serve as input data for fuel type distribution. The probability of cloud-to-ground (CG) lightning and fire weather conditions are simulated using WRF. Topographic features are also calculated from the Digital Elevation Model (DEM) data. Additionally, fire ignition locations are extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product for Alaskan tundra from 2001 to 2019. Empirical modeling methods, including RF and logistic regression, are then utilized to model the relationships between environmental factors and wildfire occurrences in the tundra and to evaluate the roles of these factors. Our results suggested that CG lightning is the primary driver controlling fire ignitions in the tundra, while warmer and drier weather conditions also support fires. We also projected future potential of wildland fires in this tundra region with Coupled Model Intercomparison Projects Phase 6 (CMIP6) data. The results of this study highlight the important role of CG lightning in driving tundra fires and that incorporating CG lightning modeling is necessary and essential for fire monitoring and management efforts in the High Northern Latitudes (HNL).

How to cite: He, J., Loboda, T., French, N., and Chen, D.: Exploring environmental factors driving wildfire occurrences in Alaskan tundra, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3735, https://doi.org/10.5194/egusphere-egu21-3735, 2021.

EGU21-5509 | vPICO presentations | BG1.1

The Late Holocene forest fire history in continuous permafrost zone of Central Siberia

Elena Novenko, Natalia Mazei, Dmitry Kupryanov, and Anatoly Prokushkin

Understanding the long-term fire history of larch forests in the permafrost zone of Central Siberia is essential for an assessment of the possible responses and feedbacks of forest ecosystems to climate change. The multi-proxy record from the area of the Evenkian field station of the Sukachev Institute of Forest SB RAS, located in the middle part of the Lower Tunguska river basin provides important new data on the fire frequency, vegetation changes and paludification dynamics in the Central Evenkia over the last 3.5 ka BP. The new results of radiocarbon dating, loss on ignition, plant macrofossil and macro charcoal analyses from a sediment core taken in the waterlogged larch forest (N 64°09'56.1" E 100°31'43.9") are presented.

The obtained data have shown that fires were an important factor in the evolution of forest ecosystems in this continuous permafrost regions and acted as a trigger for the paludification process in the study area. The reconstruction of fire frequency demonstrated that the fire return period in the warm epochs of the late Holocene (3.6-2.7 ka BP, 1.5-0.7 ka BP, including the Medieval Climate Anomaly) varied from 115 to 150 years, and increased to 275-300 years during the periods of cooling (2.7-1.5 ka BP; the Little Ice Age, 0.7-0.15 ka BP). We suggested that the shorter and possibly colder summers during the cold epochs led to a decreased evaporation and a rise of ground moisture in many habitats, which was unfavorable for the occurrence and extension of forest fires. During the last 200 years the frequency of forest fires in the study area increased significantly, the fire return period reduced to a minimum value for the entire period under consideration (i.e. the last 3.5 ka BP) and reached 80 years. The fire free interval revealed from the macro charcoal analyses for the last 200 years is close to the average fire free interval reconstructed by dendrochronological data from the study area for the same period. The low human impact on forest ecosystems due to remote location of study area from settlements and mining regions suggests the natural causes of these fires.

This work was supported by the Russian Science Foundation, project № 20-17-00043.

How to cite: Novenko, E., Mazei, N., Kupryanov, D., and Prokushkin, A.: The Late Holocene forest fire history in continuous permafrost zone of Central Siberia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5509, https://doi.org/10.5194/egusphere-egu21-5509, 2021.

EGU21-9967 | vPICO presentations | BG1.1

Holocene fire history of the southern Lake Baikal region

Marianne Vogel, Chéïma Barhoumi, Hanane Limani, Sébastien Joannin, Odile Peyron, and Adam Ahmed Ali

Holocene fire history of the southern Lake Baikal region

The catastrophic fire years that have taken place during the last decade in Siberia and in the boreal forests in general, directly linked to global warming, have had dramatic repercussions on the human populations of these regions. Past fire reconstruction studies are currently the only way to study the past dynamics of these fires and to understand their link with climate, vegetation and human activities. However, few studies of the dynamics of these fires are available in Siberia, and none have been carried out on the scale of the Holocene. This study aims to present the first reconstruction of the fire history during the Holocene based on sedimentary charcoals from two lakes localised on the southern shore of Lake Baikal, in Siberia. Two lakes have been sampled, Lake Ébène and Lake Jarod. The results showed a similar trend between the two lakes,with severe and intense crown fires during the early Holocene and less severe surface fires after 6 500 cal. yr BP. According to pollen reconstructions carried out near the studied lakes, a vegetation transition occurred at the same time. Picea obovata was dominant during the early humid Holocene. After 6 500 cal. yr BP, conditions were drier and Pinus sylvestris and Pinus sibirica became the dominant species. Over the past 1 500 years, the greater presence of human populations has firstly resulted in an increase of the fire frequency, then probably in its maintenance after 600 cal. yr BP in lake Ébène and to finish, in its suppression after 900 cal. yr BP in Lake Jarod. The decrease of fire frequency at the end of the 20th century could be explained by new fire management policies.

How to cite: Vogel, M., Barhoumi, C., Limani, H., Joannin, S., Peyron, O., and Ali, A. A.: Holocene fire history of the southern Lake Baikal region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9967, https://doi.org/10.5194/egusphere-egu21-9967, 2021.

EGU21-10840 | vPICO presentations | BG1.1

Towards a better understanding of Siberian wildfires: linking paleoenvironmental fire reconstructions with an individual-based spatially explicit fire-vegetation model

Ramesh Glückler, Elisabeth Dietze, Josias Gloy, Ulrike Herzschuh, and Stefan Kruse

Wildfires are an essential ecological process, located at the interface between atmosphere, biosphere, and geosphere. Climate-related changes in their appearance and frequency will shape the boreal forest of tomorrow, the largest terrestrial biome responsible for numerous important ecosystem functions. Changing fire regimes could also increase pressure on fire management and become a threat for humans living in Siberia. However, a lack of long-term fire reconstructions complicates the understanding of the main drivers in the larch-dominated forests of eastern Siberia. At the same time, this lack of long-term understanding also aggravates the validation of fire-vegetation models, and thus predictions of future changes of fire regimes in this vital region.

Here, we present a new fire module being built for the individual-based, spatially explicit vegetation model LAVESI (Larix Vegetation Simulator). LAVESI is able to simulate fine-scale interactions in individual tree’s life stages and detailed population dynamics, now expanded by the ability of wildfires igniting and damaging biomass. Fire-vegetation simulations were computed around the catchment of Lake Khamra (SW Yakutia), which experienced forest fires in the years 2007 and 2014 according to remote sensing imagery. From the lake, we previously contributed a new, sedimentary charcoal-based fire reconstruction of the late Holocene. Testing the fire module at a current study site, where modern and historic data has already been collected, allows us to improve it, and look into ways in which the fire reconstruction might help inform the model, before eventually scaling it up to cover larger regions. This represents a first step towards a reliable fire-vegetation model, able to predict future impacts of fires on both the forests of eastern Siberia, as well as the humans living there.

How to cite: Glückler, R., Dietze, E., Gloy, J., Herzschuh, U., and Kruse, S.: Towards a better understanding of Siberian wildfires: linking paleoenvironmental fire reconstructions with an individual-based spatially explicit fire-vegetation model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10840, https://doi.org/10.5194/egusphere-egu21-10840, 2021.

EGU21-4846 | vPICO presentations | BG1.1

Spatial variability in Holocene wildfire responses to environmental change in the northern extratropics 

David Kesner, Sandy Harrison, Tatiana Blyakharchuk, Mary Edwards, Michelle Garneau, Gabriel Magnan, and Colin Prentice

Fire is an important environmental and ecological process in northern high latitude environments. It is unclear how fire will respond to modern environmental change in this region and its implications for ecosystem processes and human societies. For insight into the long-term evolution of fire regimes, we reconstruct changes in biomass burning in the northern extratropics (>45°N) from the early Holocene (9000 years ago) to the present using the Reading Palaeofire Database, currently the most comprehensive repository of northern extratropical palaeo charcoal records. We examine the different geographic patterns in fire regimes across the northern extratropics from the sub-continental to circum-northern extratropical scale, by quantitatively comparing biomass burning with insolation, CO2,human population records land cover changes. This study provides novel insight into the fire regimes that have characterized the northern extratropics over the Holocene and the differential importance of environmental controls in shaping these burning histories.

How to cite: Kesner, D., Harrison, S., Blyakharchuk, T., Edwards, M., Garneau, M., Magnan, G., and Prentice, C.: Spatial variability in Holocene wildfire responses to environmental change in the northern extratropics , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4846, https://doi.org/10.5194/egusphere-egu21-4846, 2021.

EGU21-2475 | vPICO presentations | BG1.1

Fire and first olive cultivation: a new high-resolution macro-charcoal record from the Sea of Galilee, Israel

Andrea Miebach, Tim R. Resag, Timon Netzel, and Mitchell J. Power

Throughout the Mediterranean biome, fire has been a dominant natural agent of change and a primary tool for anthropogenic landscape modifications. This research explores linkages among fire, vegetation, and human agricultural practices in the Eastern Mediterranean region, a region with limited evidence of the role these processes have in shaping the landscape.

Olive horticulture is among the oldest and most widespread agricultural forms in the Mediterranean Basin. The first major olive cultivation can be traced back in time with pollen evidence. In the Sea of Galilee, the earliest palynological evidence for olive horticulture suggest cultivation began approximately 7000 cal yr BP.

Here, we present a new high-resolution macro-charcoal dataset from the Sea of Galilee prior and during the first olive cultivation. Charcoal morphotypes were identified and are used to characterize fuel types. We also compare our data with a new multi-proxy dataset from the same record indicating the timing and impact of olive cultivation and related vegetation and climate changes.

The following questions are discussed: What was the natural fire regime (pre-large scale agriculture) around the Sea of Galilee basin? What role did fire play as a potential tool for clearing and fertilizing landscapes as the first olive orchards developed? How did fire regimes change once olive orchards were planted? Finally, can charcoal morphotypes provide novel insights into understanding paleofire regimes?

This study allows a new perspective into natural fire regimes in the Levant and an increased understanding of the role of fire during early horticulture practice. Moreover, it can serve as a basis for future fire management plans.

How to cite: Miebach, A., Resag, T. R., Netzel, T., and Power, M. J.: Fire and first olive cultivation: a new high-resolution macro-charcoal record from the Sea of Galilee, Israel, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2475, https://doi.org/10.5194/egusphere-egu21-2475, 2021.

EGU21-6008 | vPICO presentations | BG1.1

Reconstruction of fire regime changes in the French Mediterranean region during the last 8,500 years using microcharcoal 

Marion Genet, Anne-Laure Daniau, Maria-Angela Bassetti, Bassem Jallali, Marie-Alexandrine Sicre, Julien Azuara, Serge Berné, and Muriel Georget

Nowadays, the Mediterranean region is strongly impacted by fires. Projected warming scenarios suggest increasing fire risk in this region considered as hot-spot of the climate change (Liu et al., 2010; Pechony and Shindell, 2010). However, models based on modern-day statistical relationships do not properly account for interactions between climate, vegetation, and fire. In addition, process-based models must be tested not only against modern observations but also under different past climate conditions reflecting the range of climate variability projected for the next centuries (Hantson et al. 2016). Marine sediments are a major source of fire history of nearby land masses. Here, we present a unique 8,500 yr long record of biomass burning changes from southeastern France based on a marine microcharcoal sedimentary record from the Gulf of Lion, located in the subaqueous Rhone river delta. Sediment delivery to the Gulf of Lion comes mainly from the Rhône River draining a large watershed in southeast France (ca.100,000 km2). Due to the direction of dominant winds blowing from the North-North-West (Mistral and Tramontane) and carrying fine particles from the land to the sea, the microcharcoal record likely reflects the biomass burning in the Rhone watershed and South-East of France. Our results show multi-centennial to millennial changes in biomass burning with a periodicity  of 1000 years for the full record and between 500 and 700 years before 5,000 cal BP and after 3,000 cal BP. Large peaks of biomass burning are associated with marked dry periods observed in the region. Burning of biomass is higher when the region is dominated by xerophytic vegetation than when mesophyte vegetation dominates. The trend and periodicity of the biomass burning record suggest a predominant climatic control of fire occurrences since 8,500 cal BP in this region.

How to cite: Genet, M., Daniau, A.-L., Bassetti, M.-A., Jallali, B., Sicre, M.-A., Azuara, J., Berné, S., and Georget, M.: Reconstruction of fire regime changes in the French Mediterranean region during the last 8,500 years using microcharcoal , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6008, https://doi.org/10.5194/egusphere-egu21-6008, 2021.

EGU21-2933 | vPICO presentations | BG1.1

Anthropogenic land use change and fire history during the Holocene in the Iberian Peninsula

Luke Sweeney, Marc Vander Linden, and Sandy Harrison

Anthropogenic land-use change and ecosystem management have a demonstrable impact on modern fire regimes. However, when in time this influence was first felt is still an open question. We investigate whether an anthropogenic signal can be identified in Holocene fire records from the Iberian Peninsula, a region with abundant palaeoenvironmental and archaeological data. We analyse sedimentary charcoal data from 49 sites across the Peninsula covering part or all of the past 12,000 years to construct the fire history for the region. We compare these records to the summed probabilities of radiocarbon-dated archaeological sites, which provides an index for changes in human impact on land use and land cover due to the growth or decrease in human population through time. This reconstruction is based on 8200 radiocarbon dates covering the timespan between12000 and 3500 uncal BP.  Our analyses confirm that the broad trends in fire history are well aligned with the likely impact of climate changes during the Holocene. The charcoal records indicate a rapid increase in fire at the end of the Younger Dryas, a reduction in fire during the middle Holocene as a result of wetter conditions across the Peninsula, and an increase in fire concordant with the increased aridity registered during the interval after 3000 yr BP. However, finer-scale temporal variations are superimposed upon these broadscale changes. Similarly, although the most pronounced change in population reflects population growth associated with the onset of agriculture in the mid-Holocene, the summed probability record of population shows considerable finer-scale temporal variation. In addition to analyses of the temporal correlations between the two data sets, we consider whether there are distinct geographic patterns that could provide additional insights into the relationship between human activities and fire across Iberia.

How to cite: Sweeney, L., Vander Linden, M., and Harrison, S.: Anthropogenic land use change and fire history during the Holocene in the Iberian Peninsula, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2933, https://doi.org/10.5194/egusphere-egu21-2933, 2021.

EGU21-13342 | vPICO presentations | BG1.1

Holocene spatio-temporal patterns of biomass burning in the Bohemian-Bavarian Forest Mountains (Central Europe)

Gabriela Florescu, Petr Kuneš, Willy Tinner, Marco Heurich, Walter Finsinger, Alice Moravcová, Dagmar Dreslerová, Gunther Kletetschka, Daniel Vondrak, and Vachel Carter

Long-term perspectives on disturbance dynamics are important for the conservation of protected areas, yet restoration and conservation strategies in the Bohemian-Bavarian Forest Mountains do not consider the long-term role and patterns of forest fire, which is still deemed a negligible ecosystem disturbance in Central Europe. The scarcity of macroscopic charcoal studies in this area has likely hampered a complete understanding of local fire regime dynamics and its legacies in the present forest structure and composition. Here we used macroscopic charcoal (number, area and morphology of charred particles) and pollen analysis to investigate high resolution spatial and temporal patterns in Holocene fire regimes in the Bavarian-Bohemian Forest. We explored the relationship between changing forest composition dynamics and the influence topography had on spatial patterns of biomass burning. For this, we selected three lacustrine sites (two new, one published), located along a 30 km longitudinal transect within the studied area, at similar elevations in the mixed forest belt, with opposite (north vs. south) aspects. Results showed similar changes in biomass burning, fire frequency and peak magnitude at all sites, with a maximum during the early Holocene when fire resistant taxa (Pinus and Betula) dominated. Fire frequency decreased by half with the expansion of more fire-sensitive taxa (e.g., Picea and Fagus) during the mid-Holocene and reached a second maximum in the late Holocene, parallel with sustained increases in anthropogenic pollen indicators. We found a close north-south correspondence in the succession of fire patterns, i.e., fine-scale changes in biomass burning in the Bavarian Forest site (south-facing catchment) occurred around the same time with those observed at the Bohemian Forest sites (predominantly north-facing catchments), and these changes mirrored the Holocene dynamics of the main forest taxa. For example, the lowest biomass burning and peak magnitude intervals marked the beginning of Picea abies expansion at ~ 9 ka BP, Fagus sylvatica expansion at ~6 ka and Abies alba expansion at ~5 ka BP. Furthermore, we found a direct relationship between the abundance of charred morphotypes of conifer needles and deciduous leaves and the dominance of pine and birch in our pollen records, and a close correspondence between the abundance of non-woody charcoal morphotypes and pollen-derived landscape openness. Non-woody charcoal morphotypes dominated the charcoal records in the Early Holocene at the peak of biomass burning, whereas the abundance of woody morphotypes peaked around 6-8 ka BP and over the last millennium and their proportion in total charcoal influx increased starting 4 ka BP. Our study enables a better understanding of past and present fire regimes in the Bavarian-Bohemian Forest Mountains and highlights the need to consider the effects of fire as part of climate-change forest conservation strategies.

How to cite: Florescu, G., Kuneš, P., Tinner, W., Heurich, M., Finsinger, W., Moravcová, A., Dreslerová, D., Kletetschka, G., Vondrak, D., and Carter, V.: Holocene spatio-temporal patterns of biomass burning in the Bohemian-Bavarian Forest Mountains (Central Europe), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13342, https://doi.org/10.5194/egusphere-egu21-13342, 2021.

EGU21-12821 | vPICO presentations | BG1.1

Disentangling human-fire-climate linkages at mid-elevations in the Šumava Mountains of central Europe

Vachel Kraklow, Alice Moravcová, Petr Kuneš, Dagmar Dreslerová, Walter Finsinger, Andrei-Cosmin Diaconu, Daniel Nývlt, Martin Kadlec, Willy Tinner, Marco Heurich, and Gabriela Florescu

To distinguish human-caused from naturally-caused fire regimes, palaeoecological records must demonstrate that observed changes in vegetation and fire are in response to changes in human activity rather than driven by natural climate-fire relationships. Here, we use a high-resolution multi-proxy approach (testate amoebae derived depth to water table (DWT), macro- and micro-charcoal, charcoal morphologies, pollen, non-pollen palynomorphs, plant macrofossils, and XRF) from Pékna, a mid-elevation peat bog situated near Lipno Reservoir - an area rich in human land use - to investigate human-driven vs. naturally-driven fire regimes in the Šumava Mountains. Our results span the entire Holocene and illustrate that humans have been consistently modifying the landscape since 5,500 cal yr BP. Specifically, during the mid-Holocene (7,000 – 4,000 cal yr BP) when water table was at its highest at Pékna, relatively frequent, low-severity fires occurred and was accompanied by the prolonged presence of coprophilous fungi, secondary human indicators and an opening of the forest, suggesting human activities. Human land use intensified ~1,500 cal yr BP as indicated by increases in primary human indicator species, an increase in early successional tree species (Pinus and Betula) indicating an opening of the forest canopy, and the development of regional mining is suggested by a marked increase in the concentration of lead (Pb). While water table depths decreased indicating drier conditions ~1,500 cal yr BP, local fires persisted, burning at low severities as indicated by the continued presence of charred herb macrofossils. The most intensive land use occurred in the last 500 years with the highest abundance of primary and secondary human indicator species, and coprophilious fungi. Locally, marked increases in the concentration of both redox-sensitive elements such as iron (Fe), calcium (Ca), sulphur (S), and chlorine (Cl), and detrital elements such as potassium (K), aluminum (Al) and Titanium (Ti) indicate major changes in the depositional environment over the last 500 years, possibly due to peat draining. However, this time period witnessed decreased biomass burning as a result of a more open landscape and less fuels to burn. These results contribute to a growing body of literature illustrating the importance of prehistoric impact in the mid-mountains of Central Europe.   

How to cite: Kraklow, V., Moravcová, A., Kuneš, P., Dreslerová, D., Finsinger, W., Diaconu, A.-C., Nývlt, D., Kadlec, M., Tinner, W., Heurich, M., and Florescu, G.: Disentangling human-fire-climate linkages at mid-elevations in the Šumava Mountains of central Europe, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12821, https://doi.org/10.5194/egusphere-egu21-12821, 2021.

EGU21-10442 | vPICO presentations | BG1.1

The human and climate drivers of Holocene grassland fires in the South Caucasus: A macro-charcoal, brGDGTs, and pollen reconstruction

Amy Cromartie, Chéïma Barhoumi, Lucas Dugerdil, Guillemette Ménot, Odile Peyron, Erwan Messager, David Etienne, Lori Khatchadourian, Ruben Badalyan, Adam T. Smith, Khachatur Meliksetian, and Sébastien Joannin

The mountainous area of Armenia has been a steppe throughout the Holocene with a rich history of fire events throughout this period. Previous research has found that changes in fire are linked to shifts between Poaceae grasslands and semi-arid Chenopodiaceae steppes. However, the climate and human drivers of these fires has yet to be fully explored in an area where agriculture has been practiced for almost 8,000 years. To elucidate these changes, we performed and compiled macro-charcoal analysis on four wetland sediment cores from the Kasakh Valley, Armenia. We aimed to understand fire frequency, intensity, size, and drivers of these events. In addition, we utilize a paleotemperature molecular biomarker branched glycerol dialkyl glycerol tetraethers (brGDGTs), a pollen climate reconstruction for temperature and precipitation, and the vast amount of archaeological data to help us untangle these changes. Early results suggest fires increase as temperature rose during the early Holocene and continue to increase with temperature during the Mid-Holocene despite an increase in agriculture during the Early Bronze Age. Between 4000 - 2000 cal. BP fires are small and almost disappear from the record. During this period these declines appear to be driven both by temperature fluctuations and an increase in regional mobile pastoralism resulting in declining biomass. Over the last 2000 years, humans appear to be the primary driver of fires with an increase in large intense events that are local to the watershed.

How to cite: Cromartie, A., Barhoumi, C., Dugerdil, L., Ménot, G., Peyron, O., Messager, E., Etienne, D., Khatchadourian, L., Badalyan, R., Smith, A. T., Meliksetian, K., and Joannin, S.: The human and climate drivers of Holocene grassland fires in the South Caucasus: A macro-charcoal, brGDGTs, and pollen reconstruction, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10442, https://doi.org/10.5194/egusphere-egu21-10442, 2021.

EGU21-2575 | vPICO presentations | BG1.1

Calibrating microcharcoal in recent marine sediments: implications to reconstruct paleofire regimes on African continent

Aritina Haliuc, Anne-Laure Daniau, and Braise team members

Fire is a worldwide terrestrial process and has shaped the ecosystems and life on Earth over millions of years. Today, fire regime metrics such as burned area, intensity and frequency, depend on a set of climatic and environmental variables, but under anticipated climate warming scenarios, it is projected that fire characteristics will change, posing great threats to the environment and society. Large uncertainties remain in better understanding this complex process, integrating it in Earth system global models and better forecasting the response of fire to future climate changes.

Paleofire records from marine sediments capture information about regional-scale relative changes in biomass burning over long timescale and can help understanding the relationships between climate change and fire activity. We still lack, though, what a change in biomass burning in the paleorecord means in terms of fire regimes.

The present study aims at exploring the link between charcoal accumulation in marine surface sediment samples of modern ages from about 150 sites across the African coast and fire regimes on land. It is based on an integrated approach using fire proxy, climate, environmental and historical information, and satellite data. Exploratory in character, this study is designed to investigate this link among different biomes, describing latitudinal and longitudinal transects, and to test the influence of different physical site-specific variables (climate, vegetation, size of the source area etc.) on land and transport-deposition processes into the marine realm.

This study aims to provide a novel sediment-based proxy for a key physical parameter unlocking specific technical and theoretical problems related to fire research; it may also help to better understand local to regional processes controlling the fire signal and contextualize current and past environmental changes.

How to cite: Haliuc, A., Daniau, A.-L., and team members, B.: Calibrating microcharcoal in recent marine sediments: implications to reconstruct paleofire regimes on African continent, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2575, https://doi.org/10.5194/egusphere-egu21-2575, 2021.

BG1.6 – Mobilization of permafrost material to aquatic systems and its biogeochemical fate

EGU21-11121 | vPICO presentations | BG1.6

Carbon degradation in Subarctic organic permafrost (peat plateaus) after thawing – what constraints CO2 and CH4 production? 

Sigrid Trier Kjær, Nora Nedkvitne, Sebastian Westermann, Inge Althuizen, and Peter Dörsch

Rapid warming in Subarctic areas releases large amounts of frozen carbon which can potentially result in large CO2 and CH4 emissions to the atmosphere. In Northern Norway vast amount of carbon are stored in peat plateaus, but these landscape elements have been found to decrease laterally since at least the 1950s. Peat plateaus are very sensitive to climate change as the permafrost is relatively warm compared to permafrost found in the arctic. So far, only limited information is available about potential degradation kinetics of organic carbon in these ecosystems. We sampled organic matter from depth profiles along a well-documented chronosequence of permafrost degradation in Northern Norway. After thawing over-night, we incubated permafrost and active layer for up to 3 months at 10°C. To determine factors constraining degradation, we measured gas kinetics (O2, CO2, CH4) under different conditions (oxic/anoxic, loosely packed/stirred suspensions in water, with altered DOC content and nutrient amendments) and related them to pH, DOC, element (C, N, P, S) and δ13C and δ15N signatures of the peat. Organic matter degradation was strongly inhibited in the absence of oxygen. By contrast, CH4 production or release seemed to be related to soil depth rather than incubation conditions and was found to be highest in samples from the transition zone between active layer and permafrost. Degradation rates and their dependencies on peat characteristics will be compared with permafrost characteristics along the chronosequence and additional experiments exploring the role of O2, DOC and other nutrients for carbon degradation will be discussed.

How to cite: Kjær, S. T., Nedkvitne, N., Westermann, S., Althuizen, I., and Dörsch, P.: Carbon degradation in Subarctic organic permafrost (peat plateaus) after thawing – what constraints CO2 and CH4 production? , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11121, https://doi.org/10.5194/egusphere-egu21-11121, 2021.

EGU21-8387 | vPICO presentations | BG1.6

Sensitivity of pond methane emissions in the Lena River Delta to climate changes in new model MeEP

Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, and Victor Brovkin

Permafrost ponds are a steady source of methane. However, it is difficult to assess the sensitivity of pond methane emissions to ongoing warming and climate-change-induced drainage, because pond methane emissions show large temporal and spatial variability already on local scale.
We study this sensitivity on the landscape level with a new process-based model for Methane Emissions from Ponds (MeEP model), which simulates the three main pathways of methane emissions (diffusion, plant-mediated transport and ebullition) as well as the temperature profile of the water column and the surrounding soils. The model was set up for the polygonal tundra in the Lena River Delta. Due to a temporal resolution of one hour, it is capable of capturing the diurnal, day-to-day and seasonal variability in methane fluxes. MeEP also considers one of the main drivers of spatial variability - ground heterogeneity. Depending on where ponds form in the polygonal tundra, they can be classified as ice-wedge, polygonal-centre or merged-polygonal ponds. In MeEP, each of these pond types is simulated separately and the representation of these ponds was informed by dedicated measurements.
The model performance is validated against eddy-covariance measurements of methane fluxes and against in-situ measurements of the aqueous methane concentration, both obtained on Samoylov Island.  We will present results regarding the sensitivity of modeled methane emissions from ponds to warming and drainage on the landscape scale.

How to cite: Rehder, Z., Kleinen, T., Kutzbach, L., Stepanenko, V., and Brovkin, V.: Sensitivity of pond methane emissions in the Lena River Delta to climate changes in new model MeEP, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8387, https://doi.org/10.5194/egusphere-egu21-8387, 2021.

EGU21-9535 | vPICO presentations | BG1.6

Seasonal methane and carbon dioxide emissions from the coastal nearshore of the Kolyma river, Siberia.

Juri Palmtag, Cara Manning, Michael Bedington, Matthias Fuchs, Mathias Göckede, Guido Grosse, Bennet Juhls, Paul Lefebvre, Gesine Mollenhauer, Olga Ogneva, Paul Overduin, Luca Polimene, Jens Strauss, Ricardo Torres, Nikita Zimov, and Paul Mann

Arctic rivers deliver ≈11% of global river discharge into the Arctic Ocean, while this ocean represents only ≈1% of the global ocean volume. Ongoing climate warming across the Arctic, and specifically Siberia, has led to regional-scale changes in precipitation patterns, greater rates of permafrost thaw and active layer deepening, as well as enhanced riverbank and coastal erosion. Combined, these climatic and cryospheric perturbations have already resulted in increased freshwater discharge and changes to constituent loads (e.g. dissolved organic carbon - OC) supplied from land to the Arctic Ocean.

To date, the majority of studies examining terrestrial organic matter (OM) delivery to the Arctic Ocean have focused almost entirely on freshwater (riverine) or fully-marine environments and been conducted during late summer seasons – often due to logistical constraints. Despite this, an improved understanding of how OC is transformed, mineralised and released during transit through the highly reactive nearshore estuarine environment is critical for examining the fate and influence of terrestrial OM on the Arctic Ocean. Capturing seasonality over the open water period is also necessary to identify current OM fluxes to the ocean vs the atmosphere, and aid in constraining how future changes may modify them.

Here we focus upon carbon dioxide (CO2) and methane (CH4) measurements collected during six repeated transects of the Kolyma River and nearshore zone (covering ~120 km) from 2019. Transects spanned almost the entirety of the riverine open water season (June to September). We use these results, in parallel with gas concentrations derived from prior studies, to develop and validate a simple box-model of gas emissions from the nearshore zone.

Observations and model‐derived output data reveal that more than 50% of the cumulative gross delivery of CH4 and CO2 to the coastal ocean occurred during the freshet period with dissolved CH4 concentrations in surface water reaching 660 Nanomole per liter [nmol/l]. These results demonstrate the relevance of seasonal dynamics and its spatial variability which are needed in order to estimate greenhouse gas fluxes on an annual basis.

More accurate understanding of land-ocean carbon fluxes in the Arctic is therefore crucial to mitigate the effects of climate change and to support the decisions of policy makers.

How to cite: Palmtag, J., Manning, C., Bedington, M., Fuchs, M., Göckede, M., Grosse, G., Juhls, B., Lefebvre, P., Mollenhauer, G., Ogneva, O., Overduin, P., Polimene, L., Strauss, J., Torres, R., Zimov, N., and Mann, P.: Seasonal methane and carbon dioxide emissions from the coastal nearshore of the Kolyma river, Siberia., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9535, https://doi.org/10.5194/egusphere-egu21-9535, 2021.

EGU21-5766 | vPICO presentations | BG1.6

Potential greenhouse gas production by organic matter decomposition in thawing subsea permafrost

Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Inna Nybom, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson

Subsea permafrost extends over vast areas across the East Siberian Arctic Ocean shelves and might harbor a large and vulnerable organic matter pool. Field campaigns have observed strongly elevated concentrations of CH4 in seawater above subsea permafrost that might stem from microbial degradation of thawing subsea permafrost organic matter, from release of CH4 stored within subsea permafrost, from shallow CH4 hydrates or from deeper thermogenic/petrogenic CH4 pools. We here assess the potential production of CH4, as well as CO2 and N2O by organic matter degradation in subsea permafrost after thaw. To that end, we employ a set of subsea permafrost drill cores from the Buor-Khaya Bay in the south-eastern Laptev Sea where previous studies have observed a rapid deepening of the ice-bonded permafrost table. Preliminary data from an ongoing laboratory incubation experiment suggest the production of both CH4 and CO2 by decomposition of thawed subsea permafrost organic matter, while N2O production was negligible. These data will be combined with detailed biomarker analysis to constrain the vulnerability of subsea permafrost organic matter to degradation to greenhouse gases upon thaw.

How to cite: Wild, B., Shakhova, N., Dudarev, O., Ruban, A., Kosmach, D., Tumskoy, V., Tesi, T., Joß, H., Nybom, I., Alexanderson, H., Jakobsson, M., Mazurov, A., Semiletov, I., and Gustafsson, Ö.: Potential greenhouse gas production by organic matter decomposition in thawing subsea permafrost, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5766, https://doi.org/10.5194/egusphere-egu21-5766, 2021.

EGU21-4013 | vPICO presentations | BG1.6

First experimental estimation of the methane ebullition fraction in water column from the bottom to the surface: application for the East Siberian Arctic Shelf

Denis Chernykh, Denis Kosmach, Anton Konstantinov, Aleksander Salomatin, Vladimir Yusupov, Natalia Shakhova, Örjan Gustafsson, Elena Gershelis, Oleg Dudarev, and Igor Semiletov

The key area of the Arctic ocean for atmospheric venting of CH4 is the East Siberian Arctic Shelf (ESAS). The ESAS covers >2 million square kilometers (equal to the areas of Germany, France, Great Britain, Italy, and Japan combined). This vast yet shallow region has recently been shown to be a significant modern source of atmospheric CH4, contributing annually no less than terrestrial Arctic ecosystems; but unlike terrestrial ecosystems, the ESAS emits CH4 year-round due to its partial openness during the winter when terrestrial ecosystems are dormant. Emissions are determined by and dependent on the current thermal state of the subsea permafrost and environmental factors controlling permafrost dynamics. Releases could potentially increase by 3-5 orders of magnitude, considering the sheer amount of CH4 preserved within the shallow ESAS seabed deposits and the documented thawing rates of subsea permafrost reported recently.

The purpose of this work is to determine the methane ebullition fraction in water column: from the bottom to the surface, which is a key to evaluate quantitively methane release from the ESAS bottom through the water column into the atmosphere. A series of 351 experiments was carried out at to determine the quantity of methane (and other greenhouse gases) delivered by bubbles of various sizes through a water column into the atmosphere. It has been shown for depth up to 22 m (about 30% of the ESAS) that pure methane bubbles, depending on their diameter and water salinity, transported to the surface from 60.9% to 85.3% of gaseous methane.

This work was supported in part by grants from Russian Scientific Foundation (№ 18-77-10004 to DCh, DK, AK, № 19-77-00067 to EG), the Ministry of Science and Higher Education of the Russian Federation (grant ID: 075-15-2020-978 to IS). The work was carried out as a part of Federal[ПW1]  assignment № АААА-А17-117030110031-6 to AS.

How to cite: Chernykh, D., Kosmach, D., Konstantinov, A., Salomatin, A., Yusupov, V., Shakhova, N., Gustafsson, Ö., Gershelis, E., Dudarev, O., and Semiletov, I.: First experimental estimation of the methane ebullition fraction in water column from the bottom to the surface: application for the East Siberian Arctic Shelf, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4013, https://doi.org/10.5194/egusphere-egu21-4013, 2021.

EGU21-13428 | vPICO presentations | BG1.6

Methane oxidation processes in sediment of the Laptev and East Siberian Seas indicated from microbial lipids and carbon isotope composition

Weichao Wu, Henry Holmstrand, Birgit Wild, Natalia Shakhova, Denis Kosmach, Igor Semiletov, and Örjan Gustafsson

The East Siberian Arctic Shelf is an integrated coastal sea system with complex biogeochemical processes influenced by underlying subsea permafrost, hydrates and thermogenic compartments. Methane is released from the marine sediments to the water column, which serves as an interphase between the lithosphere and the atmosphere. Before escaping into water column and atmosphere, methane has potentially experienced extensive aerobic and anaerobic oxidation by microbes in the marine sediment. In particular, the aerobic process is assumed to be dominant in the surface oxic/suboxic marine sediment (upper 1cm) after anaerobic processes in deeper zones. However, these processes are insufficiently understood in sediments of the Arctic Ocean. To probe these, we investigated the microbial lipids and their stable carbon composition in surface marine sediment (upper 1 cm) from two active methane seep areas in the Laptev Sea and the East Siberian Sea.

The microbial fatty acids (C12 to C18 fatty acids) were relatively enriched in 13C (δ13C -18.8 to -31.2‰) compared to that of dissolved CH4 in nearby bottom water (-54.6 to -29.7‰). This contrasts to previous reports of strongly depleted δ13C signals in microbial lipids (e.g., -100‰) at active marine mid-ocean ridges and mud volcanoes, from quite different ocean areas. The absence of a depleted δ13C signal in these general microbial biomarkers suggest that these reflect substrates other than methane such as other parts of the sediment organic matter, indicated by the stronger correlation of δ13C between fatty acids and bulk organic carbon than that between fatty acid and CH4. However, the putatively more specific biomarkers for aerobic methanotrophic bacteria (mono-unsaturated C16 and C18 fatty acids) show a distinct pattern in the Laptev Sea and East Siberian Sea: C16:1 and C18:1 were enriched in 13C (up to 4.5 ‰) relative to their saturated analogs in the Laptev Sea; whereas, C18:1 was depleted in 13C (up to 4.5 ‰) compared to C18 in the East Siberian Sea. This could be because the relative populations of Type I and II methanotrophs were different in the two areas with different carbon assimilation pathways. Our results cannot exclude a slowly active aerobic methanotrophs at methane seeps in the East Siberian Arctic Ocean and thus call for more information from molecular microbiology.

How to cite: Wu, W., Holmstrand, H., Wild, B., Shakhova, N., Kosmach, D., Semiletov, I., and Gustafsson, Ö.: Methane oxidation processes in sediment of the Laptev and East Siberian Seas indicated from microbial lipids and carbon isotope composition, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13428, https://doi.org/10.5194/egusphere-egu21-13428, 2021.

EGU21-12002 | vPICO presentations | BG1.6

Chemical characterization of water extractable organic matter from plants: A better understanding of soil dissolved organic matter sources and path in permafrost thawing regions 

Alienor Allain, Marie Anne Alexis, Yannick Agnan, Guillaume Humbert, Edith Parlanti, Mahaut Sourzac, Amélie Guittet, Christelle Anquetil, Emmanuel Aubry, Véronique Vaury, and Maryse Rouelle

In present permafrost thawing context, dissolved organic matter (DOM) is a key component that controls organic and inorganic material transfer from soil to hydrographic systems. In terrestrial environments, vegetation is the main source of DOM, before degradation by microorganisms. DOM stoichiometry, aromaticity, composition or quantity control its fate, and referential data characterizing the initial DOM originating from plant biomass leaching are scarce.

To better understand its dynamic, this study focuses on the characterization of water extractable organic matter (“WEOM”: a proxy of DOM) of main plant species belonging to different plant functional types typical of the subarctic region (lichen, willow, birch, and Eriophorum).

Dissolved organic carbon (C) and dissolved nitrogen (N) contents of WEOM samples were measured, as well as organic C and total N contents of ground plant leaf samples (“bulk” samples). C/N ratio of bulk samples and WEOM fractions were compared to evaluate the potential extractability of C and N. The composition of both WEOM and bulk samples were characterized through solid state 13C Nuclear Magnetic Resonance (NMR) and compared. Absorbance and 3D fluorescence measurements were also performed on WEOM samples to characterize their optical properties.

WEOM is significantly more extractable in vascular plants compared to non-vascular ones. Moreover, N is more extractable than C in all lichen species and Eriophorum, whereas C is as extractable as N in Salix and Betula pubescens samples. Betula nana is the only species with C more extractable than N.

The solid state 13C NMR spectra of bulk sample are very similar to the spectra of corresponding WEOM, except for Eriophorum. For this species, carbonyl C contributes to 5% of bulk sample spectrum, compared to 14% of the WEOM spectrum.

Based on absorbance measurements, optical index were calculated: E2/E3 is significantly higher for non-vascular plants, whereas E2/E4, E3/E4 and slope ratio (SR) do not show significant difference between plant functional types. In 3D fluorescence spectra, the contribution of “Protein-like” peak is lower for vascular plants compared to lichens, and is maximum for Eriophorum.

Our results highlighted the influence of plant species on the quantity and quality of produced DOM: WEOM production process is different between vegetation species due to the quality, especially hydrophobicity and extractability of bulk OM components. The high contribution of C-N bonds in WEOM of Eriophorum might be especially important for potential complexation between DOM and trace elements like cadmium (Nigam et al., 2000). Likewise, aromatic C observed only in vascular plant WEOM samples are known to bond have a good affinity with many elements like iron, vanadium and chromium (Gangloff et al., 2014). Under climate change, vegetation cover of the Arctic region is evolving with the moving of the treeline northward and a local increase of the proportion of shrubs (Berner et al., 2013). Accordingly, significant change of DOM composition are expected with potential influence on organic and inorganic material dynamics.

Berner et al., (2013). Glob. Chang. Biol. 19:3449-3462

Gangloff et al., (2014). Geochim. Cosmochim. Ac. 130:21-41  

Nigam et al., (2000). Chem. Speciation Bioavailability 12:125-132

How to cite: Allain, A., Alexis, M. A., Agnan, Y., Humbert, G., Parlanti, E., Sourzac, M., Guittet, A., Anquetil, C., Aubry, E., Vaury, V., and Rouelle, M.: Chemical characterization of water extractable organic matter from plants: A better understanding of soil dissolved organic matter sources and path in permafrost thawing regions , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12002, https://doi.org/10.5194/egusphere-egu21-12002, 2021.

EGU21-15020 | vPICO presentations | BG1.6

Links between hydrological patterns and lateral carbon fluxes: a comparison between a wet and a drained site on a Siberian permafrost floodplain tundra

Sandra Raab, Mathias Goeckede, Jorien Vonk, Anke Hildebrandt, and Martin Heimann

As a major reservoir for organic carbon, permafrost areas play a pivotal role in global climate change. Vertical carbon fluxes as well as lateral transport from land to groundwaters and surface waters towards the ocean are highly dependent on various abiotic and biotic factors. These include for example temperature, groundwater depth, or vegetation community. During summer months, when soils thaw and lateral carbon transport within suprapermafrost groundwater bodies and surface waters occurs, flow patterns and therefore carbon redistribution may differ significantly between dry and wet conditions. Since dry soil conditions are expected to become more frequent in the future, associated shifts in carbon transport patterns play an important role in quantifying the carbon input into the water body linked to permafrost degradation.

This study focuses on hydrological and carbon transport patterns within a floodplain tundra site near Chersky, Northeast Siberia. We compared a wet control site with a site affected by a drainage ring built in 2004 to study the effect of water availability on carbon production and transport. Water table depths at both sites were continuously monitored with a distributed sensor network over the summer seasons 2016-2020. At several locations, water samples were collected in 2016 and 2017 to determine organic carbon concentrations (DOC) as well as carbon isotopes (e.g. ∆14C-DOC). Suprapermafrost groundwater and surface water from the drainage ditch and the nearby Ambolikha river were included in the analysis.

Our results focus on the physical hydrological conditions as well as on DOC and ∆14C-DOC observations. The spatio-temporal dynamics of water table depth revealed systematic differences between control and drained sites. The drained area showed a stronger decrease in water tables towards peak summer season in July and stronger reactions to precipitation events. The control area responded less pronounced to short-term changes. At the drained site, the main groundwater flow direction was stable throughout the measurement period. The control site was characterized by a shift in water flow confluence depending on increasing and decreasing water levels. DOC and ∆14C-DOC data showed that the highest concentrations of organic carbon and oldest DOC can be found in late summer. DOC concentrations were higher at the drained site compared to the wet site. We will show that the distribution of dissolved carbon can be directly related to hydrological flow patterns, and that understanding of these redistribution processes is essential for interpreting the carbon budget in disturbed permafrost.

 

How to cite: Raab, S., Goeckede, M., Vonk, J., Hildebrandt, A., and Heimann, M.: Links between hydrological patterns and lateral carbon fluxes: a comparison between a wet and a drained site on a Siberian permafrost floodplain tundra, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15020, https://doi.org/10.5194/egusphere-egu21-15020, 2021.

EGU21-11539 | vPICO presentations | BG1.6

Mobilization of particulate organic matter and minerals in Zackenberg valley, Greenland

Lisa Bröder, Catherine Hirst, Sophie Opfergelt, Julie Lattaud, Negar Haghipour, Timothy Eglinton, Jorien Vonk, and Julien Fouché

Ongoing warming of the Northern high latitudes has intensified abrupt thaw processes throughout the permafrost zone. The resulting terrain disturbances are prone to release large amounts of particulate organic matter (OM) from deeper permafrost soils with thus far poorly constrained decay kinetics. Organo-mineral interactions may inhibit OM decomposition, thereby mediating the release of carbon to the atmosphere. Yet how these interactions evolve upon release and during transport along the fluvial continuum is still insufficiently understood. Here we investigate the mobilization of particulate OM from disturbed permafrost soils to the aquatic environment in the Zackenberg watershed in Northeastern Greenland. We collected soil samples in a thermo-erosion gully and a retrogressive thaw slump, as well as suspended solids and stream sediments along the glacio-nival Zackenberg River, including its tributaries, and a small headwater stream (Grænselv) affected by abrupt permafrost thaw. To evaluate the organic and mineral material transported, we compare mineral element and organic carbon (OC) concentrations, bulk carbon isotopes (13C and 14C), together with source-specific molecular biomarkers (plant-wax lipids and branched glycerol dialkyl glycerol tetraethers, brGDGTs) for the suspended load with their soil and sediment counterparts.

Preliminary results show large contrasts in OC concentrations as well as Δ14C between the glacio-nival river and the headwater stream, as well as between the different thaw features. The retrogressive thaw slump mobilizes relatively OC-poor material with very low Δ14C signatures suggesting a petrogenic contribution, while soil samples from the thermo-erosion gully had higher OC concentrations and Δ14C values. For Grænselv, Δ14C values of the particulate OC were lower close to the eroding stream bank, whereas the Zackenberg main stem displayed fairly constant Δ14C values, with some of the Zackenberg tributaries delivering relatively organic-rich particles low in Δ14C.

Molecular biomarker analyses will provide additional information on specific OM sources, while X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) analyses on the soils, sediments and suspended mineral load will give more detailed insights into the composition of the mineral matrices. By combining these analytical methods, we aim to improve our understanding of the interactions between minerals and OM and thereby help to constrain the fate of mobilized OM upon permafrost thaw.

How to cite: Bröder, L., Hirst, C., Opfergelt, S., Lattaud, J., Haghipour, N., Eglinton, T., Vonk, J., and Fouché, J.: Mobilization of particulate organic matter and minerals in Zackenberg valley, Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11539, https://doi.org/10.5194/egusphere-egu21-11539, 2021.

EGU21-13611 | vPICO presentations | BG1.6

Experimental and numerical investigation of microparticle transport and deposition in the context of permafrost thaw

Madiha Khadhraoui, John Molson, and Najat Bhiry

In natural porous environments, soil particle migration during flow plays an important role in soil stability and pollutant transport by affecting soil mechanical properties and water quality. In northern areas, permafrost degradation alters the subsurface connection pathways leading to mass movements and rearrangement of the soil. To date, few models have included the influence of temporal and spatial variations of flow velocity and porous media heterogeneity on the transport and deposition of suspended particles.

In this study, laboratory column experiments and a numerical model were used to investigate these issues. The laboratory column experiments were carried out under different flow rates and the effect of porous media heterogeneity was investigated using different grain size distributions. The soil columns were reconstituted from several samples taken in the studied site, the Tasiapik Valley, located in the discontinuous permafrost zone near Umiujaq, Nunavik, Québec. During the experiments, the spatio-temporal distribution of the porosity and the hydraulic conductivity was monitored using X-ray computed tomography imaging (CT-SCAN). Using the pore water velocity computed from the groundwater flow solution, the advection–dispersion transport equation with a first-order kinetic term for particle deposition was solved using the finite element model Heatflow/Smoker. The dependency of the attachment kinetics on the pore water velocity and on the porous media heterogeneity was included. The model was tested and validated with an analytical solution and calibrated with the experimental data. Our simulations highlight the roles of hydrodynamic conditions and soil characteristics on particle transport and deposition mechanisms and the susceptibility of the porous medium to thermo-suffosion in permafrost environments.

How to cite: Khadhraoui, M., Molson, J., and Bhiry, N.: Experimental and numerical investigation of microparticle transport and deposition in the context of permafrost thaw, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13611, https://doi.org/10.5194/egusphere-egu21-13611, 2021.

EGU21-11126 | vPICO presentations | BG1.6

Mercury in permafrost landscapes in the Norwegian Subarctic – current status and potential for increased release and methylation by permafrost thaw

Nora Nedkvitne, Sigrid Trier Kjær, Heleen de Wit, Sebastian Westermann, and Peter Dörsch

A vast amount of global mercury is believed to be stored in the Arctic, much of which is frozen in permafrost. Increasing temperatures in the Subarctic, leading to permafrost thaw, alter the global mercury cycle by mobilizing and releasing stored mercury. This is of concern since it allows mercury to spread though air- and waterways. Moreover, mobilized mercury in combination with increased microbial activity can increase the production of methyl mercury (MeHg), a highly potent neurotoxin which readily bioaccumulates throughout food webs. We report current levels of total mercury (HgT) and MeHg for permafrost cores, ambient surface waters, and active layer pore waters across a gradient of sporadic permafrost (peat plateaus) ranging from coastal-mild to inland-cold climate in the northernmost part of continental Europe (Finnmark, Norway). To investigate the effect of microbial activity on mercury methylation, permafrost samples were thawed and subjected to long-term incubation under oxic, and oxic/anoxic conditions, with and without additional native DOC and extraneous C, N, P, S, and Hg additions. Microbial activity was monitored by CO2 and CH4 production. Our field samples indicate that the %MeHg of HgT are higher in the outlet of the peat plateau than in the inlet and that streams have a significantly higher %MeHg of HgT than ponds. In contrast, thermokarst ponds (collapsed peat plateaus) have a significantly higher concentration of HgT than streams. In the incubation experiments, presence or absence of oxygen had the largest impact on DOC and dissolved HgT accumulation; soil slurries incubated under anoxic conditions yielded higher concentrations of both DOC and dissolved HgT compared to oxic conditions. Selected results from ongoing experiments will be presented.

How to cite: Nedkvitne, N., Trier Kjær, S., de Wit, H., Westermann, S., and Dörsch, P.: Mercury in permafrost landscapes in the Norwegian Subarctic – current status and potential for increased release and methylation by permafrost thaw, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11126, https://doi.org/10.5194/egusphere-egu21-11126, 2021.

EGU21-10165 | vPICO presentations | BG1.6

Persistent organic pollutants distribution of small coastal catchments at the Canadian Beaufort coast.

Rachele Lodi, Julia Wagner, Gustaf Hugelius, Victoria Sophie Martin, Niek Speetjens, Andreas Richter, Jacopo Gabrieli, and Carlo Barbate

Recent decades have shown phases of very rapid warming in the Canadian Arctic. This raises a concern, also in reference to potential changes in permafrost active layer deepening, enhancing the fact that seawater, snow and soils are becoming important secondary sources remobilizing persistent organic pollutants (POPs). This work investigates the potential influence of permafrost on POPs distribution in the soils of two small coastal catchments at the Canadian Beaufort coast. One catchment is located south of Herschel Island on the mainland and was covered by the Laurentide ice sheet during the last glacial maximum (LGM), the second catchment is located westerly at Komakuk Beach and was ice-free during the LGM.

Soils were sampled by horizon in the Active Layer from an open soil pit and by coring into the permafrost, near the top of the permafrost table and at 90 cm depth from the soil surface (99 samples form Ptarmigan Bay and 89 from Komakuk Beach). The total sampling depth was 1,0 m (including Active Layer and Permafrost). A random distribution of the points over the areas guaranteed the sampling over different Landforms, aiming to understand the contaminant concentration and distribution. Quantification of PAHs, PCBs, HCB was performed using GC-MS technique, a 7890A gas chromatographer coupled with a 5975C MSD System, Agilent Technologies, at CNR-ISP Venice, Italy.

Preliminary results confirm that the mechanism responsible for the transport of POPs into the soil are believed to be gravity drainage and capillary suction into fissures and cracks. An accumulation of PAHs has been detected in the permafrost transient layer. It is probably related, as demonstrate in literature, to the accumulation and transport of soil organic carbon influence, as well as the changing in hydraulic barriers. The role of cryoturbation in the vertical transport and accumulation of POPs is also considered and discussed.

The study has been conducted thanks to Grant Agreement number: 773421 — Nunataryuk — H2020-BG-2016-2017/H2020-BG-2017-1 ‘Permafrost thaw and the changing arctic coast: science for socio-economic adaptation — Nunataryuk’

How to cite: Lodi, R., Wagner, J., Hugelius, G., Martin, V. S., Speetjens, N., Richter, A., Gabrieli, J., and Barbate, C.: Persistent organic pollutants distribution of small coastal catchments at the Canadian Beaufort coast., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10165, https://doi.org/10.5194/egusphere-egu21-10165, 2021.

EGU21-11184 | vPICO presentations | BG1.6

The SPLASH Action Group – Towards standardized sampling strategies along the soil-to-hydrosystems continuum in permafrost landscapes

Julien Fouche, Sarah Shakil, Catherine Hirst, Lisa Bröder, Yannick Agnan, Ylva Sjöberg, and Frédéric Bouchard

The Action Group called ‘Standardized methods across Permafrost Landscapes: from Arctic Soils to Hydrosystems’ (SPLASH), funded by the International Permafrost Association, is a community-driven effort aiming to provide a suite of standardized field strategies for sampling mineral and organic components in soils, sediments, surface water bodies and coastal environments across permafrost landscapes. This unified approach will allow data to be shared and compared, thus improving our understanding of the processes occurring during lateral transport in circumpolar Arctic watersheds. This is an international and transdisciplinary effort aiming to provide a fieldwork “tool box” of the most relevant sampling schemes and sample conservation procedures for mineral and organic permafrost pools.

With climate change, permafrost soils are undergoing drastic transformations. Both localized abrupt thaw (thermokarst) and gradual ecosystem shifts (e.g., active layer thickening, vegetation changes) drive changes in hydrology and biogeochemical cycles (carbon, nutrients, and contaminants). Mineral and organic components interact along the “lateral continuum” (i.e., from soils to aquatic systems) changing their composition and reactivity across the different interfaces. The circumpolar Arctic region is characterized by high spatial heterogeneity (e.g., geology, topography, vegetation, and ground-ice content) and large inter-annual and seasonal variations in local climate and biophysical processes. Common sampling strategies, applied in different seasons and locations, could help to tackle the spatial and temporal complexity inextricably linked to biogeochemical processes. This unified approach developed in permafrost landscapes will allow us to overcome the following challenges: (1) identifying interfaces where detectable changes in mineral and organic components occur; (2) allowing spatial comparison of these detectable changes; and (3) capturing temporal (inter-/intra-annual) variations at these interfaces. In order to build on the great effort to better assess the permafrost feedback to climate change, there is an urgent need for a set of community-based protocols to capture changes the dynamics of organics and minerals during their lateral transport.

Here, we present the first results from an online survey recently conducted among researchers from different disciplines. The survey inputs provide valuable information about the common approaches currently applied along the “soil-to-hydrosystems” continuum and the specific challenges associated with permafrost studies. These results about the ‘WHAT, WHERE, WHEN, and HOW’ of field sampling (e.g., sample collection, filtration, conservation...) allow for identifying the most relevant sampling strategies and also the current knowledge gaps. Finally, we present examples of the protocols available to investigate organic and mineral components from soils to marine environments, on which a synoptic sampling strategy can be built. All forthcoming contributions from our community are still welcome, helping the SPLASH team to fill up the most adapted tool box to Arctic permafrost landscapes.

How to cite: Fouche, J., Shakil, S., Hirst, C., Bröder, L., Agnan, Y., Sjöberg, Y., and Bouchard, F.: The SPLASH Action Group – Towards standardized sampling strategies along the soil-to-hydrosystems continuum in permafrost landscapes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11184, https://doi.org/10.5194/egusphere-egu21-11184, 2021.

EGU21-13268 | vPICO presentations | BG1.6

Sensitivity of organic carbon fluxes from Arctic coastal erosion to climate change

David Marcolino Nielsen, Patrick Pieper, Victor Brovkin, Paul Overduin, Tatiana Ilyina, Johanna Baehr, and Mikhail Dobrynin

When unprotected by sea-ice and exposed to the warm air and ocean waves, the Arctic coast erodes and releases organic carbon from permafrost to the surrounding ocean and atmosphere. This release is estimated to deliver similar amounts of organic carbon to the Arctic Ocean as all Arctic rivers combined, at the present-day climate. Depending on the degradation pathway of the eroded material, the erosion of the Arctic coast could represent a positive feedback loop in the climate system, to an extent still unknown. In addition, the organic carbon flux from Arctic coastal erosion is expected to increase in the future, mainly due to surface warming and sea-ice loss. In this work, we aim at addressing the following questions: How is Arctic coastal erosion projected to change in the future? How sensitive is Arctic coastal erosion to climate change?

To address these questions, we use a 10-member ensemble of climate change simulations performed with the Max Planck Institute Earth System Model (MPI-ESM) for the Coupled Model Intercomparison Project phase 6 (CMIP6) to make projections of coastal erosion at a pan-Arctic scale. We use a semi-empirical approach to model Arctic coastal erosion, assuming a linear contribution of its thermal and mechanical drivers. The pan-Arctic carbon release due to coastal erosion is projected to increase from 6.9 ± 5.4 TgC/year (mean estimate ± two standard deviations from the distribution of uncertainties) during the historical period (mean over 1850 -1950) to between 13.1 ± 6.7 TgC/year and 17.2 ± 8.2 TgC/year in the period 2081-2100 following an intermediate (SSP2.4-5) and a high-end (SSP5.8-5) climate change scenario, respectively. The sensitivity of the organic carbon release from Arctic coastal erosion to climate warming is estimated to range from 1.52 TgC/year/K to 2.79 TgC/year/K depending on the scenario. Our results present the first projections of Arctic coastal erosion, combining observations and Earth system model (ESM) simulations. This allows us to make first-order estimates of sensitivity and feedback magnitudes between Arctic coastal erosion and climate change, which can lay out pathways for future coupled ESM simulations.

 

How to cite: Nielsen, D. M., Pieper, P., Brovkin, V., Overduin, P., Ilyina, T., Baehr, J., and Dobrynin, M.: Sensitivity of organic carbon fluxes from Arctic coastal erosion to climate change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13268, https://doi.org/10.5194/egusphere-egu21-13268, 2021.

EGU21-9260 | vPICO presentations | BG1.6

Land-to-ocean fluxes and biolability of organic matter eroding along the Beaufort Sea coast near Drew Point, Alaska

Emily Bristol, Craig Connolly, Thomas Lorenson, Bruce Richmond, Anastasia Ilgen, R. Charles Choens, Diana Bull, Mikhail Kanevskiy, Go Iwahana, Benjamin Jones, Robert Spencer, and James McClelland

Coastal erosion rates are increasing along the Alaskan Beaufort Sea coast due to increases in wave action, the increasing length of the ice-free season, and warming permafrost. These eroding permafrost coastlines transport organic matter and inorganic nutrients to the Arctic Ocean, likely fueling biological production and CO2 emissions. To assess the impacts of Arctic coastal erosion on nearshore carbon and nitrogen cycling, we examined geochemical profiles from eroding coastal bluffs and estimated annual organic matter fluxes from 1955 to 2018 for a 9 km stretch of coastline near Drew Point, Alaska. Additionally, we conducted a laboratory incubation experiment to examine dissolved organic carbon (DOC) leaching and biolability from coastal soils/sediments added to seawater.

Three permafrost cores (4.5 – 7.5 m long) revealed that two distinct horizons compose eroding bluffs near Drew Point: Holocene age, organic-rich (~12-45% total organic carbon; TOC) terrestrial soils and lacustrine sediments, and below, Late Pleistocene age marine sediments with lower organic matter content (~1% TOC), lower carbon to nitrogen ratios, and higher δ13C-TOC values. Organic matter stock estimates from the cores, paired with remote sensing time-series data, show that erosional TOC fluxes from this study coastline averaged 1,369 kg C m−1 yr−1 during the 21st century, nearly double the average flux of the previous half century. Annual TOC flux from this 9 km coastline is now similar to the annual TOC flux from the Kuparuk River, the third largest river draining the North Slope of Alaska.

Experimental work demonstrates that there are distinct differences in DOC leaching yields and the fraction of biodegradable DOC across soil/sediment horizons. When core samples were submerged in seawater for 24 hours, the Holocene age organic-rich permafrost leached the most DOC in seawater (~6.3 mg DOC g-1 TOC), compared to active layer soils and Late-Pleistocene marine-derived permafrost (~2.5 mg DOC g-1 TOC). Filtered leachates were then incubated aerobically in the dark for 26 and 90 days at 20°C to examine biodegradable DOC (i.e. the proportion of DOC lost due to microbial uptake or remineralization). Of this leached DOC, Late Pleistocene permafrost was the most biolabile over 90 days (31 ± 7%), followed by DOC from active layer soils (24 ± 5%) and Holocene-age permafrost (14% ± 3%). If we scale these results to a typical 4 m tall eroding bluff at Drew Point, we expect that ~341 g DOC m-2 will rapidly leach, of which ~25% is biodegradable. These results demonstrate that eroding permafrost bluffs are an increasingly important source of biolabile DOC, likely contributing to greenhouse gas emissions and marine production in the coastal environment.

How to cite: Bristol, E., Connolly, C., Lorenson, T., Richmond, B., Ilgen, A., Choens, R. C., Bull, D., Kanevskiy, M., Iwahana, G., Jones, B., Spencer, R., and McClelland, J.: Land-to-ocean fluxes and biolability of organic matter eroding along the Beaufort Sea coast near Drew Point, Alaska, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9260, https://doi.org/10.5194/egusphere-egu21-9260, 2021.

EGU21-1030 | vPICO presentations | BG1.6

Microbial utilization of terrigenous ancient carbon released to marine environments traced by compound specific radiocarbon dating

Manuel Ruben, Florence Schubotz, Hannah Marchant, Jens Hefter, Hendik Grotheer, Matthias Forwick, Witold Szczuciński, and Gesine Mollenhauer

Until two decades ago, ancient carbon was regarded as non-bioavailable substrate for organisms because it was synthesised, deposited, and once before (partially) degraded thousands to millions of years ago. Such aged organic matter is stored in terrestrial permafrost deposits or sedimentary bedrock, where it is locked up and remains disconnected from the active global carbon cycle. However, with changing climatic conditions, these organic matter reservoirs are being remobilised at faster rates by receding glaciers or permafrost thaw. During transport and after redeposition in newly formed sediments, the ancient carbon can be accessed by micro-organisms, but whether or not the micro-organisms can utilize the ancient carbon is highly debated.

Using a combined approach of lipid biomarker analysis, lipidology, and radiocarbon dating of bulk organic matter as well as single compounds targeting intact polar lipid fatty acids (IPL-FAs), our research demonstrates that microbial communities utilise supposedly non-bioavailable ancient carbon for biosynthesis in Arctic marine fjord sediments. The availability of ancient carbon to the sub-surface microbes represents a carbon source that has not been accounted for in today’s climate models. These implications are of major importance concerning the increased thawing of high latitude permafrost soils, permafrost mobilization and coastal erosion due to anthropogenic climate change, catalysing associated positive feedback loops. In future research, we will use this approach to study the utilization of ancient carbon derived from North American and Siberian permafrost soils in Arctic shelf sediments to assess its importance in the global carbon budgets.

How to cite: Ruben, M., Schubotz, F., Marchant, H., Hefter, J., Grotheer, H., Forwick, M., Szczuciński, W., and Mollenhauer, G.: Microbial utilization of terrigenous ancient carbon released to marine environments traced by compound specific radiocarbon dating, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1030, https://doi.org/10.5194/egusphere-egu21-1030, 2021.

EGU21-13069 | vPICO presentations | BG1.6

Permafrost-derived dissolved organic matter character controls microbial community composition in Arctic coastal waters

Anders Dalhoff Bruhn, Colin A. Stedmon, Jérôme Comte, Atsushi Matsuoka, Neik Jesse Speetjens, George Tanski, Jorien E. Vonk, and Johanna Sjöstedt

Climate warming is accelerating erosion rates along permafrost-dominated Arctic coasts. To study the impact of erosion on marine microbial community composition and growth in the Arctic coastal zone, dissolved organic matter (DOM) from three representative glacial landscapes (fluvial, lacustrine and moraine) along the Yukon coastal plain, are provided as substrate to marine bacteria using a chemostat setup. Our results indicate that chemostat cultures with a flushing rate of approximately a day provide comparable DOM bioavailability estimates to those from bottle experiments lasting weeks to months. DOM composition (inferred from UV-Visible spectroscopy) and biodegradability (inferred from DOC concentration, bacterial production and respiration) significantly differed between the three glacial deposit types. DOM from fluvial and moraine deposit types shows more terrestrial characteristics with lower aromaticity (SR: 0.63 (±0.02), SUVA254: 1.65 (±0.06) respectively SR: 0.68 (±0.00), SUVA254: 1.17 (±0.06)) compared to the lacustrine deposit type (SR: 0.71 (±0.02), SUVA254: 2.15 (±0.05)). The difference in composition of DOM corresponds with the development of three distinct microbial communities, with a dominance of Alphaproteobacteria for fluvial and lacustrine deposit types (relative abundance 0.67 and 0.87 respectively) and a dominance of Gammaproteobacteria for moraine deposit type (relative abundance 0.88). Bacterial growth efficiency (BGE) is 66% for moraine-derived DOM, while 13% and 28% for fluvial-derived and lacustrine-derived DOM respectively. The three microbial communities therefore differ in their net effect on DOM utilization. The higher BGE value for moraine-derived DOM was found to be due to a larger proportion of labile colourless DOM. The results from this study, therefore indicate a substrate control of marine microbial community composition and activities, suggesting that the effect of permafrost thaw and erosion in the Arctic coastal zone will depend on subtle differences in DOM related to glacial deposit types. These differences further determines the speed and extent of DOM mineralization and thereby carbon channelling into biomass in the microbial food web. We therefore conclude that marine microbes strongly respond to the input of terrestrial DOM released during coastal erosion of Arctic glacial landscapes.

How to cite: Bruhn, A. D., Stedmon, C. A., Comte, J., Matsuoka, A., Speetjens, N. J., Tanski, G., Vonk, J. E., and Sjöstedt, J.: Permafrost-derived dissolved organic matter character controls microbial community composition in Arctic coastal waters, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13069, https://doi.org/10.5194/egusphere-egu21-13069, 2021.

Understanding optical characteristics, composition and source of dissolved organic matter (DOM) in rivers is important for region and global carbon cycle, especially in the inland rivers of the Qinghai-Tibet Plateau. In order to understand the impact of permafrost degradation on river DOM output under the background of climate warming, we selected 34 typical sub-basins in the upper reaches of the Heihe River basin on the Qinghai-Tibet Plateau according to the different proportion of permafrost area in the basin. Water samples were collected at the outlet of each sub-basin in October 2018, January, April and July 2019, respectively. The variations of DOM structure and source identification in different permafrost basin were investigated using UV–visible absorbance and fluorescence spectroscopy. The results showed that: (1) The concentration of C1 and C2 components and the values ​​of SUVA254, HIX and FI increased with the decrease of the percentage of permafrost area. , Indicating that with the degradation of frozen soil, the runoff path deepens, and more terrestrial organic matter is dissolved into the water body, which increases the terrestrial DOM in the river water, which in turn leads to the increase of DOM concentration, humification degree and aromaticity; (2) As the proportion of permafrost area decreases, the SR value shows a decreasing trend, indicating that the DOM of rivers in permafrost regions has the characteristics of low molecular weight and low humic acid, while the DOM of rivers in seasonally frozen soil regions is the opposite, indicating a frozen soil Melting may lead to the increase of terrestrial DOM in river water, and the increase in the depth of freeze-thaw cycle may release aromatic substances containing fused ring structure in frozen soil, which will enter the river with runoff, resulting in increased aromaticity and molecular weight of DOM in river water; (3) The concentrations of C1 and C2 components are positively correlated with vegetation coverage, and vegetation coverage is negatively correlated with the percentage of permafrost area. It shows that the degradation of frozen soil will increase the coverage of vegetation, thereby increasing the DOM from terrestrial sources. This study shows that the optical characteristics, composition and source of DOM have important indications for the degradation of permafrost under the background of global warming.

How to cite: Pan, Y. and Sun, Z.: The effect of permafrost area and types on flux and composition of dissolved organic matter in stream from alpine catchments, northeastern Qinghai-Tibet Plateau, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4288, https://doi.org/10.5194/egusphere-egu21-4288, 2021.

EGU21-8191 | vPICO presentations | BG1.6

Seasonal variations in the transport and biogeochemical turnover of mainly dissolved organic nitrogen from the Lena Delta to the nearshore Laptev Sea

Tina Sanders, Claudia Fiencke, Matthias Fuchs, Charlotte Haugk, Gesine Mollenhauer, Olga Ogneva, Juri Palmtag, Jens Strauss, Robyn Tuerena, and Kirstin Dähnke

Pan-arctic rivers transport a huge amount of nitrogen to the Arctic Ocean. The permafrost-affected soils around the Arctic Ocean containe a large reservoir of organic matter including carbon and nitrogen, which partly reach the river after permafrost thaw and erosion.

Our study aims to estimate the load of nitrogen supplied from terrestrial sources into the Arctic Ocean. Therefore, water, suspended particulate matter (SPM) and sediment samples were collected in the Lena Delta along a (~200 km) transect from the center of the Lena Delta to the open Laptev Sea in late winter (April) and in summer (August) 2019. In winter, 21 sample from 13 stations and in summer, 51 samples from 18 stations were taken. 9 of these sampling stations in the outer delta region were sampled in both seasons.

We measured organic and inorganic nitrogen and the 15N stable isotopes composition of all three sample types to determine sources, sinks and processes of nitrogen transformation during transport.

In winter, the nitrogen transported from the delta to the Laptev Sea were mainly dissolved organic nitrogen (DON) and nitrate, which occur in similar amounts. The load of nitrate increased slightly in the delta, while no changes to the isotope values of DON and nitrate were observe indicating a lack of biological activity in the winter season. However, lateral transport from soils was a likely source. In summer, nitrogen was mainly transported as DON and particulate nitrogen in the SPM fraction, including phytoplankton.

The nitrogen stable isotope values of the different nitrogen components ranges between 0.5 and 4.5 ‰, and were subsequently enriched from the soils via SPM/sediment and DON to nitrate. This indicates that nitrogen in the soils mainly originates from nitrogen fixation from the atmosphere. During transport and remineralisation, biogeochemical recycling via nitrification and assimilation by phytoplankton led to an isotopic enrichment in summer from organic to inorganic components. In the coastal waters of the Laptev Sea, the river waters are slowly mixed with marine nitrate containing waters from the Arctic Ocean, and a part of the riverine organic nitrogen is buried in the sediments.

We assume that the ongoing permafrost thawing and erosion will intensify and increase the transport of reactive nitrogen to coastal waters and will affect the biogeochemical cycling, e.g. the primary production.

How to cite: Sanders, T., Fiencke, C., Fuchs, M., Haugk, C., Mollenhauer, G., Ogneva, O., Palmtag, J., Strauss, J., Tuerena, R., and Dähnke, K.: Seasonal variations in the transport and biogeochemical turnover of mainly dissolved organic nitrogen from the Lena Delta to the nearshore Laptev Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8191, https://doi.org/10.5194/egusphere-egu21-8191, 2021.

EGU21-8005 | vPICO presentations | BG1.6

Particulate and dissolved organic carbon composition in the Lena River and its Delta, from Yakutsk to the Arctic Ocean.

Olga Ogneva, Gesine Mollenhauer, Matthias Fuchs, Juri Palmtag, Tina Sanders, Hendrik Grotheer, Paul Mann, and Jens Strauss

Rapid climate warming in the Arctic intensifies permafrost thaw, increases active layer depth in summer and enhances riverbank and coastal erosion. All of these cause additional release of organic matter (OM) into streams and rivers. OM will be (1) transformed and modified during transport and subsequently discharged into the Arctic Ocean, or (2) removed from the active cycling by sedimentation. Here, the nearshore zone (which includes deltas, estuaries and coasts) is of great importance, where the major transformation processes of terrestrial material take place. Despite the importance of deltas for the biogeochemical cycle, their functioning is poorly understood. For our study we examined the Lena River nearshore, which represents the world’s third largest delta and supplies the second highest annual water and sediment discharge into the Arctic Ocean. Running through almost the entirety of East Siberia from Lake Baikal to the Laptev Sea, the Lena River drains an area of ∼2,61×106 km2  with approximately 90% underlain by permafrost. Our aims were to investigate the spatial variation of OM concentration and isotopic composition during transit from terrestrial permafrost source to the ocean interface, and to compare riverine and deltaic OM composition. We measured particulate and dissolved organic carbon (POC and DOC) concentrations and their associated δ13C and ∆14C values in water samples collected along a ∼1500 km long Lena River transect from Yakutsk downstream to the river outlet into the Laptev Sea.

We find significant qualitative and quantitative differences between the OM composition in the Lena River main channel and its delta. Further, we found suspended matter and POC concentrations decreased during transit from river to the Arctic Ocean.  DOC concentrations in the Lena delta were almost 50% lower than OM from the main channel. We found that deltaic POC is depleted in 13C relative to fluvial POC, and that its 14C signature suggests a modern composition indicating phytoplankton origin. This observation likely reflects the difference in hydrological conditions between the delta and the river main channel, caused by lower flow velocity and average water depth. We propose that deltaic environments provide favorable growth conditions for riverine primary producers such as algae and aquatic plants. Deltaic DOC is depleted in 14C compared to riverine, especially in samples taken from the water surface, which indicates contributions from an additional old carbon stock source, specific for the Lena Delta. We suggest that this C is released from deltaic bank erosion and partly stays floating on the surface. In conclusion, we found a strong impact of deltaic processes on the fate and dominant signatures of OM discharged into the Arctic Ocean.

How to cite: Ogneva, O., Mollenhauer, G., Fuchs, M., Palmtag, J., Sanders, T., Grotheer, H., Mann, P., and Strauss, J.: Particulate and dissolved organic carbon composition in the Lena River and its Delta, from Yakutsk to the Arctic Ocean., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8005, https://doi.org/10.5194/egusphere-egu21-8005, 2021.

EGU21-14501 | vPICO presentations | BG1.6

Lena River biogeochemistry resolved by a high frequency monitoring: comparing a wet and a dry year

Bennet Juhls, Anne Morgenstern, and Pier Paul Overduin

River biogeochemistry at any location integrates environmental processes over a definable upstream area of the river watershed. Therefore, biogeochemical parameters of river water are powerful indicators of the climate change impact on the entire watershed and smaller parts of it.

The current warming of the Siberian Arctic is changing atmospheric forcing, precipitation, subsurface water storage, and runoff from rivers to the Arctic Ocean. A number of studies predict an increase of organic carbon export by rivers into the Arctic Ocean with further warming of the Arctic. Major potential drivers for this increase are the rise of river discharge and permafrost thaw, which mobilizes organic matter.

Here, we present results of high frequency monitoring program of the Lena River waters in the central part of its delta at the Laptev Sea. For the first time, a number of biogeochemical parameters such as dissolved organic carbon (DOC), coloured dissolved organic matter, electrical conductivity, temperature, and d18O isotopes were measured at an interval of every few days throughout the entire season. Currently, the data set comprises two complete years from the spring 2018 until the spring 2020, which were characterized by extremely high and low summer discharges, respectively. While 2018 to 2019 was the fourth highest on record from 1936 to present, resulting in an annual DOC flux of 6.8 Tg C yr-1, 2019 was the sixth lowest discharge year with a significantly lower DOC flux of 4.5 Tg C yr-1. Endmember analysis using electrical conductivity and d18O isotopes showed that rainwater transported less DOC in 2019 (1.5 Tg C) than in 2018 (2.9 Tg C) although the winter base flow and the snow and ice meltwater transported similar amounts.

The biogeochemical response of the Lena River water provides us with new insights into the catchment processes, including permafrost thaw and potential mobilization of previously frozen organic carbon. Our new monitoring program will serve 1) as a baseline to measure future changes and 2) as a training dataset to project changes under future climate scenarios.

How to cite: Juhls, B., Morgenstern, A., and Overduin, P. P.: Lena River biogeochemistry resolved by a high frequency monitoring: comparing a wet and a dry year, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14501, https://doi.org/10.5194/egusphere-egu21-14501, 2021.

EGU21-9734 | vPICO presentations | BG1.6

Radiocarbon patterns of dissolved and particulate organic carbon in the Yenisei River and its major tributaries

Daria Polosukhina, Anatoly Prokushkin, and Axel Steinhof

There is the significant progress in recent decades in the quantification of terrigenous carbon release to the rivers of the Arctic Ocean basin and characterization of its chemical properties, origin and age (e.g. Amon et al., 2012, Holmes et al., 2012). As warming accelerates the thawing permafrost may potentially increase the release the ancient carbon (Wild et al., 2019, Estop-Aragonés et al., 2020). However, more detailed analysis is still needed particularly in regard of the age of carbon exported from the diverse landscapes of large Arctic rivers and its transformation during the transport to the Arctic ocean.

In this study we analyzed D14C in dissolved organic carbon (DOC) and particulate organic carbon (POC) of the Yenisei River main channel and its major tributaries between 56oN and 68oN at freshet, summer and fall seasons. D14C was measured in Max Planck Institute for Biogeochemistry (Germany) by the accelerator mass spectrometry (AMS) system based on a 3MV Tandetron accelerator as described earlier (Steinhof et al., 2017).

 The oldest DOC in the Yenisei main stem was detected right after the Krasnoyarsk dam (56oN) and varied during a year without clear seasonal pattern in the range of the fraction of modern C (fMC) from 0.868 to 1.028. At freshet the fMC increased down stream up to 1.12 at 60oN and then remained relatively stable between 61o and 67.4oN (1.097±0.014). The major tributaries released DOC with fMC ranging from 1.0869 (Angara, 58oN) to 1.1046 (Kurejka (66.5oN), demonstrating more modern C with latitude. During the summer-fall season the Yenisei main channel and main Eastern tributaries contained older DOC (fMC = 0.968-1.054 and 0.949-1.045, respectively).

The POC of the Yenisei River was sufficiently older (fMC = 0.83-0.92) than DOC at all seasons and showed similar latitudinal pattern, i.e. the youngest POC was detected near 60-61oN (fMC > 0.90). The D14C-POC values in analyzed tributaries were increasing with latitude at freshet (R2 = 0.53) and summer lowflow (R2 = 0.33), except the largest Eastern tributaries, demonstrating the slight opposite pattern. On the other hand, increasingly more ancient POC was releasing by permafrost-dominated Eastern tributaries with increasing basin size. In opposite, D14C-POC of Western tributaries showed increased input of more recently fixed carbon. Our findings provided new data on the formation of terrigenic carbon fluxes to the Arctic Ocean from one of the largest river basins in the Arctic. This study was supported by RFBR grants #18-05-60203-Arktika. The radiocarbon analyses were kindly supported by Max-Plank Institute for biogeochemistry (ZOTTO project).

How to cite: Polosukhina, D., Prokushkin, A., and Steinhof, A.: Radiocarbon patterns of dissolved and particulate organic carbon in the Yenisei River and its major tributaries, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9734, https://doi.org/10.5194/egusphere-egu21-9734, 2021.

EGU21-5401 | vPICO presentations | BG1.6

Patterns of terrestrial carbon distribution in the Arctic Ocean deduced from the Circum-Arctic Sediment CArbon DatabasE (CASCADE)

Jannik Martens, Birgit Wild, Igor Semiletov, Oleg V. Dudarev, and Örjan Gustafsson

Climate change is expected to affect the release of organic carbon (OC) from Arctic permafrost systems and other terrestrial deposits. In addition to greenhouse gas emissions on land, a fraction of the organic matter is liberated to the aquatic cycle and migrates to the Arctic Ocean where it is either degraded or buried in sediments, foremost on the vast continental shelves.

The Arctic Ocean basin represents a large footprint for contemporary and past land-ocean transport of terrestrial OC. To this end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE; https://doi.org/10.5194/essd-2020-401) was established to curate and harmonize data on OC and total nitrogen concentrations, carbon isotopes (δ13C, Δ14C) and terrestrial biomarkers (long-chain n-alkanes, n-alkanoic acids and lignin phenols) in an openly accessible data collection. CASCADE was populated using carbon data from both published records and unpublished data from a large community collaboration. The first release of CASCADE includes observations at thousands of oceanographic stations distributed over the shelves and the central basins of the Arctic Ocean, and also includes hundreds of sediment cores, representing a range of time scales (decadal to orbital).

Mapping CASCADE data provides an overview to start deducing sources, pathways and deposition of carbon in different regions of the Arctic Ocean. Dual-isotope (δ13C, Δ14C) source apportionment of OC and 210Pb dating of centennial-scale sediment cores permit quantitative analysis of sequestration of carbon transported from permafrost systems and other deposits to the Arctic Ocean. Preliminary results suggest that surface soils (incl. permafrost active layer) are the dominating terrestrial carbon source to Circum-Arctic shelf sediments. The second largest terrestrial source are Pleistocene ice-rich permafrost compartments (Ice Complex Deposits), which stretch along coastlines of the Laptev, East Siberian, Chukchi and Beaufort Seas and are highly vulnerable to coastal erosion and thermal collapse in a warming climate.

Climate change is likely to cause permafrost thawing by further deepening of the seasonal active layer and accelerated coastal erosion of permafrost, as well as disturbance of the vast boreal peatlands. CASCADE provides an integrated perspective and benchmark for lateral carbon remobilization and will fuel further empirical and modelling studies of Arctic biogeochemical cycles.

How to cite: Martens, J., Wild, B., Semiletov, I., Dudarev, O. V., and Gustafsson, Ö.: Patterns of terrestrial carbon distribution in the Arctic Ocean deduced from the Circum-Arctic Sediment CArbon DatabasE (CASCADE), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5401, https://doi.org/10.5194/egusphere-egu21-5401, 2021.

EGU21-12328 | vPICO presentations | BG1.6

Multi-proxy evaluation of terrestrial organic matter degradation across the East Siberian Arctic Seas

Felipe Matsubara, Birgit Wild, Jannik Martens, Rickard Wennström, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson

    Ongoing global warming is expected to accelerate the thaw of permafrost on land and to increase the input of terrigenous organic matter (terrOM) into the Arctic Ocean through coastal erosion and river discharge. Large remobilization of terrOM into the East Siberian Arctic Shelf (ESAS) dominates the organic matter in surface sediments over large parts of the shelf and its degradation contributes to ocean acidification. Previous studies have focused on the source apportionment of terrOM and the releases of CO2 and CH4 to the atmosphere from terrOM degradation; this study focuses on its diagenetic state during cross-shelf transport, since degradation is the link between permafrost thawing and greenhouse gases emissions. This study probes the degradation status of different terrOM components across the ESAS using various molecular and isotopic proxies and hence evaluates their differences to infer degradation.

    High-molecular weight (HMW) lipid compounds and lignin phenols are exclusively produced by terrestrial plants, providing protection, strength and rigidity to the plant structure. Owing to diagenesis, microbial degradation leads to 1) loss of functional groups, thus the ratios of HMW n-alkanoic acids, HMW n-alkanols and sterols relative to HMW n-alkanes decrease; 2) reduction of unsaturated to saturated carbons, so ratios of stanols relative to stenols increase; 3) a higher formation of carboxylic acids in the lignin polymer and hence ratios of acids to aldehydes of vanillyl (Vd and Vl) and syringyl (Sd and Sl) increase.

    The concentrations of lipid- and lignin-derived products per sediment specific surface area decreased with offshore distance of the samples. During cross-shelf transport, the biomarker degradation proxies showed an increasing degradation for Sd/Sl, Vd/Vl, the “tannin-like” compound 3,5-dihydrobenzoic acid to vanillyl (3,5-Bd/V), β-sitostanol/ β-sitostenol and Carbon Preference Index (CPI) of HMW n-alkanes. Some other proxies showed no clear trend from inner to outer shelf and such inconsistent patterns are currently being investigated to better understand both the usefulness/response of different proxies and of the lability of terrOM in the ESAS. While β-sitostanol/β-sitostenol and CPI HMW n-alkane did not show strong differences between the East Siberian Sea and the Laptev Sea, Vd/Vl and Sd/Sl ratios indicated stronger degradation on the outer Laptev Sea and 3,5-Bd/V ratios indicated stronger degradation in the outer eastern East Siberian Sea. Such differences could reflect source properties of terrOM entering the ESAS, such as differences in source vegetation or transport pathway, i.e. coastal erosion or river discharge.

How to cite: Matsubara, F., Wild, B., Martens, J., Wennström, R., Dudarev, O., Semiletov, I., and Gustafsson, Ö.: Multi-proxy evaluation of terrestrial organic matter degradation across the East Siberian Arctic Seas, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12328, https://doi.org/10.5194/egusphere-egu21-12328, 2021.

EGU21-448 | vPICO presentations | BG1.6

Mobilization of aged carbon via meltwater floods and coastal erosion in the Canadian Arctic during the last deglaciation

Junjie Wu, Gesine Mollenhauer, Ruediger Stein, Jens Hefter, Kirsten Fahl, Hendrik Grotheer, Bingbing Wei, and Seung-Il Nam

It is consensus that the deglacial changes in ocean carbon storage and circulation play a role in regulating atmospheric CO2. However, emerging evidence suggests that the rapid deglacial CO2 rises can in part be attributed to large quantities of pre-aged carbon being released from degrading permafrost. In this study, we apply a radiocarbon approach on both terrestrial compounds (high molecular weight fatty acids; HWM-FA) and bulk organic carbon from a well-studied core ARA04C/37 from the Canadian Beaufort Sea. Based on our records, substantial amounts of ancient carbon were supplied from land to the ocean during the mid-late deglaciation (14.5-10 cal. kyr BP) by frequent high sediment flux events. Because the core location is strongly influenced by the Mackenzie River discharge, sediments only contain minor contributions from marine organic matter, allowing to consider mainly two terrestrial sources to explain the characteristics of bulk sedimentary organic matter. The terrestrial HMW-FA are taken to represent the biospheric carbon, and their age differences from the bulk organic carbon are explained by petrogenic carbon input. During the Younger Dryas, ice-sheet melting and meltwater outbursts enhanced petrogenic carbon contributions, suggesting a major source in the hinterland drainage system. During the rapid sea-level rise (meltwater pulses 1a and 1b), the very old organic carbon and comparable ages between biospheric carbon and bulk organic carbon indicate the occurrence of permafrost carbon remobilization primarily via coastal erosion while petrogenic carbon from the drainage system was found negligible. Remobilized ancient permafrost carbon is commonly regarded to be highly bioavailable, while petrogenic carbon is likely more recalcitrant to biological degradation. Our records thus suggest that the release of ancient carbon to the Beaufort Sea had the strongest impact on the atmospheric CO2 level and contributed to its rapid increases during the B/A and Pre-Boreal when permafrost deposits along the coast were eroded.

How to cite: Wu, J., Mollenhauer, G., Stein, R., Hefter, J., Fahl, K., Grotheer, H., Wei, B., and Nam, S.-I.: Mobilization of aged carbon via meltwater floods and coastal erosion in the Canadian Arctic during the last deglaciation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-448, https://doi.org/10.5194/egusphere-egu21-448, 2021.

EGU21-3398 | vPICO presentations | BG1.6

Uncovering the contribution of permafrost thaw to the enhanced terrestrial organic matter input into the Bay of Biscay during the last deglaciation

Eduardo Queiroz Alves, Yunyi Wang, Jens Hefter, Hendrik Grotheer, Karin A. F. Zonneveld, and Gesine Mollenhauer

The thawing of permafrost in the polar regions has important implications for climate on Earth. Indeed, permafrost degradation results in a positive climate feedback which is currently aggravated by human action. The dynamic character of Earth’s climate means that past trends and variability can be examined to improve future projections of this effect. Notably, the permafrost zone that covered parts of Europe during the Last Glacial Maximum (LGM) is currently absent, indicating that this region is a crucial area for the study of permafrost carbon remobilization during the last deglacial warming. Here, we investigate the mobilization of permafrost material to the Bay of Biscay, off the English Channel. Although this location has been shown to have experienced an enhanced deposition of terrigenous material during the last deglaciation, the contribution of permafrost thaw is unknown. We have established an accurate and robust chronological framework for this deposition, showing enhanced rates of sediment accumulation from approximately 20.2 to 15.8 kcal BP. Biomarker analysis has revealed periods of marked increases in terrigenous input, namely from approximately 20.5 to 19 and from 19 to 16.5 kcal BP. Moreover, by performing compound specific radiocarbon dating on n-alkanoic acids isolated from the sedimentary archive, we have been able to determine the origin of organic matter deposited at the core location. Our results will help researchers to assess to what extent permafrost thaw contributed to the peak of organic matter deposition present in the marine sediment, allowing us to sharpen our understanding of the mechanisms of permafrost carbon mobilization.

How to cite: Queiroz Alves, E., Wang, Y., Hefter, J., Grotheer, H., A. F. Zonneveld, K., and Mollenhauer, G.: Uncovering the contribution of permafrost thaw to the enhanced terrestrial organic matter input into the Bay of Biscay during the last deglaciation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3398, https://doi.org/10.5194/egusphere-egu21-3398, 2021.

BG1.7 – Nitrogen Cycling in the Anthropocene: Microbiological Processes, Land-atmosphere- Interactions and Global Change Feedbacks

EGU21-15033 | vPICO presentations | BG1.7 | Highlight

Understanding current and future impacts of public water supply on global nitrogen cycling

Elizabeth M. Flint, Matthew J. Ascott, Daren C. Gooddy, Benjamin W.J. Surridge, and Mason O. Stahl

Within in the United States some 54 km3 of water is withdrawn annually for public supply. Around 16% of this water is subsequently lost through leakage as it moves through distribution networks. These processes not only have implications both economically and for water security, but the substantial redistribution of water has also been shown to cause significant perturbations in elemental cycling. Due to its importance for ecological health and global food production, this research attempts to quantify the nitrogen (N) fluxes associated with a range of Public Water Supply processes, such as abstraction and leakage. Using county level data sets, these N fluxes will be determined across the contiguous United States, and the significance of results evaluated through comparisons with other quantified N fluxes. Assessments will also be made on how the absolute and relative significance of these fluxes may change in the future, such as due to evolving water demands as a result of the combined drivers of changing climate and increasing population. Outputs from the US will form part of a wider global assessment, including comparisons with less developed countries.

How to cite: Flint, E. M., Ascott, M. J., Gooddy, D. C., Surridge, B. W. J., and Stahl, M. O.: Understanding current and future impacts of public water supply on global nitrogen cycling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15033, https://doi.org/10.5194/egusphere-egu21-15033, 2021.

EGU21-1210 | vPICO presentations | BG1.7

Impacts of long-term warming and enhanced nitrogen and sulfur deposition on carbon sink potential in a boreal peatland

Tuula Larmola, Liisa Maanavilja, Heikki Kiheri, Mats Nilsson, and Matthias Peichl

In order to assess peatland carbon sink potential under multiple global change perturbations, we examined the individual and combined effects of long-term warming and enhanced nitrogen (N) and sulfur (S) deposition on ecosystem CO2 exchange at one of the longest-running experiments on peatlands, Degerö Stormyr poor fen, Sweden. The site has been treated with NH4NO3 (15 times ambient annual wet deposition), Na2SO4 (6 times ambient annual wet deposition) and elevated temperature (air +3.6 C) for 23 years. Gross photosynthesis, ecosystem respiration and net CO2 exchange were measured weekly during June-August using chambers. After 23 years, two of the experimental perturbations: N addition and warming individually reduced net CO2 uptake potential down to 0.3-0.4 fold compared to the control mainly due to lower gross photosynthesis. Under S only treatment ecosystem CO2 fluxes were largely unaltered. In contrast, the combination of S and N deposition and warming led to a more pronounced effect and close to zero net CO2 uptake potential or net C source. Our study emphasizes the value of the long-term multifactor experiments in examining the ecosystem responses: simultaneous perturbations can have nonadditive interactions that cannot be predicted based on individual responses and thus, must be studied in combination when evaluating feedback mechanisms to ecosystem C sink potential under global change.

How to cite: Larmola, T., Maanavilja, L., Kiheri, H., Nilsson, M., and Peichl, M.: Impacts of long-term warming and enhanced nitrogen and sulfur deposition on carbon sink potential in a boreal peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1210, https://doi.org/10.5194/egusphere-egu21-1210, 2021.

EGU21-10536 | vPICO presentations | BG1.7

Dissimilatory nitrate reduction processes along a forest hillslope

Jiajie Du, Jinsen Zheng, Makoto Shibata, Zixiao Wang, Tetsuhiro Watanabe, and Shinya Funakawa

Dissimilatory nitrate (NO3) reduction to ammonium (DNRA) and denitrification (DNF) are major dissimilatory NO3 reduction processes, competing for the available NO3 under anoxic conditions. The competition among these processes leads to different fates of NO3 in soil, i.e., loss of nitrogen (N) as benign N2 or potent greenhouse gas (nitrous oxide, N2O), or retaining of N by converting NO3 to ammonium. Unfortunately, little is known about the soil-environmental factors controlling the NO3 partition. Here we report DNF and DNRA in soils from the top and bottom of the hillslope.

We sampled soils from a hillslope of forest to generate a soil-environmental gradient. The soil-environmental factors including soil pH, available carbon (potassium chloride-extractable organic carbon: EOC), NO3, and microbial C and N (MBC and MBN) were determined. We incubated the soils under anoxic condition (i.e., helium atmosphere) and applied a 15N isotope pairing technique to quantify the potential rates of DNRA and DNF. Briefly, we incubated the soil under anoxic condition (i.e., helium atmosphere) to remove any N oxides and oxygen, then we added 15NO3 (99.9%) and measured the production rates of 15NH4+, 30N2, and 46N2O.

The results showed that (1) a good gradient of the soil-environmental variables was observed along the hillslope from top to bottom, including pH (top–bottom; 3.95–4.78), EOC:NO3 (184–18.7), and MBC: MBN (8.2–6.3); (2) DNRA rate tended to be higher at the top of the hillslope with DNF being nearly inactive, resulting in a dominance of DNRA (59–97%), while the trend was reversed at the bottom, with DNF rates being much higher and dominantly contributing to NO3 reduction (89–97%); and (3) during DNF process, the magnitude of N2O production rates was comparable or even higher than that of N2 in the soils from the bottom of the hillslope. The ratio of the N2O to N2 production (N2O:N2) was much higher in the soils from the top despite the low DNF rates.

The remarkably different patterns of DNRA and DNF rates and relative contributions between the top and bottom of the hillslope are controlled by the EOC:NO3: DNRA was preferred over DNF when NO3 was limited (i.e., high EOC:NO3) because more free energy is liberated per unit of NO3 reduced for DNRA as compared to DNF. The substantial production of N2O at the bottom of the hillslope indicates that previous studies that considered only 30N2 production rate could have highly underestimated the DNF rate. The high N2O:N2 at the top is likely caused by the low pH as well as the dominance of fungi, of which the N2O reductase is generally lacking, pointing to the key roles of soil pH and microbial community structure in regulating the product stoichiometry of N2O and N2 in DNF.

How to cite: Du, J., Zheng, J., Shibata, M., Wang, Z., Watanabe, T., and Funakawa, S.: Dissimilatory nitrate reduction processes along a forest hillslope, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10536, https://doi.org/10.5194/egusphere-egu21-10536, 2021.

EGU21-10546 | vPICO presentations | BG1.7

N fertilization effects on N2O fluxes from oil palm plantation on tropical peatland

Auldry Chaddy, Lulie Melling, Kiwamu Ishikura, and Ryusuke Hatano

Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have a significant influence on soil nitrous oxide (N2O) emission from oil palm plantation on tropical peatland. Finding a suitable N rate for optimum N uptake efficiency and yield with low environmental impact and production cost is crucial for the economic growth of Malaysia’s oil palm sector. However, studies on the impact of N fertilizers on N2O emissions from tropical peatland are limited. Thus, long-term monitoring was conducted to investigate the effects of N fertilization on soil N2O emissions. This study was conducted in an oil palm (Elaeis guineensis Jacq.) plantation located in a tropical peatland in Sarawak, Malaysia. Monthly soil N2O fluxes were measured using the closed-chamber method in a control (T1, without N fertilization), and under three different N treatments: low N (T2, 31.1 kg N ha−1), moderate N (recommended rate) (T3, 62.2 kg N ha−1), and high N (T4, 124.3 kg N ha−1), from January 2010 to December 2013 and from January 2016 to December 2017. The only N fertiliser rate to significantly increase (p<0.05) annual cumulative N2O emissions was 124.3 kg N ha-1 (T4). Increased in water-filled pore space (WFPS) (>70%) with a decrease in both N2O flux and nitrate (NO3) implies that complete denitrification has taken place. Increased in NO3- uptake by oil palm with an increase in WFPS decreased NO3- concentration in soil, resulting in the reduction of N2O emission. This study highlights the importance of WFPS on denitrification and N uptake by oil palm in tropical peatland. This needs to be taken into account for the accurate assessment of N dynamics in oil palm plantations on tropical peatland in order to enhance N fertilization management strategies and counteract anthropogenic activities that produce greenhouse gases.

Keywords: WFPS, oil palm yield, NO3-, N uptake

How to cite: Chaddy, A., Melling, L., Ishikura, K., and Hatano, R.: N fertilization effects on N2O fluxes from oil palm plantation on tropical peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10546, https://doi.org/10.5194/egusphere-egu21-10546, 2021.

EGU21-7776 | vPICO presentations | BG1.7

Dry deposition fluxes of NH4+-N and NO3--N at a rural site of Indo-Gangetic Plain, India

Moh Naseem and Umesh Kulshrestha

The world’s acute reactive nitrogen (Nr) deposition is chronically eroding the biospheric integrity and undermining earth system’s resilience to be in an accommodatable state. The present study comprehensively attempts to decipher the dry depositions of atmospheric inorganic Nr along with other major ions through dustfall fluxes. Authentic atmospheric dust samples were collected by incorporating a surrogate-surface approach at an agriculturally intensive rural site in Indo-Gangetic plain of India over a year-long temporal scale from October 2017-September 2018. The mean (±Standard Error) dry deposition fluxes of NH4+-N and NO3--N during the whole study period were observed as 0.41±0.09 kg ha-1 yr-1 and 6.51±1.58 kg ha-1 yr-1, respectively. The total percent ionic contribution to the dustfall flux was observed 2.95% and the descending order of their percent contribution in total ionic fluxes were observed as SO42- (31.46%) > Cl- (15.74%) > K+ (15.04%) > Ca2+ (13.97%) > Na+ (10.23 %) > NO3- (7.06%) > Mg2+ (4.43%) > F-(1.62%) > NH4+ (0.44%). The relative dominance of NO3--N over NH4+-N fluxes was maintained in all seasons during the whole monitoring period which could be attributed to the competitive exclusion of NH4+-N from acid-base neutralization reactions by other strong base cations in dustfall. Size-distribution and morphological analysis of dust particles from Scanning Electron Microscope images signified the anthropogenic involvement in shaping the dominant mode of particle-size distribution in dust fall fluxes which culminated into the dominance of fine-mode fraction over course-mode in dustfall.

How to cite: Naseem, M. and Kulshrestha, U.: Dry deposition fluxes of NH4+-N and NO3--N at a rural site of Indo-Gangetic Plain, India, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7776, https://doi.org/10.5194/egusphere-egu21-7776, 2021.

EGU21-14992 | vPICO presentations | BG1.7

Laboratory and field measurements of HONO emissions from agricultural soils in Guangdong of China 

Baobin Han, Peng Cheng, Yihang Yu, Wenda Yang, Zhilin Tian, Huirong Li, Yucheng Gong, Bingna Chen, and Yujie Tian

Laboratory studies indicated that soil could produce considerable nitrous acid (HONO) emissions, which is the main primary source of hydroxyl radical (OH) in the troposphere. However, very few field observations of HONO emission from soil were reported. In order to relate laboratory results and field measurements, we measured HONO emissions from 7 representative agricultural soils (rice, vegetables, orchards, peanuts, potatoes, sugarcane and maize) in Guangdong under controlled laboratory conditions, and took flux measurements on 2 of them (rice and vegetables) by dynamic chambers in the field. Generally, release rates of HONO from the seven soils increased with temperature and varied with soil moisture, and the optimum release rates can be reached under specific values of water-filled pore space (WFPS), which is considered to be beneficial to nitrification. The seven soils' optimum release rates ranged from 1.24 to 43.19 ng kg-1 s-1, and the Q10 (It is defined as the multiple of the increase of soil gas emission rate when the temperature increases by 10℃) ranged from 1.03 to 2.25. Formulas were deduced from the lab results to express HONO emissions for every soil. Flux measurements on two soils varied around -1 to 4 ng N m-2 s-1, and both showed similar diurnal variations with peaks around noontime and very low even negative values during nighttime. There were good correlations between HONO fluxes and soil temperature (R2=0.5). Furthermore, irrigation enhanced the HONO emission substantially. However, a large discrepancy existed between soil HONO emissions measured in lab and low HONO fluxes in field. More investigations are needed to explain the paradox.

How to cite: Han, B., Cheng, P., Yu, Y., Yang, W., Tian, Z., Li, H., Gong, Y., Chen, B., and Tian, Y.: Laboratory and field measurements of HONO emissions from agricultural soils in Guangdong of China , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14992, https://doi.org/10.5194/egusphere-egu21-14992, 2021.

EGU21-6907 | vPICO presentations | BG1.7

Budget of nitrous acid (HONO) and its impacts on atmospheric oxidation capacity at an urban site in Guangzhou of China

Yihang Yu, Peng Cheng, Huirong Li, Wenda Yang, Baobin Han, Xiaofang Yu, Manman Zhang, Wei Song, Zhijiong Huang, and Bin Yuan

Nitrous acid (HONO) can produce hydroxyl radicals (OH) by photolysis and plays an important role in atmospheric photochemistry. Over the years, high concentrations of HONO have been found in the Pearl River Delta region (PRD), which may be one of the reasons for the high atmospheric oxidation capacity. A comprehensive atmospheric observation was conducted at an urban site in Guangzhou from 27 September to 9 November 2018. During the period, HONO ranged from 0.02 to 4.43 ppbv with an average of 0.74±0.70 ppbv. The combustion emission ratio (HONO/NOx) of 0.9±0.4% was derived from 11 fresh plumes. The primary emission rate of HONO during night was calculated with the emission source inventory data to be between 0.04±0.02 and 0.30±0.15 ppbv/h. And the HONO produced by the homogeneous reaction of OH+NO at night was 0.26±0.08 ppbv/h, which can be seemed as secondary results from primary emission. They were both much higher than the increase rate of HONO (0.02 ppbv/h) during night. Soil emission rate of HONO at night was calculated to be 0.019±0.0003 ppbv/h. Deposition was the dominant removal process of HONO during night, and a deposition rate of at least 2.5 cm/s is required to balance the direct emissions and OH+NO reaction. Correlation analysis shows that NH3 and relative humidity (RH) may participate in the heterogeneous transformation from NO2 to HONO during night. In the daytime, the average primary emission Pemis was 0.12±0.01 ppbv/h, and the homogeneous reaction POH+NO was 0.79±0.61 ppbv/h, which was even larger than the unknown sources PUnknown (0.65±0.46 ppbv/h). The results showed that the direct and indirect contributions of primary emission to HONO are great at the site, both during daytime and nighttime. Similar to previous studies, PUnknown was suggested to be related to the photo-enhanced reaction of NO2. The mean OH production rates by photolysis of HONO and O3 were 3.7×106 cm-3·s-1 and 4.9×106 cm-3·s-1, respectively. We further studied the impact of HONO on the atmospheric oxidation by a Master Chemical Mechanism (MCM) box model. When constraining observed HONO in the model, OH and O3 increased 59% and 68.8% respectively, showing a remarkable contribution of HONO to the atmospheric oxidation of Guangzhou.

 

How to cite: Yu, Y., Cheng, P., Li, H., Yang, W., Han, B., Yu, X., Zhang, M., Song, W., Huang, Z., and Yuan, B.: Budget of nitrous acid (HONO) and its impacts on atmospheric oxidation capacity at an urban site in Guangzhou of China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6907, https://doi.org/10.5194/egusphere-egu21-6907, 2021.

Some studies show that photolysis of nitrate and deposited nitrate and gas nitric acid (HNO3) on the ground surface is much faster than that of HNO3. The former mechanism has been considered as a possible daytime HONO source and discussed in many laboratory and field studies. Although this mechanism is also coupled into some three-dimensional chemical transport models, the effect of large changes in the ratio of photolysis rate of nitrate to that of HNO3 (RAT) on HONO concentrations has not been assessed and will be discussed here by using the updated WRF-Chem model. Simulations indicate that in the morning, this mechanism only resulted in a HONO increase of a few ppt, while the heterogeneous reaction of NO2 enhanced HONO by about 150 ppt; in the afternoon, however, this mechanism led to a significant HONO increase, with its contribution to HONO concentrations being close to the contribution of the heterogeneous reaction of NO2. In some heavily nitrate-polluted areas, this mechanism contributed more than 80% of HONO concentrations during the afternoon. Large changes in RAT produced a substantial impact on HONO concentrations. When RAT was altered from 15 to 100, increase of HONO concentrations was enhanced by about 6 times. Our results suggest that more laboratory and field studies on the photolysis rates of nitrate and deposited nitrate and HNO3 on the ground surface are still needed.

How to cite: Guo, Y., An, J., and Zhang, J.: Assessment of the impact of large changes in the ratio of photolysis rate of nitrate to that of gas nitric acid on HONO concentrations simulated by a 3-D chemical transport model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2471, https://doi.org/10.5194/egusphere-egu21-2471, 2021.

EGU21-15035 | vPICO presentations | BG1.7

Drip irrigation affects N2O emission differently depending on soil moisture status in an intensive vegetable production system

Xiuchun Xu, Di Wu, Wei Zhang, Bang Ni, Xuan Yang, and Fanqiao Meng

Plastic-shed vegetable production system is becoming the main type of vegetable production in China, while excessive irrigation and fertilization input lead to significant N loss by leaching, runoff, and gaseous N. The current study established a field experiment to investigate the effects of drip irrigation and optimized fertilization on vegetable yield, water and fertilizer efficiencies and N2O emission in a typical intensive plastic-shed tomato production region of China. The treatments include CK (no fertilization, flood irrigation), FFP (farmers’ conventional fertilization, flood irrigation), OPT1 (80% of FFP fertilization, flood irrigation), OPT2 (80% of FFP fertilization, drip irrigation). N2O isotopocule deltas, including δ15Nbulk, δ18O and SP (the 15N site preference in N2O), have been used to investigate microbial pathways of N2O production under different treatments. Our results showed: i) optimized fertilization and drip irrigation significantly improved the fertilizer and water use efficiency without reducing tomato yield, ii) compared with flood irrigation, drip irrigation decreased soil WFPS and soil ammonium content, but increased soil nitrate content. When soil moisture was higher than 60%WFPS, drip irrigation led to a decrease of N2O emission with lower N2O SP signature observed than that of food irrigation, suggesting a reduction of denitrification derived N2O. In contrast, drip irrigation significantly increased N2O emission and N2O SP value when soil moisture status was lower than 55% WFPS, which may be due to the enhanced nitrification or fungal denitrification derived N2O.

How to cite: Xu, X., Wu, D., Zhang, W., Ni, B., Yang, X., and Meng, F.: Drip irrigation affects N2O emission differently depending on soil moisture status in an intensive vegetable production system, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15035, https://doi.org/10.5194/egusphere-egu21-15035, 2021.

Identification of nitrate sources and fate in basins with complex backgrounds is essential for understanding the controlling factors of regional groundwater nitrates pollution and its prevention. In this study, hydrochemistry, the concentration of dissolved nitrogenous species, multiple isotopes (δD-H2O, δ18O-H2O, δ15N-NH4+, δ15N-NO3- and δ18O-NO3-) and Bayesian model (SIMMR) were applied to identify the nitrate sources and major transformation processes under different land uses and complicated hydrological conditions in Qingyi River basin with an area of 8700km2, east China. A total of 28 groundwater samples of forest-dominated areas in mountainous, forest-farmland in piedmont, and farmland-residential in plain were collected in Jul 2019. The results showed that concentrations of N species, hydrochemistry and isotopic composition had significantly differences under distinctive backgrounds generally. In mountainous area, nitrate concentrations were as low as of 1.9-6.3mg/L, and low TDS (23.6-60.8mg/L), depleted δD-H2O(-43.3±6.7‰) and δ18O-H2O (-7.2±1.0‰) were observed with δ15N-NO3- values of +1.1±0.8‰, which implies that 18.4% and 81.6% of groundwater nitrate were from soil organic nitrogen (SON) and atmosphere precipitation (AP), respectively. In piedmont areas, moderate nitrate(1.0-35.6mg/L), TDS(91.6-253.9mg/L), and relative enriched δD-H2O(-40.1±4.1‰), δ18O-H2O(-6.7±0.5‰) were detected with δ15N-NO3- values +2.8±2.2‰, and the SIMMR model suggested 37.3% nitrates were derived from SON and 31.1% from chemical fertilizers (CF) .With increasing of residential areas, higher TDS(186.5-643.8mg/L) and nitrate(5.4-58.5mg/L) as well as enriched δD-H2O(-38.6±6.5‰) and δ18O-H2O(-6.4±0.7‰) indicated higher anthropogenic inputs in plain areas with δ15N-NO3- values +6.3±2.3‰, with the origins of 31.8% SON and 30.9% manure&sewage (M&S). From the recharge and runoff areas to the discharge areas, major nitrate sources altered from SON to CF and M&S due to variation of land uses, and the denitrification became the dominant process rather than nitrification owing to gradually decreasing oxidization condition. Incomplete nitrification was proved by negative correlations of δ15N-NH4+ and δ15N-NO3- in recharge and runoff areas. And the occurrence of obvious denitrification was deduced by low redox parameters and major ions in discharge zone. Finally, a conceptual model was proposed to reveal the pattern of groundwater nitrate sources and fate in Qingyi River Basin. This study provided a reliable and integrated approach for recognition and understanding of the nitrate sources and fate in large watershed under complicated land-uses and hydrological conditions.

Keywords: groundwater; nitrate, sources identification; δ15N-NH4+; Qingyi River basin

How to cite: Huang, X., Jin, M., and Zhang, Z.: Identification of groundwater nitrate sources and transformation processes under different land uses and complicated hydrological conditions in Qingyi River Basin, east China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1901, https://doi.org/10.5194/egusphere-egu21-1901, 2021.

The spatiotemporal changes of nitrate in agricultural watersheds are of global concern. Although numerous studies have explained the source and transformation mechanism of nitrate in groundwater and surface water, the transformation mechanism in groundwater remains poorly understood because of different hydrogeological and climatic conditions. Based on a field investigation and sampling, this study revealed the sources and transformation mechanism of nitrogen in surface water and groundwater in a karst agricultural watershed by comprehensively using water chemistry data, isotope components, and a Bayesian model (simmr). The results indicated that:1)Local agricultural activities have controlled the changes of δ15N-NO3-, δ18O-NO3- and δ15N-NH4+ in groundwater. The difference is that the concentration of NO3- is significantly affected by rainfall. However, the contribution of rainfall to groundwater NO3- is relatively small (<9%), indicating that there is a dual influence mechanism of leaching in the watershed that controls the concentration of groundwater NO3-, while agricultural activities control its isotope changes;2)The study observed that after fertilization, due to the influence of ammonia volatilization and nitrification, δ15N-NO3-, δ18O-NO3- in groundwater showed a simultaneous decrease, while δ15N-NH4+ showed an increasing trend, which may be due to the result of incomplete nitration of NH4+ in the vadose zone;3)According to the calculation results of the simmr model, in the two main fertilization periods in October 2018 and April 2019, the contribution of chemical fertilizers to groundwater NO3-reached the peak value(65% and 69%), which is in line with the seasonal variations of δ15N-NO3-, δ18O-NO3-and δ15N-NH4+;4)The surface water in the watershed is mainly supplied by groundwater, and the contribution of chemical fertilizers to surface water NO3- is generally higher than that of groundwater. This may be caused by the drainage of rice fields containing chemical fertilizers into the river.

How to cite: Cao, M.: Transformations and nitrate sources in an agricultural watershed(Quanshui River, China): An investigation using hydrogeochemistry, isotopes, and a Bayesian model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3618, https://doi.org/10.5194/egusphere-egu21-3618, 2021.

The identification of nitrate (NO3-) sources and biogeochemical transformations is critical for understanding and controlling diffuse pollution in surface water in drainage basins. This study combines water chemistry, environmental isotopes (δ2HH2O, δ18OH2O, δ15NNO3, and δ18ONO3), with land use data and a Bayesian isotope mixing model (Simmr), for reducing the uncertainty in estimating the contributions of different pollution sources in a Karst drainage basin of Jinan, North China. 64 samples were collected from Yufu River (YFR) of Jinan city in September and December, 2019. The results revealed that the NO3-N (4.41mg/L) was the predominant form of inorganic nitrogen in YFR watershed, accounting for about 58% of total nitrogen (8.06 mg/L). There were significant temporal and spatial variations in nitrate concentrations in the area. The nitrate concentration in time was low in December and high in September, while the process of first rising and then attenuating from upstream to downstream in space. Moreover, according to the surface water flow path, different biogeochemical transformations were observed throughout the study area: microbial nitrification was dominant in the upstream with elevated NO3-N concentrations; in the middle stream a mixing of different transformations, such as nitrification, denitrification, and/or assimilation, were identified, associated to moderate NO3-N concentrations; whereas in the downstream the main process affecting NO3-N concentrations was assimilation, and/or denitrification, resulting in low NO3-N concentrations. Water chemical and dual isotope of δ15NNO3 and δ18ONO3 indicated that the river water was significantly affected by soil organic nitrogen and ammonium fertilizer inputs. Simmr mixing model outputs revealed that soil organic nitrogen (SON 55.5%) and ammonium fertilizer inputs(AF 29.5%) were the primary contributors of N pollution, whereas nitrate fertilizer(NF 7.1%), sewage & manure (M&S 3.6%), and atmospheric deposition (AP3.4%) played a less important role. The chemical fertilizer (AF and NF) and SON collectively mean contributing > 50 % of nitrate both in September and December in the watershed. Therefore, reducing fertilizer application and adopting water-saving irrigationare key to control nitrate pollution in the area. The results provide scientific basis for the water quality protection and sustainable water management in the study area or similar areas.

How to cite: Zhang, J. and Jin, M.: Identifying source and transformation of riverine nitrates in a karst watershed, North China: comprehensively using major ions, multiple isotopes and Bayesian model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2059, https://doi.org/10.5194/egusphere-egu21-2059, 2021.

Pyrite is the most common sulfide mineral occurring in sedimentary and igneous rocks and globally contributes a greater flux of sulfate. Large quantity of reactive nitrogen as fertilizers for agricultural production has been released into the environment in China over recent decades. Sulfuric acid formed by oxidative weathering of pyrite (OWP) and nitric acid formed by oxidation of reducing nitrogen fertilizer (ONF) through neutralization with carbonate minerals can counteract CO2 drawdown from chemical weathering. Here, we use the multiple isotopes (13C-DIC, 34S and 18O-SO42–, 15N and 18O-NO3, and 18O and D-H2O) and water chemistry, as well as historical hydrochemical data to assess the roles of strong acids in chemical weathering and the carbon cycle in a karst river system (Chishui River, southwestern China). The variations in alkalinity and the δ13C-DIC along with theoretical mixing models demonstrate the involvement of strong acids in carbonate weathering. However, the strong acid weathering flux determined by δ13C-DIC and mixing models is considered to be overestimated due to the effects of photosynthesis and degassing of CO2 on δ13C-DIC signal. The protons liberated from OWP and ONF can be constrained by water chemistry and isotope techniques with the use of a Bayesian isotope mixing model. The strong acid weathering flux determined using proton information is higher that determined by δ13C-DIC and mixing models. This suggests that the additional protons derived from OWP and ONF might be consumed in other ways without affecting the δ13C-DIC signals, such as the neutralization of acidic waters. These results indicate that OWP and ONF coupled with carbonate dissolution significantly enhanced the coupling cycles of carbon, nitrogen and sulfur in this river system.

How to cite: Xu, S., Li, S.-L., Su, J., Yue, F.-J., Zhong, J., and Chen, S.: Assessing the effects of oxidation of pyrite and reducing nitrogen fertilizer on chemical weathering and the carbon cycles in a karst river system by using multiple isotopes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3682, https://doi.org/10.5194/egusphere-egu21-3682, 2021.

EGU21-16166 | vPICO presentations | BG1.7

Seasonal variation of nitrogen biogeochemical processes constrained by nitrate dual isotopes in cascade reservoirs, Southwestern China 

Sainan Chen, Fu-Jun Yue, Xiao-Long Liu, Jun Zhong, Yuan-Bi Yi, Wan-Fa Wang, Yulin Qi, Hua-Yun Xiao, and Si-Liang Li

The increase of affected river reaches by reservoirs has drastically disturbed the original hydrological conditions, and subsequently influenced the nutrient biogeochemistry in the aquatic system, particularly in the cascade reservoir system. To understand the seasonal variation of nitrogen (N) behaviors in cascade reservoirs, hydrochemistry and nitrate dual isotopes (δ15N-NO3andδ18O-NO3) were conducted in a karst watershed (Wujiang River) in southwest China. The results showed that NO3–N accounted for almost 90% of the total dissolved nitrogen (TDN) concentration with high average concentration 3.8 ± 0.4 mg/L among four cascade reservoirs. Higher N concentration (4.0 ± 0.8 mg/L) and larger longitudinal variation were observed in summer than in other seasons. The relationship between the variation of NO3–N and dual isotopes in the profiles demonstrated that nitrification was dominated transformation, while assimilation contributed significantly in the epilimnion during spring and summer. The high dissolved oxygen concentration in the present cascade reservoirs system prevented the occurrence of N depletion processes in most of the reservoirs. Denitrification occurred in the oldest reservoir during winter with a rate ranging from 18 % to 28 %. The long-term record of surface water TDN concentration in reservoirs demonstrated an increase from 2.0 to 3.6 mg/L during the past two decades (~ 0.1 mg/L per year). The seasonal nitrate isotopic signature and continuously increased fertilizer application demonstrated that chemical fertilizer contribution significantly influenced NO3–N concentration in the karst cascade reservoirs. The research highlighted that the notable N increase in karst cascade reservoirs could influence the aquatic health in the region and further investigations were required.

How to cite: Chen, S., Yue, F.-J., Liu, X.-L., Zhong, J., Yi, Y.-B., Wang, W.-F., Qi, Y., Xiao, H.-Y., and Li, S.-L.: Seasonal variation of nitrogen biogeochemical processes constrained by nitrate dual isotopes in cascade reservoirs, Southwestern China , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16166, https://doi.org/10.5194/egusphere-egu21-16166, 2021.

EGU21-7121 | vPICO presentations | BG1.7

Biogeographic patterns of complete ammonia oxidizers (comammox) within the Yangtze River continuum

Shufeng Liu, Haiying Wang, and Jinren Ni

The recent discovery of comammox Nitrospira performing complete ammonia oxidation to nitrate has fundamentally renewed the 120-year-held perspective of “two-step” nitrification. Rivers are known as the “Arteries” of the Earth, coupling the biogeochemical cycling of continents and oceans. Frequent human activities usually increase nitrogen load, and nitrifying microorganisms are crucial for the management of nitrogen load in rivers. The ecological roles of truncated nitrifiers, including canonical ammonia-oxidizing bacteria, ammonia-oxidizing archaea and nitrite-oxidizing bacteria in rivers have been fully understood, however, investigations of the newly discovered comammox Nitrospira are very scarce. To fill this gap, we used the metagenomic shotgun sequencing to provide the first biogeographic patterns of comammox Nitrospira in the Yangtze River over a 6030 km continuum.

First, ten novel comammox genomes (71~96% completeness) were reconstructed with the metagenome assemblies from fluvial water in the upper reach and surface sediments from the middle reach to the estuary. Gene arrangements in ammonia oxidation-related gene clusters of these novel genomes were more complex and diverse than those of the previously discovered ones. For instance, multi-copy amoA or amoB genes, peptidases, cupredoxin and fkpA-cytochrome c-nirK gene sets were first found within the ammonia oxidation-related gene clusters of comammox Nitrospira, which might confer them advantages in adapting to the relatively oligotrophic environments and stabilizing the ammonia-oxidation process in rivers. Taxonomic analysis demonstrated that all riverine comammox genomes (constituting four new species) belonged to clade A. Based on the phylogenies of their 37 “elite” conserved marker genes, we further separated all reported comammox clade A into five sublineages, named clade A-Ia, A-Ib, A-Ic and A-IIa, A-IIb. The reclassified sublineages were sufficiently divergent to be meaningful in expanding the taxonomic/functional diversity and improving the phylogenetic resolution.

Second, based on the improved phylogenetic resolution, we explored the biogeographic patterns of planktonic and benthic comammox Nitrospira subjected to natural and anthropogenic factors along the Yangtze River. Our study revealed the wide existence of comammox Nitrospira and their significant contributions to nitrifier abundances, constituting 30% and 46% of ammonia-oxidizing prokaryotes (AOPs) and displaying 30.4- and 17.9-fold greater abundances than canonical Nitrospira representatives in water and sediments, respectively. Comammox Nitrospira were found to contribute more to nitrifier abundances (34~87% of AOPs) in typical oligotrophic environments with a higher pH and lower temperature, particularly in the plateau (clade B), mountain and foothill (clade A-Ic) of the upper reach. Environmental selection determined the niche replacement of planktonic comammox Nitrospira by canonical ammonia-oxidizing bacteria and Nitrospira sublineages I/II from upstream to downstream, leading to a higher spatial turnover rate than observed for the benthic counterpart, while the dissimilarity of benthic comammox Nitrospira was moderately driven by geographic distance. A considerable decrease (83%) in benthic comammox Nitrospira abundance occurred immediately downstream of the Three Gorges Dam, which was consistent with a substantial decrease in the overall bacterial taxa in sediments.

Together, this study highlights the previously unrecognized dominance of comammox Nitrospira in major river systems and underlines the importance of revisiting the distributions of and controls on nitrification processes within global freshwater environments.

How to cite: Liu, S., Wang, H., and Ni, J.: Biogeographic patterns of complete ammonia oxidizers (comammox) within the Yangtze River continuum, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7121, https://doi.org/10.5194/egusphere-egu21-7121, 2021.

EGU21-7892 | vPICO presentations | BG1.7

Ecosystem scale evidence for the contribution of vanadium-based nitrogenase to biological nitrogen fixation. 

Jean-Philippe Bellenger, Romain Darnajoux, Nicolas Magain, Marie Renaudin, Francois Lutzoni, and Xinning Zhang

Nitrogen is the primary limiting nutrient in high latitude ecosystems. Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is an important source of new reactive nitrogen in pristine, high-latitude ecosystems. BNF is catalyzed by the enzyme nitrogenase, for which three isoforms have been described; the canonical molybdenum (Mo) nitrogenase which requires Mo in its active site and two alternative nitrogenases, the vanadium and iron-only nitrogenases. The low availability of Mo on land has been shown to limit BNF in many ecosystems from the tropical forest to the arctic tundra. Alternative nitrogenases have been suggested as viable alternatives to cope with Mo limitation of BNF, however, field data supporting this long-standing hypothesis have been lacking.

Here, we elucidated the contribution of the vanadium nitrogenase to BNF by cyanolichens across a 600 km latitudinal transect in eastern Canadian boreal forests. We report a widespread activity of the vanadium nitrogenase which contributed between 15 to 50% of total BNF rates on all sites. Vanadium nitrogenase contribution to BNF was more robust in the northern part of the transect. Vanadium nitrogenase contribution to BNF also changed during the growing season, with a three-fold increase between the early (May) and late (September) growing season. By including the contribution of the vanadium nitrogenase to BNF, estimates of new N input by cyanolichens increase by up to 30%, a significant change in these low N input ecosystems. Finally, we found that Mo availability was the primary driver for the contribution of the vanadium nitrogenase to BNF with a Mo threshold of ~ 250 ng.glichen-1 for the onset of vanadium based BNF.

This study on N2-fixing cyanolichens provides extensive field evidence, at an ecosystem scale, that vanadium-based nitrogenase greatly contributes to BNF when Mo availability is limited. The results showcase the resilience of BNF to micronutrient limitation and reveal a strong link between the biogeochemical cycle of macro- and micronutrients in terrestrial ecosystems. Given widespread findings of Mo limitation of BNF in terrestrial ecosystems, additional consideration of vanadium-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry.

How to cite: Bellenger, J.-P., Darnajoux, R., Magain, N., Renaudin, M., Lutzoni, F., and Zhang, X.: Ecosystem scale evidence for the contribution of vanadium-based nitrogenase to biological nitrogen fixation. , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7892, https://doi.org/10.5194/egusphere-egu21-7892, 2021.

EGU21-10759 | vPICO presentations | BG1.7

Nitrogen deposition enhanced productivity of sweet sorghum (Sorghum bicolor L.) in the arid region of China

Wenwen Liu, Liang Sun, Jian Lan, and Yuan Li

Terrestrial ecosystems worldwide are experiencing increasing atmospheric nitrogen (N) deposition because of fossil-fuel combustion and fertilizer applications. As a C4 feed crop, sweet sorghum (Sorghum bicolor L.) is widely used in the arid region of China since its high sugar content, good palatability and high yield. However, impacts of atmospheric N deposition on production of sweet sorghum are poorly understood in arid land ecosystems where soils are typically low in plant available N. At Hui Autonomous Region, Ningxia, China, a complete random block design was used to study the effects of four levels of N additions (45, 169, 197, and 224 kg ‍‌‌‍ha-1 year-1) on sorghum, node number, stem diameter, leaf number, plant height, yield per plant, dry matter, and sugar Brix of stem. Nitrogen application significantly affected the above parameters. When the amount of N applied was 224 kg ‍‌‌‍ha-1 year-1, the plant height (mean ± standard deviation, 256.9 cm ± 10.7, n=9), stem diameter (16.9 mm ± 1.1 ,n=9), number of leaf (10.8 ± 1.3, n=6) and node (4.9 ± 0.4, n=9), and dry matter per unit area (1.48 t ha-1 ± 0.3, n=9) was highest. While N application did not affect sugar Brix of stem. Therefore, N deposition plays a linearly positive role in enhancing the productivity of sweet sorghum in the arid region of China.

Keywords: Agronomic traits, C4 plant, Feed crop, Nitrogen addition

How to cite: Liu, W., Sun, L., Lan, J., and Li, Y.: Nitrogen deposition enhanced productivity of sweet sorghum (Sorghum bicolor L.) in the arid region of China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10759, https://doi.org/10.5194/egusphere-egu21-10759, 2021.

EGU21-14027 | vPICO presentations | BG1.7

Mitigation of nitrous oxide emissions from an acidic soil by valorization of industrial waste

Junhui Yin, Rui Liu, and Qing Chen

Increasing evidence suggests that alkaline mineral amendments from industrial wastes (e.g., phosphorus tailing, PT) have potential to ameliorate soil acidification and improve agriculture sustainability. However, the effects of such amendment on nitrous oxide (N2O) production remain elusive. To fill this knowledge gap, an incubation experiments were conducted with an acidic soil of pH 4.80 treated with i) control (CK, no amendments), ii) urea at 60 mg N kg-1 (U), iii) 10 g kg-1 amendments (S) and iv) 10 g kg-1 amendments plus urea at 60 mg N kg-1 (S+U). A 184-h experiment was conducted with a robotized incubation system for monitoring real-time gases (O2, N2O, N2, CO2) dynamics. Results from this batch experiment showed that the soil pH was significantly increased with the amendment addition (S and S+U) from 4.80 to above 6.00. Meanwhile, the mineralization, nitrification and denitrification processes were stimulated with the amendment addition. The N2O production was reduced by an average of 65.7% with the amendment addition compared to that without the amendment application. After incubation, higher N2 productions were observed from the soil with amendment addition (S and S+U) than untreated soil (P<0.05). The findings suggest that the N2O emissions from acidic soils can be considerably controlled by valorization of PT.

How to cite: Yin, J., Liu, R., and Chen, Q.: Mitigation of nitrous oxide emissions from an acidic soil by valorization of industrial waste, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14027, https://doi.org/10.5194/egusphere-egu21-14027, 2021.

In China, amounts of organic manure as basal fertilizer application along with flooding irrigation usually resulted in large N2O emissions from intensively protected vegetable soils. However, little attention paid on the N2O emission bursts after application of manure, in a newly established vegetable soil with a low-nitrate content. The nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP), can be used to reduce N2O emissions from agricultural soils, little is known about how DMPP affect N2 emissions and gaseous nitrogen (N2O+N2) losses. Here, we conducted a microcosm experiment in a robotized incubation system under an aerobic (O2/He) condition. Dried chicken manure was applied with and without DMPP to a protected vegetable soil. Two drying-rewetting events occurred during the 19 days monitoring period, and the relevant soil properties (e.g., NO2-, WFPS, DOC, DON, SMBC) were analyzed. Our results showed DMPP addition strongly retarded soil nitrification process that kept a higher NH4+ concentration than that of only manure application. A significant decline of NO2- and NO3- concentration was found in a manure-treated soil with DMPP addition. Clearly, DMPP addition significantly reduced N2O emissions from the protected vegetable soil by 77.0% and remarkably decreased N2 emissions and overall N2O+N2 losses (compared with manure alone) by 51.9% and 54.0%, respectively. Pearson analysis showed that soil N2O fluxes were significantly related to soil WFPS, NH4+, SMBC (P<0.01) and SMBN (P<0.05), whereas N2 fluxes were significantly correlated with soil WFPS, SMBC (P<0.01), NO2-, NH4+ and SMBN (P<0.05) during the whole incubation. The fluxes of N2O+N2 were positively correlated with WFPS, NO2-, SMBC and SMBN, whereas negatively correlated with NH4+ (P<0.05). Moreover, the ratio of N2O to N2O+N2 (N2O/(N2O+N2)) was positively correlated with NO3- (P<0.05), and negatively correlated with DOC, DON and SMBC (P<0.01). An aggregated boosted tree (ABT) analysis further indicated that the relative influence of WFPS, SMBC and NH4+ on N2O fluxes were 19.4%, 14.9% and 12.8%, respectively. Moreover, the relative influence of WFPS on N2 fluxes was the largest (47.4%), followed by SMBC and SMBN (14.3% and 9.66%, respectively). In addition, the relative influence of WFPS, SMBN and SMBC on N2O+N2 losses were 32.6%, 17.0% and 12.6%, respectively, and the relative influence of SMBC, DOC and NO2- on N2O/(N2O+N2) were 22.5%, 20.2% and 11.1%, respectively. In conclusion, our data show that DMPP combined with manure can significantly reduce N2O and N2 emissions in a low-nitrate newly established vegetable soil, and their emissions were strongly affected by WFPS. 

How to cite: Liu, Y., Yin, J., and Cao, W.: Nitrification inhibitor DMPP mitigated N2O emissions and decreased N2 losses in a low-nitrate vegetable soil after application of manure , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10794, https://doi.org/10.5194/egusphere-egu21-10794, 2021.

A common approach to reduce N loss is inclusion of inhibitors with the fertilizer formulation. However, the performance of commercially available inhibitors is often highly unpredictable, with efficacies lasting for few weeks or even only days, for reasons that are still poorly understood. Furthermore, how repeated use of these inhibitors affect soil microbes and nitrogen (N) transformation remains elusive. In the current study, we investigated the response of the community compositions of critical N-cycling biomarkers involved in nitrification and denitrification (including amoA, nxrA, nxrB, narG, nosZ), potential nitrification rates (PNR) and N2O emissions to repeated addition of urease and nitrification inhibitors (nBPT, DMPP) based on a 4-year field experiment. The results demonstrated that 4 years of fertilization significantly affected the community structure of nitrifiers, except AOA. Repeated addition of inhibitors significantly reduced N2O emissions (P ˂ 0.05) and changed the community structure of bacterial-amoA, nxrB, narG and nosZ compared to urea application alone (P ˂ 0.05), but the effects of DMPP and nBPT on N2O emissions and soil microbes were different. Inhibitors had no significant effect on the soil PNR and archaeral-amoA and nxrA. Based on structural equation modeling, amendment with the inhibitors reduced N2O emissions through directly affecting NH4+-N substrate availability for soil microbes and subsequently changing community composition of AOB. These findings help to disentangle the interplay of nBPT and DMPP with soil microbes and N2O emissions in North China Plain.

How to cite: Zhang, W., Liu, R., and Meng, F.: How repeated use of urease and nitrification inhibitors affect soil microbes and N2O emissions in North China Plain? , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15030, https://doi.org/10.5194/egusphere-egu21-15030, 2021.

EGU21-674 | vPICO presentations | BG1.7

Applying slurry with different techniques in spring – which pathway does the nitrogen take?

Caroline Buchen-Tschiskale, Heinz Flessa, and Reinhard Well

One of the most important measures to reduce ammonia (NH3) and nitrous oxide (N2O) fluxes from crop production is the adoption of low-emission application techniques for slurry. Application techniques may also impact dinitrogen (N2) emission, as they can influence denitrification activity by changing slurry and soil aeration (e.g. by injection techniques), nitrate formation (e.g. by adding nitrification inhibitors) and the pH value (e.g. by slurry acidification). However, measuring N2 emissions and following pathways of slurry nitrogen (N) transformation under field conditions is still challenging.

Thus, we set up a field experiment using undisturbed soil cores with growing winter wheat as small lysimeters. Cattle slurry treatments include the following application techniques: trailing hose with and without acidification (H2SO4), slot injection with and without nitrification inhibitor (DMPP). Soil cores without slurry application were used as control. In a first step, soil nitrate was 15N labelled by homogeneous injection of a K15NO3 solution (98 at% 15N, equal to 4 kg N ha-1). One week later, we applied 72 kg N ha-115N-labelled slurry (NH4+ labelled at 65 at% 15N). NH3 emissions were measured by Dräger-Tube method (Pacholski, 2016). N2O and N2 emission were measured using the 15N gas flux method with N2-depleted atmosphere (Well et al., 2018). To close the N balance and follow the different N transformation pathways, 15N losses by leaching, 15N uptake by plant and residual 15N in roots, plant residues, microbial biomass and soil were analysed by IRMS.

N2O emission were very low (up to 0.1 kg N2O-N ha-1) and not significantly different between treatments during the experimental period of 60 days. Since the N2O/(N2+N2O) ratio of denitrification (N2Oi) was also very low, most labelled N was lost via N2 (up to 3 kg N ha-1). Nevertheless, the major gaseous loss pathway was NH3 with up to 8 kg N ha-1 in the trailing hose treatment. Slot injection significantly reduced NH3 emission, while N leaching losses were up 5 kg N ha-1. Recovery of 15N was higher in the soil N pool (32-48 %) than in plants (19-37 %) and roots (5-7 %). Total 15N recovery was almost complete, indicating that the experiment was able to catch the relevant N pathways.

References:

Pacholski, A., 2016. Calibrated passive sampling-multi-plot field measurements of NH3 emissions with a combination of dynamic tube method and passive samplers. Journal of visualized experiments: JoVE 109, e53273.

Well, R., Burkart, S., Giesemann, A., Grosz, B., Köster, J., Lewicka-Szczebak, D., 2018. Improvement of the 15N gas flux method for in situ measurement of soil denitrification and its product stoichiometry. Rapid Communications in Mass Spectrometry 33, 437–448.

How to cite: Buchen-Tschiskale, C., Flessa, H., and Well, R.: Applying slurry with different techniques in spring – which pathway does the nitrogen take?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-674, https://doi.org/10.5194/egusphere-egu21-674, 2021.

EGU21-8305 | vPICO presentations | BG1.7

The impact of liquid organic fertilization and associated application techniques on N2 and N2O fluxes from agricultural soils

Balázs Grosz, Reinhard Well, and Stefan Burkart

Fertilizing arable soils with liquid manures affects gaseous N losses to the atmosphere including NO, N2O and N2 as well as nitrate leaching. These emissions impair nitrogen use efficiency of crops and contribute to the greenhouse effect and stratospheric ozone destruction and pollution of aquatic resources. Their extent depends on the complex interaction between manure application techniques and properties of manures and soil. Whereas the types of manure effects on N transformations and associated gaseous fluxes are known, their prediction is still poor because previous investigations mostly excluded N2 flux.

Our mesocosm experiment addresses the questions, (1) how liquid manure fertilization and its application mode impact N2, N2O and CO2 fluxes from agricultural soil, and (2) how the water and dissolve organic carbon content and the pH of the manure amended soil change between the soil layers. We use these data to set up a dataset to test and develop new biogeochemical model approach to describe the manure-soil interactions.

A sandy arable soil (Fuhrberg, Germany) was used for the experiments and amended with artificial slurry (artificial liquid and cow digestate mixture) in various treatments. The soil was incubated in laboratory incubation systems over 10 days. N2, N2O and CO2 fluxes were quantified by gas chromatography and isotope-ratio mass spectrometry. Incubations were conducted with (surface or injected application) or without (control) of slurry treatment and initial water content was adjusted equivalent to 40% and 60% water-filled pore space. The environmental conditions were kept constant during that experiment.

The average N2+N2O flux decreased at the 40% WFPS surface and injected treatments with 70% and 60%, respectively, compared to the non-fertilized control. For the 60% WFPS surface and injected treatments, the average N2+N2O flux increased with more than 610% and 1690%, respectively. The results show that the initial water content and the application method can influence drastically the N2+N2O flux of the manure amended soil.

How to cite: Grosz, B., Well, R., and Burkart, S.: The impact of liquid organic fertilization and associated application techniques on N2 and N2O fluxes from agricultural soils, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8305, https://doi.org/10.5194/egusphere-egu21-8305, 2021.

EGU21-5125 | vPICO presentations | BG1.7

Using online N2O isotopic measurements to understand grassland N2O emission processes in a changing climate 

Elena Stoll, Eliza Harris, Eugenio Diaz-Pines, David Reinthaler, Jesse Radolinski, Stephan Glatzel, Sophie Zechmeister-Boltenstern, Erich Pötsch, and Michael Bahn

Biogeochemical processes in soils largely control the atmospheric mixing ratio of nitrous oxide (N2O). The growing use of nitrogen (N) fertilizer in agriculture drives anthropogenic N2O emissions, which currently surpass projections with some of the highest emissions. In order to adapt mitigation strategies and to model the future N cycle it is crucial to fully understand N2O emission pathways in a changing climate. The underlying processes, attributed to microbial transformation of N, primarily occur via the oxic nitrification and anoxic denitrification pathways. These processes depend greatly on soil, plant and ecosystem properties, which in turn rely on meteorological drivers (e.g. air temperature and precipitation). This means that the many environmental factors that drive microbial activity and N2O emissions in soils are vulnerable to climate change, including extreme events such as droughts. Consequently, the rates of nitrification and denitrification are expected to be strongly impacted by changing climatic conditions, which could also alter the N2O production and consumption dynamics across the soil profile.

This study aims to understand how N2O production and consumption pathways respond to the individual and combined effects of warming, elevated atmospheric CO2 concentration, and drought-rewetting events in managed mountain grassland. For the first time, we use online, in-situ stable isotopic measurements of both surface N2O emissions and of N2O across the soil profile to distinguish pathways for N2O production and consumption. Different modeling approaches will be used to reconstruct production and consumption dynamics from soil gas isotopic measurements, and to upscale results to examine global relevance.

How to cite: Stoll, E., Harris, E., Diaz-Pines, E., Reinthaler, D., Radolinski, J., Glatzel, S., Zechmeister-Boltenstern, S., Pötsch, E., and Bahn, M.: Using online N2O isotopic measurements to understand grassland N2O emission processes in a changing climate , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5125, https://doi.org/10.5194/egusphere-egu21-5125, 2021.

EGU21-12807 | vPICO presentations | BG1.7

Investigating the diurnal variability of nitrous oxide emissions from soils 

Yuk Faat Wu, Niall McNamara, Jeanette Whitaker, and Sylvia Toet

Diurnal variations in soil nitrous oxide (N­2O) emissions have been documented for nearly four decades yet consensus on their significance is still lacking. Resolving this question is important as soil N2O emissions have some of the highest uncertainties in national greenhouse gas inventories. A major challenge for understanding diurnal variation is that conventional measurements rarely operate at temporal frequencies that can observe and report this phenomenon. Some higher frequency studies have observed daytime peaking of soil N­2O emissions and often ascribe it to the diurnal oscillation of soil temperature. However, night-time peaking and irregular diurnal N­2O patterns have also been reported in a number of studies.

To investigate the prevalence and characteristics of diurnal N­2O variability, we systematically reviewed published studies that measured N2O at high temporal frequencies (≥ 5 times/day). We identified 46 published studies covering cropland, grassland and forest soils; and extracted sub-daily N­2O flux data and other soil parameters, yielding 286 individual days of data. Diurnal variability of N­2O emissions were found in ~80% of the data, with ~60% peaking during the day and ~20% at night. Diurnal N­2O patterns were associated with non-diurnal factors including soil texture and land use but the relationship between soil temperature and N­2O flux was inconsistent, with strong positive correlations (R > 0.7) only found in one-third of the datasets.

This talk explores the implications of the review results on the time of sampling using conventional approaches (single time-point flux measurements), and the potential drivers of diurnal N­2O variations for future research. In addition, this talk will also introduce a novel automated measurement technique allowing flux measurements at high temporal resolutions and how its application could enable experimental investigations of potential drivers of diurnal N­2O variability.

How to cite: Wu, Y. F., McNamara, N., Whitaker, J., and Toet, S.: Investigating the diurnal variability of nitrous oxide emissions from soils , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12807, https://doi.org/10.5194/egusphere-egu21-12807, 2021.

EGU21-1223 | vPICO presentations | BG1.7

Nitrate and water uptake, rather than rhizodeposition, control denitrification in the presence of growing plants

Pauline Sophie Rummel, Reinhard Well, Birgit Pfeiffer, Klaus Dittert, Sebastian Floßmann, and Johanna Pausch

The main prerequisites for denitrification are availability of nitrate (NO3-) and easily decomposable organic substances, and oxygen deficiency. Growing plants modify all these parameters and may thus play an important role in regulating denitrification. Previous studies investigating plant root effects on denitrification have found contradictive results. Both increased and decreased denitrification in the presence of plants have been reported and were associated with higher Corg or lower NO3- availability, respectively. Accordingly, it is still unclear whether growing plants stimulate denitrification through root exudation or restrict it through NO3- uptake. Furthermore, reliable measurements of N2 fluxes and N2O/(N2O+N2) ratios in the presence of plants are scarce.

Therefore, we conducted a double labeling pot experiment with either maize (Zea mays L.) or cup plant (Silphium perfoliatum L.) of the same age but differing in size of their shoot and root systems. The 15N gas flux method was applied to directly quantify N2O and N2 fluxes in situ. To link denitrification with available C in the rhizosphere, 13CO2 pulse labeling was used to trace C translocation from shoots to roots and its release by roots into the soil.

Plant water uptake was a main factor controlling soil moisture and, thus, daily N2O+N2 fluxes, cumulative N emissions, and N2O production pathways. However, N fluxes remained on a low level when NO3- availability was low due to rapid plant N uptake. Only when both N and water uptake were low, high NO3- availability and high soil moisture led to strongly increased denitrification-derived N losses.

Total CO2 efflux was positively correlated with root dry matter, but there was no indication of any relationship between recovered 13C from root exudation and cumulative N emissions. We anticipate that higher Corg availability in pots with large root systems did not lead to higher denitrification rates, as NO3- was limiting denitrification due to plant N uptake. Overall, we conclude that root-derived C stimulates denitrification only when soil NO3- is not limited and low O2 concentrations enable denitrification. Thus, root-derived C may stimulate denitrification under small plants, while N and water uptake become the controlling factors with increasing plant and root growth.

How to cite: Rummel, P. S., Well, R., Pfeiffer, B., Dittert, K., Floßmann, S., and Pausch, J.: Nitrate and water uptake, rather than rhizodeposition, control denitrification in the presence of growing plants, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1223, https://doi.org/10.5194/egusphere-egu21-1223, 2021.

EGU21-12482 | vPICO presentations | BG1.7

Field measurements of soil denitrification using 15N gas flux

Amanda Matson, Dirk Lempio, Frank Höppner, and Reinhard Well

Accurate models of soil N cycling are an important tool for optimizing N use efficiency within agricultural systems and predicting N emissions to the environment. However, within such models, denitrification remains a challenge to describe and predict. One issue in achieving accurate denitrification estimates is the limited number of soil N2 flux datasets that can be used to validate model estimates. Measurements of soil denitrification, which include both N2O and N2 fluxes, are challenging, however, due to methodological limitations for the measurement of N2 and the heterogeneity of denitrification in soils.

As part of the DFG-research unit “Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)”, we are building on previous data collected from laboratory incubations to take in situ field measurements. We use soil flushing and stable isotope techniques, combined with real-time monitoring of soil conditions, to assess the response of soil denitrification to a variety of control factors. These include: soil texture, previous crop, irrigation, and fertilizer application, in addition to the ambient changes in field conditions over one growing season of winter wheat. Both natural abundance and 15N labeling of the soil mineral N pool will be used to assess denitrification pathways.

Here we introduce the experimental field setup, summarize key elements of method testing and present early results of N2 and N2O. Once complete, this data set will provide valuable insight into the temporal and spatial heterogeneity of denitrification in agricultural soils. Data will be used to calibrate newly developed DASIM models as well as denitrification sub-modules of existing biogeochemical models.

How to cite: Matson, A., Lempio, D., Höppner, F., and Well, R.: Field measurements of soil denitrification using 15N gas flux, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12482, https://doi.org/10.5194/egusphere-egu21-12482, 2021.

EGU21-10809 | vPICO presentations | BG1.7

Isotope and microbiome analysis indicates variety of N-cycle processes controlling N2O fluxes in a drained peatland forest soil

Mohit Masta, Sharvari Gadegaonkar, Holar Sepp, Mikk Espenberg, Jaan Pärn Pärn, Kalle Kirsimäe, and Ülo Mander

Nitrous oxide (N2O) is a major greenhouse gas whose presence in atmosphere is continuously increasing. Hence it’s important to understand its production and consumption mechanisms. During the summer of 2020, we conducted lab experiments using heavy nitrogen tracers of Potassium Nitrate 15N 98% atom (Sigma Aldrich) and Ammonium Chloride 15N 98% atom (Sigma Aldrich) under different moisture conditions to get an insight into N2O production mechanisms and on their dependence on soil moisture. We applied the tracer to peat samples (Kärevere, Estonia) placed in 36 (12 control, 12 nitrate treatment & 12 ammonia treatment) plastic buckets (radius-10cm, height-20cm) with soil height of 10 cm and a 10 cm head space left for gas collection. We installed oxygen sensors, water table indicators and temperature sensors on all buckets. We focused on studying physical conditions (soil oxygen, temperature, water table and soil moisture), gas (N2O) emission data, soil chemistry, gas isotope 15N, soil isotope and soil microbiology to get a complete picture of the processes involved in production of N2O gas. Under the ammonia treatment, emissions increased more than ten-fold which could be due to multiple processes of the nitrogen cycle in play. N2O emissions increased as the oxygen conditions shifted from anoxic (Omg/L=0) to sub-oxic (Omg/L=0.5–6) and then decreased as oxygen conditions reached the oxic (Omg/L>6) state. Furthermore, we witnessed negative site preference and 18O values during the nitrate treatment indicating nitrifier-denitrification. Under the ammonia treatment, we recorded both negative as well as high positive site preference values indicating presence of multiple production mechanisms. This was expected as ammonia triggers multiple processes in the nitrogen cycle. In some samples, we observed N2O consumption with little change in site preference as compared to the N2O producing samples. This indicates some bacterial-denitrification along with the prevailing nitrifier-denitrification. We also observed that under both treatments, heavy oxygen increased with increasing site preference. This indicates reduction of N2O (Ostrom et al, 2007) as redox supports 15N and 18O enrichments. After these lab experiments, we conducted the same experiment at a large scale in a drained peatland forest in Agali, Estonia. In this experiment, we established 1m2 triangle-shape mesocosms using experimental draining and flooding to achieve varying oxygen conditions. Preliminary results of qPCR analysis of N-cycle control genes support the domination of ammonia oxidation and denitrification as sources of N2O.

How to cite: Masta, M., Gadegaonkar, S., Sepp, H., Espenberg, M., Pärn, J. P., Kirsimäe, K., and Mander, Ü.: Isotope and microbiome analysis indicates variety of N-cycle processes controlling N2O fluxes in a drained peatland forest soil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10809, https://doi.org/10.5194/egusphere-egu21-10809, 2021.

EGU21-1619 | vPICO presentations | BG1.7

The role of land-use change and restoration on nitrogen processing in tropical coastal wetlands of Vietnam

Sophie Comer-Warner, Anh Nguyen, Minh Nguyen, Manlin Wang, Antony Turner, Fotis Sgouridis, Stefan Krause, Hue Le, Nicholas Kettridge, Nghia Nguyen, and Sami Ullah

Coastal wetlands, including mangrove and melaleuca forests, are globally important due to their capacity in sequestering carbon and nitrogen, and intercepting nutrient pollution from vast, nutrient-rich, tropical riverine networks. Despite this, the environmental drivers controlling soil biogeochemistry in these ecosystems remain poorly understood. Here we conducted a study across gradients of restoration and land-use in the mangrove forest of Xuan Thuy National Park in the Red River Delta, northern Vietnam and the melaleuca forest of U Minh Thuong National Park in the Mekong River Delta, southern Vietnam. We investigated nitrogen transformation processes and greenhouse gas production in mangrove and melaleuca forest soils using a 15N-Gas flux method to determine rates of denitrification, and its relative contribution to soil N2O emissions. We found that denitrification was a more dominant source of N2O in the melaleuca soils, despite higher rates of denitrification in the mangrove soils resulting from more complete denitrification in the mangroves. N2O and CO2 emissions were significantly higher from the melaleuca soils. Disturbance and subsequent recovery or restoration of these forests did not have a significant effect on soil biogeochemistry. The mangrove system, therefore, may remove excess nitrogen and improve water quality while maintaining low emissions of greenhouse gases whereas melaleucas process nutrients at a cost of N2O and CO2 emissions. Melaleucas, however, may act as a significant CH4 sink at least partially balancing these emissions.

How to cite: Comer-Warner, S., Nguyen, A., Nguyen, M., Wang, M., Turner, A., Sgouridis, F., Krause, S., Le, H., Kettridge, N., Nguyen, N., and Ullah, S.: The role of land-use change and restoration on nitrogen processing in tropical coastal wetlands of Vietnam, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1619, https://doi.org/10.5194/egusphere-egu21-1619, 2021.

EGU21-7340 | vPICO presentations | BG1.7

Design of the treatment wetland determines nitrous oxide emission

Kuno Kasak, Keit Kill, Evelyn Uuemaa, and Ülo Mander

Treatment wetlands are widespread measures to reduce agricultural diffuse pollution. Systems that are often planted with emergent macrophytes such as Typha spp. and Phragmites spp. are efficient to reduce nutrients, particularly nitrogen and phosphorus compounds. While many experiments have been conducted to study the emission of carbon dioxide (CO2) and methane (CH4), little attention has been paid for the emission of nitrous oxide (N2O). Few studies have been shown that usually N2O emission from water saturated ecosystems such as wetlands is low to negligible. In Vända in-stream treatment wetland that was built in 2015 and located in southern Estonia, we carried out first long term N2O measurements using floating chambers. The total area of the wetland is roughly .5 ha; 12 boardwalks, each equipped with two sampling spots, were created. Samples were collected biweekly from March 2019 through January 2021. In each sampling campaign water table depth, water and air temperature, O2 concentration, oxygen reduction potential, pH and electrical conductivity were registered. Water samples for TN, NO3-N, NO2-N, TOC, TIC and TC were collected from inflow and outflow of the system in each sampling session and the average concentrations were 5.1 mg/L, 3.68 mg/L, <0.1 mg/L, 41.2 mg/L and 28.7, respectively. Our results showed a very high variability of N2O emission: the fluxes ranged from -4.5 ug m-2 h-1 to 2674.2 ug m-2 h-1 with mean emission of 97.3 ug m-2 h-1. Based on gas samples (n=687) we saw a strong correlation (R2 = -0.38, p<0.0001) between N2O emission and water depth. The average N2O emission from sections with the water table depth >15 cm was 45.9 ug m-2 h-1 while sections with water table depth <15 cm showed average emission of 648.3 ug m-2 h-1. The difference between these areas was more than 10 times. Water temperature that is often considered as the main driver had less effect to the N2O emission. For instance, at lower temperatures, when the emissions from deeper zones decreased, there was no temperature effect on emissions from shallow zones. We also saw that over the years the overall N2O emission followed clear seasonal dynamics and has a slight trend towards lower emissions. This can be related to the more intensive vegetation growth that has been increased from ~40% in 2019 to approximately 90% in 2020. Our study demonstrates that the design of the wetland is not only important for the water treatment, but it can also determine the magnitude of greenhouse gas emissions. We saw that even slight changes in water table depth can have a significant effect on the annual N2O emission. Thus, in-stream treatment wetlands that have water table depth at least 15 cm likely have remarkably lower N2O emissions without losing water treatment efficiency.

 

How to cite: Kasak, K., Kill, K., Uuemaa, E., and Mander, Ü.: Design of the treatment wetland determines nitrous oxide emission, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7340, https://doi.org/10.5194/egusphere-egu21-7340, 2021.

EGU21-12432 | vPICO presentations | BG1.7

Modelling the impact of soil processes on the N and O isotope signatures of nitrate in groundwater

Neus Otero, Mathieu Sebilo, Bernhard Mayer, Daren Gooddy, Dan Lapworth, Ben Surridge, Emmanuelle Petelet-Giraud, and Wolfram Kloppmann

Stable isotope fingerprinting is widely applied to plant-soil-groundwater systems in an aim to identify and even quantify the sources of nitrates found in groundwater. Frequently, in such studies, the δ15N and δ18O values of nitrogen sources, such as inorganic fertilizers and manure, are directly compared to the isotope signatures of nitrate encountered in groundwater bodies below agricultural watersheds. We submit that the underlying assumptions (conservative behavior of isotope composition, rapid transfer from surface to groundwater) may only be realistic under very specific conditions whereas, in most cases, significant isotope effects exerted by the soil-microbial-plant system on the δ15N and δ18O values of nitrate need to be taken into account when attempting a quantitative apportionment of sources of groundwater nitrate.

We hypothesise that the isotopic signature of nitrate exported from below the root zone and migrating towards the groundwater will reflect the nitrogen isotope composition of the soil organic N pool, rather than the isotope composition of source fertilizer or organic amendments, due to processes that reset source isotope compositions within soil N pools. We test this hypothesis using empirical observations from a diversity of settings, in France, Spain and Canada with a relatively constant historic anthropogenic N source or a simple and well constrained landuse history. Furthermore, through the use of a process-based model (SIMSONIC, Billy et al., 2010) we estimate to what extent the isotopic composition of the predominant N input to the soil-microbial-plant system and the soil N pool has been modified in an attempt to consider these changes in source apportionment studies elucidating the sources of groundwater nitrate.

This research was supported through the Consortium award MUTUAL, by the LE STUDIUM® Loire Valley Institute for Advanced Studies via its SMART LOIRE VALLEY (SLV) fellowship programme, co-funded by the H2020 Marie Sklodowska-Curie programme, Contract No. 665790.

 

Billy C., Billen G., Sebilo M., Birgand F., Tournebize J. (2010) Nitrogen isotopic composition of leached nitrate and soil organic matter as an indicator of denitrification in a sloping drained agricultural plot and adjacent uncultivated riparian buffer strips. Soil Biology and Biochemistry, 42, 108-117.

How to cite: Otero, N., Sebilo, M., Mayer, B., Gooddy, D., Lapworth, D., Surridge, B., Petelet-Giraud, E., and Kloppmann, W.: Modelling the impact of soil processes on the N and O isotope signatures of nitrate in groundwater, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12432, https://doi.org/10.5194/egusphere-egu21-12432, 2021.

BG1.9 – Functions and functioning of the Critical Zone

Overland flow (OF) and subsurface flow (SSF) are key processes that determine the streamflow response to precipitation, as well as water quality, but are affected by the land surface and soil characteristics. They can also modify the shape of our landscape. However, our understanding of the evolution of OF and SSF characteristics and the feedback mechanisms between hydrological, pedological, biological and geormorphological processes that affect OF and SSF during landscape evolution is still limited.

We used a space-for-time approach and studied 3 plots (4m x 6m each) on four different aged moraines (several decades to ~13.500 years) on the Sustenpass near the Steinglacier and in the karstic glacier foreland of the Griessfirn near Klausenpass (total of 24 plots) to determine how OF & SSF change during landscape evolution. We used artificial rainfall experiments with high rainfall intensities to determine runoff ratios, peak flow rates, timing and duration of OF & SSF. The addition of tracers (2H and NaCl) to the sprinkling water and sampling of soil water allowed us to determine the degree of mixing of the applied rainfall with water in the soil. Measurements during natural rainfall events helped to determine the impact of the rainfall volume and intensity on the runoff generation. In addition, the runoff samples and sensor-based turbidity measurements of OF provide an estimate of the erosion rates during extreme events. In order to link the differences in runoff generation with the pedological and biological characteristics of the slopes, vegetation cover, root density, soil texture, soil aggregate stability, and the saturated hydraulic conductivity (Ksat) were measured as well.

The results show that Ksat at both study areas decreases with moraine age and soil depth and is mainly driven by the increase in silt and clay content. Despite the high Ksat values, local OF occurs frequently on the youngest moraines due to the large rock and stone cover. Sediment flux and the related erosion rates are largest for the young moraines, since vegetation cover and soil aggregate stability are small. Soil and vegetation development change major OF and SSF characteristics during landscape development, such as the mixing processes and the pre-event water fraction in OF & SSF, which both increase for the older moraines. However, the rate of these changes during landscape evolution is controlled by the parent material. These results can be used to inform landscape evolution models and help us to understand processes within the critical zone during the first millennia of soil development.

How to cite: Maier, F. and van Meerveld, I.: Effects of soil and vegetation development on surface and subsurface hydrological properties and processes on moraines in the Swiss Alps, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-830, https://doi.org/10.5194/egusphere-egu21-830, 2021.

Throughfall and stemflow are critical components of the hydrological and biogeochemical cycles of forested ecosystems, as they are the two hydrological processes responsible for the transfer of precipitation and solutes from vegetative canopies to the soil. Despite stemflow rarely accounts for >10% of the rainfall, its concentration over small areas at the base of trunks seems to affect the magnitude and timing of water inputs to the soil and biogeochemical cycling excessively.

Though substantial amount of literature on throughfall and stemflow research is available, recent reviews on eco-hydrology of forested ecosystems identified several key points of uncertainty where current knowledge is weak. These points especially address the role of canopy structure among tree species (i.e., interspecific variation) as well as within a single tree species (i.e., intraspecific variation as caused e.g. by morphology and age) for explaining the large variations in precipitation partitioning into throughfall and stemflow, the spatial variability of throughfall volume and chemistry as well as the temporal and spatial patterning of stemflow inputs to the ground. The latter two points are particular sources of uncertainty, since most sampling approaches fail to adequately identify the infiltration area of stemflow inputs at the trunk base resulting in incomplete or biased evaluations of tree species effects on rainfall partitioning.

Based on these deliberations we conducted a color tracer experiment with Brilliant Blue to identify flow patterns of stemflow water along the stem surface of two broad-leafed tree species (Fagus sylvatica and Acer pseudoplatanus) of the Hainich Critical Zone Exploratory (CZE) and to estimate the infiltration area at the trunk base and down to 12 cm soil depth. The trunk area was dye-stained up to 1.5 m height in advance and stemflow patterns along the trunk surface and soil infiltration zone were visually quantified following two natural rainfall events. Furthermore, we tested the relationship between color-stained zones of "high through-flow” and ecological soil characteristics such as fine root distribution and soil pH. This approach differs from common color tracer experiments, where stems are actively and homogeneously sprinkled with large amounts of color tracer solution.

We found distinct spatially restricted stemflow pathways on the tree trunks, which appeared specific for the tree individual exhibiting larger washed-off areas for beech (4441 cm²) compared to maple (1816 cm²). The infiltration area of stemflow at the trunk base was smaller than the basal area (BA) amounting to 17% (226.2 cm²) of the BA for beech and to 30% (414.4 cm²) for maple. For beech, colored areas were restricted to a maximum extension of 13 cm distance from the stem and of 30 cm for maple.

Our investigation exhibited that stemflow infiltration was spatially more concentrated at the trunk base than commonly assumed. The outcome of this study will contribute to our understanding on hydrological and biogeochemical interlinkages between the surface and subsurface of the Critical Zone.

 

How to cite: Michalzik, B., Tischer, A., Potthast, K., and Lotze, R.: Non-uniform but highly preferential stemflow routing along bark surfaces and actual smaller infiltration areas than previously assumed: A case study on European beech (Fagus sylvatica L.) and sycamore maple (Acer pseudoplatanus L.) , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3108, https://doi.org/10.5194/egusphere-egu21-3108, 2021.

Within the Critical Zone, the river water quality plays a key role for the related ecosystems. The impact of contaminants delivered to surface water from groundwater inputs are often neglected, while they can constitute the major loads of nutrients or pesticides in some specific river sections. In this study, we focus on a limited section of the Loire River in France, downstream Orleans city, where the increase of the river discharge cannot be attributed to the confluence of the small tributaries. Indeed, previous studies have pointed out the role of the groundwater discharge from the large Beauce aquifer located to the north of the river, mainly focusing on the quantitative aspects.

Based here on geochemical and isotopic tracers, we first confirm groundwater inputs to the Loire River and we clearly attributed those inputs to the Beauce carbonate aquifer using the relationship between 87Sr/86Sr and the Cl/Sr ratios. Secondly, the conservative tracers (Sr isotopes and Cl concentrations) allow assessing the groundwater contribution to the river to around 20% of the total discharge during low flow periods. This proportion is in full agreement with the previous studies based on heat budget method, where the river temperature is estimated with satellite thermal infrared images. Lalot et al. (2015) showed that the main groundwater discharge is concentrated along a 9 km transect just downstream of Orléans city with a discharge of 5.3 and 13.5 m3.s−1 during summer and winter times, respectively. This is roughly in agreement with the calculations based on groundwater modelling (calculated groundwater discharge: 0.6 to 0.9 m3.s−1.km−1). Finally, we pointed out the quality impact of these groundwaters especially regarding nitrates. Groundwater impacts on surface water quality have recently been considered as a potential vector of surface water contamination but they are still weakly studied and quantified. Here, we show pics of nitrates concentrations that rapidly decrease in the Loire River (especially in low flow period) after the groundwaters inputs enriched in NO3 coming from the highly anthropized Beauce aquifer because of intensive agriculture practices. The nitrate decrease in the river is probably due to a nitrate removal processes (plant/microbial uptake?). The impact of these inputs into the Loire but also into the small tributaries of the Loire River should be further investigated, especially regarding pesticides loads and fates, and their potential impact on the related ecosystems.

Lalot, E., Curie, F., Wawrzyniak, V., Baratelli, F., Schomburgk, S., Flipo, N., Piegay, H., Moatar, F., 2015. Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging. Hydrol. Earth Syst. Sci. 19, 4479–4492.

How to cite: Petelet-Giraud, E., Negrel, P., and Casanova, J.: Groundwater inputs towards surface water: quantification and impact on the river water quality using chemical and isotope fingerprints (87Sr/86Sr), example of the Loire River (France), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2968, https://doi.org/10.5194/egusphere-egu21-2968, 2021.

EGU21-8412 | vPICO presentations | BG1.9

Major element geochemistry of European agricultural soil: weathering processes of silicate parent materials

Philippe Negrel, Anna Ladenberger, Clemens Reimann, Alecos Demetriades, Manfred Birke, and Martiya Sadeghi

Collection of agricultural soil samples in Europe (0–20 cm, 33 countries, 5.6 million km2) during the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) continental-scale project allowed the study of geochemical behaviour of major elements during weathering (SiO2, TiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, P2O5) using their total concentrations (XRF data). The chemical composition of soil represents to a large extent the primary mineralogy of the source bedrock, the effects of pre- and post-depositional weathering and element mobility, either by leaching or mineral sorting with the addition of formation of secondary products such as clays.

Bulk geochemistry is used to calculate a set of weathering indices such as chemical index of alteration CIA, reductive and oxidative mafic index of alteration MIA, the change in mass balance t (calculation relative to immobile Nb) for soil derived from silicate parent materials defined as granite, gneiss and schist at the European continental-scale. Silicate minerals of soil parent materials can be either very resistant to weathering or very soluble and export of elements in dissolved form and precipitation of secondary phases can occur at a large scale. Either way, they leave a strong chemical signature in derived soil, which can be quantified and classified with help of geochemical indices that are useful tools to evaluate chemical weathering trends. Weathering indices and gain-loss mass transfer coefficients were applied to agricultural soil to provide an insight into the weathering processes affecting three silicate parent rocks and their impact on soil development at the European scale. Distinct chemical composition and weathering patterns has been evidenced in silicate derived soil. The interpretation of geographical distribution of soil types with silicate substrate allows better understanding of soil nutritional status, metal enrichments, degradation mechanisms under various climate conditions.

How to cite: Negrel, P., Ladenberger, A., Reimann, C., Demetriades, A., Birke, M., and Sadeghi, M.: Major element geochemistry of European agricultural soil: weathering processes of silicate parent materials, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8412, https://doi.org/10.5194/egusphere-egu21-8412, 2021.

EGU21-13339 | vPICO presentations | BG1.9

Tracing the transport of organic colloids in porous media using tailored poly(ethylene glycol)

Thomas Ritschel, Katharina Lehmann, Michaela Brunzel, Jürgen Vitz, Ivo Nischang, Ulrich Schubert, and Kai Totsche

A large fraction of organic matter in natural aqueous soil solutions is given by molecules in sizes above one nanometer, which classifies them as colloids according to the IUPAC definition. Such colloids feature discernable mobility in soils and their transport is decisive for the cycling of carbon as well as the migration of nutrients or contaminants. Yet, their size-dependent hydrodynamics and functional diversity result in transport phenomena that are specific to colloids and, thus, largely differ from those observed for smaller substances. Still, tracers that appropriately represent small organic colloids are not available and the investigation of their transport in laboratory column experiments, in dependence of size and chemistry, remains difficult. To overcome this limitation, we tested if well-defined synthetic polymers in the colloidal size range are suitable as non-conventional tracers of colloidal transport. As polymer backbone, we selected poly(ethylene glycol) (PEG) due to its high water-solubility and established pathway of synthesis that permits tailoring of functional moieties to the fullest extent. An easy and sensitive detection in the aqueous phase became possible by using a fluorophore as starting group. After full characterization, we studied PEG adsorption to quartz, illite, goethite, and their mixtures in batch and column transport experiments. In numerical simulations, we successfully reconstructed and predicted PEG transport based on its physicochemical as well as hydrodynamic properties and, thus, show that PEG transport can be comprehensively and quantitatively studied. Considering also its low adverse effect on the environment, functional PEG therefore presents as promising candidate to be used as organic tracer, designable in the size range of natural organic (macro-)molecules (Ritschel et al., 2021).

References

Ritschel, T., Lehmann, K., Brunzel, M., Vitz, J., Nischang, I., Schubert, U., Totsche, K. U. (2021) Well-defined poly(ethylene glycol) polymers as non-conventional reactive tracers of colloidal transport in porous media. J. Colloid Interface Sci. 548, 592-601, doi: 10.1016/j.jcis.2020.09.056.

How to cite: Ritschel, T., Lehmann, K., Brunzel, M., Vitz, J., Nischang, I., Schubert, U., and Totsche, K.: Tracing the transport of organic colloids in porous media using tailored poly(ethylene glycol), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13339, https://doi.org/10.5194/egusphere-egu21-13339, 2021.

EGU21-13371 | vPICO presentations | BG1.9

Event-driven dynamics of the total mobile inventory in soils - Results from a comparative multi-year lysimeter study

Katharina Lehmann, Robert Lehmann, and Kai U. Totsche

A diverse size- and matter spectrum of inorganic, organo-mineral and organic substances, and dissolved, colloidal, but also larger particulate matter, including microbiota, is mobile in soil and potentially involved in matter interchange between surface and subsurface ecosystems. Specifically including the widely neglected particulate fractions, conditions and field-scale factors controlling the long-term seasonal and episodic dynamics of the “total mobile inventory” (Lehmann et al., 2021), in undisturbed soil and its translocation through the subsurface of the Critical Zone is almost unknown. To overcome this knowledge gap, we established long-term soil monitoring plots in the Hainich Critical Zone Exploratory (HCZE; NW-Thuringia, central Germany). Soil seepage from 22 tension-controlled lysimeters in topsoil and subsoil, covering different land use (forest, pasture, cropland) in the topographic recharge area of the HCZE, was collected and analyzed by a variety of analytical methods (physico-/chemical and spectroscopic) on a regular (biweekly) and event-scale cycle. Atmospheric forcing was found to be the major factor triggering the translocation of the mobile inventory, mainly causing considerable seasonality in the solute signature (e.g., sulphate) and seepage pH. However, episodic high-flow (infiltration) events rather than seasonality caused mobilization of significant amounts of particulates, for instance, after snow melts or rainstorms. Noteworthy, particulate organic carbon translocated during the winter-season infiltration events, accounted for up to 80% of annual fluxes. On average, 21% of the total OC of the seepage was particulate (>0.45 µm). Our study provides field-scale evidence for the importance of the mobile inventory fraction >0.45 µm for soil elemental dynamics and budgets. We, thus, suggest involving suspended fractions in environmental monitoring programs, although requiring adapted sampling procedures.

 

References:

Lehmann, K., Lehmann, R., & Totsche, K. U. (2021). Event-driven dynamics of the total mobile inventory in undisturbed soil account for significant fluxes of particulate organic carbon. Science of The Total Environment, 143774.

How to cite: Lehmann, K., Lehmann, R., and Totsche, K. U.: Event-driven dynamics of the total mobile inventory in soils - Results from a comparative multi-year lysimeter study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13371, https://doi.org/10.5194/egusphere-egu21-13371, 2021.

EGU21-15245 | vPICO presentations | BG1.9

Bacterial communities in shallow fractured-rock groundwater evolve over time, exhibiting cyclic patterns in response to multi-annual recharge events.

Syrie Hermans, Lijuan Yan, Kai Uwe Totsche, Robert Lehmann, Martina Herrmann, and Kirsten Küsel

Groundwater is an important component of the Earth’s critical zone and within this ecosystem, microbial communities play an important role, interacting with, and contributing to, the geology and hydrology of these systems; understanding how microbial communities in this dynamic zone change over time is therefore crucial. However, subsurface aquatic environments are lacking high-resolution temporal data over long time periods. Based on 16S rRNA gene sequences collected monthly over a six-year period (n=230) in groundwater from fractured Triassic limestone-mudstone alternations of the Hainich Critical Zone Exploratory (central Germany), we, therefore, aimed to disentangle the temporal dynamics of bacterial communities. The bacterial communities in the shallow bedrock groundwater showed multi-annual cyclic dissimilarity patterns which corresponded to groundwater level fluctuation and, thus, recharge discharge periods. The impact of groundwater fluctuation and linked cross-stratal exchange on the groundwater microbial communities was associated with the recharge strength and local environmental selection strength. Sampling period was able to explain up to 29.5% of the variability in bacterial community composition (based on a 2-factorial PERMANOVA model). We observed an increase in dissimilarity over time (Mantel P > 0.001) indicating that the successive recharge events result in bacterial communities that are increasingly more dissimilar to the communities at the start of the sampling period. Most bacteria in the groundwater originated from the recharge-related sources (mean = 66.5%, SD = 15.1%) and specific bacterial taxa were identified as being either enriched or repressed during recharge events. Overall, we show that seasonal recharge patterns are important for shaping bacterial communities in shallow fractured-rock groundwater and act as drivers of cyclical patterns. Furthermore, the recharge events are successive shocks that perturbed the bacterial communities, leading to decreased similarity to the original state over time. These revelations highlight the importance of high temporal resolution research in the Critical Zone for investigating the complex interplay between surface/subsurface environmental dynamics and the biology of groundwater ecosystems.

How to cite: Hermans, S., Yan, L., Totsche, K. U., Lehmann, R., Herrmann, M., and Küsel, K.: Bacterial communities in shallow fractured-rock groundwater evolve over time, exhibiting cyclic patterns in response to multi-annual recharge events., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15245, https://doi.org/10.5194/egusphere-egu21-15245, 2021.

EGU21-14616 | vPICO presentations | BG1.9

Molecular Changes in Dissolved Organic Matter After Soil Rewetting

Alice Orme, Simon Benk, Markus Lange, Christian Zerfaß, Georg Pohnert, and Gerd Gleixner

The intensity and occurrence of droughts is projected to increase due to climate change. Dried soils release high concentrations of dissolved organic matter (DOM) into subsurface waters when they are rewet, the so-called rewetting peak. To more accurately predict the role of rewetting of soils after drought on the carbon cycle in a changing climate, it is important to understand the processes behind this DOM release.

The DOM rewetting peak origin is disputed between soil organic matter (SOM) from breakdown of soil particles; accumulated root exudates; and microbial release due to a change in osmotic potential through osmolytes or cell bursting. To better understand the origin of the rewetting DOM peak, we took a rewetting series of soil water samples from different vegetation types between December 2018 and April 2019 for targeted and untargeted metabolomics. Initial results using untargeted ultrahigh-resolution mass spectrometry analysis revealed a clear temporal trend, indicating that vegetation-independent molecular changes occur following rewetting. An increase in O/C and a decrease in H/C over time was observed which is attributed to microbial decomposition, supported by a decrease in m/z over time. We also observed an increase in the content of lipidic compounds (R > 0.6) following rewetting. This indicates that cells do not burst upon rewetting and, over time, microbial activity increases, suggesting that the DOM rewetting peak is caused by a lack of decomposition, rather than a high production, of organic matter.

How to cite: Orme, A., Benk, S., Lange, M., Zerfaß, C., Pohnert, G., and Gleixner, G.: Molecular Changes in Dissolved Organic Matter After Soil Rewetting, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14616, https://doi.org/10.5194/egusphere-egu21-14616, 2021.

EGU21-4526 | vPICO presentations | BG1.9

Understanding groundwater metabolome trajectories

Christian Zerfaß and Georg Pohnert

Groundwater is a dilute, but biologically rich environment harbouring plenty microbial life [1]⁠. This microbiome requires influxes of dissolved organic matter (DOM) as energy source. Within the Hainich Critical Zone Observatory project [2,3]⁠, we have collected metabolomic information on groundwater DOM by liquid chromatography / mass spectrometry since late 2014, in an assembly of sampling wells across a 7 km transect. We analysed this long-term dataset with principal component analysis methods, inferring distance measures to translate individual sampling campaign information into long-term trajectories that can be compared against external influences (such as groundwater flow patterns).

Our data show that these sampling wells have fluctuating inter-well similarities in terms of the metabolome, giving evidence that some wells are mostly isolated entities while others may be receiving influxes from similar groundwater sources. We show that the groundwater hydraulic head fluctuations exert a key influence on similarity profiles, suggesting groundwater mixing. We emphasize that our inferred principal component measures may therefore serve as a basis to unravel the interactions and influences of groundwater flows, metabolome (biogeochemistry), and microbial life.

References

[1] Yan L, Herrmann M, Kampe B, Lehmann R, Totsche KU, Küsel K. Environmental selection shapes the formation of near-surface groundwater microbiomes, Water Res 2020, 170, 115341. DOI: 10.1016/j.watres.2019.115341.

[2] Küsel K, Totsche KU, Trumbore SE, Lehmann R, Steinhäuser C, Herrmann M. How Deep Can Surface Signals Be Traced in the Critical Zone? Merging Biodiversity with Biogeochemistry Research in a Central German Muschelkalk Landscape, Front Earth Sci 2016, 4. DOI: 10.3389/feart.2016.00032.

[3] Lehmann R, Totsche KU. Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata, J Hydrol 2020, 580, 124291. DOI: 10.1016/j.jhydrol.2019.124291.

How to cite: Zerfaß, C. and Pohnert, G.: Understanding groundwater metabolome trajectories, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4526, https://doi.org/10.5194/egusphere-egu21-4526, 2021.

EGU21-16277 | vPICO presentations | BG1.9

Using the molecular composition of dissolved organic matter in groundwater to assess the functional stability of subsurface ecosystems

Simon Benk, Robert Lehmann, Kai Uwe Totsche, and Gerd Gleixner

With surface systems changing rapidly on a global scale, it is important to understand how this will affect groundwater resources and ecosystems in the subsurface. The molecular composition of dissolved organic matter (DOM) integrates essential information on metabolic functioning and could therefore reveal changes of groundwater ecosystems in high detail. Here, we evaluate a 6-year time series of ultrahigh-resolution DOM composition analysis of groundwater from a hillslope well transect within the Hainich Critical Zone Exploratory, Germany. We predict ecosystem functionality by assigning molecular sum formulas to metabolic pathways via the KEGG database. Our data support hydrogeological characterizations of a compartmentalized fractured multi-storey aquifer system and reveal distinct metabolic functions that largely depend on the compartment’s relative surface-connectivity or isolation. We show that seasonal fluctuation of groundwater levels, coinciding with cross-stratal exchange can substantially impact the local inventory of functional metabolites in DOM. Furthermore, we find that extreme conditions of groundwater recharge following pronounced groundwater lowstand cause strong alterations of the functional metabolome in DOM even in aquifer compartments, which usually show minimal variation in DOM composition. Our findings suggest that bedrock groundwater ecosystems might be functionally vulnerable to hydrogeological extremes.

How to cite: Benk, S., Lehmann, R., Totsche, K. U., and Gleixner, G.: Using the molecular composition of dissolved organic matter in groundwater to assess the functional stability of subsurface ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16277, https://doi.org/10.5194/egusphere-egu21-16277, 2021.

EGU21-5665 | vPICO presentations | BG1.9

Drivers of carbon dioxide fluxes in high-Arctic tundra: data-driven models

Marta Magnani, Ilaria Baneschi, Mariasilvia Gaimberini, and Antonello Provenzale

Arctic regions are extreme environments where ecosystems are undergoing significant changes induced by the temperature rise, that is progressing about twice faster than in the rest of the world. In the high-Arctic, the Critical Zone (CZ) has a thin above-ground component, consisting of tundra vegetation, and a highly seasonal below-ground component, with varying extension and chemical-physical characteristics. The complexity of this system makes future projections of the Arctic CZ a challenging goal. In particular, it is still unclear whether the system will turn from a carbon sink to a carbon source. On the one hand, the uptake of carbon dioxide (CO2) by vegetation is expected to increase in future years owing to the widening growing season and the shift in community composition but, on the other, increasing soil temperatures are fostering carbon release by thawing permafrost and degradation of organic matter through heterotrophic respiration in deglaciated soils. In this work, we identified the main biotic and abiotic drivers of CO2 emissions (Ecosystem Respiration, ER), and CO2 uptake (Gross Primary Production, GPP), in the Arctic tundra biome. During summer 2019 we extensively measured CO2 fluxes at the soil-vegetation-atmosphere interface, basic meteoclimatic variables and ecological descriptors at the Critical Zone Observatory of Bayelva river basin (CZO@Bayelva), Spitzbergen, in the Svalbard Archipelago (NO). Flux measurements were obtained by a portable accumulation chamber, allowing for the statistical analysis of fluxes variability at small scale. Together with flux measurements, we sampled soil temperature and humidity at the chamber base and local air temperature, pressure and humidity. In addition, the vegetation cover was obtained from digital RGB pictures of the sampled surfaces. By means of multi regression models, we related flux data to environmental parameters, vegetation cover extent and vegetation type, thus obtaining empirical data-driven models that describe the coupled dynamics of soil, vegetation, water and atmosphere that contribute to the present budgeting of the carbon cycle in the arctic CZ. This work may help in assessing the possible future evolution of high-Arctic environment under projected changes in vegetation community composition and abiotic parameters.

How to cite: Magnani, M., Baneschi, I., Gaimberini, M., and Provenzale, A.: Drivers of carbon dioxide fluxes in high-Arctic tundra: data-driven models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5665, https://doi.org/10.5194/egusphere-egu21-5665, 2021.

BG2.1 – Application of Stable Isotopes in Biogeosciences

EGU21-4389 | vPICO presentations | BG2.1

Biosynthetic sources of hydrogen isotope variability in acetogenic lipids are driven by phylogeny in eudicot plants

Jochem Baan, Meisha Holloway-Phillips, Daniel B. Nelson, Jurriaan M. de Vos, and Ansgar Kahmen

Hydrogen stable isotope analyses of plant derived n‑alkanes have been developed as potential tools for ecological, environmental and palaeoclimatological studies. The hydrogen stable isotope composition (δ2H) of source and leaf water influence n‑alkane δ2H values (δ2Halkane), but hydrogen isotope fractionation occurs during plant carbon metabolism. Large variation in δ2Halkane values among species at a single geographic location have been observed, suggesting that metabolic isotope effects are large, but the origin of this biochemical variation remains poorly understood. To explore the variation in δ2Halkane, and test if phylogenetic relatedness structures variation in δ2Halkane values across species, we measured δ2H values of n‑alkanes in a total of 218 samples and 183 eudicot plant species grown in a single common garden during the 2019 growing season. Our results show that most variation in δ2Halkane values could be explained by family and genus identity, and δ2Halkane values significantly evolved along the phylogeny. To identify the intracellular location where the variation in δ2Halkane is induced, we measured δ2Halkane values as well as δ2H values of plastid‑produced precursors, as the acetogenic pathway in higher plants is spatially separated within cells, where fatty acids up to 18 carbon units are produced in the plastid, and additional chain elongation (e.g., for n‑alkane synthesis) occurs in the endoplasmic reticulum. Specifically, during the 2020 growing season, we measured δ2H values of n-alkanes and n‑C16:0 fatty acids (palmitic acid; δ2Hn‑C16:0) in a total of 61 samples and 58 eudicot plant species grown in a single common garden and determined how the two spatially separated parts of the acetogenic pathway influenced δ2Halkane values by comparing to δ2Hn‑C16:0 values. δ2Hn‑C16:0 and δ2Halkane values showed a significant positive correlation, suggesting that δ2Halkane biosynthetic isotopic variability is largely shaped by processes in the plastid leading up to the synthesis of palmitic acid. Strikingly, δ2Hn‑C16:0 values were almost always higher than δ2Halkane values, and the offset between these values (as an enrichment factor; ƐC16:0‑alkane in ‰) was also related to phylogeny. This illustrates that the extent to which the two spatially separated parts of the acetogenic pathway influence δ2H values of n‑alkanes depends on species identity due to phylogenetic effects. Our results demonstrate that variation in δ2Halkane values among species is strongly related to phylogenetic effects, and that most of these effects are generated early in lipid biosynthesis. Future studies should address if the observed variability can be explained by metabolic traits.

How to cite: Baan, J., Holloway-Phillips, M., Nelson, D. B., de Vos, J. M., and Kahmen, A.: Biosynthetic sources of hydrogen isotope variability in acetogenic lipids are driven by phylogeny in eudicot plants, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4389, https://doi.org/10.5194/egusphere-egu21-4389, 2021.

EGU21-9164 | vPICO presentations | BG2.1 | Highlight

Fractionation of clumped isotopes of CO2 during photosynthesis

Getachew A. Adnew, Magdalena E.G. Hofmann, Thijs L. Pons, Gerbrand Koren, Martin Ziegler, Lucas J. Lourens, Wouter Peters, and Thomas Röckmann

Stable isotope (δ13C and δ18O) and mole fraction measurements of CO2 are used to constrain the carbon cycle. However, the gross fluxes of the carbon cycle, especially photosynthesis and respiration, remain uncertain due to the challenging task of distinguishing individual flux terms from each other. The clumped isotope composition (Δ47) of CO2 has been suggested as an additional tracer for gross CO2 fluxes since it depends mainly on temperature but not on the bulk isotopic composition of leaf, soil and surface water, unlike δ18O of CO2.

In this study, we quantify the effect of photosynthetic gas exchange on Δ47 of CO2 using leaf cuvette experiments with two C3 and one C4 plants and discuss challenges and possible applications of clumped isotope measurements. The experimental results are supported by calculations with a leaf cuvette model. Our results demonstrate how the effect of gas exchange on Δ47 is controlled by CO2-H2O isotope exchange (using plants with different carbonic anhydrase activity), and kinetic fractionation as CO2 diffuses into and out of the leaf (using plants with different stomatal and mesophyll conductance). We experimentally confirm the previously suggested dependence of Δ47­­ on the stomatal conductance and back-diffusion flux.

How to cite: Adnew, G. A., Hofmann, M. E. G., Pons, T. L., Koren, G., Ziegler, M., Lourens, L. J., Peters, W., and Röckmann, T.: Fractionation of clumped isotopes of CO2 during photosynthesis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9164, https://doi.org/10.5194/egusphere-egu21-9164, 2021.

Studies on particulate inorganic carbon (PIC) in inland waters are relatively scarce due to the low concentration of PIC which makes it difficult to be measured accurately. In other studies, a characteristic ratio of PIC in total suspended solids in the water column has been proposed to estimate the river PIC flux to the sea, and a titration method to measure the PIC fluxes in karst rivers has been reported. Therefore, we used the Gas Bench Ⅱ-IRMS coupled technique method to analyze the δ13CPIC and PIC concentration in inland waters. The method has the advantage of being suitable for the accurate determination of the isotopic composition of trace PIC samples.

The purging time and carbon content of samples are the important factors affecting experimental accuracy. This study proposed the optimal purge time and the lowest carbon content of the inland water sample. The samples in the experiment included laboratory calcium carbonate standard (99.95 % purity) and PIC samples from the Wujiang River. The PIC samples from Wujiang River were collected on glass fiber filters. Datasets from the experiment demonstrated that the ideal purge time is 500-700 s, and at least 25 μg C should be included in the sample. The instrument signal value is low and the isotopic value fluctuates widely when the purge time is less than 500 s. The phosphoric acid cannot be injected into the sample bottle due to the high pressure in it when the purge time is more than 700 s. Therefore, a purging time of 600 s was used for the field sample analyses. The peak area displayed by the device is correlated with the carbon content in the sample, and the datasets show a good linear relationship between the peak area and carbon content in the sample when the sample be analyzed contained more than 25 μg of inorganic carbon. The carbon content of the sample can be calculated from the peak area of the same batch of calcium carbonate standard. While the peak signal is too low to detect the sample accurately when the C content is less than 25 μg. Therefore, the sample should contain more than 25 μg for the field sample analyses. This study will help to provide a reference for the method of determining the PIC content and isotopic composition in inland water.

How to cite: Li, Y., Meng, F., and Wang, B.: A method for the analyses of carbon stable isotope and content of particulate inorganic carbon in inland waters , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5484, https://doi.org/10.5194/egusphere-egu21-5484, 2021.

EGU21-2041 | vPICO presentations | BG2.1

Carbon and nitrogen isotopes in grasslands of northern China

Yuntao Wu and Zhaoliang Song

Carbon (C) and nitrogen (N) isotopes are important traits to characterize terrestrial ecosystems. Studying the relationships between carbon and nitrogen isotopes of soils and plants in different grassland types and under different environmental conditions is of great importance to the reconstruction of past climate. In this study, we selected three different grassland ecosystems (temperate meadow steppe, temperate typical steppe and temperate desert steppe) in northern China, collected meteorological data and plant and soil samples, determined the basic physical and chemical properties, C and N isotopes to explore the patterns and controlling factors of C and N isotopes in plants and soils of grasslands in northern China. The results showed that there were significant differences in soil δ13C and δ15N between different grassland types in the northern temperate zone. The soil δ13C and δ15N of different depths of the northern temperate grassland soil increased with the increase of soil depth. The surface soil δ13C of temperate meadow steppe and temperate desert steppe had a good correlation with plant sample δ13C. The surface soil δ15N temperate typical steppe and temperate desert steppe had a good correlation with plant sample δ15N. Mean annual temperature (MAT) and mean annual precipitation (MAP) had a complicated relationship with carbon and nitrogen isotopes of surface soil and plant sample in northern temperate grassland. The surface soil δ13C and δ15N and the plant sample δ15N can be used as indicators of the change of MAT.

Keywords: carbon isotopes, nitrogen isotopes, grasslands, climate, soil depth

How to cite: Wu, Y. and Song, Z.: Carbon and nitrogen isotopes in grasslands of northern China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2041, https://doi.org/10.5194/egusphere-egu21-2041, 2021.

EGU21-8382 | vPICO presentations | BG2.1

Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra catchment (Madagascar): insights in past vegetation changes.

Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon

Madagascar is an island characterized by a sharp vegetation gradients in landscape and the extent to which the central highlands were once covered by forest is still under debate. Stable carbon isotope ratios have been an important tracer to understand vegetation shifts in a landscape over time because forest plants (following the C3 photosynthetic pathway) and grasses (following the C4 pathway for the majority of tropical and subtropical species) show a different degree of isotope fractionation. The main aim of this study is to provide insight into the past vegetation history of the grasslands in the Lake Alaotra region (central Madagascar). This region is under high anthropogenic pressure as it is the most important rice-producing region in Madagascar. While much of the Lake Aloatra catchment consists of grassland-covered hills, with a high density of lavaka (large erosional features), pristine forests are located just east of the lake and these form the most western part of a larger rainforest-covered region extending up to the east coast of the island. Soil profiles were sampled along the hillslope gradient at both forested and grassland sites, whereby carbon stocks were quantified and δ13C values of soil organic carbon (OC) were measured to find evidence for past forest vegetation in the grassland sites. The soil organic carbon content of grassland soil profile was extremely low, from 0.4 to 1.8% in the top layer and rapidly decreasing to 0.2 % below 100 cm depth. The current vegetation predominantly consists of C4 grasses (δ13C ~-13 ‰), yet soil δ13C-OC ranges between -25.9 and -16.6‰, and most profiles show a decrease in δ13C-OC with depth, in contrast to observations in the (C3-dominated) forest profiles, which show a typical enrichment in 13C with depth. δ13C values in grassland and forest profiles converge to similar values (within 2.1 ±1.8 ‰) at depths below ~80cm, suggesting that the grasslands in the Lake Alaotra region have developed on formerly forested soils. Moreover, the soil OC stock of grasslands was ~55.6% lower than along the forested hillslopes for the upper 30 cm layer. Our results are consistent with the hypothesis that a vegetation change has occurred in the lake Alaotra region, and offer a promising avenue to expand this approach on a wider scale to help understand the vegetation cover change in the central highland of Madagascar.

How to cite: Razanamahandry, V. F., Dewaele, M., Govers, G., Brosens, L., Campforts, B., Jacobs, L., Razafimbelo, T., Rafolisy, T., and Bouillon, S.: Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra catchment (Madagascar): insights in past vegetation changes., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8382, https://doi.org/10.5194/egusphere-egu21-8382, 2021.

EGU21-14254 | vPICO presentations | BG2.1

Improved throughput for δ18O and δD measurements of water with Cavity Ring-Down Spectroscopy

Magdalena E. G. Hofmann, Zhiwei Lin, Jan Woźniak, and Keren Drori

Oxygen (18O/16O) and deuterium (D/H) isotopes are a widespread tool to trace physical and chemical processes in hydrology and biogeosciences. Precision and throughput are key parameters for water isotope analysis. Here, we will present two new methodologies for the Picarro L2130-i Cavity Ring-Down Spectroscopy (CRDS) water isotope analyzer that allow to increase the throughput with no compromise of data quality.

The Picarro Express Method now distinguishes between a memory reduction stage and a sample analysis stage and allows to measure up to 50 samples per day while maintaining the excellent precision of CRDS (i.e. 0.01‰ for δ18O and 0.05‰ for δD). This corresponds to doubling the throughput compared to the standard Picarro methodology. The Picarro Survey Method makes use of ultrafast injections and sorts the samples by their measured isotopic values, enabling a powerful new strategy to reduce memory effects.

We will discuss different measurement strategies to increase the throughput for routine water isotope analysis. The improved methodologies do not require any hardware changes and are solely based on modifications of the injection procedure. If you are interested in Picarro’s off-the-shelve solution for increasing productivity of your existing and future installations, please visit the Picarro vEGU 2021 booth for a free voucher.

How to cite: Hofmann, M. E. G., Lin, Z., Woźniak, J., and Drori, K.: Improved throughput for δ18O and δD measurements of water with Cavity Ring-Down Spectroscopy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14254, https://doi.org/10.5194/egusphere-egu21-14254, 2021.

EGU21-10279 | vPICO presentations | BG2.1

Stable isotopes of oxygen to characterize a Metalimnetic Oxygen Minimum: insights from a 48 hours field campaign at Rappbode Reservoir, Germany

Marlene Dordoni, Karsten Rinke, Michael Seewald, Jakob Schmidmeier, and Johannes A.C. Barth
The appearance of a Metalimnetic Oxygen Minimum (MOM) has been recorded in many natural lakes and reservoirs. However, its isotopic characterization with oxygen and carbon stable isotopes have not yet been fully constrained. The purpose of this work is to apply stable isotopes of carbon and oxygen to characterize photosynthetic and respiratory activities in the Rappbode Reservoir, Germany. Here we present the results of a 48 hours intensive sampling in July 2020. We provide preliminary data of dissolved oxygen (DO) concentration and saturation profiles, together with dissolved inorganic carbon (DIC). This includes data of oxygen (δ18ODO) and carbon (δ13CDIC) stable isotopes with particular focus on the metalimnion. Our profiles identified minor differences from day to day, such as an additional respiration-like peak above the MOM. Samples from within the MOM were characterized by the lowest oxygen content and saturation (7.05 mg L-1 and 75 %, respectively) and the highest δ18ODO (up to +30.1‰). These samples also showed the lowest δ13CDIC values (down to -12.8‰). Surface layers (between 0 and 9 meters) and the deepest water sample (65 meters) did not follow the expected depth profiles for δ18ODO and δ13CDIC. Surface layers were likely influenced by equilibration with the atmosphere that was enhanced by windy conditions. On the other hand, samples from 65 meters depth could have been perturbed by the presence of organic material from sediments. Moreover, oxygen and carbon stable isotopes patterns were able to show that the MOM can migrate within the water column up to 5 meters within 12 hours. These findings offer an interesting basis to establish mass balances of oxygen and carbon turnover in water bodies.

How to cite: Dordoni, M., Rinke, K., Seewald, M., Schmidmeier, J., and Barth, J. A. C.: Stable isotopes of oxygen to characterize a Metalimnetic Oxygen Minimum: insights from a 48 hours field campaign at Rappbode Reservoir, Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10279, https://doi.org/10.5194/egusphere-egu21-10279, 2021.

EGU21-14955 | vPICO presentations | BG2.1

Using stable isotopes as an indicator for the remaining gas generation potential in decommissioned municipal waste landfills – a concept study

Christian Alexander Schöpke, Ingar Johansen, Stephane Polteau, Pål Tore Mørkved, Viktoriya Yarushina, and Peter Dörsch

Stable isotope measurements have been used as a tool for understanding landfill processes for over two decades. The stable isotope natural abundance signatures of CH4 and CO2 give insight into the extent and duration of processes forming and consuming landfill gas, based on known kinetic fractionation factors for carbon turnover, carbon decomposition, methanogenesis and methane oxidation. Variations in isotopic ratios of carbon in CH4 isotopocules have been documented for many landfills and can be interpreted in terms of methanogenesis, gaseous transport (both diffusive and by mass-flow) and oxidation. The aim of this contribution is to test that δ13C signatures of inorganic carbon in leachate and in CO2/CH4 as well as the DH signature of CH4 and leachate can also be used to estimate the biodegradability of remaining organic matter in a closed landfill based on principles of Rayleigh fractionation. Our strategy is to perform laboratory experiments with excavated landfill waste from three different landfills in Norway with contrasting waste quality. Apparent fractionation coefficients will be compared with independently measured biodegradation potentials and physicochemical properties of the waste. Laboratory results will be integrated with field measurements of the isotopic composition of seeped and collected landfill gas and integrated into a landfill isotopic model. The landfill isotopic model will be used to estimate the remaining CH4 emission potential of decommissioned and covered municipal landfills. The results from this study are relevant for landfill owners and operators as a tool to estimate the duration and volume of gas emissions at a particular site and to define the landfill management strategy appropriately.

How to cite: Schöpke, C. A., Johansen, I., Polteau, S., Mørkved, P. T., Yarushina, V., and Dörsch, P.: Using stable isotopes as an indicator for the remaining gas generation potential in decommissioned municipal waste landfills – a concept study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14955, https://doi.org/10.5194/egusphere-egu21-14955, 2021.

EGU21-6580 | vPICO presentations | BG2.1

Excess of sulfate and dissolved inorganic carbon in groundwaters fueled by pyrite oxidation and organic matter loads – A multi-isotope approach

Christoph Malik, Anna-K. Jenner, Iris Schmiedinger, and Michael E. Böttcher

The biogeochemistry of sulfur and carbon in groundwater of a Quaternary porous aquifer system and associated surface (lake) waters was investigated to identify processes of water mixing and the sources of dissolved sulfate and dissolved inorganic carbon (DIC). The study area is situated in North-Eastern Germany (Mecklenburg-Western Pomerania) close to the Baltic Sea coastline. The area is under impact by agricultural activity on a regional scale. A major goal was to identify the natural and anthropogenic key hydrobiogeochemical processes controlling the coupled element cycles upon groundwater development. Besides major and minor elements, redox-sensitive trace elements, nutrients, and stable mulit-isotope signatures (H, C, O, S) were considered.

While water isotopes of most groundwaters are positioned on the meteoric water line, surface waters are affected by an evaporation-induced enrichment of heavy isotopes. These shifts allow for a quantification of mixing proportions in influenced groundwater wells between direct precipitation-derived groundwater and  infiltrating lake water born fractions.

Major element hydrochemical and the carbon isotope composition of DIC indicate soil CO2 and the subterrestrial dissolution of carbonate minerals within the aquifer matrix as primary sources for DIC. Furthermore, contributions from oxidized dissolved organic carbon (DOC) under water-saturated conditions are found.

The coupled sulfur and oxygen isotope composition of dissolved sulfate indicates an origin dominatly  from the subterrestrial oxidation of iron sulfides, mainly pyrite. These iron sulfides are found in the sediments making the modern porous aquifer, in the study area with a deduced sulfur isotope composition of about -12 per mil vs. VCDT. These findings coupled to enhanced loads in dissolved iron and manganese, but low nutrient concentrations indicate nitrate as an important driver for lithoautothrophic pyrite oxidation. At several sites, the enhanced sulfate loads led to dissimilatory sulfate reduction and, thereby, to in-situ transformation of DOC (and/or Methane) to DIC. The enhancements of sulfate and DIC seems to be a typical feature in North German younger groundwaters and strongly (in)directly impacted by anthropogenic forces.

How to cite: Malik, C., Jenner, A.-K., Schmiedinger, I., and Böttcher, M. E.: Excess of sulfate and dissolved inorganic carbon in groundwaters fueled by pyrite oxidation and organic matter loads – A multi-isotope approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6580, https://doi.org/10.5194/egusphere-egu21-6580, 2021.

EGU21-3507 | vPICO presentations | BG2.1

After the flood: Impact of salt water intrusions on the isotope biogeochemistry of a rewetted coastal peatland

Lucas Winski, Benjamin Rach, Anna-K. Jenner, Julia Westphal, Iris Schmiedinger, Cátia M.E. von Ahn, Mary Zeller, Christoph Malik, and Michael E. Böttcher

Land-ocean interactions in the coastal zone (LOICZ) are of particular interest regarding the exchange of water and elements, like nutrients, carbon, sulfur, and metals. Processes impacting groundwater fluxes at these boundaries belong to the still unsolved problems in hydrology (Blöschl et al., 2019). Stable isotope signatures (H, C, O, S), major and trace element contents in surface waters of a rewetted coastal peatland were investigated to understand the impact of storm-induced flooding by brackish seawater on hydrology and biogeochemical element cycling.

The study area is the Hütelmoor, a wetland located at the coastline of the southern Baltic Sea. The area is characterized by a continuous release of fresh water to the Baltic Sea via submarine groundwater discharge (Jurasinski et al., 2018). Surface water is partly drained to a nearby river, but the introduction of brackish waters into the peatland is typically precluded by a small dune and limited to storm-induced flooding events. In the present study, the spatially distributed composition of surface waters was investigated briefly after a flooding event. The results are compared with previous campaigns without actual salt water impact.

Conservative elements and water isotopes demonstrate the importance of seasonal variations due to varying evapotranspiration during pre-flood times and allow for a quantification of mixing processes in the post-flood waters. The impact of soil respired CO2, and/or the mineralization of organic matter or methane on the surface waters is indicated by a shift of the C isotope composition of DIC towards lighter data. The S and O isotopic composition of dissolved sulfate indicates an impact by solutions modified by net microbial sulfate reduction on pre-flood surface waters and a potential oxidation of reduced sulfur species in post-flooding solutions.

Previous flooding events already impacted element cycling in the peatland’s past and are also reflected by a sulfidization of peat layers (Fernández-Fernández et al., 2017) and the observation of local areas with enhanced dissolved concentrations in the central part of the peatland.

The study is supported by DFG during GK Baltic TRANSCOAST, DAAD, and Leibniz IOW.

 

References:

  • Blöschl G. et al. (2019) Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrol. Sci. J. 64, 1141-1158.
  • Jurasinski G. et al. (2018) Understanding the coastal ecocline: Assessing sea-land-interactions at non-tidal, low-lying coasts through interdisciplinary research. Front. Mar. Sci. 5, 1-22.
  • Fernández-Fernández L.E. et al. (2017) Sulfur isotope biogeochemistry of soils from an episodically flooded coastal wetland, southern Baltic Sea. Geophys. Res. Abs. 19, EGU2017-14335.

How to cite: Winski, L., Rach, B., Jenner, A.-K., Westphal, J., Schmiedinger, I., von Ahn, C. M. E., Zeller, M., Malik, C., and Böttcher, M. E.: After the flood: Impact of salt water intrusions on the isotope biogeochemistry of a rewetted coastal peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3507, https://doi.org/10.5194/egusphere-egu21-3507, 2021.

EGU21-8022 | vPICO presentations | BG2.1

Biogeochemical carbon transformations in a drained coastal peatland of the southern Baltic Sea: An isotope and trace element perspective

Anna-Kathrina Jenner, Iris Schmiedinger, Jens Kallmeyer, Cordula Gutekunst, Gerald Jurasinski, and Michael Ernst Böttcher

Peatlands serve as important ecosystems since they store a substantial fraction of global soil carbon. Through draining the internal biogeochemical processes may be changed impacting the transformation of stored carbon and plant material. Pristine peatlands are primarily associated with methanogenic and iron-cycling conditions, however, minor sulfur cycling may contribute to carbon mineralization in these ecosystems depending on the amount of atmospheric sulfur deposition and accumulation. In near coastal peatlands the element budget may be altered through natural or artificial flooding by brackish/marine waters. When introducing sulfate-bearing solutions, the concentrations of electron acceptors for anaerobic mineralization or organic matter increase when compared to fresh water conditions. The investigated area is planned to be flooded by Baltic Sea coastal waters in the near future.

Here we present results from a study from a drained peatland located in the southern part of the Baltic Sea. In the past the area was agriculturally used as grassland. Soil cores were retrieved along a transect perpendicular to the coast line for (isotope) biogeochemical analyses of pore water and solid phases. Analyses included the CNS composition of soils, and dissolved major elements, nutrients, sulphide, trace metals and stable isotopes of water, DIC, and sulfate (H, O, C, S). Furthermore, acid-extractions of metals were carried out to identify zones of dissolution and formation of authigenic phases. For quantification of microbial sulphate reduction rates (SRR) additional cores were retrieved and SRR were measured in whole-core incubations. 

The pore water isotopic composition is close to the local meteoric water line at the German Baltic Seas coast line. Concentration and stable isotope composition of DIC indicate mineralization of C3 type organic matter. Pore water trace metals content indicates the importance of anaerobic mineralization for release of metals into the pore and surface waters.

 

Acknowledgement: This study is supported by the DFG research training group BALTIC TRANSCOAST and Leibniz IOW.

How to cite: Jenner, A.-K., Schmiedinger, I., Kallmeyer, J., Gutekunst, C., Jurasinski, G., and Böttcher, M. E.: Biogeochemical carbon transformations in a drained coastal peatland of the southern Baltic Sea: An isotope and trace element perspective, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8022, https://doi.org/10.5194/egusphere-egu21-8022, 2021.

EGU21-13880 | vPICO presentations | BG2.1

Using 13C to Unravel the Molecular Mechanisms of Microbiome Response to Rewetting in Soil

Mary Lipton, Montana Smith, James Moran, Allison Thompson, Karl Weitz, and Kirsten Hofmockel

Hydration levels influence carbon and nutrient cycles in soils. The rapid carbon release and nutrient utilization upon hydration in desiccated soils has been observed for decades, but little is known about the controls and timing of the underlying molecular events. This research is aimed at developing and using novel isotope based techniques to map the interdependence of carbon and nutrient cycling in soils using 13C labeled substrates as a tracer of nutrient fluxes in desiccated soil microbiomes after rewetting in combination with our novel Real Time Mass Spectrometry (RTMS) system 1, isotope ratio mass spectrometry (IRMS) and omics measurements.

Our experiments involve mapping the initial microbial response to wetting, by using a combination of an atmospheric monitoring RTMS instrument that measures the levels of CO2, O2, N2, H2O and their isotopologues, simultaneously in real time and IRMS which will be used to determine the biological fate of the carbon from each substrate. In each experiment desiccated soil that has been kept at drought conditions for 2 weeks was placed in the incubation chamber. Deionized water (control), 13C glucose and 13C alanine dissolved in water was added to the soil through a syringe to mimic a rewetting event. An identical initial hydration response measured by tracing the production of 12CO2 every 5 sec for the first 10 minutes after the addition of water was seen for all the samples potentially indicating that the carbon respired in this initial burst had formed an association with the cell (either intracellular or EPS bound) during dry down. The metabolism and respiration of glucose and alanine, measured by the production of 13CO2 occurred at a much slower time frame (60 to 90 minutes) where the rate of 13CO2 production of the glucose was about 10x that of alanine.

IRMS measurements were used to determine the preferential metabolic pathway of each substrate. The soil was removed from the chamber, treated with a mixture of methanol/chloroform/water, beadbeat, sonicated and centrifuged in a modified Folch extraction.  The resulting supernatant was allowed to separate into 3 fractions of polar metabolites (methanol layer), proteins (middle layer) and lipids (chloroform layer).  Each fraction was analyzed by IRMS to quantify the extent of 13C label incorporation into the soil phase to help guide interpretation of the 13CO2 production rates (measured via RTMS), the preferential metabolic pathway of each substrate will be determined. While it was seen that glucose was taken up into all of the biomass partitions as well as respired into CO2, alanine was metabolized to a lesser extent and was predominantly used in protein synthesis.

These studies represent approaches that showcase advanced stable isotope analyses to determine molecular provenance in ecosystems by developing an understanding of the molecular mechanisms involved in carbon and nutrient cycles in terrestrial ecosystems.

How to cite: Lipton, M., Smith, M., Moran, J., Thompson, A., Weitz, K., and Hofmockel, K.: Using 13C to Unravel the Molecular Mechanisms of Microbiome Response to Rewetting in Soil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13880, https://doi.org/10.5194/egusphere-egu21-13880, 2021.

EGU21-2470 | vPICO presentations | BG2.1

Controls on submarine groundwater discharge in an urbanized bay of the southern Baltic Sea: An isotope and trace metal perspective.

Catia Milene Ehlert von Ahn, Jan Scholten, Christoph Malik, Peter Feldens, Bo Liu, Olaf Dellwig, Anna-Kathrina Jenner, Svenja Papenmeier, Iris Schmiedinger, Mary Zeller, and Michael Böttcher

Submarine groundwater discharge (SGD) acts as a source of fresh water and dissolved substances for coastal ecosystems. Evaluation of the actual controls on SGD and corresponding chemical fluxes require a closer understanding of the processes that take place in the mixing zone between SGD and the coastal waters. It is hypothesized that artificial infrastructures, like sediment channeling, may ease the hydrological connection between coastal aquifer and coastal bottom water. The resultant, increase of SGD, changes the residence time in the mixing zone, and thereby, reduces the impact of early diagenesis. The present study focuses on the distribution of SGD, including the characterization of different mixing zones in the urbanized Wismar Bay (WB), southern Baltic Sea. Short sediment cores were retrieved for geochemical porewaters and sediment analyses. Surface sea water samples were collected along across-shore transects in the WB.  Besides major ions, Ba, Fe, and Mn, the water samples were analyzed for nutrients, dissolved inorganic carbon (DIC), stable isotopes (H, O, C, S), and Ra isotopes. Sediments were analyzed for C, N, S, Hg contents as well as reactive components (e.g. Fe, Mn, P) by HCl extractions. Organic matter mineralization rates, DIC, and SO4 fluxes for the sediment-water interface were modeled from porewater profiles. Shallow seismic techniques were applied to identify potential litho-morphological controls on SGD. Geochemical porewater data allow identification of active SGD sites in the WB. In the central part, the freshening of porewaters in the top surface sediments indicates the upward flow of SGD originating from a coastal aquifer. The acoustic profiles show that the bottom sediments in the central bay are under local impact of excavation, reducing the sediment thickness above the coastal aquifer. Overall, the impact of SGD on the coastal water body of the WB is diffuse and promoted by local anthropogenic activity. The water isotope composition of porewaters at this site are close to the local meteoric water line at Warnemünde (located 50 km east of the WB), suggesting a discharge of relatively modern fresh waters. The (isotope) hydrochemical composition of the fresh water discharging is controlled by water-rock interactions in the aquifer and modulated by intense diagenesis in the brackish surface sediments. Furthermore, the SGD facilitates the upward migration of elements and enhances their fluxes across the sediment-water interface, e.g. DIC concentrations in the fresh groundwater are further enhanced in the mixing zone, indicating that SGD is a potential source of excess CO2 in the investigated coastal waters.

The investigations are supported by the DAAD, DFG RTS Baltic TRANSCOAST, KiSnet project, BONUS SEAMOUNT, FP7 EU Marie Curie career integration grant, DAM-MFG, and IOW.

How to cite: Ehlert von Ahn, C. M., Scholten, J., Malik, C., Feldens, P., Liu, B., Dellwig, O., Jenner, A.-K., Papenmeier, S., Schmiedinger, I., Zeller, M., and Böttcher, M.: Controls on submarine groundwater discharge in an urbanized bay of the southern Baltic Sea: An isotope and trace metal perspective., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2470, https://doi.org/10.5194/egusphere-egu21-2470, 2021.

EGU21-7808 | vPICO presentations | BG2.1

Biogeochemical zonation reveals three zones of nitrogen turnover in the Ems estuary

Gesa Schulz, Tina Sanders, and Kirstin Dähnke

Estuaries are nutrient filters for coastal waters and can act as nitrate sink or source depending on predominant microbial processes, environmental conditions and geomorphological characteristics. Such environmental factors can change along the estuary itself. This study aims to identify different zones of nitrogen turnover in the Ems estuary and to determine the main processes.

Water column properties, dissolved inorganic nitrogen and dual stable isotopes of nitrate were measured along the Ems estuary during two research cruises in August 2014 and June 2020. Based on mixing calculations and stable isotope changes, we found that the estuary in both years is clearly divided into three zones that vary in the predominant nitrate turnover pathways. This was confirmed by principle component analysis.

The zonation mainly corresponded to changes in the geomorphology of the estuary, but a spatial shift of the zones occurred between 2014 and 2020. In both years, the most upstream zone acted as a clear nitrate sink. A strong fractionation (~30 ‰) of nitrate stable isotopes points towards removal by water column denitrification in this hyperturbid estuarine section.  In the middle reach of the estuary, nitrification gained in importance, turning this section into a net nitrate source during both sampling campaigns. In contrast to the biogeochemical active inner zones, mixing dominates nitrate distribution in the outermost section of the estuary.

Overall, the Ems estuary acted as a nitrate sink in both years. However, the zonation showed that relative stable zones of nitrification and denitrification existed along the estuary, which can change – and possibly move – when biogeochemical properties vary. 

How to cite: Schulz, G., Sanders, T., and Dähnke, K.: Biogeochemical zonation reveals three zones of nitrogen turnover in the Ems estuary, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7808, https://doi.org/10.5194/egusphere-egu21-7808, 2021.

EGU21-4539 | vPICO presentations | BG2.1 | Highlight

When “Blue Carbon” turns white: Isotopic evidence of calcification-driven CO2 emissions in a carbonate seagrass meadow

Mary Zeller, Bryce Van Dam, Christian Lopes, Ashley Smyth, Michael Böttcher, Christopher Osburn, Tristan Zimmerman, Daniel Pröfrock, James Fourqurean, and Helmuth Thomas

Seagrasses are often considered important players in the global carbon cycle, due to their role in sequestering and protecting sedimentary organic matter as “Blue Carbon”.  However, in shallow calcifying systems the ultimate role of seagrass meadows as a sink or source of atmospheric CO2 is complicated by carbonate precipitation and dissolution processes, which produce and consume CO2, respectively.  In general, microbial sulfate, iron, and nitrate reduction produce total alkalinity (TA), and the reverse reaction, the re-oxidation of the reduced species, consumes TA. Therefore, net production of TA only occurs when these reduced species are protected from re-oxidation, for example through the burial of FeSx or the escape of N2.  Seagrasses also affect benthic biogeochemistry by pumping O2 into the rhizosphere, which for example may allow for direct H2S oxidation.

Our study investigated the role of these factors and processes (seagrass density, sediment biogeochemistry, carbonate precipitation/dissolution, and ultimately air-sea CO2 exchange), on CO2 source-sink behavior in a shallow calcifying (carbonate content ~90%) seagrass meadow (Florida Bay, USA), dominated by Thalassia testudinum. We collected sediment cores from high and low seagrass density areas for flow through core incubations (N2, O2, DI13C, sulfide, DO13C flux), solid phase chemistry (metals, PO13C, Ca13C18O3, AVS: FeS + H2S, CRS: FeS2 + S0), and porewater chemistry (major cations, DI13C, sulfide, 34S18O4). An exciting aspect of this study is that it was conducted inside the footprint of an Eddy Covariance tower (air-sea CO2 exchange), allowing us to directly link benthic processes with CO2 sink-source dynamics.

During the course of our week long study, the seagrass meadow was a consistent source of CO2 to the atmosphere (610 ± 990 µmol·m-2·hr-1).  Elevated porewater DIC near 15 cmbsf suggests rhizosphere O2 induced carbonate dissolution, while consumption of DIC in the top 5-10 cm suggests reprecipitation.  With high seagrass density, enriched δ13CDIC in the DIC maximum zone (10-25 cm) suggests continual reworking of the carbonates through dissolution/precipitation processes towards more stable PIC, indicating that seagrasses can promote long-term stability of PIC.  We constructed a simple elemental budget, which suggests that net alkalinity consumption by ecosystem calcification explains >95% of the observed CO2 emissions.  Net alkalinity production through net denitrification (and loss of N2) and net sulfate reduction (and subsequent burial of FeS2 + S0), as well as observed organic carbon burial, could only minimally offset ecosystem calcification.   

How to cite: Zeller, M., Van Dam, B., Lopes, C., Smyth, A., Böttcher, M., Osburn, C., Zimmerman, T., Pröfrock, D., Fourqurean, J., and Thomas, H.: When “Blue Carbon” turns white: Isotopic evidence of calcification-driven CO2 emissions in a carbonate seagrass meadow, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4539, https://doi.org/10.5194/egusphere-egu21-4539, 2021.

EGU21-10421 | vPICO presentations | BG2.1

Guidance for preparation of in-house reference materials for stable isotope analysis of HCNOS

Dmitriy Malinovskiy, Philip Dunn, Simon Cowen, Gill Holcombe, and Heidi Goenaga-Infante

For many years, it has been recommended that analysts performing stable isotope analysis of H, C, N, O and/or S prepare their own in-house reference materials (RMS) for daily use. These RMs can be used for calibration/normalization of instrumental data as well as for quality control and/or assurance purposes. In this way, commercially available RMs that are the source of traceability for all isotope delta analyses are preserved, ensuring that the isotope delta scales can be maintained for a longer period of time. Furthermore, in-house RMs can be prepared to supplement those that are commercially available, either by extending the available calibration range in terms of isotope delta values, or by consisting of a matrix which is not yet available from RM producers.

Some guidance is available regarding the required nature or properties of an in-house RM including stability, homogeneity, hygroscopicity and other chemical properties [e.g. Dunn & Carter 2018]. There are also a small number of publications providing some guidance on how to prepare in-house RMs for particular applications [e.g. Carter & Fry 2013, Heile & Hillarie-Marcel 2020]. There is, however, far less guidance available regarding the process of assigning an isotope delta value and associated uncertainty to an in-house RM. The guidance available to certified RM producers such as ISO/IEC 17034:2016 tend to have somewhat stricter requirements than those to be met by an in-house RM for QC purposes.

Building upon the National Measurement Laboratory’s experience as a CRM producer accredited to ISO/IEC 17034:2016, this presentation will distil the requirements for RM production into simple and clear guidelines for fit-for-purpose production and value-assignment of in-house RMs. This guidance covers five areas: (i) planning and prerequisites; (ii) material selection, preparation and storage; (iii) measurements and assessments; (iv) value assignment and uncertainty estimation; and (v) monitoring and use.

 

Dunn PJH, Carter JF. Good Practice Guide for Isotope Ratio Mass Spectrometry. 2nd ed. FIRMS; 2018. ISBN 978-0-948926-33-4. https://www.forensic-isotopes.org/gpg.html

Carter JF, Fry B. “Do it yourself” reference materials for δ13C determinations by isotope ratio mass spectrometry. Anal Bioanal Chem. 2013;405(14):4959-4962.

Heile J-F, Hillaire-Marcel C. Designing internal reference materials for stable H, C & O isotope measurements in CO2 and H2O. Rapid Commun Mass Spectrom. 2021;35(5)e9008.

ISO/IEC 17034:2016. General requirements for the competence of reference material producers. Published online 2016.

How to cite: Malinovskiy, D., Dunn, P., Cowen, S., Holcombe, G., and Goenaga-Infante, H.: Guidance for preparation of in-house reference materials for stable isotope analysis of HCNOS, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10421, https://doi.org/10.5194/egusphere-egu21-10421, 2021.

EGU21-3642 | vPICO presentations | BG2.1

Novel insights into the origin of dissolved organic carbon in the Sunda Shelf Sea using stable isotope ratios of hydrogen (d2H) and carbon (d13C). 

Nikita Kaushal, Cristian Gudasz, Yongli Zhou, Adriana Lopes dos Santos, Avneet Kaur, and Patrick Martin

Rivers deliver ~0.25 Pg C year-1 of terrigenous dissolved organic carbon (tDOC) from land to shelf seas. As tDOC moves along the river, coastal ocean and deep ocean continuum, it undergoes complex biogeochemical processing that results in both chemical alteration and remineralisation. Remineralisation of tDOC to CO2 can contribute significantly to coastal ocean acidification and CO2 emissions to the atmosphere. Our understanding of tDOC processing in coastal seas is still limited, in part because it is challenging to distinguish between marine and terrigenous DOC. The stable carbon isotope ratios (d13C) of the dissolved inorganic and organic carbon pools are commonly used to quantify tDOC, because terrestrial vegetation is typically more isotopically depleted (-32 to -25 ‰) compared to marine organic carbon (-24 to -20 ‰). However, this relatively small difference between the marine and terrigenous end-members can introduce large uncertainties in d13C-based estimates, particularly if tDOC originates from both C3 and C4 vegetation. End-member isotope ratio values with larger separation could potentially help to better quantify tDOC. Recent studies in freshwater ecosystems have shown that the stable isotope ratios (d2H) of the carbon bound non-exchangeable hydrogen fraction of dissolved organic matter (DOM) typically differs by more than 50 ‰ between terrestrially derived and aquatically derived dissolved organic matter. However, d2H has not yet been used as a tracer for tDOC in marine environments.

Here, we present results from a one year-long monthly time series of δ13C and δ2H at a coastal location in Southeast Asia’s Sunda Shelf Sea, where the southwest monsoon delivers a seasonal input of tDOC from tropical peatlands on Sumatra. We found that δ2H of solid-phase extracted DOM, as measured after dual water steam equilibration, ranged between -130 to ­­-150 ‰ during the southwest monsoon, but between -160 to -167 ‰ during other months. Fresh tDOC from peatland-draining rivers had values close to -100‰, and decreased somewhat upon partial photodegradation, while DOM produced in plankton enrichment cultures had values around -174‰. Values of d13C of DOC ranged from -25.5 to -23.0 ‰ during the southwest monsoon, and between -23.0 to -21.0 ‰ at other times. We will present preliminary mass balance calculations to estimate tDOC concentrations based on δ13C and δ2H. Our results suggest that δ2H can be a sensitive tracer of tDOC in the marine environment.

How to cite: Kaushal, N., Gudasz, C., Zhou, Y., Lopes dos Santos, A., Kaur, A., and Martin, P.: Novel insights into the origin of dissolved organic carbon in the Sunda Shelf Sea using stable isotope ratios of hydrogen (d2H) and carbon (d13C). , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3642, https://doi.org/10.5194/egusphere-egu21-3642, 2021.

EGU21-8486 | vPICO presentations | BG2.1

δ13C compositions of bacteriohopanetrol isomers reveal bacterial processes involved in the carbon cycle

Rachel Schwartz-Narbonne, Philippe Schaeffer, Sabine Lengger, Jerome Blewett, D. Martin Jones, Estelle Motsch, Alex Charlton, Andrew Crombie, Scott Hardy, Muhammad Farhan Ul Haquee, Mike S. M. Jetten, Deirdre Mikkelsen, Philippe Normand, Guylaine H. L. Nuijten, and Darci Rush

Bacteria play key roles in the carbon cycle. In many sediments and peatlands, methanotrophic bacteria consume a portion of released methane, reducing the emissions of this potent greenhouse gas. In marine oxygen minimum zones (OMZ) and other anoxic settings, anaerobic ammonium oxidizing (anammox) bacteria remove bioavailable nitrogen while performing chemoautotrophic carbon fixation. Methanotrophic and anammox bacteria synthesize a wide number of complex bacteriohopanepolyols (BHPs), comprising notably several stereoisomers of bacteriohopanetetrols (BHT), which are used as biomarker lipids.  While BHT-17β(H), 21β(H), 22R, 32R, 33R, 34S (BHT-34S) is ubiquitous in the environment, its 34R stereoisomer (BHT-17β(H), 21β(H), 22R, 32R, 33R, 34R; BHT-34R) has only five known producers: the freshwater anammox genera ‘Candidatus Brocadia’, the aerobic acidic peatland methanotroph Methylocella palustris, the nitrogen-fixing aerobic bacteria Frankia spp., and the aerobic acetic acid-producing bacteria Acetobacter pasteurianus and Komagataeibacter xylinus. BHT-x—another BHT isomer of unknown stereochemistry—has only one known producer, the marine anammox bacteria ‘Candidatus Scalindua’ (Schwartz-Narbonne et al., 2020). The occurrence and extent of these different carbon cycle processes can be assessed by measuring the concentrations of these BHT stereoisomers and changes in their δ13C values (Hemingway et al., 2018; Lengger et al., 2019).However, the 13C fractionation associated with the different carbon assimilation pathways of these bacteria has been minimally assessed, resulting in poorly constrained ranges in δ13C values and difficulty in interpreting isotope results.

We used a gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) method to measure the δ13C of BHT-34S, BHT34R, and BHT-x of cultured bacteria (‘Ca. Scalindua’, ‘Ca. Brocadia’, Methylocella tundrae, Frankia spp., and Komagataeibacter xylinus). These δ13C values were combined with bulk isotopic measurements of the bacterial biomass and δ13C analyses of the bacterial growth substrates to establish carbon isotopic fractionation from substrate to biomass to BHT lipid. We demonstrated that bacteria using different metabolic pathways produced distinct fractionation factors between substrate and BHTs, which potentially allows for distinguishing BHT-34R produced by ‘Ca. Brocadia’ and methanotrophs from other freshwater producers (e.g. in peatlands). Measurement of BHT-specific fractionation factors allowed us to better constrain the contribution of anammox bacteria to fixed carbon in OMZ. This work expands the application of BHT isomers to isotopically identify carbon cycle processes.

 

References

Hemingway, Jordon D., et al. "A novel method to measure the 13C composition of intact bacteriohopanepolyols." Organic Geochemistry 123 (2018): 144-147.

Lengger, Sabine K., et al. "Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)." Global Biogeochemical Cycles 33.12 (2019): 1715-1732.

Schwartz-Narbonne, Rachel, et al. "A unique bacteriohopanetetrol stereoisomer of marine anammox." Organic Geochemistry (2020): 103994.

How to cite: Schwartz-Narbonne, R., Schaeffer, P., Lengger, S., Blewett, J., Jones, D. M., Motsch, E., Charlton, A., Crombie, A., Hardy, S., Haquee, M. F. U., Jetten, M. S. M., Mikkelsen, D., Normand, P., Nuijten, G. H. L., and Rush, D.: δ13C compositions of bacteriohopanetrol isomers reveal bacterial processes involved in the carbon cycle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8486, https://doi.org/10.5194/egusphere-egu21-8486, 2021.

EGU21-14111 | vPICO presentations | BG2.1 | Highlight

Detection of an unknown emission source in the Baltic Sea using the new oceanographic tracer U-233/U-236

Karin Hain, Ala Aldahan, Mats Eriksson, Robin Golser, Gideon M. Henderson, Xiaolin Hou, Jixin Qiao, Göran Possnert, Peter Steier, Vesa-Pekka Vartti, and Haitao Zhang

By analysing the two long-lived anthropogenic Uranium (U) isotopes U-233 and U-236 in different compartments of the environment affected by releases of nuclear power production or by global fallout from nuclear weapons tests, we showed that the corresponding isotopic ratios U-233/U-236 differ by one order of magnitude. Based on these experimental results which were obtained with the ultra-sensitive detection method Accelerator Mass Spectrometry, we suggested a representative ratio for nuclear weapons fallout of U-233/U-236 = (1.40 ± 0.15) ·10-2 and (0.12 ± 0.01) ·10-2 for releases from nuclear power production. Consequently, the U-233/U-236 ratio not only has the potential to become a novel sensitive fingerprint for releases from nuclear industry, but could also serve as a powerful oceanographic tracer due to the conservative behaviour of U in ocean water which does not suffer from chemical fractionation.

As a first application of this paired tracer, we studied the distribution of U-233 and U-236 concentrations in addition to I-129 in the Baltic Sea which is known to have received inputs of radionuclides from various contamination sources including the two European reprocessing plants, global fallout from weapons testings and fallout from the Chernobyl accident. Our data indicate an additional unidentified source of reactor U-236 in the Baltic Sea demonstrating the high sensitivity of the U-233/U-236 ratio to distinguish different emission sources in water mixing processes.

How to cite: Hain, K., Aldahan, A., Eriksson, M., Golser, R., Henderson, G. M., Hou, X., Qiao, J., Possnert, G., Steier, P., Vartti, V.-P., and Zhang, H.: Detection of an unknown emission source in the Baltic Sea using the new oceanographic tracer U-233/U-236, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14111, https://doi.org/10.5194/egusphere-egu21-14111, 2021.

EGU21-1890 | vPICO presentations | BG2.1

Mn(II) carbonate authigenesis marks the benthic SMTZ and is fueled by Mn-driven anaerobic oxidation of methane: A Black Sea evidence

Tiantian Sun, Michael E Böttcher, Jens Kallmeyer, Tina Treude, Marko Lipka, Iris Schmiedinger, Sebastian Eckert, Rolf Wehausen, Bo B Jørgensen, and Francisca Martinez-Ruiz

In the Black Sea, sediment cores covering the last brackish-limnic transition were recovered and investigated for anaerobic biogeochemical processes controlling sulfur, carbon, and metal cycling. The development of a sulfate-methane transition zone (SMTZ) is nowadays found below the brackish zone in the limnic part of the sediments that limits the upward migration of biogenic methane into surface sediments and the water column. The position of the SMTZ may have changed in the past due to dynamic fluxes of dissolved species in the pore water. Besides dissolved sulfate, metal-bearing minerals have been shown to serve as potential reactants, also converting CH4 into dissolved inorganic carbon (DIC). The pore water and sediment stable isotope (C, S, O) and geochemical composition were investigated, as well as in-situ microbial rates of sulfate reduction and total anaerobic oxidation of CH4 (AOM) obtained from sediment incubations for the identification of a potential contribution of manganese-bearing minerals to AOM in the limnic part of the sediments (Mn-AOM). In the limnic Black Sea sediments Mn-AOM is causes an upward flux of dissolved Mn whereas intense SO4-AOM located in shalower sediments leads to an increase in pH and a maximum in DIC concentrations in the SMTZ. The resulting change in saturation states leads to the precipitation of mixed MnCa-carbonate solid-solutions (‘rhodochrozitization front’) and the development of a zone enriched in excess sedimentary Mn(II). We further argue that these authigenic fronts may survive changes in pore water composition and are stable in the anoxic sedimentary record, marking the position of paleo-SMTZs. The persisting formation of this geochemical marker has advantage in application over the transient development of a sulfidization front of metastable mackinawite, that is fromed by the reaction of downard migrating sulfide with upward diffusing Fe(II), originating from SO4-AOM and Fe-AOM, respectively.

How to cite: Sun, T., Böttcher, M. E., Kallmeyer, J., Treude, T., Lipka, M., Schmiedinger, I., Eckert, S., Wehausen, R., Jørgensen, B. B., and Martinez-Ruiz, F.: Mn(II) carbonate authigenesis marks the benthic SMTZ and is fueled by Mn-driven anaerobic oxidation of methane: A Black Sea evidence, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1890, https://doi.org/10.5194/egusphere-egu21-1890, 2021.

EGU21-3384 | vPICO presentations | BG2.1

Ca isotope fractionation upon synthesis of carbonated apatite

Michael E. Böttcher, Nikolaus Gussone, Anika C. Conrad, Iris Schmiedinger, Jens Fiebig, Markus Peltz, Georg Grathoff, and Burkhard C. Schmidt

Carbonated hydroxy-apatite (CHAP) was experimentally synthesized in batch-type set-ups by mixing of calcium (Ca)- and phosphate-bearing aqueous solutions and the transformation of calcite powder in aqueous solution between 11° and 65°C (Gussone et al., 2020). Compositional changes of the experimental solution and solid phase products were followed by elemental analysis, Raman spectroscopy, scanning-electron microscopy, and powder XRD. In the mixing experiments, crystallization of CHAP took place following the precipitation of metastable brushite as precursor that was then transformed into CHAP. In the transformation experiments using synthetic calcite as a precursor phase it was found that the reaction at pH values between 7.5 and 7.9 occurs via the direct replacement of calcium carbonate by CHAP.

Calcium isotope fractionation led to an enrichment of the light isotope in the solid CHAP compared to the aqueous solution by about -0.5 to -1.1 ‰, independent from the experimental approach, and the magnitude was essentially independent of temperature. The metastable brushite formed prior to transformation to CHAP showed a reduced fractionation compared to the CHAP. The observed Ca isotope fractionation into the CHAP lattice resembles that of natural phosphorites and lies within the range of the view existing theoretical and experimental studies.

 

Reference: Gussone N., Böttcher M.E., Conrad A.C., Fiebig J., Pelz M., Grathoff G., Schmidt B.C. (2020) Calcium isotope fractionation upon experimental apatite formation. Chem. Geol., 551, 119737

The study was supported by German Science Foundation (DFG) to M.E.B and J.F. within the EXCALIBOR project (BO1548/8 and FI 948/7), and to N.G. (GU1035/10), and by Leibniz IOW.

How to cite: Böttcher, M. E., Gussone, N., Conrad, A. C., Schmiedinger, I., Fiebig, J., Peltz, M., Grathoff, G., and Schmidt, B. C.: Ca isotope fractionation upon synthesis of carbonated apatite, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3384, https://doi.org/10.5194/egusphere-egu21-3384, 2021.

BG2.2 – Stable isotopes and novel tracers in biogeochemical and atmospheric research

Leaf water becomes enriched in heavier isotopes during transpiration, with the degree of enrichment dependent on evaporative conditions. However, there has been considerable uncertainty regarding the importance of gradients in isotope enrichment within leaves (i.e. a Péclet effect).  That is, experimental studies show that evidence is approximately equally divided between the Péclet effect being important and being irrelevant for leaves. Our recent work demonstrates a link between the hydraulic design of leaves and the presence or otherwise of a Péclet effect.  That is, with prior knowledge of the pathways of water movement through leaves, the most appropriate modelling framework can be selected and uncertainty in interpretation and prediction reduced.

Reducing uncertainty is important because the H218O composition of leaves is passed on to oxygen atoms in O2 and CO2 so terrestrial plants strongly influence isotopic composition of the atmosphere. Of particular interest is the interpretation of the Dole effect, the oxygen isotopic imbalance between atmospheric O2 and seawater.  The ice core record of the Dole effect has been interpreted as an integrative proxy for the global balance between terrestrial and oceanic productivity, or more recently as an indication of the migration of terrestrial productivity towards and away from the equator.  Both interpretations depend on highly uncertain leaf water isotope enrichment models. In light of the link between leaf hydraulic design and the Péclet effect, should we expect differences between species in the 18O of O2 produced by photosynthesis?  Do we need to reinterpret the Dole effect?

How to cite: Barbour, M.: Leaf hydraulic design influences the development of isotope gradients in leaves, but are there subsequent effects on isotopes of atmospheric oxygen?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10413, https://doi.org/10.5194/egusphere-egu21-10413, 2021.

EGU21-7853 | vPICO presentations | BG2.2

Triple isotopic composition of oxygen in the atmospheric dioxygen to reconstruct the dynamic of global biosphere productivity in the past from measurements in biological chambers

Clémence Paul, Morgane Farradèche, Clément Piel, Joana Sauze, Daniele Romanini, Nicolas Pasquier, Frédéric Prié, Roxanne Jacob, Olivier Jossoud, Arnaud Dapoigny, Sébastien Devidal, Alexandru Milcu, and Amaëlle Landais

High precision measurements of triple isotopic composition of oxygen in the air trapped in ice cores is a useful tool to infer the global gross biosphere productivity in the past. The isotopic composition of oxygen is influenced by many physical, chemical and biological processes during consumption and production of oxygen by the oceanic and terrestrial biosphere. For an accurate quantification of the past biosphere productivity, it is thus important to determine the different fractionation processes occurring in the biosphere during respiration and photosynthesis processes.

We present here quantification of fractionation coefficients associated with δ180 and the D170 of 02 during respiration and photosynthesis within the terrestrial biosphere. The experimental set-up relies on closed biological chambers in which all the environmental parameters are controlled and measured. Triple isotopic composition of oxygen is regularly measured through sampling of small aliquots at a low frequency (4 h to 4 days). Seven 2-month long experiments were performed in order to check the reproducibility of our set-up and quantify uncertainty on the determination of the fractionation coefficients.

In order to improve our set-up for future experiments using different plants, we also present perspectives for a continuous measurement of the isotopic composition of oxygen using optical spectroscopy (Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) technique). This instrument is currently being characterized and we will present its current performances.

Triple isotopic composition of oxygen in the atmospheric dioxygen to reconstruct the dynamic of global biosphere productivity in the past from measurements in biological chambers.

How to cite: Paul, C., Farradèche, M., Piel, C., Sauze, J., Romanini, D., Pasquier, N., Prié, F., Jacob, R., Jossoud, O., Dapoigny, A., Devidal, S., Milcu, A., and Landais, A.: Triple isotopic composition of oxygen in the atmospheric dioxygen to reconstruct the dynamic of global biosphere productivity in the past from measurements in biological chambers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7853, https://doi.org/10.5194/egusphere-egu21-7853, 2021.

EGU21-15584 | vPICO presentations | BG2.2

Temperature-sensitive biochemical 18O-fractionation and humidity-dependent attenuation factor of leaf water 18O-enrichment are needed to predict 18O composition of cellulose

Jerome Ogee, Regina Hirl, Ulrike Ostler, Rudi Schäufele, Juan Baca Cabrera, Jianjun Zhu, Inga Schleip, Lisa Wingate, and Hans Schnyder
We explore here our mechanistic understanding of the environmental and physiological processes that determine the oxygen isotope composition of cellulose (δ18Ocellulose). A new allocation-and-growth model was designed and added to the 18O-enabled soil-vegetation-atmosphere transfer model MuSICA to predict seasonal (April–October) and multi-annual (2007‑2012) variation of δ18Ocellulose and 18O-enrichment of leaf cellulose (Δ18Ocellulose) in a drought-prone, temperate grassland ecosystem. Modelled δ18Ocellulose agreed best with observations when integrated over c. 400 growing degree-days, similar to the average leaf lifespan observed at the site. Over the integration time, air temperature ranged from 7 to 22°C and midday relative humidity from 47 to 73%. Model agreement with observations of δ18Ocellulose (R2 = 0.57) and Δ18Ocellulose (R2= 0.74), and their negative relationship with canopy conductance, were improved significantly when both the biochemical 18O-fractionation between water and substrate for cellulose synthesis (ϵbio, range 26‑30‰) was temperature-sensitive, as previously reported for aquatic plants and heterotrophically grown wheat seedlings, and the proportion of oxygen in cellulose reflecting leaf water 18O-enrichment (1 ‑ pexpx, range 0.23‑0.63) was dependent on air relative humidity, as observed in independent controlled experiments with grasses. These recently published results (Hirl et al. 2020, The New Phytologist, doi: 10.1111/nph.17111) demonstrate that disentangling the physiological and climatic information in δ18Ocellulose requires quantitative knowledge of direct climatic effects on pexpx and ϵbio.

How to cite: Ogee, J., Hirl, R., Ostler, U., Schäufele, R., Baca Cabrera, J., Zhu, J., Schleip, I., Wingate, L., and Schnyder, H.: Temperature-sensitive biochemical 18O-fractionation and humidity-dependent attenuation factor of leaf water 18O-enrichment are needed to predict 18O composition of cellulose, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15584, https://doi.org/10.5194/egusphere-egu21-15584, 2021.

EGU21-15725 | vPICO presentations | BG2.2

Statistical evaluation of the correlation pattern between rising global temperature and stable water isotopes in precipitation.

Lukas Ditzel, Jonas Schramm, and Matthias Gaßmann

Statistical evaluation of the correlation pattern between rising global temperature and stable water isotopes in precipitation.

Lukas Ditzel, Jonas Schramm, Matthias Gassmann

Department of Hydrology and Substance Balance, University of Kassel, Kurt-Wolters-Strasse 3, 34125 Kassel, Germany

 

Stable water isotopes in precipitation on the northern hemisphere are usually following a predictable pattern throughout the year, with high amounts in summer and low amounts of deuterium and 18O in the winter season. Backed by a richness of available date from the International Atomic Energy Agency (IAEA), one can mostly expect an annual sinusoidal form of isotope data, when looking at data for a certain region in the northern hemisphere.

Since the driving factor for isotopic enrichment or depletion is isotopic fractionation, the seasonal behavior is strongly correlated to air-temperature. The correlation between temperature and fractionation is strong enough to explain most of the greater deviations from the sinusoidal form like in arid regions. It occurs that globally rising temperatures, initiated by climate change, should have an impact on the sinusoidal form of the stable water isotope time series. We assumed, that rising temperatures will lead to higher contents of deuterium and 18O in the precipitation of the northern hemisphere. Due to the availability of data and the long time series, which are needed for robust answers, we focused our work on European and North-American data. First analyses showed a positive correlation between rising air-temperatures and isotopic content, but not all regions. Other effects like the elevation- and continental-effect were dampening the effect of rising global temperatures, especially in coastal regions or islands such as Ireland. More continental regions, however, are showing a rise for isotopic enrichment in precipitation. We analyzed this trend by the calculation of the trend-components of these time-series via Loess and validated them by using the Mann-Kendall-Test. Furthermore, we separated sets of data into monthly clusters and looked for rising temperature trends in every month over the size of the available time series. This second analysis was performed for the time series from weather stations in Berlin, Vienna and Krakow covering almost 40 years of monthly isotope data.

How to cite: Ditzel, L., Schramm, J., and Gaßmann, M.: Statistical evaluation of the correlation pattern between rising global temperature and stable water isotopes in precipitation., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15725, https://doi.org/10.5194/egusphere-egu21-15725, 2021.

EGU21-9376 | vPICO presentations | BG2.2

Stable isotopes in precipitation and water vapor simulated by isotope-incorporated NICAM

Masahiro Tanoue, Yuki Takano, Kei Yoshimura, and Hisashi Yashiro

The stable water isotopes (SWIs) (δ18O and δD) are used as an indicator of the intensity of the atmospheric hydrological cycle due to their large variability in time and space. Although data about vapor isotope ratio with high frequency and high resolution are now available by satellite observations and spectroscopic analyses, there is some room for discussion on the variability of isotope ratios in vapor and precipitation related to cloud microphysical processes.

Here, we incorporated SWI tracer into the latest version of a global cloud system resolving model (the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)), iso-NICAM, and investigated the contribution of cloud microphysical processes to the variability of isotope ratios in precipitation and vapor. One of the merits used NICAM is that its physical process can cover from low spatial resolution to high spatial resolution. We conducted two mode simulations (GCM and CRM). The GCM mode simulation is based on the Arakawa-Schubert scheme as convective parameterization and a large-scale condensation scheme as the cloud physical process. In contrast, the CRM mode simulation is based on the a single-moment bulk cloud microphysics scheme with 6 water categories as cloud microphysical scheme, convective parameterization scheme was not used. These simulations are set to about 223 km of horizontal mesh resolution and 78 vertical layers. We conducted an AMIP-type climate experiment for one year from 1979.

The simulated precipitation δ18O showed the latitude effect pattern (high δ18O in low latitude region, low δ18O in high latitude region), but those values in the CRM mode was slightly lower than that in the GCM mode . The simulated precipitation δ18O in the CRM mode was lower in high altitude or inland regions compared with those in the GCM mode . Besides, the precipitation d-excess in the CRM mode shows large spatial variability compared with the GCM mode. Although the low spatial resolution was set in this study, these simulations indicated cloud microphysical processes are important for understanding the variability of isotope physics. We will conduct these simulations with finer spatial resolution and a more extended simulation period.

How to cite: Tanoue, M., Takano, Y., Yoshimura, K., and Yashiro, H.: Stable isotopes in precipitation and water vapor simulated by isotope-incorporated NICAM, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9376, https://doi.org/10.5194/egusphere-egu21-9376, 2021.

EGU21-8918 | vPICO presentations | BG2.2

Measurements of leaf sucrose to explain variability in hydrogen isotope composition of leaf cellulose

Meisha Holloway-Philips, Jochem Baan, Daniel Nelson, Guillaume Tcherkez, and Ansgar Kahmen

The hydrogen isotope composition (δ2H) of cellulose has been used to assess ecohydrological processes and carries metabolic information, adding new understanding to how plants respond to environmental change. However, experimental approaches to isolate drivers of δ2H variation is limited to the Yakir & DeNiro model (1990), which is difficult to implement and largely unvalidated. Notably, the two biosynthetic fractionation factors in the model, associated with photosynthetic (εA) and post-photosynthetic (εH) processes are currently accepted as constants, and the third parameter – the extent to which organic molecules exchange hydrogen (fH) with local water – is usually tuned in order to resolve the difference between modelled and observed cellulose δ2H values. Thus, by virtue, the metabolically interpretable parameter is only fH, whilst from theory, metabolic flux rates will also impact on the apparent fractionations. To overcome part of this limitation, we measured the δ2H of extracted leaf sucrose from fully-expanded leaves of seven species and a phosphoglucomutase ‘starchless’ mutant of tobacco to estimate the isotopic offset between sucrose and leaf water (εsucrose). Sucrose δ2H explained ~60% of the δ2H variation observed in cellulose. In general, εsucrose was higher (range: -203‰ to -114‰; mean: -151 ± 21‰) than the currently accepted value of -171‰ (εA) reflecting 2H-enrichment downstream of triose-phosphate export from the chloroplast, with statistical differences in εsucrose observed between species estimates. The remaining δ2H variation in cellulose was explained by species differences in f(estimated by assuming εH = +158‰). We also tested possible links between model parameters and plant metabolism. εsucrose was positively related to dark respiration (R2=0.27) suggesting an important branch point influencing sugar δ2H. In addition, fH was positively related to the turnover time (τ) of water-soluble carbohydrates (R2=0.38), but only when estimated using fixed εA = -171‰. To decipher and isolate the “metabolic” information contained within δ2H values of cellulose it will be important to assess δ2H values of non-structural carbohydrates so that hydrogen isotope fractionation during sugar metabolism can be better understood. This study provides the first attempt at such measurements showing species differences in both source and sink processes are important in understanding δ2H variation of cellulose.

How to cite: Holloway-Philips, M., Baan, J., Nelson, D., Tcherkez, G., and Kahmen, A.: Measurements of leaf sucrose to explain variability in hydrogen isotope composition of leaf cellulose, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8918, https://doi.org/10.5194/egusphere-egu21-8918, 2021.

EGU21-5516 | vPICO presentations | BG2.2

Kinetic effects during ocean evaporation: observed relationship with wind speed 

Daniele Zannoni, Hans Christian Steen-Larsen, Andrew Peters, and Árný Erla Sveinbjörnsdóttir

Water vapor has a fundamental role in weather and climate, being the strongest natural greenhouse gas in the Earth’s atmosphere. The main source of water vapor in the atmosphere is ocean evaporation, which transfers a large amount of energy via latent heat fluxes. In the past, evaporation was intensively studied using stable isotopes because of the large fractionation effects involved during water phase changes, providing insights on processes occurring at the air-water interface. Current theories describe evaporation near the air-water interface as a combination of molecular and turbulent diffusion processes into separated sublayers. The importance of those two sublayers, in terms of total resistance to vapor transport in air, is expected to be dependent on parameters such as moisture deficit, temperature and wind speed. Non-equilibrium fractionation effects in isotopic evaporation models are then expected to be related to these physical parameters. In the last 10 years, several water vapor observations from oceanic expeditions were focused on the impact of temperature and wind speed effect, assuming the influence of those parameters on non-equilibrium fractionation in the marine boundary layer. Wind speed effect is expected to be small on total kinetic fractionation and was discussed at length but was not completely ruled out. With a gradient-diffusion approach (2 heights above the ocean surface) and Cavity Ring-Down Spectroscopy we have estimated non-equilibrium fractionation factors for 18O/16O during evaporation, showing that the wind speed effect can be detected and has no significant impact on kinetic fractionation. Results obtained for wind speeds between 0 and 10 m s-1 in the North Atlantic Ocean are consistent with the Merlivat and Jouzel (1979) parametrization for smooth surfaces (mean ε18=6.1‰). A small monotonic decrease of the fractionation parameter is observed as a function of 10 m wind speed (slope  ≅ 0.15 ‰ m-1 s), without any evident discontinuity. However, depending on the data filtering approach it is possible to highlight a rapid decrease of the kinetic fractionation factor at low wind speed (≤ 2.5 m s-1). An evident decrease of fractionation factor is also observed for wind speeds above 10 m s-1, allowing to hypothesize the possible effect of sea spray in net evaporation flux. Considering the average wind speed over the oceans, we conclude that a constant kinetic fractionation factor for evaporation is a more simple and reasonable solution than a wind-speed dependent parametrization. 

 

Merlivat, L., & Jouzel, J. (1979). Global climatic interpretation of the deuterium‐oxygen 18 relationship for precipitation. Journal of Geophysical Research: Oceans, 84(C8), 5029-5033.

How to cite: Zannoni, D., Steen-Larsen, H. C., Peters, A., and Sveinbjörnsdóttir, Á. E.: Kinetic effects during ocean evaporation: observed relationship with wind speed , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5516, https://doi.org/10.5194/egusphere-egu21-5516, 2021.

EGU21-15547 | vPICO presentations | BG2.2

Novel stable isotopic measurements for understanding atmospheric methane

Chris Rennick, Ed Chung, Tim Arnold, Emmal Safi, Alice Drinkwater, Caroline Dylag, Eric Mussell Webber, Ruth Pearce, Dave Lowry, and Alistair Manning

We demonstrate the possibilities for continuous high precision in situ measurements of δ13C(CH4) and δ2H(CH4) for understanding regional CH4 emissions and explain how advances in nascent measurement techniques looking at ‘clumped’ CH4 might improve our understanding on the global scale.

‘Boreas’ is a new fully automated sample-preparation coupled dual laser spectrometer system developed at the National Physical Laboratory, able to make accurate and precise simultaneous measurements of δ13C(CH4) and δ2H(CH4) through the measurement of isotopologue ratios of CH4. Average daily repeatabilities of <0.08 ‰ for δ13C (n=10, 1 SD)  and <1‰ δ2H of a compressed ‘background’ air sample (1.9 ppm dry air amount fraction CH4) are achieved, making the measurements comparable to bulk isotope ratio mass spectrometry. These measurements are interspersed with air sample measurements from the roof of our building in west London, and we show the possibility to differentiate potential sources of CH4 under different meteorological conditions.

We use a particle dispersion model (the Met Office’s NAME) and inverse method to predict the possible impact of the new continuous isotope ratios measurements on quantification of emissions from individual source sectors, should the technique be deployed to a tall tower network of monitoring sites in the UK.

Finally, our theoretical analysis is extended beyond the most abundant isotopologues of CH4 to look at how analysis of the clumped isotopes might be able to impact our understanding of interannual variability in the global CH4 burden. We incorporate measurements from emission sources and information on reaction rates into a global box model (with an inverse method) to show the added value of strategic ∆CH2D2 and ∆13CH3D ambient air measurements relative to bulk isotope ratios alone.

How to cite: Rennick, C., Chung, E., Arnold, T., Safi, E., Drinkwater, A., Dylag, C., Mussell Webber, E., Pearce, R., Lowry, D., and Manning, A.: Novel stable isotopic measurements for understanding atmospheric methane, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15547, https://doi.org/10.5194/egusphere-egu21-15547, 2021.

EGU21-12630 | vPICO presentations | BG2.2

The impact of spatially varying wetland source signatures on the atmospheric variability of dD-CH4

Angharad Stell, Peter Douglas, Matthew Rigby, and Anita Ganesan

We present the first spatially varying map of the δD-CH4 signature of wetland methane emissions and model its impact on atmospheric δD-CH4. The δD-CH4 signature map is derived by relating the δD-H2O of precipitation to the measured δD-CH4 of methane wetland emissions at a variety of wetland types and locations. Since the δD-H2O of precipitation is highly latitude-dependent, including this spatial variation has the potential to have a large impact on the distribution of δD-CH4 observed in the atmosphere. This latitude-dependence means that wetland emissions at different latitudes can have very different impacts on atmospheric δD-CH4, which could provide a useful way to constrain the location of wetland methane emissions in future inverse modelling studies. Here, we assess the implications for model studies on the differences that arise by treating δD-CH4 wetland source signatures as globally uniform rather than accounting for the large spatial variation. We also assess the potential for δD-CH4 to provide an independent constraint on wetland emissions over the more abundant and widely measured δ13C-CH4.

How to cite: Stell, A., Douglas, P., Rigby, M., and Ganesan, A.: The impact of spatially varying wetland source signatures on the atmospheric variability of dD-CH4, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12630, https://doi.org/10.5194/egusphere-egu21-12630, 2021.

EGU21-132 | vPICO presentations | BG2.2

Cryogen-free fully automated preconcentration unit to enable Δ13CH3D and Δ12CH2D2 analysis

Ivan Prokhorov and Joachim Mohn

Clumped isotope analysis is a powerful tool to constrain methane's origin in various geological, biogeochemical, and environmental settings. The extremely low abundance of 12CH2D2 and 13CH3D isotopologues poses a challenge for the existing analytical systems. Mole fraction enhancement and cleaning of the environmental samples are necessary to fully exploit the potential of modern analyzers, requiring 50 to 1000 μmol of pure CH4. To enable high-precision Δ12CH2D2 and Δ13CH3D analysis with dual-QCL (8.6 μm and 9.3 μm) absorption spectroscopy in a multipass cell (400 m), we have developed a new automated cryogen-free unit for methane Cleaning and Extraction – CleanEx.

The unit can process up to 18 liters of sample air at a high flow rate of 900 ml min−1. Methane (TBP = −161 °C) is separated from major air components on a high capacity trap filled with HayeSep D (Trap 1, −176 °C). Sequential desorption and transfer to a second trap (Trap 2, −181°C) ensure complete O2 and Ar removal. Substances with a higher boiling point, i.e., CO2, N2O, H2O, CnHm, remain on Trap 1 to be removed at a later conditioning phase. CleanEx demonstrates equal performance for gas mixtures with initial methane mole fraction ranging from 2 ppm up to 2%. In contrast to the previously developed single trap TREX system (Eyer et al., 2016), atmospheric O2 and Ar are effectively separated by cryo-focusing of CH4 on the second trap. Ongoing work is focused on the separation of atmospheric gases with boiling points close to methane, e.g., Kr (TBP = −153 °C).

We present the instrument design, performance, and details of its operation. Fractionation effects, methane recovery efficiency, and implications for high-precision δ13C-CH4, δD-CH4, Δ13CH3D, and Δ12CH2D2 analyses are being discussed.

Acknowledgments. This work was supported by the Swiss National Science Foundation (SNSF) under R'Equip project QCL4CLUMPS (no. 206021_183294) and the project STELLAR (grant no. 19ENV05; Stable isotope metrology to enable climate action and regulation) which has received funding from the EMPIR programme co-financed  by  the  Participating  States  and  from  the  European  Union's  Horizon  2020  research  and innovation programme.

 

References

Eyer, S., Tuzson, B., Popa, M. E., van der Veen, C., Röckmann, T., Rothe, M., Brand, W. A., Fisher, R., Lowry, D., Nisbet, E. G., Brennwald, M. S., Harris, E., Zellweger, C., Emmenegger, L., Fischer, H., and Mohn, J.: Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results, Atmos. Meas. Tech., 9, 263–280, https://doi.org/10.5194/amt-9-263-2016, 2016.

 

 

How to cite: Prokhorov, I. and Mohn, J.: Cryogen-free fully automated preconcentration unit to enable Δ13CH3D and Δ12CH2D2 analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-132, https://doi.org/10.5194/egusphere-egu21-132, 2021.

EGU21-10342 | vPICO presentations | BG2.2

Benchmarking source specific isotopic ratios of levoglucosan to better constrain the contribution of domestic heating to the air pollution

Nana Khundadze, Christoph Küppers, Beatrix Kammer, Andrius Garbaras, Agne Masalaite, Holger Wissel, Andreas Luecke, Astrid Kiendler-Scharr, and Iulia Gensch

Due to the potential to fingerprint emissions, carbon stable isotopes are considered a powerful tool to get insight into sources of air pollutants and to study their atmospheric life cycle. Including the independent isotopic knowledge into chemical models, not only concentration but also isotope ratios can be predicted. This provides the possibility to differentiate the impact of source strength from that of chemical reactions in the atmosphere. In a recent study comparing Lagrangian-particle-dispersion-simulations with ambient observations, Betancourt et al. [1] (ACPD2020) found that the observed isotopic age of levoglucosan, a biomass burning tracer, agrees well with the isotopic age derived from back-plumes analyses. This showed that the wintertime aerosol burden from domestic heating observed in residential areas of North-Rheine-Westphalia, Germany, is of local or regional origin. Error analyses though indicated that the largest source of uncertainty was the limited information on emission isotope ratios.

In this work, the stable isotope ratios of levoglucosan in aerosol particles emitted from the combustion of 18 different biomass fuels typically used for domestic heating in Western and Eastern Europe (soft and hard woods, brown coals and corn cobs, respectively) were measured by Thermal Desorption- Two-Dimensional Gas Chromatographie- Isotope Ratio Mass Spectrometry (TD-2DGC-IRMS). Additionally to the compound specific measurements, isotopic ratios of total carbon in the fuel parent material, in the precursor cellulose, as well as in sampled aerosol particles were determined.

Levoglucosan δ13C was found to vary between -23.6 and -21.7‰ for the C3 plant samples, showing good agreement with Sang et al [2] (EST2012). The brown coal and the C4 plant samples were isotopically heavier, showing isotopic ratios in the range of -21,1 to -18.6‰ and -12.9‰, respectively. In this presentation, the observed levoglucosan δ13C will be discussed with respect to the carbon isotopic composition of the parent materials. The potential of using compound specific δ13C measurements of levoglucosan for improved source apportionment will be addressed.

References:

How to cite: Khundadze, N., Küppers, C., Kammer, B., Garbaras, A., Masalaite, A., Wissel, H., Luecke, A., Kiendler-Scharr, A., and Gensch, I.: Benchmarking source specific isotopic ratios of levoglucosan to better constrain the contribution of domestic heating to the air pollution, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10342, https://doi.org/10.5194/egusphere-egu21-10342, 2021.

EGU21-804 | vPICO presentations | BG2.2

Spatial changes in nitrogen inputs drive short- and long-term variability in global nitrous oxide emissions

Eliza Harris, Longfei Yu, Ying Ping Wang, Joachim Mohn, Edith Bai, Matti Barthel, Johan Six, Marijn Bauters, Pascal Boeckx, Christopher Dorich, Mark Farrell, Stephan Henne, Paul Krummel, Zoe Loh, Martin Steinbacher, Christoph Zellweger, Naomi S. Wells, Michael Bahn, and Peter Rayner

Anthropogenic activities, particularly fertilisation, have resulted in significant increases in reactive nitrogen (rN) in soils globally, leading to eutrophication, acidification, poor air quality, and emissions of the important greenhouse gas N2O. Understanding the partitioning of rN losses into different environmental compartments is critical to mitigate negative impacts, however, loss pathways are poorly quantified, and potential changes driven by climate warming and societal shifts are highly uncertain. We present a coupled soil-atmosphere isotope model (IsoTONE; ISOtopic Tracing Of Nitrogen in the Environment) to partition rN losses into leaching, harvest, NH3 volatilization, and production of NO, N2 and N2O based on a global dataset of soil δ15N, as well as numerous other geoclimatic and experimental datasets. The model was optimized in a Bayesian framework using a time series of N2O mixing ratios and isotopic compositions since the preindustrial era, as well as a global dataset of N2O emission factors (EF). The posterior model results showed that the total anthropogenic flux in 2020 (7.8 Tg N2O-N a-1) was dominated by indirect emissions resulting from N deposition, while the growth rate and trend in anthropogenic N2O was driven by both direct N fertilisation and deposition inputs. In contrast, inputs from fixation N drive natural N2O emissions, and were responsible for subdecadal interannual variability in total emissions.

Total N gas (N2O + NO + N2) production and N2O losses were strongly dependent on geoclimate and thus spatially variable, therefore the spatial pattern of N inputs strongly impacted resulting EFs and total N2O emissions. The area-weighted global EF for N2O was 1%  of anthropogenic N inputs in 2020, similar to the current IPCC default of 1.4%, however the N input-weighted global EF was 4.3%. Shifts in fertilisation inputs from the temperate Northern hemisphere towards warmer regions with higher EFs such as India and China have led to accelerating N2O emissions (1.02±0.7 Tg N2O-N a-1). In addition, N2O emissions have increased over the past decades due to climate warming (0.76±0.4 Tg N2O-N a-1). Predicted increases in fertilisation in India and Africa in the coming decades could further accelerate N2O-driven climate warming, unless mitigation measures are implemented to increase fertiliser N use efficiency and reduce N2O emission factors.

How to cite: Harris, E., Yu, L., Wang, Y. P., Mohn, J., Bai, E., Barthel, M., Six, J., Bauters, M., Boeckx, P., Dorich, C., Farrell, M., Henne, S., Krummel, P., Loh, Z., Steinbacher, M., Zellweger, C., Wells, N. S., Bahn, M., and Rayner, P.: Spatial changes in nitrogen inputs drive short- and long-term variability in global nitrous oxide emissions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-804, https://doi.org/10.5194/egusphere-egu21-804, 2021.

Urban polar areas can be subject to severe pollution in winter, linked to sharp temperature inversions that trap pollutants close to the surface. However, the formation of secondary aerosols (sulphates, nitrates, organics) in these cold and dark conditions and the role of the Arctic boundary layer are still poorly understood. To address this issue, an intensive international measurement campaign, called ALPACA (ALaskan Pollution And Chemical Analysis), will be conducted in January/February 2021 in and around Fairbanks, Alaska. Among the various atmospheric chemical and physical measurements, gas and particles collections will be carried out for multiple isotopic analyses.

The use of stable isotopes over the past decades has demonstrated its ability to provide information relevant for tracing emission sources, individual chemical processes and budgets of atmospheric trace gases. Of particular interest is the propagation of the ozone distinctive oxygen-17 anomaly (Δ17O) into the reactive nitrogen cycle which has led to a better understanding of nitrate formation pathways in various environments. However, there remain some difficulties to interpret the isotopic composition of the nitrate, mainly due to the lack of clearly established understanding about the link between the oxygen and nitrogen isotopic composition of the nitrogen oxides (NOx = NO + NO2), the precursors of nitrate in the atmosphere, and the chemical state of the atmosphere.

In order to interpret more quantitatively the fate of reactive nitrogen using isotopic records, we have developed an effective active method to trap atmospheric NO2 on denuder tubes and have measured, for the first time, its multi-isotopic composition (δ15N, δ18O, and Δ17O). The δ15N values of NO2 trapped at our site in Grenoble, France, show little variability (-11.8 to -4.9 ‰) with negligible N isotopefractionations during the NO and NO2 interconversion due to high NO2/NOx ratios. The main sources of NOx emissions are estimated using a stable isotope model applied to our δ15N measurements; the results indicate the predominance of traffic NOx emissions in this area. The Δ17O values exhibit an important diurnal cycle with a late morning peak at (39.2 ± 1.7) ‰ and a night-time decrease with a late-night minimum at (20.5 ± 1.7) ‰. On top of this general diurnal cycle,  Δ17O also shows substantial variability during the day (from 29.7 to 39.2 ‰), certainly driven by changes in the O3 to peroxyl radicals ratio. The night-time decay of Δ17O(NO2) appears to be driven by slow removal of NO2, mostly from its conversion into N2O5, and its formation from the reaction between O3 and emitted NO. As expected, our Δ17O(NO2) values measured towards the end of the night are quantitatively consistent with typical values of Δ17O(O3).

These preliminary results are very promising for the use of Δ17O of NO2 as a probe of the atmospheric oxidative activity and for the interpretation of  NO3- isotopic composition records. In the future, samplings and multi-isotopic analysis of atmospheric nitrate performed in parallel with those of NO2 will be of great interest for the study of the full reactive nitrogen cycle.

How to cite: Albertin, S., Bekki, S., and Savarino, J.: Nitrogen isotopes (δ15N) and oxygen isotope anomalies (Δ17O, δ18O) in atmospheric nitrogen dioxide : a new perspective for isotopic constraints on oxidation and aerosols formation processes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2634, https://doi.org/10.5194/egusphere-egu21-2634, 2021.

EGU21-15608 | vPICO presentations | BG2.2

Analysis and Monitoring atmospheric gases in a high performing and versatile isotope ratio instrument

Sam Barker, Phil Hackett, Will Price, and Kathrin Rosenthal

Biogenic gases carbon dioxide, methane and nitrous oxide are regularly analysed in many environments to understand elemental cycling and processes through the ecosphere. They are also of interest to atmospheric chemists for their role in climate change.  The Isoprime Tracegas has been key to a large amount of studies providing data on the isotopes of these key dynamic molecules. We shall review some of the notable publications and modifications in the field of atmospheric gas monitoring.

The development of the isoprime precisION mass spectrometer has permitted a new generation of control and automation of the mass spectrometer and integrated peripherals. This has greatly improved the accessibility and versatility of the instruments as a whole.

Taking advantage of the inherent benefits of the isoprime precisION the iso FLOW GHG has been developed for high performance analysis of CO2, N2O and CH4 and has the capacity to be rapidly customised for specific needs with options for N2 and N2O, Hydrogen isotopes in CH4 and denitrifier analysis.

How to cite: Barker, S., Hackett, P., Price, W., and Rosenthal, K.: Analysis and Monitoring atmospheric gases in a high performing and versatile isotope ratio instrument, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15608, https://doi.org/10.5194/egusphere-egu21-15608, 2021.

EGU21-9774 | vPICO presentations | BG2.2

Recalculations between different expressions of stable HCNOS isotope results – is it easy?

Grzegorz Skrzypek and Philip Dunn

The stable HCNOS isotope compositions can be reported in various ways depending on scientific domain and needs. The most common notations are 1) the isotope ratio of two stable isotopes; 2) isotope delta value, and 3) atom fraction of one or more of the isotopes. Frequently recalculations between these notations are required for certain applications, particularly when merging different data sets. All these recalculations require using the absolute isotope ratio for the zero points of the stable isotope delta scales (Rstd). However, several Rstd with very contrasting values have been proposed over time and there is no common agreement on which values should be used word-wide (Skrzypek and Dunn, 2020a).

Differences in the selection of Rstdvalue may lead to significant differences between different data sets recalculated from delta value to other notations. These differences in Rstd have a significant influence also on the normalization of raw values but only when the normalization is conducted versus the working standard gas value. We proposed a user-friendly EasyIsoCalculator (http://easyisocalculator.gskrzypek.com) that allows recalculation between the main expressions of isotope compositions using various Rstd and aids for identification of potential inconsistencies in recalculations (Skrzypek and Dunn, 2020b).

 

Skrzypek G., Dunn P. 2020a. Absolute isotope ratios defining isotope scales used in isotope ratio mass spectrometers and optical isotope instruments. Rapid Communications in Mass Spectrometry 34: e8890.

Skrzypek G., Dunn P., 2020b. The recalculation of the stable isotope expressions for HCNOS – EasyIsoCalculator. Rapid Communications in Mass Spectrometry 34: e8892.

How to cite: Skrzypek, G. and Dunn, P.: Recalculations between different expressions of stable HCNOS isotope results – is it easy?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9774, https://doi.org/10.5194/egusphere-egu21-9774, 2021.

EGU21-8656 | vPICO presentations | BG2.2

Isotopic Measurements of Carbonyl Sulfide: The First Results from Semi-continuous Outside Air Measurements in the Netherlands

Sophie L. Baartman, Maria Elena Popa, Maarten Krol, and Thomas Röckmann

Carbonyl sulfide (COS) is the most abundant sulfur-containing trace gas in the atmosphere, with an average mixing ratio of 500 parts per trillion (ppt). It has a relatively long lifetime of about 2 years, which permits it to travel into the stratosphere. There, it likely plays an important role in the formation of stratospheric sulfur aerosols (SSA), which have a cooling effect on the Earth’s climate. Furthermore, during photosynthetic uptake by plants, COS follows essentially the same pathway as CO2, and therefore COS could be used to estimate gross primary production (GPP). Unfortunately, significant uncertainties still exist in the sources, sinks and global cycling of COS, which need to be overcome. Isotopic measurements of COS could be a promising tool for constraining the COS budget, as well as for investigating its role in the formation of stratospheric sulfur aerosols.

Within the framework of the COS-OCS project, we developed a new measurement system at Utrecht University, that can measure d33S and d34S from COS from small air samples of 2 to 5 L. The aim of the project is to perform a global-scale characterization of COS isotopes by measuring seasonal, latitudinal and altitudinal variations in the troposphere and stratosphere. We will present the newest results from a series of semi-continuous outside air measurements in the Netherlands during the fall and early winter of 2020/2021. The measurement results are interpreted with the help of backward trajectory analyses to characterize the influence of different wind directions and air origins on the COS concentration and isotopic composition.

How to cite: Baartman, S. L., Popa, M. E., Krol, M., and Röckmann, T.: Isotopic Measurements of Carbonyl Sulfide: The First Results from Semi-continuous Outside Air Measurements in the Netherlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8656, https://doi.org/10.5194/egusphere-egu21-8656, 2021.

EGU21-2214 | vPICO presentations | BG2.2

Isotopic constraints on the tropospheric carbonyl sulfide budget

Kazuki Kamezaki, Shohei Hattori, and Naohiro Yoshida

Carbonyl sulfide (OCS), the most abundant sulfur-containing gas in the ambient atmosphere, possesses great potential for tracer of the carbon cycle. Sulfur isotopic composition (34S/32S ratio, δ34S) on OCS is a feasible tool to evaluate the OCS budget. We applied the sulfur isotope measurement for the tropospheric OCS cycle and distinguished OCS sources from oceanic and anthropogenic emissions.

 

Here, we present a developed measurement system of δ34S of OCS and the result of latitudinal (north-south) observations of OCS within Japan using the method. The OCS sampling system was carried to three sampling sites in Japan: Miyakojima (24°8’N, 125°3’E), Yokohama (35°5’N, 139°5’E), and Otaru (43°1’N, 141°2’E). The observed δ34Sof OCS ranging from 9.7 to 14.5‰ reflects the tropospheric OCS cycle. Particularly in winter, latitudinal decreases in δ34Svalues were found to be correlated with increases in OCS concentrations, resulting in an intercept of (4.7 ± 0.8)‰ in the Keeling plot approach. This trend suggests the transport of anthropogenic OCS emissions from the Asian continent to the western Pacific by the Asian monsoon outflow.

 

The estimated background δ34S of OCS in eastern Asia is consistent with the δ34S of OCS previously reported in Israel and the Canary Islands, suggesting that the background δ34S of OCS in the Northern Hemisphere ranges from 12.0 to 13.5‰. Our constructed sulfur isotopic mass balance of OCS revealed that anthropogenic sources, not merely oceanic sources, account for much of the missing source of atmospheric OCS. This sulfur isotopic constraint on atmospheric OCS is an important step together with isotopic characterizations and analysis using a chemical transport model, will enable detailed quantitative OCS budget and estimation of gross primary production.

How to cite: Kamezaki, K., Hattori, S., and Yoshida, N.: Isotopic constraints on the tropospheric carbonyl sulfide budget, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2214, https://doi.org/10.5194/egusphere-egu21-2214, 2021.

EGU21-12395 | vPICO presentations | BG2.2

Identification and quantification of sources and sinks of carbonyl sulfide

Alessandro Zanchetta, Linda M.J. Kooijmans, Steven van Heuven, Andrea Scifo, Bert Scheeren, Ivan Mammarella, Ute Karstens, Harro A.J. Meijer, Maarten Krol, and Huilin Chen

Carbonyl sulfide (COS) is the most abundant reduced sulfur gas in the atmosphere and is used as a tracer for gross primary production (GPP) of terrestrial ecosystems and stomatal conductance of leaves. At present, its usefulness is limited by the uncertainties in the estimation of its sources and sinks. In this study, we aim to understand the COS budget using atmospheric COS enhancements at the Lutjewad tower (53°24’N, 6°21’E, 1m a.s.l.) and atmospheric measurements of COS in the province of Groningen using a mobile van. We infer the sources and sinks of COS using continuous in situ mole fraction profile measurements of COS at Lutjewad. We determined the nighttime COS fluxes to be -3.0 ± 2.6 pmol m-2 s-1 using the radon-tracer correlation approach. We observed enhancements of COS mole fractions on the order of 100 ppt (lasting a few days) to 1000 ppt (lasting a few hours) at three occasions. To quantify potentially unidentified COS sources, we have made additional measurements by collecting air flasks that were analyzed later in the laboratory and with a continuous quantum cascade laser spectrometer. We have identified multiple COS sources, such as biodigesters, sugar production facilities and silicon carbide production facilities. Furthermore, we simulate the Lutjewad COS mole fractions in a Lagrangian model framework to quantitatively understand the COS sources and sinks. These results are useful for improving our understanding of the sources and sinks of COS, contributing to the use of COS as a tracer for GPP.

How to cite: Zanchetta, A., Kooijmans, L. M. J., van Heuven, S., Scifo, A., Scheeren, B., Mammarella, I., Karstens, U., Meijer, H. A. J., Krol, M., and Chen, H.: Identification and quantification of sources and sinks of carbonyl sulfide, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12395, https://doi.org/10.5194/egusphere-egu21-12395, 2021.

EGU21-12944 | vPICO presentations | BG2.2

Improved estimation of global vegetation uptake of carbonyl sulfide (COS) in a biosphere model (SiB4) 

Ara Cho, Linda Kooijmans, and Maarten Krol

The atmospheric trace gas ‘Carbonyl Sulfide (COS)’ has been identified as a possible tracer to estimate global Gross Primary Production (GPP). This is because COS is taken up similarly to CO2 uptake through plant stomata and has almost no respiration. In addition to vegetation activity, COS is removed by soil and chemical reaction in the atmosphere. It enters the atmosphere by emission from oceans and anthropogenic sources (e.g., rayon production). Plants play an important role in the seasonal COS drawdown, but the models that simulate COS biosphere exchange have considerable uncertainty due to lack of observation. The uncertainty is mainly related to the poorly defined ambient COS mixing ratio and enzyme activity, processes that control COS uptake. The ambient COS molecules diffuse into stomatal pores and mesophyll cells, where the molecules are hydrolyzed by the enzyme Carbonic Anhydrase (CA). Due to the lack of understanding of CA activity, previous studies scaled the COS mesophyll uptake with the maximum Rubisco deposition velocity (Vmax), relevant for photosynthesis, and only used the associated temperature response.

This study will improve the estimation of COS vegetation uptake in the Simple Biosphere model version 4 (SiB4), corresponding to different COS mixing ratios from an atmospheric inversion and various environmental conditions. COS flux observations from Europe and North America will be applied. We aim to identify and present: (i) the response of the COS uptake to varying COS mixing ratios and environmental conditions (temperature, humidity, and light), (ii) application of the relationships derived by (i) to the estimation of global COS uptake by the SiB4 model, (iii) investigate the implications for SiB4 calculation of CO2 photosynthesis by the SiB4 model. Unlike the original SiB4 model, where CA uptake is proportional to Vmax and the temperature response identical for all plant types and environments, we will show the nonlinear CA responses to COS mixing ratio, temperature, humidity and light.

 

How to cite: Cho, A., Kooijmans, L., and Krol, M.: Improved estimation of global vegetation uptake of carbonyl sulfide (COS) in a biosphere model (SiB4) , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12944, https://doi.org/10.5194/egusphere-egu21-12944, 2021.

EGU21-8794 | vPICO presentations | BG2.2

Validation and development of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4)

Linda Kooijmans, Ara Cho, Jin Ma, Ian Baker, Aleya Kaushik, and Maarten Krol

The uptake of carbonyl sulfide (COS) in plants is strongly dependent on stomatal conductance. The COS uptake is therefore strongly related to the photosynthetic uptake of CO2 in plants. As there is a gap in the COS budget with a source missing (or an overestimated sink) in tropical regions, this asks for evaluation of all sources and sinks of COS to be able to apply COS as a photosynthetic tracer. The COS uptake by vegetation and soil is simulated by the Simple Biosphere Model (SiB4) but it has not been validated against ecosystem and vegetation fluxes across different biomes. We evaluated the SiB4 COS biosphere flux with observations and updated it with the latest insights, with the aim to get the best possible estimate of the global COS biosphere sink. Overall, we find good agreement of simulated diurnal and seasonal cycles of COS ecosystem fluxes with flux observations made over grasslands, evergreen needleleaf forest and deciduous broadleaf forests over Europe and Northern America. We improved the simulations of COS soil exchange with the implementation of the Ogee et al. (2016) soil model such that SiB4 is now capable of simulating COS emissions from soils. We found that accounting for varying COS mixing ratios (retrieved from an inversion by the TM5-4DVAR model) plays a large role in determining the global COS biosphere sink. With these modifications to the model, we find an average underestimation of the COS biosphere flux of 11 % compared to observations. Furthermore, our model modifications caused a drop in the global COS biosphere sink from 967 Gg S yr-1 in the original model to 788 Gg S yr-1 in the updated version. The largest drop in fluxes is over the tropical regions, mostly driven by lower COS mixing ratios and contributes towards closing the gap in the COS budget. However, given the underestimation of COS uptake in the boreal and temperature regions, it is unlikely that the remaining gap in the COS budget is caused by an overestimated tropical biosphere sink.   

 

How to cite: Kooijmans, L., Cho, A., Ma, J., Baker, I., Kaushik, A., and Krol, M.: Validation and development of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8794, https://doi.org/10.5194/egusphere-egu21-8794, 2021.

EGU21-2527 | vPICO presentations | BG2.2

Regional characteristics of atmospheric sulfate formation in East Antarctica imprinted on 17O-excess signature

Sakiko Ishino, Shohei Hattori, Michel Legrand, Qianjie Chen, Becky Alexander, Jingyuan Shao, Jiayue Huang, Lyatt Jaegle, Bruno Jourdain, Susanne Preunkert, Akinori Yamada, Naohiro Yoshida, and Savarino Joel

17O-excess (Δ17O = δ17O − 0.52 × δ18O) of sulfate trapped in Antarctic ice cores has been proposed as a potential tool for assessing past oxidant chemistry, while insufficient understanding of atmospheric sulfate formation around Antarctica hampers its interpretation. To probe influences of regional specific chemistry, we compared year-round observations of Δ17O of non-sea-salt sulfate in aerosols (Δ17O(SO42−)nss) at Dome C and Dumont d’Urville, inland and coastal sites in East Antarctica, throughout the year 2011. Although Δ17O(SO42–)nss at both sites showed consistent seasonality with summer minima (~1.0 ‰) and winter maxima (~2.5 ‰) owing to sunlight-driven changes in the relative importance of O3-oxidation to OH- and H2O2-oxidation, significant inter-site differences were observed in austral spring–summer and autumn. The co-occurrence of higher Δ17O(SO42–)nss at inland (2.0 ± 0.1 ‰) than the coastal site (1.2 ± 0.1 ‰) and chemical destruction of methanesulfonate (MS) in aerosols at inland during spring–summer (October to December), combined with the first estimated Δ17O(MS) of ~16 ‰, implies that MS destruction produces sulfate with high Δ17O(SO42–)nss of ~12 ‰. If contributing to the known post-depositional decrease of MS in snow, this process should also cause a significant post-depositional increase in Δ17O(SO42–)nss over 1 ‰, that can reconcile the discrepancy between Δ17O(SO42–)nss in the atmosphere and ice.

How to cite: Ishino, S., Hattori, S., Legrand, M., Chen, Q., Alexander, B., Shao, J., Huang, J., Jaegle, L., Jourdain, B., Preunkert, S., Yamada, A., Yoshida, N., and Joel, S.: Regional characteristics of atmospheric sulfate formation in East Antarctica imprinted on 17O-excess signature, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2527, https://doi.org/10.5194/egusphere-egu21-2527, 2021.

EGU21-3649 | vPICO presentations | BG2.2

Isotopic evidence for importance of atmospheric acidity on sulfate formation in the Mt. Everest region

Shohei Hattori, Kun Wang, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang

Oxygen-17 anomaly (Δ17O) has been used as a probe to constrain the relative importance of different pathways leading to sulfate formation. Here, we report the Δ17O values in atmospheric sulfate collected at a remote site in the Mt. Everest region to decipher the possible formation mechanisms of sulfate in such a pristine environment. The Δ17O in non-dust sulfate show higher values than most existing data in modern atmospheric sulfate. The seasonality of Δ17O in non-dust sulfate exhibits high values in the pre-monsoon and low values in the monsoon, opposite to the seasonality in Δ17O for both sulfate and nitrate (i.e., minima in warm season and maxima in cold season) observed from diverse geographic sites. This high Δ17O in non-dust sulfate found in this region clearly indicates the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by high cloud water pH conditions. In turn, this study highlights observational evidence that atmospheric acidity plays an important role in controlling sulfate formation pathways particularly for dust-rich environments.

How to cite: Hattori, S., Wang, K., Lin, M., Ishino, S., Alexander, B., Kamezaki, K., Yoshida, N., and Kang, S.: Isotopic evidence for importance of atmospheric acidity on sulfate formation in the Mt. Everest region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3649, https://doi.org/10.5194/egusphere-egu21-3649, 2021.

Anthropogenic and biogenic activities, along with the fluxes of sea salt, volcanic, wildfire and oceanic sulfate-reducing microorganisms (SRM), contribute significantly to the atmospheric sulfur budget.(1,2)

There is still uncertainty and debate between studies about the magnitude of the importance of oceanic hydrogen sulfide (H2S) produced by SRM, as well as its ability to diffuse to the upper water column and its contribution to the atmospheric sulfur budget. While some studies believe that the majority of H2S is re-oxidized and is less likely to reach the atmosphere (3,4), there is evidence of the existence of H2S in the upper water columns and even in the atmosphere (2,5). H2S produced by SRM, emitted to the atmosphere, along with the anthropogenic sulfur dioxide (SO2) and dimethyl sulfide (DMS), undergo atmospheric oxidation processes. Sulfate (SO42-), as one of the main oxidized products, may nucleate with water vapor, ammonia and organic oxides (6,7), and subsequently grow to bigger particle sizes. These particles affect the climate directly and indirectly and change the radiation balance of the Earth-atmosphere system. (8,9,10)

This study assessed the seasonal trends of major atmospheric sulfur species including SO2, sulfate, and biogenic and anthropogenic sulfate of gas, aerosol and precipitation samples, collected by Canadian Air and Precipitation Monitoring Network (CAPMoN), Environment of Canada, at Saturna Island, B.C, between 1998-2010. We then explored the oceanic phytoplankton activities and DMS production, based on sulfur isotope composition and found the importance of DMS contribution to the summertime atmospheric sulfur budget. A handful of samples (~10-30%) displayed negative sulfur isotope compositions, outside the range of anthropogenic and biogenic isotope values. Potential factors that could produce such negative sulfur isotope composition values include isotopic fractionation, fluxes from mineral dust events, volcanic eruptions, wildfires and microbial sulfate reduction (MSR). Our study found that MSR was the only feasible explanation for these very negative sulfur isotope compositions in non-sea salt sulfate samples. H2S in our study was a 4th potential contributor to the atmospheric sulfur budget, along with the 3 major sources of anthropogenic, biogenic DMS, and sea-salt sulfate, in this long-term atmospheric sulfur study.

 

How to cite: mostafaei, M., Norman, A.-L., and Mohamed, F.: Exploring the atmospheric sulfur trends and the potential contribution of sulfate-reducing microorganism activities to the atmospheric sulfur budget at Saturna Island, B.C, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10534, https://doi.org/10.5194/egusphere-egu21-10534, 2021.

We present long-term results of δ13C-CO2, δ18O-CO2, δ17O-COand “excess” 17O-COor Δ17O-COmeasurements in whole air flask samples collected at Lutjewad monitoring station in the Netherlands using an Aerodyne Quantum Cascade Dual-Laser Spectrometer system (QCDLAS). The station is located at the Dutch Wadden sea coast (6.353°E, 53.404°N) in a rural environment. The flask samples have been collected at 60 m altitude at a bi-weekly rate, spanning from July 2016 until the end of 2020. The location of Lutjewad station allows to measure clean marine background air from the north-northwest (~15% of the time) in contrast to continental air from a prevalent south-westerly direction (~50% of the time). Our observations include the summers of 2018 and 2019 which saw exceptionally hot and dry conditions in large parts of Europe, including the Netherlands.

The Δ17O-COanomaly is defined as the deviation from normal mass dependent fractionation reflected in COequilibrated with water, occurring over water bodies, but mainly in plant leaves. Atmospheric Δ17O-COhas been used as a parameter to study gross primary production (GPP), notably as a function of water availability. Here, the determination of Δ17O-COis derived from the direct measurement of δ17O-COnext to δ18O-CO17O = ln(δ17O +1)-0.5229×ln(δ18O +1)). Using the summer 2018 and 2019 results we investigate the potential of using the Δ17O-COsignal derived from QCDLAS measurements from Lutjewad as a tracer for suppressed plant assimilation due to water stress.

How to cite: Steur, F., Scheeren, B., Peters, W., and Meijer, H.: Long-term observations of δ13C-CO2, δ18O-CO2, δ17O-CO2 and “excess” 17O-CO2 by Quantum Cascade Dual-Laser Absorption Spectrometry in whole air flask samples from Lutjewad station, the Netherlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15139, https://doi.org/10.5194/egusphere-egu21-15139, 2021.

EGU21-12407 | vPICO presentations | BG2.2

Quantum Cascade Laser absorption spectroscopy of clumped 12C18O2

Akshay Nataraj, Michele Gianella, Ivan Prokhorov, Béla Tuzson, Jérôme Faist, and Lukas Emmenegger

Mid-infrared optical absorption spectroscopy techniques, in particular with quantum cascade lasers (QCLs), allow realization of highly sensitive and compact spectrometers for the detection of greenhouse gases such as carbon dioxide and its stable isotopes [1]. Clumped isotope analysis of carbon dioxide is evolving into an established method in environmental, geological, and biogeochemical research. Optical clumped isotope thermometry was recently demonstrated for the 13C16O18O isotopologue [2]. Measurements of all isotopologues involved in isotope exchange reaction 12C16O2 + 12C18O2 ⇌ 212C16O18O can provide an independent temperature estimate to conventional Δ47 or Δ638 thermometry. The added dimension can resolve kinetic effects and verify temperature measurements. However, applications of clumped isotopes using ultra-high resolution mass spectrometry are strongly limited by the sample amount, long measurement times, and isobaric interferences [3].

In this work, we present an alternative approach based on laser spectroscopy for the simultaneous measurement of 12C18O2, 12C16O2, and 12C16O18O. The main experimental challenge to optically measure 12C18O2 (natural abundance 3.95×10-6) is the large spectral interference caused by the hot band transitions of the most abundant 12C16O2 isotopologue. Our strategy to overcome this limitation is to analyze the sample CO2 gas at low temperature, i.e. close to its sublimation point. This reduces the population of these hot band transitions, thereby reducing their linestrength by a factor of 105.

The spectrometer deploys a thermoelectrically cooled, distributed feedback (DFB) QCL emitting at 2305 cm-1. We operate the laser in intermittent continuous wave (iCW) mode [4] with a repetition rate of 6.5 kHz. The laser beam is coupled into a compact segmented circular multipass cell (SC-MPC) [5] with an optical path length of 6 m. The cell is enclosed in a high vacuum chamber and is stabilized at 150 K with a low-vibration Stirling- cooler.

 Using pure CO2 gas samples at 10 mbar pressure, we demonstrate a precision of 0.03 ‰ and 0.02 ‰ in 12C18O2/12C16O2 and 12C16O18O/12C16O2 ratios in less than one minute averaging time. Repeated series of 30 consecutive measurements of Δ48 has a standard deviation of 0.12 ‰ (SE = 0.022 ‰). The isotope ratio scale is investigated through the analysis of pure CO2 samples, which range in δ18O from -25 ‰ to -14 ‰ vs VSMOW . The instrument reproduced the scale within 0.2 ‰, which corresponds to the uncertainty of the reported δ18O values.

This unique approach of using cryogenically cooled MPC to reduce the interference of hot band transition from abundant isotopes, represents a promising method for high-precision quantification of the CO2 clumped isotopes, opening up new possibilities in geosciences.

 

[1] P. Sturm et al, Atmospheric Measurement Techniques, 6(7), 1659, 2013

[2] I. Prokhorov et al, Sci Rep, 9(1), p. 4765, 2019

[3] D. Bajnai et al., Nature Communications, 11(1), pg 4005, 2020

[4] M. Fischer et al  Opt. Express, 22(6), 7014, 2014

[5] M. Graf et al, Optics Letters, 43(11) 2434 2018

How to cite: Nataraj, A., Gianella, M., Prokhorov, I., Tuzson, B., Faist, J., and Emmenegger, L.: Quantum Cascade Laser absorption spectroscopy of clumped 12C18O2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12407, https://doi.org/10.5194/egusphere-egu21-12407, 2021.

Abstract

Constant increasing of atmospheric carbon dioxide (CO2) concentration has raised many concerns over the past 60 years due to its climate regulating effect. The ubiquitous increasing trends have been observed across the globe and it is believed to be a consequence of anthropogenic combustions of fossil fuels and land use change. For the anthropogenically emitted CO2, roughly 15% is fixed by the biosphere. Precise quantification of these two important carbon fluxes would provide us a better understanding of global carbon cycle as well as predicting future climate change. In this study, we used the CO2 and the δ13C/Δ14C  values measured at three different locations: Mauna Loa, Niwot Ridge and the South Pole, to explore the relative contributions of biosphere carbon sink, and the anthropogenic carbon sources to the atmosphere. Δ14C signatures showed that anthropogenically combusted fossil fuels are the primary source for the increasing atmospheric CO2 concentrations, and about a 3‰ decrease in atmospheric Δ14C equals to approximate 1.1 ppm of fossil fuel CO2 added to the atmosphere. The CO2-enhanced carbon storage (CO2-ECS) by the global biosphere was also calculated and we concluded that the biosphere is absorbing about an addition of at least 0.6 Pg CO2 yr-1 due to the CO2 enrichment.

How to cite: Wang, Y.: δ13C/Δ14C compositions of atmospheric CO2 and its applications in the quantifications of biosphere sink and anthropogenic source, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-265, https://doi.org/10.5194/egusphere-egu21-265, 2021.

EGU21-15179 | vPICO presentations | BG2.2

The use of multi-tracer flask-measurements to understand changes in the land-surface processes.

Theertha Kariyathan, Wouter Peters, Julia Marshall, Ana Bastos, and Markus Reichstein

Carbon dioxide (CO2) is an important greenhouse gas, and it accounts for about 20% of the present-day anthropogenic greenhouse effect. Atmospheric CO2 is cycled between the terrestrial biosphere and the atmosphere through various land-surface processes and thus links the atmosphere and terrestrial biosphere through positive and negative feedback. Since multiple trace gas elements are linked by common biogeochemical processes, multi-species analysis is useful for reinforcing our understanding and can help in partitioning CO2 fluxes. For example, in the northern hemisphere, CO2 has a distinct seasonal cycle mainly regulated by plant photosynthesis and respiration and it has a distinct negative correlation with the seasonal cycle of the δ13C isotope of CO2, due to a stronger isotopic fractionation associated with terrestrial photosynthesis. Therefore, multi-species flask-data measurements are useful for the long-term analysis of various green-house gases. Here we try to infer the complex interaction between the atmosphere and the terrestrial biosphere by multi-species analysis using atmospheric flask measurement data from different NOAA flask measurement sites across the northern hemisphere.

This study focuses on the long-term changes in the seasonal cycle of CO2 over the northern hemisphere and tries to attribute the observed changes to driving land-surface processes through a combined analysis of the δ13C seasonal cycle. For this we generate metrics of different parameters of the CO2 and δ13C seasonal cycle like the seasonal cycle amplitude given by the peak-to-peak difference of the cycle (indicative of the amount of CO2 taken up by terrestrial uptake),  the intensity of plant productivity inferred from the slope of the seasonal cycle during the growing season , length of growing season and the start of the growing season. We analyze the inter-relation between these metrics and how they change across latitude and over time. We hypothesize that the CO2 seasonal cycle amplitude is controlled both by the intensity of plant productivity and period of the active growing season and that the timing of the growing season can affect the intensity of plant productivity. We then quantify these relationships, including their variation over time and latitudes and describe the effects of an earlier start of the growing season on the intensity of plant productivity and the CO2 uptake by plants.

How to cite: Kariyathan, T., Peters, W., Marshall, J., Bastos, A., and Reichstein, M.: The use of multi-tracer flask-measurements to understand changes in the land-surface processes., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15179, https://doi.org/10.5194/egusphere-egu21-15179, 2021.

EGU21-11938 | vPICO presentations | BG2.2

Tree growth and drought impact the dynamics of C allocation and change the coupling between photosynthesis and respiration in stem and soil

Yu Tang, Pauliina Schiestl-Aalto, Kira Ryhti, Liisa Kulmala, Elina Sahlstedt, Matthias Saurer, Tuula Jyske, Pasi Kolari, Jaana Bäck, and Katja Rinne-Garmston

In-depth knowledge about carbon (C) flows within trees and from the trees to forest ecosystem via respiration is essential for accurate modeling of tree growth and C balance. However, significant gaps still exist in our understanding about how trees allocate C for growth and respiration of different tree organs, which makes it difficult to predict the response of forest growth to climate change. A powerful tool to study C allocation within trees is stable C isotope ratio (the ratio of 13C to 12C relative to a reference, noted as δ13C), as this signal is passed from C sources to C sinks with isotopic fractionation along the pathway. In this study, we monitored the δ13C signal of CO2 fluxes of shoot (Acanopy), stem (Rstem) and soil (Rsoil) in a Scots pine (Pinus sylvestris L.) dominated boreal forest in southern Finland for summer 2018, which included a month-long dry period. We also traced the growth of current-year shoots, needles, stem, and fine roots (fibrous and pioneer roots) and the concentrations and δ13C of putative substrates (sugars and starch) in phloem and roots of Scots pine over the growing season. We calculated the correlations between substrate concentrations and respiration fluxes, as well as the correlations between δ13C of Acanopy and δ13C of Rsoil or δ13C of Rstem with varying time lags from 3 d to 14 d for different tree organ growth periods and the dry period. We found tight couplings between photosynthesis and respiration, when newly assimilated sugars were allocated to stem or roots for growth or for drought response. These couplings include: 1) a synchrony between fibrous root growth and the concentrations of bulk sugars and starch in roots, associated with increases in Rsoil under high root substrate concentrations; 2) promoted nighttime Rstem under high substrate supply to stem, which is seen as increased phloem glucose to sucrose ratio; 3) shorter time lags between δ13C of Acanopy and δ13C of Rstem under higher stem growth demands; 4) shorter time lags between δ13C of Acanopy and δ13C of Rsoil under drought stress than with no water stress. The time lags between δ13C of Acanopy and δ13C of Rsoil or δ13C of Rstem being not uniform further implies that tree C allocation patterns are dynamic over the growing season. In addition, the C allocation to stem and roots occurred after full expansion of current-year shoots or needles, reflecting a whole tree C allocation strategy for growth demands of different tree organs, which prioritizes the demands of source organs. We suggest that the dynamics of C allocation in response to tree organ growth and drought stress should be considered in whole tree C allocation models for projecting forest growth under climate change.

How to cite: Tang, Y., Schiestl-Aalto, P., Ryhti, K., Kulmala, L., Sahlstedt, E., Saurer, M., Jyske, T., Kolari, P., Bäck, J., and Rinne-Garmston, K.: Tree growth and drought impact the dynamics of C allocation and change the coupling between photosynthesis and respiration in stem and soil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11938, https://doi.org/10.5194/egusphere-egu21-11938, 2021.

EGU21-11232 | vPICO presentations | BG2.2

Stable carbon isotopes as powerful tools for studying land-atmosphere flux exchanges and improving land surface models

Aliénor Lavergne, Laia Andreu-Hayles, Soumaya Belmecheri, Rossella Guerrieri, and Heather Graven

The stable isotopic compositions of carbon and oxygen in terrestrial plants can provide valuable insights into plant eco-physiological responses to environmental changes at seasonal to annual resolution. Yet, the potential of these datasets to study land-atmosphere interactions remains under-exploited. Here, we present some examples of how stable carbon isotopes (δ13C) measured in plant materials (leaves and tree-rings) can be used to explore changes in the magnitude and variability of carbon and water flux exchanges between the vegetation and the atmosphere and to improve land surface models.

First, we show that the discrimination against 13C (Δ13C), calculated as the difference in δ13C between the source atmospheric CO2 and the plant material studied, varies strongly between regions and biomes and is useful for better understanding the CO2 fertilisation effect of plant growth. For example, tree-ring Δ13C records from boreal evergreen forests in North America increased linearly with rising CO2 during the 20th century, suggesting that those forests have actively contributed to the land carbon sink by removing CO2 from the atmosphere at a relatively constant rate. However, such an increase in Δ13C with rising CO2 is not observed everywhere. We found that over the same time period, while some forests had a fairly constant Δ13C, others exhibited a slight decrease in Δ13C over time, which might indicate a reduction of the capacity of trees to absorb CO2. Using a response function approach, we show that the differences between sites and regions are most likely the result of different evaporative demands and soil water availability conditions experienced by forests.

We then discuss how predictions of the coupled carbon and water cycles by vegetation models can be improved by incorporating stable carbon isotopes to constrain the model representation of carbon-water fluxes regulation by leaf stomata. Specifically, we examine and evaluate simulations from the JULES vegetation model at different eddy-covariance forest sites where stable carbon isotopic data and canopy flux measurements are available. Overall, our analyses have strong implications for the understanding of historical changes in the strength of the CO2 fertilisation effect and in the water use efficiency of terrestrial ecosystems across regions.

 

How to cite: Lavergne, A., Andreu-Hayles, L., Belmecheri, S., Guerrieri, R., and Graven, H.: Stable carbon isotopes as powerful tools for studying land-atmosphere flux exchanges and improving land surface models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11232, https://doi.org/10.5194/egusphere-egu21-11232, 2021.

EGU21-7088 | vPICO presentations | BG2.2

Model-data fusion depicting the key processes and environmental drivers of photosynthates δ13C and δ18O compositions in boreal Scots Pine

Kersti Leppä, Pauliina Schiestl-Aalto, Yu Tang, Elina Sahlstedt, Pasi Kolari, Samuli Launiainen, Gaby Katul, Matthias Saurer, and Katja Rinne-Garmston

Stable isotopes can diagnose the response of plants to changing climate as the performance of trees in past climatic conditions is archived in the stable carbon and oxygen isotope composition (δ13C and δ18O, respectively) of tree rings. To take advantage of these records, understanding the formation of isotopic signals in newly assimilated photosynthates is necessary. Despite a voluminous literature, there exists a gap between the model- and data-oriented studies, which if welded together would benefit this line of inquiry. A unique dataset covering two growing seasons in a boreal Scots pine stand situated in Southern Finland (61.9°N, 24.3°E) is employed and is accompanied with mechanistic modeling driven by environmental conditions. Data includes: (i) shoot gas exchange of vapor, CO2 and its δ13C composition, (ii) δ13C in needle bulk sugar and sucrose alone, (iii) δ18O in water in precipitation, soil, twigs and needles, and (iv) δ18O in needle bulk sugar. Overall, observed exchange rates and isotopic composition of fluxes as well as in water and sugar pools were well reproduced using the model. We further address challenges common to the analysis of isotopic signals. Firstly, time scales and integration over them is an unavoidable challenge of data sampled at different intervals, representing either snapshots or a longer history of processes. As an example of this, we illustrate that δ18O in needle water reacts instantaneously to environmental conditions, while the δ18O signal in needle sugars is an integration over time, and thus relating the latter to instantaneous environmental conditions is less evident. Given that tree-ring studies are more and more focused on intra-annual variation in δ13C and δ18O, integration over time scales cannot be neglected. Second, using model sensitivity analysis, we showcase the relative importance of environmental drivers on the variation in δ13C and δ18O – the typical aim of empirical research and paleoclimatological reconstruction. It is commonly acknowledged that the main environmental driver of δ13C or δ18O variation can differ between sites and time periods. At the study site here, the variation in δ18O seems solely driven by relative humidity, but we can, for instance, show that this would change if the δ18O signal of source water varied considerably. We are of the opinion that illustrating such points with a model-data fusion approach is a necessary (but not sufficient) first step to bridge the gap between modeling and empirical approaches, and fostering further interpretation of isotopic signals in trees.

How to cite: Leppä, K., Schiestl-Aalto, P., Tang, Y., Sahlstedt, E., Kolari, P., Launiainen, S., Katul, G., Saurer, M., and Rinne-Garmston, K.: Model-data fusion depicting the key processes and environmental drivers of photosynthates δ13C and δ18O compositions in boreal Scots Pine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7088, https://doi.org/10.5194/egusphere-egu21-7088, 2021.

BG2.6 – Reconstruction of past ecosystems using sedimentary ancient DNA: Applications, method developments, analytic pipelines and data management

EGU21-13501 | vPICO presentations | BG2.6

Shotgun barcode baiting: capturing barcoding genes from environmental samples for species identification

Kevin Nota, Ludovic Orlando, Alexis Marchesini, Matteo Girardi, Cristiano Vernesi, and Laura Parducci

The current main methodologies for identifying DNA fragments in ancient environmental samples are metabarcoding and shotgun sequencing which present strong advantages and limitations. Target capture is a promising method for enriching shotgun libraries for target organisms and might be able to combine the advantages from metabarcoding and shotgun sequencing into a single method. Target capture operates by hybridising DNA fragments in a sample to synthetic RNA-baits which share enough homology (≥85 %). These RNA-baits contain a magnetic molecule which is used to pull the hybridised fragments of interest to a magnet, allowing for the non-hybridised molecules to be washed away. The RNA-baits are designed according to prior knowledge of target sequences. Target capture does not require a PCR amplification step to amplify fragments using taxon-specific primers, and it might, therefore, be less prone to PCR amplification biases.

We designed a bait-set for capturing two barcoding plastidial genes matK and rbcL for all the species in four major plant orders: Asterales, Fagales, Pinales, and Poales. These orders are species-rich and/or difficult to identify to low taxonomic levels (family, genus or species) using metabarcoding. Our objectives were: 1) to design a universal method for trimming and selecting sequences for bait design using online sequence repositories, 2) to investigate a potential capture bias of species with a low GC-content (proportion of guanine and cytosine nucleotides) and 3) to investigate taxonomic resolution of target capture compared to metabarcoding. Because species with an overall low GC content (<32%) might be less efficiently captured than species with a higher GC content, we used mock communities with a known proportion of amplicons fragment size distribution and GC content. Further, we used sequence data simulations to investigate taxonomic resolution using varies species pools.

How to cite: Nota, K., Orlando, L., Marchesini, A., Girardi, M., Vernesi, C., and Parducci, L.: Shotgun barcode baiting: capturing barcoding genes from environmental samples for species identification, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13501, https://doi.org/10.5194/egusphere-egu21-13501, 2021.

EGU21-14474 | vPICO presentations | BG2.6

Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until Landnám

Inger Alsos, Youri Lammers, Sofia E Kjellman, Marie K. F. Merkel, Emma M Bender, Alexandra Rouillard, Egill Erlendsson, Esther Ruth Guðmundsdóttir, Ívar Örn Benediktsson, Wesley R Farnsworth, Skafti Brynjólfsson, Guðrún Gísladóttir, Sigrún Dögg Eddudóttir, and Anders Schomacker

Understanding patterns of colonisation is important for explaining both the distribution of single species and anticipating how ecosystems may respond to global warming. Insular flora may be especially vulnerable because oceans represent severe dispersal barriers. Here we analyse two lake sediment cores from Iceland for ancient sedimentary DNA to infer patterns of colonisation and Holocene vegetation development. Our cores from lakes Torfdalsvatn and Nykurvatn span the last c. 12,000 cal. yr BP and c. 8600 cal. yr BP, respectively. With near-centennial resolution, we identified a total of 191 plant taxa, with 152 taxa identified in the sedimentary record of Torfdalsvatn and 172 plant taxa in the sedimentary record of Nykurvatn. The terrestrial vegetation at Torfdalsvatn was first dominated by bryophytes, arctic herbs such as Saxifraga spp. and grasses. Around 10,100 cal. yr BP, a massive immigration of new taxa was observed, and shrubs and dwarf shrubs became common whereas aquatic macrophytes became dominant. At Nykurvatn, all dominant taxa occurred already in the earliest samples; shrubs and dwarf shrubs were more abundant at this site than at Torfdalsvatn. There was an overall steep increase both in the local and regional species pool until 8000 cal. yr BP, by which time ¾ of all taxa identified had arrived. In the period 4500-1000 cal. yr BP, a few new taxa of bryophytes, graminoids and forbs are identified. The last millennium, after human settlement of the island (Landnám), is characterised by a sudden disappearance of Juniperus communis, but also reappearance of some high arctic forbs and dwarf shrubs. Notable immigration during the Holocene coincides with periods of dense sea-ice cover, and we hypothesise that this may have acted as a dispersal vector. Thus, although ongoing climate change might provide a suitable habitat in Iceland for a large range of species only found in the neighbouring regions today, the reduction of sea ice may in fact limit the natural colonisation of new plant species.

How to cite: Alsos, I., Lammers, Y., Kjellman, S. E., Merkel, M. K. F., Bender, E. M., Rouillard, A., Erlendsson, E., Guðmundsdóttir, E. R., Benediktsson, Í. Ö., Farnsworth, W. R., Brynjólfsson, S., Gísladóttir, G., Eddudóttir, S. D., and Schomacker, A.: Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until Landnám, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14474, https://doi.org/10.5194/egusphere-egu21-14474, 2021.

EGU21-14114 | vPICO presentations | BG2.6

Detection of a marine to terrestrial transition in lake sediment from Baffin Island, Arctic Canada, using sedimentary DNA

Matthew Power, Sarah Crump, Gifford Miller, Michael Bunce, and Morten Allentoft

The recent development and refinement of the molecular toolkit to detect ancient DNA in sediment samples (sedaDNA) has allowed the high-resolution reconstruction of ancient ecological communities dating back thousands of years. Specifically, DNA from lake sediment has been used to derive continuous records of ecological community changes through variable paleoenvironmental conditions. These paleoecological reconstructions can be an important tool for understanding how ecosystems may respond to current and future warming, but reliable methods for taxonomic detection are needed in order make optimal use of these bioarchives. In this study, metabarcoding assays targeting mammal, bird, and marine fauna have been carried out across a sediment core collected from Lake Qaupat, Baffin Island, Arctic Canada. While Lake Qaupat is currently ~30 m above sea level, it is located below the local marine limit related to isostatic adjustment after deglaciation. Consequently, initial sediment accumulation is in a marine environment, Combined results from the DNA assays indicate a transitional period over which marine-based fauna are systematically replaced by more terrestrial-based fauna. This transition occurs at a predicted age of 7.4 ± 0.2 ka. This research builds on previous studies to develop Baffin Island paleorecords in an effort to inform future changes to the Arctic system in the context of a rapidly warming world. Ultimately these data will be useful in better informing climate models and how taxa may move, adapt or be extirpated from arctic regions[GHM1] [SC2] .[SC3] 

How to cite: Power, M., Crump, S., Miller, G., Bunce, M., and Allentoft, M.: Detection of a marine to terrestrial transition in lake sediment from Baffin Island, Arctic Canada, using sedimentary DNA, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14114, https://doi.org/10.5194/egusphere-egu21-14114, 2021.

EGU21-16451 | vPICO presentations | BG2.6

Late Quaternary vegetation dynamics in interior Alaska revealed by sedimentary ancient DNA (sedaDNA) from lake sediment and unfrozen (loessic) archaeological sediments

Mary Edwards, Charlotte Clarke, Nancy Bigelow, Peter Heintzman, Ben Potter, Inger Alsos, and Joshua Reuther

About 14,000 years ago, on the cusp of major environmental changes that affected the distribution of animals, vegetation cover and hydrology, humans entered interior Alaska for the first time.  A sedimentary ancient DNA (sedaDNA) record from a lake in the Tanana valley, which lies close to several of the oldest dated archaeological sites, documents plant community changes over the past ca. 15,000 years and makes an important contribution towards resolving late MIS-2 floristic composition of the northern, ice-free region of northwest North America.  Macroscopic charcoal and sediment properties provide further information on changes in climate and fire regimes.

For sedaDNA analysis, we amplified a short locus of the plant chloroplast genome in all samples, and a total of 167 vascular plant and 14 bryophyte taxa were detected in the lake sedaDNA record. A rich herbaceous flora, including taxa typical of open tundra habitats, dominates the record until ca. 14,000 cal yr BP; diverse grass taxa are present, and Salicaceae is recorded in every sample in this period. This flora continued (though with compositional changes) as a dominant element in the following period, which was also characterized by the presence of shrub and/or tree birch, and which ended with the establishment of coniferous forest ca. 10,000-11,000 yr BP. This last change is also reflected in sediment organic content, sedimentation rate, and the addition of a diverse range of shrubs, sub-shrubs, boreal forbs, spore-plants and aquatic macrophytes, all reflecting profound alterations in both terrestrial and lacustrine plant communities. Macro-charcoal is present in all floristic zones, with higher concentrations afterca. 14,000 yr BP, indicating that both deciduous and evergreen woody communities burned.  

This lake record provides a picture of key landscape-scale changes experienced by early human populations.SedaDNA results obtained from contemporaneous cultural and non-cultural layers at nearby archaeological sites in the Tanana Valley can provide further complementary information on natural resource use by early human communities in response to a changing environment. The loessal sediments at these archaeological sites present challenges to sedaDNA studies, including anthropogenic disturbance of the matrix, rootlet penetration, and unfrozen conditions for around four months of the year that may accelerate bacterial degradation and fragmentation of DNA. We present here some preliminary results from these archaeological localities.

How to cite: Edwards, M., Clarke, C., Bigelow, N., Heintzman, P., Potter, B., Alsos, I., and Reuther, J.: Late Quaternary vegetation dynamics in interior Alaska revealed by sedimentary ancient DNA (sedaDNA) from lake sediment and unfrozen (loessic) archaeological sediments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16451, https://doi.org/10.5194/egusphere-egu21-16451, 2021.

EGU21-14881 | vPICO presentations | BG2.6

Terrestrial-aquatic ecosystem links on the Tibetan Plateau inferred from sedaDNA shotgun sequencing

Sisi Liu, Kathleen R. Stoof-Leichsenring, Luise Schulte, Heike H. Zimmermann, Steffen Mischke, and Ulrike Herzschuh

Climate change and associated species interactions are responsible for many vital mechanisms governing the dynamics of ecological communities. However, the long-term contribution of environmental conditions and species connections to community assembly remain mostly unknown. Here, we present changes of terrestrial and freshwater communities based on metagenomic shotgun data retrieved from lacustrine sediments of an alpine freshwater lake on the south-eastern Tibetan Plateau (Hengduan Mountains) covering the past 15,100 thousand years (ka). Terrestrial assemblages between 15.1-14 ka are explained by the harsh environment and facilitative interactions due to diverse cushion plants, while the abundant ice-age algae (Nannochloropsis and N. limnnetica) indicate dominance of glacial meltwaters. A sharp decrease in alpine herbs (e.g Asteraceae, Carex and Poaceae) corresponded to competitive interactions with the colonization of woody plants (Salicaceae, Salix, Rhododendron and R. delavayi) since 14 ka, leading to a decline of large herbivores (Bovidae and Bos mutus) that predominated. Meanwhile, the disappearance of ice-age algae and the expansion of submerged plants (e.g., Potamogeton, P. perfoliatus, Myriophyllum, and M. spicatum) are consistent with an increase in temperature and a plentiful supply of nutrients due to weathering and soil erosion. The loss of submerged plants during the late Holocene (~3.6 ka) is probably related to environmental deterioration; however, it could also be related to the Cyanobacteria boom. Our study highlights that shotgun sequencing of lake sediments is an important tool for exploring ecological processes of communities in the past.

How to cite: Liu, S., R. Stoof-Leichsenring, K., Schulte, L., H. Zimmermann, H., Mischke, S., and Herzschuh, U.: Terrestrial-aquatic ecosystem links on the Tibetan Plateau inferred from sedaDNA shotgun sequencing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14881, https://doi.org/10.5194/egusphere-egu21-14881, 2021.

EGU21-13710 | vPICO presentations | BG2.6

Vegetation composition in Sanjiangyuan region compared with Hengduan Mountains (eastern Tibetan Plateau) since the Last Glacial Maximum revealed by plant metabarcoding of sedimentary ancient DNA

Wei Shen, Sisi Liu, Kathleen R. Stoof-Leichsenring, Jeremy Courtin, Steffen Mischke, and Ulrike Herzschuh

The eastern Tibetan Plateau, particularly the Hengduan Mountains and Sanjiangyuan region, is a biodiversity hotspot also known for its sensitivity to climate change. How these vegetation communities assembled since the Last Glacial Maximum is still unclear. Here we present new results from plant metabarcoding of sediments from Lake Ximencuo (Nianbaoyeze Mountains, Sanjiangyuan region) covering the last 18 ka and compare them with records from Lake Naleng (Hengduan Mountains).  We investigate temporal changes of within-site and between-site alpha and beta diversities. Both sites show the highest richness between 14 and 10 ka when alpine meadows covered the areas while richness was rather low in forested periods during the early Holocene. Ordination results support that the vegetation composition was relatively low between-site beta-diversities indicate that the vegetation composition was relatively similar in the two study areas before the Holocene, particularly during the early late-glacial when alpine steppes dominated. The maximal between-site beta-diversity occurred between 10 and 8 ka when environmental filtering was most relevant, as suggested by the dominating turnover component. The nestedness component of beta-diversity reached a maximum during the middle Holocene indicating that between-site differences during this period possibly originated from e.g., dispersal limitation.

How to cite: Shen, W., Liu, S., Stoof-Leichsenring, K. R., Courtin, J., Mischke, S., and Herzschuh, U.: Vegetation composition in Sanjiangyuan region compared with Hengduan Mountains (eastern Tibetan Plateau) since the Last Glacial Maximum revealed by plant metabarcoding of sedimentary ancient DNA, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13710, https://doi.org/10.5194/egusphere-egu21-13710, 2021.

EGU21-4697 | vPICO presentations | BG2.6

Unifying the sedaDNA scientific community

Eric Capo and the sedaDNA scientific community

Since the seminal paper in 1998 (Coolen and Overmann), sedimentary ancient DNA (sedaDNA) has become a powerful tool in paleoecology to reconstruct past changes in terrestrial and aquatic biodiversity. Still, sedaDNA is an emerging tool and there is a need for calibrations and validations to ensure the reliability of sedaDNA as a proxy to reconstruct past biota. One way to pursue this goal is by unifying the sedaDNA scientific community. Here, we present a few initiatives taken over the last years to transmit information, augment our knowledge about best practices and method standardisation related to sedaDNA analysis and strengthen collaborations between research groups. Also, we discuss tools and ideas that could be used to increase the visibility of sedaDNA research by the scientific community. Finally, we would like to use this opportunity to discuss with the audience about new strategies to unify experts from different research fields - including paleoecology, paleolimnology, paleoceanography, molecular ecology, aquatic ecology, terrestrial ecology, microbial ecology - around the use of sedaDNA.

How to cite: Capo, E. and the sedaDNA scientific community: Unifying the sedaDNA scientific community, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4697, https://doi.org/10.5194/egusphere-egu21-4697, 2021.

EGU21-8030 | vPICO presentations | BG2.6

Sea ice protists in arctic marine sedaDNA records: origins, diversity, and vertical export of DNA from the sea surface to the seafloor 

Sara Harðardóttir, Connie Lovejoy, Marit-Solveig Seidenkrantz, and Sofia Ribeiro

Arctic sea ice is declining at an unprecedented pace as the Arctic Ocean heads towards ice-free summers within the next few decades. Because of the role of sea ice in the Earth System such as ocean circulation and ecosystem functioning, reconstructing its past variability is of great importance providing insight into past climate patterns and future climate scenarios. Today, much of our knowledge of past sea-ice variability derives from a relatively few microfossil and biogeochemical tracers, which have limitations, such as preservation biases and low taxonomic resolution. Marine sedimentary ancient DNA (marine sedaDNA) has the potential to capture more of the arctic marine biodiversity compared to other approaches. However, little is known about how well past communities are represented in marine sedaDNA. The transport and fate of DNA derived from sea-ice associated organisms, from surface waters to the seafloor and its eventual incorporation into marine sediment records is poorly understood.  Here, we present results from a study applying a combination of methods to examine modern and ancient DNA to material collected along the Northeast Greenland Shelf. We characterized the vertical export of genetic material by amplicon sequencing the hyper-variable V4 region of the 18S rDNA at three water depths, in surface sediments, and in a dated sediment core.  The amplicon sequencing approach, as currently applied, includes some limitations for quantitative reconstructions of past changes such as primer competition, PCR errors, and variation of gene copy numbers across different taxa. For these reasons we quantified amplicons from a single species, the circum-polar sea ice dinoflagellate Polarella glacialis in the marine sedaDNA, using digital droplet PCR. The results will increase our understanding on the taphonomy of DNA in sea ice environments, how sedimentation differs among taxonomic groups, and provide indications to potentially useful marine sedaDNA-based proxies for climate and environmental reconstructions.

How to cite: Harðardóttir, S., Lovejoy, C., Seidenkrantz, M.-S., and Ribeiro, S.: Sea ice protists in arctic marine sedaDNA records: origins, diversity, and vertical export of DNA from the sea surface to the seafloor , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8030, https://doi.org/10.5194/egusphere-egu21-8030, 2021.

EGU21-3587 | vPICO presentations | BG2.6

The Last Interglacial in the Labrador Sea: a sedimentary ancient DNA investigation 

Danielle Grant, Kristine Steinsland, Sigrid Mugu, Katrine Sandnes Skaar, Umer Z. Ijaz, Ulysses Ninneman, Jessica Louise Ray, and Stijn De Schepper

The Last Interglacial (LIG, ~128–116ka) was characterized by a warmer climate, increased sea level, and a reduced Greenland ice sheet compared to today. Climate projections suggest our future climate may resemble LIG conditions if anthropogenic climate change progresses unabated. Previous studies have identified key shifts in the Labrador Sea oceanography and climate before, during, and after the LIG, making this time interval an exciting target for exploring high-latitude marine ecological dynamics. In recent years, the application of sedimentary ancient DNA (sedaDNA) has provided new glimpses into past ocean and climate conditions. Here, we have explored sedaDNA alongside other, traditional, paleoceanography proxies, to better understand the changing Labrador Sea biome across climate transitions and in a globally warmer world. We have generated a sedaDNA record from a giant piston core at the Eirik Drift (Labrador Sea). Our sedaDNA record, dating back to ~135 ka, was sampled at 4 cm depth intervals and covers the glacial-interglacial transition, as well as the LIG. SedaDNA was purified using a commercial spin column kit and analysed using a metabarcoding approach targeting the V7 hypervariable region of the eukaryote small subunit RNA. Illumina MiSeq analysis of metabarcoding libraries revealed PCR-amplifiable eukaryotic DNA throughout the investigated downcore section. Shifts in relative taxon abundance and alpha- and beta-diversity metrics paralleled shifts in foraminifer isotope records (δ18Ο), palynological assemblages, and biomarkers suggesting that the molecular genetic signal preserved in downcore sediments shows promise for identifying ecological shifts across the LIG. We are currently investigating the potential utility of specific taxa identified in the sedaDNA record to act as indicators of the glacial-interglacial transition. This study strengthens the growing potential of marine sedaDNA as a supplemental proxy for climate reconstructions in the Late Quaternary.

How to cite: Grant, D., Steinsland, K., Mugu, S., Sandnes Skaar, K., Ijaz, U. Z., Ninneman, U., Louise Ray, J., and De Schepper, S.: The Last Interglacial in the Labrador Sea: a sedimentary ancient DNA investigation , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3587, https://doi.org/10.5194/egusphere-egu21-3587, 2021.

EGU21-14809 | vPICO presentations | BG2.6

Using sedaDNA to reconstruct planktonic communities across 385’000 years old marine sedimentary core from a tropical sea.

Ines Barrenechea Angeles, Luc Beaufort, Daniel Ariztegui, and Jan Pawlowski

Sedimentary ancient DNA (sedaDNA) is becoming a paleo-proxy of choice for many marine environments. However, there are few studies from tropical sites and even fewer from tropical marine sediments exposed to factors damaging the DNA such as elevated sea surface water temperature or UV radiation. Here, we report successful extraction of DNA from a marine sedimentary core retrieved from the Bismarck Sea, off New Papua Guinea, where the mean annual temperature is about 29°C. The core MD05-2920 covers the last 385 000 years. We analyzed samples from 20 layers, where the isotopic measures of δ18O isotopic composition of benthic foraminifera show significant palaeoceanographic changes from glacial to interglacial periods. We apply a metabarcoding approach using specific 18S primers for planktonic foraminifera, diatoms, and radiolarians. Even if the amount of DNA declines throughout the core, the patterns of successional changes in species communities of these three taxonomic groups are well archived. Our study shows that it is possible to reconstruct the planktonic community even from very old sedaDNA samples from a tropical marine sedimentary core.

How to cite: Barrenechea Angeles, I., Beaufort, L., Ariztegui, D., and Pawlowski, J.: Using sedaDNA to reconstruct planktonic communities across 385’000 years old marine sedimentary core from a tropical sea., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14809, https://doi.org/10.5194/egusphere-egu21-14809, 2021.

EGU21-4003 | vPICO presentations | BG2.6

A 1 Ma record of climate-induced vegetation changes using sed aDNA and pollen in a biodiversity hotspot: Lake Towuti, Sulawesi, Indonesia

Akhtar-E Ekram, Rebecca Hamilton, Matthew Campbell, Chloe Plett, Sureyya Kose, James Russell, Janelle Stevenson, and Marco Coolen

Several studies have shown that ancient plant-derived DNA can be extracted and sequenced from lake sediments and complement the analysis of fossil pollen in reconstructing past vegetation responses to climate variability and anthropogenic perturbations. The majority of such studies have been performed on Holocene lakes located in cooler higher latitude regions whereas similar studies from tropical lakes are limited. Here, we report a ~1 Ma record of vegetation changes in tropical Lake Towuti (Sulawesi, Indonesia) through parallel pollen and sedimentary ancient DNA (sed aDNA) analysis. Lake Towuti is located in a vegetation biodiversity hotspot and in the centre of the Indo Pacific Warm Pool (IPWP), which comprises the world’s warmest oceanic waters and influences globally important climate systems. In the context of global change, the surface area of the IPWP is rapidly expanding. Lake Towuti is of particular interest since it provides a unique opportunity to obtain a long-term record of IPWP-controlled climate-ecosystem interactions and ecosystem resilience. Stratigraphic analysis of fossil pollen vs. sequencing of preserved chloroplast DNA (cpDNA) signatures (i.e., trnL-P6) both revealed that Lake Towuti experienced significant vegetation changes during the transition from a landscape initially characterized by active river channels, shallow lakes and swamps into a permanent lake ~1 Ma ago. Both proxies marked a predominance of trees or shrubs during most of Lake Towuti’s history, but the trnL-P6 barcoding approach revealed a much higher relative abundance of remote montane conifers, which likely have produced large amounts of chloroplast-rich airborne pollen that were subsequently buried in the sedimentary record. The pollen record showed a higher relative abundance of evergreen tropical forest vegetation, whereas the trnL-P6 record revealed a higher relative abundance of predominantly wetland herbs that must have entered the lake from the local catchment in the form of chloroplast-rich litter. Furthermore, the sedimentary record was rich in presumably wind-derived chloroplast-lacking fern spores, while fern trnL-P6 was only sporadically detected. Only through trnL-P6 barcoding, fern-derived biomass in the sedimentary record could be identified as Schizaeaceae, which is a primitive tropical grass-like fern family often associated with swampy or moist soils. Unlike pollen, trnL-P6 could identify grasses at clade and subfamily levels and confirmed that the majority of grasses in the area represented wet climate C3 grasses or those that can switch between C3 and C4 carbon fixation pathways, whereas grasses that can only perform C4 carbon fixation, indicative of dry climate conditions, were not detected. At least for sediments deposited prior to the Last Glacial Maximum, neither pollen nor trnL-P6 revealed significant vegetation changes between alternating layers of lacustrine green and red sideritic clays thought to have been deposited during orbitally controlled wetter vs. drier periods. These preliminary results suggest that vegetation in this tropical biodiversity hotspot may be relatively resilient to long-term variations in IPWP hydrology.

How to cite: Ekram, A.-E., Hamilton, R., Campbell, M., Plett, C., Kose, S., Russell, J., Stevenson, J., and Coolen, M.: A 1 Ma record of climate-induced vegetation changes using sed aDNA and pollen in a biodiversity hotspot: Lake Towuti, Sulawesi, Indonesia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4003, https://doi.org/10.5194/egusphere-egu21-4003, 2021.

EGU21-1700 | vPICO presentations | BG2.6

Biodiversity and DNA degradation patterns recorded in a 2200-year-long sequence of sedimentary ancient DNA from the afrotropical Bwindi Impenetrable Forest, Uganda

René Dommain, Morgan Andama, Molly M. McDonough, Natalia A. Prado, Tobias Goldhammer, Richard Potts, Jesús E. Maldonado, John Bosco Nkurunungi, and Michael G. Campana

Most of the Earth’s biodiversity is concentrated in the tropics. While the ultimate causes of this geographic pattern remain to be established, ongoing anthropogenic impacts in the tropical belt lead to rapid losses of species diversity. Ancient DNA approaches may help in deciphering temporal patterns in the diversification of tropical biota and could potentially provide historical baseline data on the diversity and distribution of species in anthropogenically modified landscapes. However, studies of sedimentary ancient DNA (sedaDNA) are thus far extremely rare in tropical settings and consequently its value as a conservation tool for tropical ecosystems remains to be tested systematically. To address this issue we present meta-genomic records of shot-gun sequenced sedimentary ancient DNA (sedaDNA) from several sediment cores from the equatorial Bwindi-Impenetrable Forest in Uganda. Because Bwindi is one the most diverse rainforests in Africa and its biota is well documented (including endangered species such Mountain Gorilla and Chimpanzee) it is well suited for a baseline study. We describe the taxonomic composition of sedaDNA from Bwindi for the past 2200 years at an average resolution of 50 years – one of the first comprehensive sedaDNA records of plant and animal taxa from a tropical rainforest. We specifically address the following questions: 1) How precisely can the taxonomic level of shotgun-sequenced tropical sediments be resolved at present? 2) What is the effect of temperature, acidity, nutrient availability, elemental and lithological sediment composition, and burial age on the degradation of DNA? Taxonomic assignments are based on three metagenomic classifiers and four reference databases and their reliability tested against local pollen and modern animal occurrence data. We find that 92.3% of our metagenomic data is taxonomically not identifiable due to the substantial underrepresentation of tropical taxa in genomic reference databases. Yet at ordinal level we reconstruct typical afrotropical assemblages, which do not decline in diversity over time. Our comprehensive set of ecological and sedimentological parameters including sediment age, surface water chemistry, pH, soil temperature, sediment density, sediment water and organic matter content, XRF elemental chemistry, nutrient concentrations, and magnetic susceptibility reveals that DNA degradation cannot be explained by any sedimentary parameter alone, is at Bwindi independent of sediment type, and most likely primarily driven by burial age, suggesting that DNA taphonomic models need to be site-specific in tropical environments. The viability of sedaDNA as a conservation-biology tool requires comprehensive genomic surveys of tropical biota to drastically improve the taxonomic representativeness of DNA reference databases.

How to cite: Dommain, R., Andama, M., McDonough, M. M., Prado, N. A., Goldhammer, T., Potts, R., Maldonado, J. E., Nkurunungi, J. B., and Campana, M. G.: Biodiversity and DNA degradation patterns recorded in a 2200-year-long sequence of sedimentary ancient DNA from the afrotropical Bwindi Impenetrable Forest, Uganda, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1700, https://doi.org/10.5194/egusphere-egu21-1700, 2021.

EGU21-14979 | vPICO presentations | BG2.6

Holocene human-environment interactions and their link to erosion in the Eastern Alps, inferred from sedaDNA

Marina A. Morlock, Saúl Rodriguez-Martinez, Doreen Yu-Tuan Huang, Nicole Glaus, Hendrik Vogel, Flavio S. Anselmetti, and Jonatan Klaminder

Mountain ecosystems are particularly sensitive to soil erosion and it is critical to better understand how climate and human activities can be linked to erosion in the alpine environment. To explore this link across time, we combine sedimentary ancient DNA (sedaDNA) analyses with erosion proxies to assess the timing and type of animal husbandry in the Eastern Alps and its impact on hill-slope processes and vegetation. With its clear and continuous erosion history, the sediment record contained in Lake Grosssee, Switzerland, is ideally suited to resolve key stages in ecosystem change and anthropogenic land use since the last glaciation. Initial results show that sedaDNA can successfully detect key species in today’s ecosystem and suggest significant changes in mammal and plant diversity across the Holocene. DNA of domestic animals such as cattle and sheep has been the dominant in the past 4,000 years BP, which coincides with frequent and intensive erosion events in this period. Our record promises a detailed history of anthropogenic activities and terrestrial ecosystem change across the Holocene, which will help to determine how erosion, land use, and climate shape alpine ecosystems through time.

How to cite: Morlock, M. A., Rodriguez-Martinez, S., Huang, D. Y.-T., Glaus, N., Vogel, H., Anselmetti, F. S., and Klaminder, J.: Holocene human-environment interactions and their link to erosion in the Eastern Alps, inferred from sedaDNA, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14979, https://doi.org/10.5194/egusphere-egu21-14979, 2021.

EGU21-6072 | vPICO presentations | BG2.6

Mountain agro-ecosystems long-term trajectories in the North Western Alps

Charline Giguet-Covex, Manon Bajard, Wentao Chen, Kevin James Walsh, Pierre-Jérôme Rey, Erwan Messager, David Etienne, Pierre Sabatier, Francesco Gentile Ficetola, Ludovic Gielly, Claire Blanchet, Christophe Guffond, Fabien Arnaud, and Jérôme Poulenard

Past trajectories of alpine agro-ecosystems are legacies that we should consider in the context of current global changes. By integrating archaeology, history and multi-proxy palaeoenvironmental records including lake sediment DNA, we reconstructed the precise nature of agro-pastoral activities and their interactions with the landscape evolution (erosion and vegetation) in the Northwestern Alps, across an altitudinal gradient ranging from 880 and 2440 m a.s.l. We demonstrate that the origins of current vegetation cover in the “Alpages” date to the Mid to Late Bronze Age. However, at the lower limit of the subalpine belt and below this zone, the first significant plant cover changes date to a later period, from the Early to High Middle Ages. From the Bronze Age, we see also anthropogenic disturbances of the natural erosion cycle, especially on some sites in the subalpine belt. This erosion became generalized across all sites during the Roman period. Then, decreasing anthropogenic impacts on the erosion are recorded everywhere, which suggests the beginning of efficient soil management strategies, with protection of the soil resource. This important tipping point arose from the High to Late Middle Ages, when activities and practices are changing.

How to cite: Giguet-Covex, C., Bajard, M., Chen, W., Walsh, K. J., Rey, P.-J., Messager, E., Etienne, D., Sabatier, P., Ficetola, F. G., Gielly, L., Blanchet, C., Guffond, C., Arnaud, F., and Poulenard, J.: Mountain agro-ecosystems long-term trajectories in the North Western Alps, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6072, https://doi.org/10.5194/egusphere-egu21-6072, 2021.

EGU21-15285 | vPICO presentations | BG2.6

Exceptionally rich sedaDNA record from a subalpine lake in the Central Alps reveals plant responses to climate change and human land use

Sandra Garces Pastor, Youri Lammers, Peter D. Heintzman, Antony Gavin Brown, Willy Tinner, Christoph Schwörer, Oliver Heiri, Fabian Rey, Martina Heer, Astrid Rutzer, Sébastien Lavergne, Eric Coissac, Pierre Taberlet, Jean-Paul Theurillat, and Inger G. Alsos

The increase in plant species richness in the Alps over the last century has been described as a direct response to climate warming. Alpine ecosystems are expected to have an upward displacement of vegetation, resulting in shifts of species ranges, high replacement rates, and species loss. To apply proper management measures, it is necessary to understand how drivers of change affect species and ecosystem tipping points. Palaeoecological studies allow us to understand how species responded to similar situations in the past. However, such studies are often challenged by proxy preservation and taxonomic resolution. Metabarcoding approaches based on sedimentary ancient DNA (sedaDNA) can overcome these caveats. 

Here we use plant sedaDNA and the new PhyloAlps taxonomic reference database, which covers 4500 plant taxa from the Alps, to explore alpine floral diversity of Sulseewlii, a subalpine lake in the Central Alps (Switzerland). We present a 12,000 year record of vegetational composition and structural changes in a subalpine ecosystem. To disentangle the relationship between climate and vegetation, we used a novel local temperature reconstruction inferred from chironomids of the same lake. We also used coprophilous fungal spores and charcoal, together with pastoral and arable indicators, to infer human pressure. 

With 377 identified taxa, including 140 at species level, Sulseewlii has yielded the richest dataset of plant sedaDNA to date and emphasizes the Alps as an important biodiversity hotspot in Europe. Out of the identified taxa, 91 are indicators that allowed us to reconstruct the vegetation stages and altitudinal shifts of the main vegetation groups. Total taxonomic richness increases from the onset of the Holocene and has a similar pattern to subalpine-montane DNA taxa, with three marked drops at 8200, 3200, and ~500 cal yr BP. Plant sedaDNA registered a marked transition from alpine to subalpine communities at the onset of the Holocene. The highest proportions of montane taxa occurred during the Holocene climatic optimum (9,000-6,000 cal yr BP). Finally, a shift back to subalpine-montane species with some lowland influence occurs as we approach the present.

How to cite: Garces Pastor, S., Lammers, Y., Heintzman, P. D., Gavin Brown, A., Tinner, W., Schwörer, C., Heiri, O., Rey, F., Heer, M., Rutzer, A., Lavergne, S., Coissac, E., Taberlet, P., Theurillat, J.-P., and G. Alsos, I.: Exceptionally rich sedaDNA record from a subalpine lake in the Central Alps reveals plant responses to climate change and human land use, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15285, https://doi.org/10.5194/egusphere-egu21-15285, 2021.

EGU21-372 | vPICO presentations | BG2.6

Ecological turnover and megafaunal ghost ranges during the Pleistocene-Holocene transition in central Yukon, Canada as revealed by palaeoenvironmental DNA

Tyler J. Murchie, Alistair J. Monteath, George S. Long, Emil Karpsinski, Scott Cocker, Grant Zazula, Ross MacPhee, Duane Froese, and Hendrik Poinar

The multitude of factors alleged to have contributed to the late Quaternary mass extinction of some two-thirds of Earth’s megafauna is complicated by the coarse record of buried macro-fossils. In response, micro-methods such as ancient DNA have been increasingly able to augment discontinuous palaeontological records to investigate the relative timings of vegetation turnover versus megafaunal extirpations—all in the absence of biological tissues. Here, we present sedimentary ancient DNA data retrieved using the PalaeoChip Arctic-1.0 bait-set diachronically identifying fauna and flora from permafrost cores recovered from the Klondike region of central Yukon, Canada dating between 30,000–6000 calendar years BP. We observe a substantial turnover in ecosystem composition between 13,000–10,000 BP with the rise of woody shrubs and the disappearance of mammoth-steppe vegetation. We also identify a lingering signal of Equus sp. (North American horse) and Mammuthus primigenius (woolly mammoth) from multiple samples thousands of years after their last dated macro-fossils, possibly as late as the mid-Holocene.

How to cite: Murchie, T. J., Monteath, A. J., Long, G. S., Karpsinski, E., Cocker, S., Zazula, G., MacPhee, R., Froese, D., and Poinar, H.: Ecological turnover and megafaunal ghost ranges during the Pleistocene-Holocene transition in central Yukon, Canada as revealed by palaeoenvironmental DNA, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-372, https://doi.org/10.5194/egusphere-egu21-372, 2021.

EGU21-15432 | vPICO presentations | BG2.6

Holocene reconstruction of plant communities and impacts of human activity from sedaDNA in the Austrian Alps.

Scarlett Zetter, Sandra Garcés Pastor, Youri Lammers, Andreas Tribsch, Antony G. Brown, Eric Coissac, Sébastian Lavergne, Peter D. Heintzman, and Inger G. Alsos

The Alps contain highly biodiverse ecosystems including a large number endemic flora. As a result of climate change and anthropogenic activities, such ecosystems are at risk from upward vegetation displacement and species loss. Extensive archaeological research in the Eastern Alps has documented human settlement from ~5500 years ago driven by salt and copper mining; which has caused significant impact on the ecosystems through mining, deforestation, and pastoral farming. To elucidate the effects of climate change and anthropogenic activities on plant biodiversity, multi-proxy reconstructions have been carried out throughout the Western Alps . Despite this research, the palaeoecological history of the Eastern Alps is relatively understudied. Consequently, we are limited in our understanding of how climate change and human impact have affected past biodiversity and the formation of the contemporary vegetation in this region. Here, we focus on the Austrian sub-alpine lake, Großer Winterleitensee located at the Easternmost margin of the Alps; only locally glaciated during the Pleistocene. We applied sedimentary ancient DNA (sedaDNA) metabarcoding to reconstruct Holocene plant community dynamics within the lake catchment. These data, in conjunction with local temperature reconstructions, sediment elemental composition, magnetic susceptibility, and loss-on-ignition analyses, allowed us to identify key intervals of plant diversity change. Two such intervals begin at samples dated ~5500 cal. yr BP and ~2200 cal. yr BP, coinciding with Neolithic and Iron Age settlement phases in the area. Palaeoecological reconstructions of plant biodiversity and their responses to climate change and anthropogenic pressures may be able to provide essential information for future conservation purposes.

 
 
 

How to cite: Zetter, S., Garcés Pastor, S., Lammers, Y., Tribsch, A., Brown, A. G., Coissac, E., Lavergne, S., Heintzman, P. D., and Alsos, I. G.: Holocene reconstruction of plant communities and impacts of human activity from sedaDNA in the Austrian Alps., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15432, https://doi.org/10.5194/egusphere-egu21-15432, 2021.

EGU21-16231 | vPICO presentations | BG2.6

Contrasting patterns of vegetation compositing and species diversity over 22 000 years in two adjacent artic-alpine catchments

Lasse Topstad, Charlotte Clarke, Jan Mangerud, John-Inge Svendsen, Haflidi Haflidason, and Inger Greve Alsos

Throughout the late Quaternary, the vegetation of Polar Urals (Russia) endured dramatic changes in climate, but still seems to have maintained a high, yet compositionally dynamic species richness. A recent study of Lake Bolshoe Schuchye (187 m a.s.l., Clarke et al. 2019 Sci. Rep.) suggests that this region was an important refugium for arctic-alpine plant taxa during the Early Holocene forest expansion. Whether the survival of taxa and the turnover of species and functional groups was consistent throughout the region or dependent on local conditions remains unknown. Here, we present reconstructed plant assemblage dynamics spanning the past 22,000 years based on metabarcoding of sedimentary ancient DNA (sedaDNA) cored from Maloe Schuchye (287 m a.s.l.). The record is compared to the neighboring lake Bolshoe Schuchye in terms of how taxonomic richness and composition of functional groups developed through time. Throughout the study period, several large-scale vegetation changes occur in both cores, however, identified at slightly delayed time intervals for the higher altitude site Maloe Schuchye, based on the CONISS clustering. The total richness was higher in Maloe Schuchye (274 taxa) compared to Bolshoe Schuchye (191 taxa), and the average richness was higher in Maloe Schuchye throughout the period. The largest difference in taxonomic richness between the two lakes was during the Last Glacial Maximum (LGM) and Late Glacial periods, when Maloe Schuchye had considerable higher richness of forbs and graminoids than Bolshoe Schuchye. Despite these contrasting diversity patterns, the time of arrival of taxa highly align in the two records. Thermophilic plant taxa occur slightly earlier in the lower altitude Bolshoe Schuchye lake record, as expected. Further, the survival and persistence of arctic-alpine taxa is similar in the two catchments, confirming the importance of this region for long-term survival or arctic-alpine species.

How to cite: Topstad, L., Clarke, C., Mangerud, J., Svendsen, J.-I., Haflidason, H., and Greve Alsos, I.: Contrasting patterns of vegetation compositing and species diversity over 22 000 years in two adjacent artic-alpine catchments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16231, https://doi.org/10.5194/egusphere-egu21-16231, 2021.

EGU21-15265 | vPICO presentations | BG2.6

Metarbarcoding reveals distribution patterns of DNA in surface sediments of a large lake 

Yi Wang, Lisa Gutbrod, Myriam Schmid, and Laura Epp

Lake sedimentary ancient DNA has become a recognized source of information on past biodiversity change, but our understanding of its distribution and taphonomy is still limited. Here we collected 40 surface sediment samples from Lake Constance in southern Germany and characterized sedimentary DNA (sedDNA) heterogeneity through four metabarcoding PCRs on general eukaryotes, vascular plants, cyanobacteria and copepods.  We observed the variability of overall sedDNA being strongly correlated with sediment sample geographical locations, although this pattern varies within taxonomic groups. Specifically, geographical coordination and water depth explain 10.7% variability of terrestrial vascular plant sedDNA distribution, but the distribution of copepods is patchy and not correlated with sampling locations. Out study indicates that sedDNA is not distributed uniformly across the lake but rather linked to the movement of lake water and the local presence of the organisms.

How to cite: Wang, Y., Gutbrod, L., Schmid, M., and Epp, L.: Metarbarcoding reveals distribution patterns of DNA in surface sediments of a large lake , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15265, https://doi.org/10.5194/egusphere-egu21-15265, 2021.

EGU21-14835 | vPICO presentations | BG2.6

Metabarcoding of modern sedimentary DNA from the Tibetan Plateau and Siberia as a training dataset for vegetation reconstructions

Weihan Jia, Kathleen Stoof-Leichsenring, Sisi Liu, Kai Li, Sichao Huang, Xingqi Liu, Jian Ni, Xianyong Cao, Luidmila Pestryakova, Steffen Mischke, and Ulrike Herzschuh

Lake sedimentary DNA (sedDNA) is an established tool to trace past changes in vegetation composition and plant diversity. However, little is known about the relationships between sedimentary plant DNA and modern vegetational and environmental conditions. In this study, we investigate i) the relationships between the preservation of sedimentary plant DNA and environmental variables, ii) the modern analogue of ancient plant DNA assemblages archived in lake sediments, and iii) the usability of sedimentary plant DNA for characterization of terrestrial and aquatic plant composition and diversity based on a large dataset of PCR-amplified plant DNA data retrieved from 259 lake surface sediments from the Tibetan Plateau and Siberia. Our results indicate the following: i) Lake-water electrical conductivity and pH are the most important variables for the preservation of plant DNA in lake sediments. We expect the best preservation conditions for sedimentary plant DNA in small deep lakes characterized by high water conductivities (≥100 μS cm-1) and neutral to slightly alkaline pH conditions (7–9). ii) Plant DNA metabarcoding is promising for palaeovegetation reconstruction in high mountain regions, where shifts in vegetation are solely captured by the sedDNA-based analogue matching and fossil pollen generally has poor modern analogues. However, the biases in the representation of some taxa could lead to poor analogue conditions. iii) Plant DNA metabarcoding is a reliable proxy to reflect modern vegetation types and climate characteristics at a sub-continental scale. However, the resolution of the trnL P6 loop marker, the incompleteness of the reference library, and the extent of sedDNA preservation are still the main limitations of this method. iv) Plant DNA metabarcoding is a suitable proxy to recover modern aquatic plant diversity, which is mostly affected by July temperature and lake-water conductivity. Ongoing warming might decrease macrophyte richness in the Tibetan Plateau and Siberia, and ultimately threaten the health of these important freshwater ecosystems. To conclude, sedimentary plant DNA presents a high correlation with modern vegetation and may therefore be an important proxy for reconstruction of past vegetation.

How to cite: Jia, W., Stoof-Leichsenring, K., Liu, S., Li, K., Huang, S., Liu, X., Ni, J., Cao, X., Pestryakova, L., Mischke, S., and Herzschuh, U.: Metabarcoding of modern sedimentary DNA from the Tibetan Plateau and Siberia as a training dataset for vegetation reconstructions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14835, https://doi.org/10.5194/egusphere-egu21-14835, 2021.

EGU21-8589 | vPICO presentations | BG2.6

Reconstructing the long-term dynamic of pigmented communities in freshwater ecosystems using qPCR

Cécilia Barouillet, Julie Rotschi, Jean-Philippe Jenny, Andrea Lami, David Etienne, and Isabelle Domaizon

The use of molecular biology tools in paleolimnological investigations provides promising opportunities to study the long-term dynamic of a broad spectrum of organisms and obtain a more comprehensive overlook at the overall lake biodiversity. In this study, we reconstruct the long-term dynamic of pigmented communities of three peri-alpine lakes (Leman, Annecy and Bourget) using the analysis of traditional paleolimnological proxies (i.e. diatom frustules, pigments) and quantitative PCR (qPCR) analysis of sedimentary DNA (sed-aDNA). We then compare the results with the phytoplankton data from decadal long limnological surveys. The goal being 2-fold: (1) to consolidate and reinforce the quantitative estimates derived from qPCR analysis of sed-aDNA, (2) reconstruct the long-term dynamics and identify the timing of changes of the pigmented communities in these lakes. We will present the preliminary results of this study and discuss the potential of this type of multi-proxy analysis to strengthen the application of molecular tools in paleolimnology.

How to cite: Barouillet, C., Rotschi, J., Jenny, J.-P., Lami, A., Etienne, D., and Domaizon, I.: Reconstructing the long-term dynamic of pigmented communities in freshwater ecosystems using qPCR, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8589, https://doi.org/10.5194/egusphere-egu21-8589, 2021.

EGU21-6277 | vPICO presentations | BG2.6

Past and recent biodiversity profiling in ancient Lake Chalco Mexico by a metagenomics analysis
not presented

Bárbara Moguel, Liseth Pérez, Luis David Alcaraz, Socorro Lozano-García, Luis Herrera-Estrella, Jazmín Blaz, Margarita Caballero, María Ávila-Arcos, Juan Pedro Laclette, Israel Muñoz-Velasco, Beatriz Ortega-guerrero, Arturo Becerra, and Claudia Romero-Oliva

For decades, paleoecological studies in lake sediments have focused on reconstructing the environments of the past and explaining phenomena linked to climatic variations. Recent advances in high-throughput DNA sequencing have allowed access to environmental DNA (eDNA) and ancient sedimentary DNA (sedaDNA) as a new and efficient proxy for past and present biodiversity. The basin of Mexico (BM) is located in the central part of the Trans-Mexican Volcanic Belt at 2,200 m a.s.l.; with the southern portion harboring the Chalco sub-basin. Lake Chalco is one of the last remaining natural aquatic ecosystems within the ever-expanding urban area surrounding Mexico City. The paleoenvironmental history of this lake has been previously characterized using sedimentological and geochemical proxies, as well as preserved microfossils (diatoms, pollen) with a temporal framework based on multiple radiocarbon dates. However, information for the remaining taxonomic groups and metabolic pathways remained unexplored. Here, we present the first metagenomics-based study for the Holocene in a high-altitude lake in Central Mexico –Lake Chalco. We explored the relationship between the lake’s paleoenvironmental condition and estimations of taxonomic and metabolic profiles across the sedimentary sequence (2.5 meters long). Multiple biological and abiotic variables revealed three main environmental phases: 1) a cool freshwater lake (FW1: 11,500-11,000 cal years BP), 2) a warm hyposaline lake (HS2: 11,000-6,000 cal years BP), and 3) a temperate, subsaline lake (SS3, <6,000 cal years BP). We describe the structure of the microbiota community and taxonomy richness turnover in the three Holocene paleoenvironmental phases. During the past 12 000 years BP the most abundant domains in Lake Chalco sediments were Bacteria, followed by Archaea, and Eukarya (36,722 genera). The analysis of functional proteins showed high biodiversity with a total of 27,636,243 proteins identified, but it was only possible to annotate 3,227,398 of them. Also, we identified several genes associated with some relevant pathways, such as methanogenesis. Altogether, this study allowed us to reconstruct the natural history of lake Chalco and its surroundings.

How to cite: Moguel, B., Pérez, L., Alcaraz, L. D., Lozano-García, S., Herrera-Estrella, L., Blaz, J., Caballero, M., Ávila-Arcos, M., Laclette, J. P., Muñoz-Velasco, I., Ortega-guerrero, B., Becerra, A., and Romero-Oliva, C.: Past and recent biodiversity profiling in ancient Lake Chalco Mexico by a metagenomics analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6277, https://doi.org/10.5194/egusphere-egu21-6277, 2021.

EGU21-730 | vPICO presentations | BG2.6

Structure of microbial communities in lake sediments of the High Arctic

Anne-Marie Lapointe, Yohanna Klanten, Alexander Culley, Catherine Girard, and Dermot Antoniades
Stuckberry Valley, located on the north shore of Ellesmere Island (Nunavut), approximately 800 km from the North Pole, was impacted by significant climatic variability during the Holocene and is an environment currently undergoing a rapid transition due to rising temperatures. The retreat of the valley’s main glacier resulted in the formation of four lakes, where the age of each lake is inversely related to the distance from the Arctic Ocean. Lacustrine sediments of these lakes represent a treasure-trove of information about past changes in the Stuckberry Valley watershed and provide a "long-term memory" of how the lakes’ responded to these changes. Microbes are the dominant form of life in this environment and thus understanding the diversity and distribution of microorganisms in the lakes’ sediments is essential to better understanding the effects of climate change on episodic and interannual changes in the biology of this valley. The specific objective of the study is to characterize changes over time in the structure of microbial communities by comparing microbial diversity in sediment cores from the four Stuckberry lakes, based on amplicon sequencing of viruses and bacteria. We hypothesize that microbial diversity will vary over time and that these dynamics will reflect past environmental changes in the catchment. We will also assess the differences in microbial diversity between the sediments of the four lakes and identify possible virus-host systems through network analysis. These data will provide new insight into microbial community succession in a region that is on the frontline of climate change.

How to cite: Lapointe, A.-M., Klanten, Y., Culley, A., Girard, C., and Antoniades, D.: Structure of microbial communities in lake sediments of the High Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-730, https://doi.org/10.5194/egusphere-egu21-730, 2021.

EGU21-6142 | vPICO presentations | BG2.6

Building cyberinfrastructure systems to support integrative, macroscale analyses of sedimentary ancient DNA records: current resources, needs, and opportunities

John Williams and the Cyberinfrastructure for Ancient Sedimentary DNA Working Group

The number and extent of ancient DNA records from sedimentary environments (sedaDNA) is rapidly increasing, which creates new opportunities for integrative and macroscale investigations into past population, community, and environmental dynamics at unprecedented taxonomic resolution and spatiotemporal extent.  However, fully achieving this potential requires a robust cyberinfrastructure that supports the joint analysis of many sedaDNA records with each other and with genomic reference libraries, the latest geochronological controls and age-depth models, complementary paleoecological and paleoenvironmental proxies, and the most recent and updated DNA reference library for taxonomic identifications.  Any cyberinfrastructure for macroscale data synthesis must address the variety of ancient DNA records (e.g. taxonomic groups, analytical approaches, depositional contexts) and leverage existing resources and standards such as the Neotoma Paleoecology Database, the MGnify and MG-RAST resources for environmental genomics, and the MixS standard for genetic sequences.  In response, a Cyberinfrastructure for Ancient Sedimentary DNA working group has been meeting regularly since summer 2020 to assess the current state of science and informatics, assess needs and gaps, and establish recommendations for next steps forward.  An initial survey found over 420  sites worldwide with published or in-development sedaDNA records, with greatest densities in Eurasia.  Metabarcoding records, including Amplicon Sequence Variant data and derived taxonomic inferences, are a top priority for trial uploads to Neotoma, with pilot uploads underway, because of the relatively small dataset volumes, the widespread application of metabarcoding assays, and potential of integrating these records with other paleoecological data holdings in Neotoma and linked paleodata resources such as Linked Earth and paleoclimatic data at NOAA’s National Centers for Environmental Informatics.  Because taxonomic inferences are heavily conditioned by choice of bioinformatics pipeline and reference databases, a major unmet need is a repository for minimally processed output from raw sequences.  In general, no existing genomics or paleoecological resource meets all needs of the sedaDNA community, although each covers key elements, so there is a good potential of advancing macroscale data syntheses by leveraging and linking existing resources.

How to cite: Williams, J. and the Cyberinfrastructure for Ancient Sedimentary DNA Working Group: Building cyberinfrastructure systems to support integrative, macroscale analyses of sedimentary ancient DNA records: current resources, needs, and opportunities, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6142, https://doi.org/10.5194/egusphere-egu21-6142, 2021.

EGU21-2906 | vPICO presentations | BG2.6

MetaDamage Tool: Examining post-mortem damage in sedaDNA on a metagenomic scale

Rosie Everett, Becky Cribdon, Logan Kistler, Roselyn Ware, and Robin Allaby

Authentication of ancient sedimentary DNA (sedaDNA) remains central to the interpretation of the proxy for wider understanding of palaeoecological archives. Distinguishing between in-situ, endogenous sedaDNA from that of contamination or modern material also allows for a wider understanding of taphonomy in the deposition and post-depositional process in the formation of the sedaDNA archive. At current, tools for authentication are reliant on single-taxon input and require a significant number of input sequences to identify an established cytosine deamination rate consistent with ancient DNA. We present the MetaDamage tool: a tool that examines cytosine deamination on a metagenomic scale. In this paper we outline the process of and testing of the MetaDamage tool using both authentic sedaDNA sequences and simulated data in order to demonstrate the resolution in which MetaDamage can observe deamination levels consistent with the presence of ancient DNA. The MetaDamage tool offers a method for initial assessment of the presence of ancient sedaDNA and provides a method for a wider understanding of key questions of preservation for palaeoecological reconstruction.

How to cite: Everett, R., Cribdon, B., Kistler, L., Ware, R., and Allaby, R.: MetaDamage Tool: Examining post-mortem damage in sedaDNA on a metagenomic scale, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2906, https://doi.org/10.5194/egusphere-egu21-2906, 2021.

EGU21-15995 | vPICO presentations | BG2.6

Hybridization capture of Larix candidate adaptive genes from sedimentary ancient DNA.

Stefano Meucci, Luise Schulte, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Konstantin Krutovsky, and Ulrike Herzschuh

Siberian larch forests dominate large areas of northern Russia and contribute important roles for the world´s ecosystem. In order to understand the past dynamics of larches and their adaptive genetic variation, sedimentary ancient DNA (sedaDNA) extracted from lake sediment cores is a crucial source of genetic material. The difficulty of retrieving extremely rare DNA sequences from samples reaching back up to 25000 years in age, is challenging. Previous studies (Schulte et al.) showed that the hybridization capture allowed an enrichment of targeted sequences by several orders of magnitude in comparison to shotgun sequencing method. Therefore, we established for the first time, a hybridization capture method targeting 65 candidate adaptive genes laying on the Larix nuclear genome. Our preliminary results showed the ability of our newly established method to enrich extremely rare DNA sequences of the targeted Larix candidate adaptive genes, which were not retrieved by shotgun sequencing method applied on the same samples. Furthermore, the results allowed to detect and compare specific nucleotide polymorphism of adaptive candidate genes among sedaDNA samples distributed in space and time. The establishment of this new method is laying the basis to investigate possible adaptive variation of larch species acquired across the dry and cold conditions of the Last Glacial Maximum (LGM); as well as their possible advantages or disadvantages in relation to the current environmental changes toward dry and warm conditions.

How to cite: Meucci, S., Schulte, L., Stoof-Leichsenring, K. R., Kruse, S., Krutovsky, K., and Herzschuh, U.: Hybridization capture of Larix candidate adaptive genes from sedimentary ancient DNA., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15995, https://doi.org/10.5194/egusphere-egu21-15995, 2021.

EGU21-14218 | vPICO presentations | BG2.6

Effects of forest invasion and retreat on tundra biodiversity inferred from sedimentary ancient DNA of lake Levinson Lessing, Taymyr Peninsula, Russia

Jérémy Courtin, Luise Schulte, Andrei Andreev, Kathleen Stoof-Leichsenring, Matthias Lenz, Martin Melles, and Ulrike Herzschuh

One of the consequences of the amplified warming of the arctic ecosystems is tundra “greening” and northward expansion of Siberian boreal forests. However, it is still challenging to predict how northern tundra biodiversity will change with the ongoing climate warming as models usually overestimate forest invasion. The investigation of Quaternary records spanning different Pleistocene glacial and interglacial cycles can provide unique insights on past diversity dynamics following forest invasion and retreat events. Therefore, by “looking backward to look forward“, reconstruction of past vegetation can help to forecast the effects of global warming on northern biodiversity.

In 2017, a 46 m core was recovered from the Lake Levinson Lessing located in the tundra of the far north Taymyr Peninsula (northern Central Siberia), the upper 38 m of which span the last 62ka continuously and with a rather constant sedimentation rate. A high resolution of 84 subsamples were collected from the lake sediment core with the aim to characterise biodiversity changes between glacials and interglacials in Russian Arctic during Late Quaternary. We studied pollen and non-pollen-palynomorphs and extracted the ancient DNA (sedaDNA), from the same sediment core samples. We also investigated past vegetation composition changes by a plant metabarcoding approach (chloroplast trnL P6 loop). We compared both pollen and sedaDNA signals to reconstruct changes in biodiversity in the Taymyr Peninsula emphasizing changes in diversity during forest invasion and retreat events.

How to cite: Courtin, J., Schulte, L., Andreev, A., Stoof-Leichsenring, K., Lenz, M., Melles, M., and Herzschuh, U.: Effects of forest invasion and retreat on tundra biodiversity inferred from sedimentary ancient DNA of lake Levinson Lessing, Taymyr Peninsula, Russia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14218, https://doi.org/10.5194/egusphere-egu21-14218, 2021.

EGU21-11048 | vPICO presentations | BG2.6

Shot gun sequencing of sedimentary ancient DNA from an Arctic lake reveals ecosystem changes through climate regime transitions over the last 50,000 years 

Kathleen R. Stoof-Leichsenring, Sichao Huang, Luidmila A. Pestryakova, Boris K. Biskaborn, and Ulrike Herzschuh

Sedimentary ancient DNA is a valuable proxy to study ecosystem change during the past. In particular, Arctic lakes provide fantastic archives of well-preserved DNA in lake sediment cores and provide reconstructions of ecosystem change during climate transitions in the past, which help to predict prospective environmental changes under current rapid warming known to be strongest in the Arctic. Our analyses are conducted on a 10 m sediment core from Lake Ilirney, located in Eastern Chukotka, which covers the last 50 ka of major climate transitions from the lake’s development within a warmer period previous to the last glacial towards nowadays. We prepared seventeen single-stranded DNA libraries from different time slices and used shot gun sequencing, an innovative method neglecting target enrichment, to achieve a portray of the past biotic composition. The bioinformatic data analyses included data trimming and merging with Fastp and k-mer based taxonomic classification against the nucleotide database using Kraken2. Preliminary results revealed about 372 bacterial families (about 90.1% of total reads), 651 eukaryotic families (8.7%) and a few Archaea (1.1%). Dominant eukaryotic groups are plants (Saliceae, Poaceae, and Rosaceae), protists (Monodopsidaceae, Oomycota and flagellates), fish (Salmonidae, Cyprinidae), birds (Phasianidae) and mammals (Muridae). Our data confirms compositional changes of plants throughout the last 28 ka known from pollen and metabarcoding analyses of a parallel core. Further, our data revealed most prominent turnover of the eukaryotic key taxa at about 30 and 12 ka which corresponds to the major climatic transitions from glacial-interglacial periods. The detailed investigation of compositional patterns and authenticity of ancient DNA data will improve our understanding of ecosystem change in the Arctic over millennial time scales.

How to cite: Stoof-Leichsenring, K. R., Huang, S., Pestryakova, L. A., Biskaborn, B. K., and Herzschuh, U.: Shot gun sequencing of sedimentary ancient DNA from an Arctic lake reveals ecosystem changes through climate regime transitions over the last 50,000 years , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11048, https://doi.org/10.5194/egusphere-egu21-11048, 2021.

EGU21-10391 | vPICO presentations | BG2.6

Patterns of postglacial vegetation establishment clarified by lacustrine sedaDNA from Baffin Island, Arctic Canada

Sarah E. Crump, Matthew Power, Bianca Fréchette, Gregory de Wet, Martha K. Raynolds, Jonathan H. Raberg, Morten Allentoft, Michael Bunce, and Gifford H. Miller

The colonization of recently deglaciated landscapes by tundra vegetation during the early Holocene is an important case study for understanding possible rates and patterns of plant migration in a rapidly warming world. Fossil pollen in lake sediment has traditionally served as the primary tool for reconstructing paleovegetation and understanding postglacial biogeography. However, because pollen can be wind-transported long distances and, in some cases, reworked from older deposits on the landscape, pollen-based vegetation histories can sometimes obscure the true history of plant colonization. In contrast, lacustrine sedimentary ancient DNA (sedaDNA) is sourced locally and is less likely to be adequately preserved through reworking events, thus making it a more reliable proxy for determining the precise timing of plant colonization. Here, we present three sedaDNA records from Holocene lake sediment across southern Baffin Island, Arctic Canada, that clarify the timing of postglacial vegetation changes. In particular, DNA from the subarctic shrub Betula (dwarf birch) first appears thousands of years after deglaciation in all three lake catchments, suggesting delayed colonization despite its strong pollen signal in early postglacial sediments. While moderate levels of Alnus (alder) pollen characterize early to mid-Holocene lake sediments from the region, sedaDNA suggests that Alnus was likely not present in any of the three lake catchments during the Holocene. In addition, aquatic plant community changes indicated by sedaDNA faithfully reflect the timing of early Holocene warmth in the region, highlighting the potential utility of aquatic plant DNA as a qualitative temperature proxy. We suggest that ancient plant DNA in lake sediment provides key paleoecological information that is distinct from traditional proxy records, particularly during periods of relatively rapid ecological change like the early Holocene. 

How to cite: Crump, S. E., Power, M., Fréchette, B., de Wet, G., Raynolds, M. K., Raberg, J. H., Allentoft, M., Bunce, M., and Miller, G. H.: Patterns of postglacial vegetation establishment clarified by lacustrine sedaDNA from Baffin Island, Arctic Canada, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10391, https://doi.org/10.5194/egusphere-egu21-10391, 2021.

BG2.8 – Advances in geochemical proxy development and application: from biomineral archives to past global changes

EGU21-6864 | vPICO presentations | BG2.8 | Highlight

Coral skeletal luminescence records changes in terrigenous dissolved organic matter (tDOM) parameters in tropical coastal waters

Patrick Martin, Nikita Kaushal, Jani Tanzil, Nivedita Sanwlani, Liudongqing Yang, Yongli Zhou, Nagur Cherukuru, Syamil Sahar, Moritz Müller, Aazani Mujahid, Jen Nie Lee, and Nathalie Goodkin

The flux of terrigenous dissolved organic carbon (tDOC) from land to the coastal ocean is an important component of the global carbon cycle, and can impact coastal marine ecosystems. A potentially large fraction of this tDOC flux can be oxidised to CO2, resulting in coastal ocean acidification and ultimately degassing to the atmosphere. tDOC is also rich in chromophoric dissolved organic matter (CDOM) which is the fraction of dissolved organic matter that absorbs light. CDOM plays an important role in aquatic systems by absorbing sunlight and reducing its transmission through the water column. This is a partially beneficial effect since photodegradation reactions release nutrients and protect biota from harmful UV radiation. However, CDOM light absorption also reduces the light available for primary producers. Long running tDOC and CDOM measurements from North America and Europe show that tDOC fluxes have been increasing in the 20th century in response to climate and land-use change. However, despite the biogeochemical and ecological significance of tDOC, there are few long-term records of tDOC, and none at all from tropical shelf sea environments. This severely limits our understanding of its drivers and processes. 

Here, we show that luminescence green-to-blue (G/B) ratios in coral skeleton cores are an accurate proxy for tDOC concentration in seawater. Coral luminescence is generated by humic-like substances, which are highly fluorescing compounds that are incorporated by corals into their skeletons during growth, forming sub-annual growth layers that luminesce under UV light. These humic-like substances are an integral component of tDOC and are an important constituent of the CDOM pool. We used solution fluorescence excitation emission matrix (EEM) measurements of dissolved powders of coral skeletons collected from multiple locations on the Sunda Sea Shelf along with abiogenic aragonite growth experiments to show that coral luminescence G/B is quantitatively related to the fluorescence intensity of terrestrial humic substances. We then combined a satellite-retrieved time series of CDOM with an analysis of a coral core section from an area of Borneo affected by run-off from tropical peatlands. We show that coral G/B ratio is a quantitative proxy for CDOM concentration at monthly resolution over a period of 12 years at this site (R2 = 0.57). Furthermore, we examine data from a multi-year biogeochemical time series in Singapore combined with recently collected coral cores from the monitoring site. These results show that coral luminescence G/B ratios are highly correlated with terrestrial CDOM absorption across the ultraviolet and visible wavelength spectrum, as well as with the tDOC concentration as estimated from stable isotopes of dissolved organic carbon. Taken together, our results show that coral G/B ratios can be a powerful proxy to reconstruct bio-optical and biogeochemical variability resulting from tDOC input. Corals can therefore allow us to potentially reconstruct tDOC flux variability across tropical seas over past centuries, and therefore to investigate seasonal to inter-annual drivers of tDOC dynamics.

How to cite: Martin, P., Kaushal, N., Tanzil, J., Sanwlani, N., Yang, L., Zhou, Y., Cherukuru, N., Sahar, S., Müller, M., Mujahid, A., Lee, J. N., and Goodkin, N.: Coral skeletal luminescence records changes in terrigenous dissolved organic matter (tDOM) parameters in tropical coastal waters, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6864, https://doi.org/10.5194/egusphere-egu21-6864, 2021.

EGU21-6523 | vPICO presentations | BG2.8

Reef-building oysters record seasonal variations in water mass-properties of tidal basins from the Central Wadden Sea (North Sea)

Jassin Petersen, Jürgen Titschack, Jeroen Groeneveld, Achim Wehrmann, Dierk Hebbeln, and Andre Freiwald

Before proxy records can be reliably employed in palaeoclimate research, calibration studies have to be conducted to assess the confidence intervals of the respective proxies. Here, we use shells of the fast growing Pacific oyster Magallana gigas from the Central Wadden Sea, North Sea, a temperate barrier island-backbarrier tidal flat-salt marsh system with large seasonal changes of water mass-properties, for the calibration of geochemical proxies. M. gigas represents a non-native invasive species that rapidly develops oyster reefs. Calcite shells of two specimens from the intertidal and subtidal zones were sampled in high resolution yielding sub-monthly data sets. The time period represented in the shell, based on δ18O age modelling, was estimated at 8-10 years and the growth of the shells was restricted from (late) spring to (early) autumn of each year. Mg/Ca, Mn/Ca and Sr/Ca ratios of the intertidal and subtidal specimens show similar seasonal patterns. Mg/Ca and Sr/Ca ratios are investigated as high-resolution sea surface temperature (SST) proxies. Important ontogenetic effects (i.e., increasing time-averaging with increasing age) as well as intra-species variability are discussed as limiting factors for the proxy development. Intertidal Mg/Ca ratios show only a significant correlation to the high-resolution SST record of the Central Wadden Sea when the early ontogenetic stage is considered. Sr/Ca ratios were comparable in terms of absolute values and amplitudes to those of M. gigas in the Northern Wadden Sea, but amplitudes were decreasing with increasing ontogeny. These findings seriously hamper the application of Mg/Ca and Sr/Ca for reliable palaeotemperature reconstructions regardless of ontogenetic stage. The Mn/Ca ratios were investigated as proxy for Mn cycling in tidal basins, where it is interrelated with seasonal changes in primary production. In addition to the generally observed seasonal variability of the Mn/Ca records, the subtidal Mn/Ca is significantly elevated compared to intertidal Mn/Ca. The subtidal Mn/Ca offset likely reflects differences in Mn cycling in tidal settings and could, therefore, serve in the palaeorecord as indicator to differentiate inter- and subtidal habitats in the same embedding sedimentary facies. This habitat effect has to be considered as an important factor besides environmental change when interpreting the high-resolution proxy record of fossil oysters.

How to cite: Petersen, J., Titschack, J., Groeneveld, J., Wehrmann, A., Hebbeln, D., and Freiwald, A.: Reef-building oysters record seasonal variations in water mass-properties of tidal basins from the Central Wadden Sea (North Sea), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6523, https://doi.org/10.5194/egusphere-egu21-6523, 2021.

EGU21-454 | vPICO presentations | BG2.8

Nitrogen isotope sclerochronology - insights into coastal environmental conditions and Pinna nobilis ecology

Melita Peharda, David Gillikin, Bernd Schöne, Anouk Verheyden-Gillikin, Hana Uvanović, Krešimir Markulin, Tomislav Šarić, and Ivan Župan

Pinna nobilis is a large bivalve endemic to the Mediterranean Sea that lives in shallow coastal areas. Due to its size and relatively fast shell growth rates, it is an interesting taxon for high resolution geochemical and sclerochronological research. Subsequently to previous analyses of δ18O and δ13C in P. nobilis shells, here, we investigate nitrogen isotopes in the carbonate-bound organic matrix (δ15NCBOM) of this species. Our objectives were to test if P. nobilis shells (i) can be used as an indicator of the isotopic baseline of the system, and (ii) is a good candidate for obtaining high-resolution temporal data on environmental δ15N variability. Due to the multiple mass mortality events of P. nobilis spreading throughout the Mediterranean, including the Adriatic Sea, we also tested if (iii) P. nobilis geochemistry changes as a response to diseases.

Shells were opportunistically collected by skin diving from 4 shallow coastal localities in the eastern Adriatic, as a part of a project on mortality monitoring. Specimens from Lim channel (October 2019), Kaštela Bay (January 2020) and Mali Ston Bay (November 2019) were collected alive, while in Pag Bay, shells of three recently dead specimens were collected in September 2020. Tissue and epibionts were removed and shells carefully cleaned and air-dried. Shell powder was collected by milling sample swaths by hand using a DREMEL Fortiflex drill equipped with a 300 μm tungsten carbide drill bit. For δ15NCBOM analysis, three shells from each locality were processed and three replicas were collected from each of these shells by milling shallow lines parallel to the growth axis from the internal shell surface. In addition, high-resolution δ15NCBOM data were obtained for one shell from Kaštela by milling lines (N=40) perpendicular to the major growth axis from the external shell surface. From this shell we also collected shell powder for δ18Oshell and δ13Cshell analysis to enable placing δ15NCBOM into temporal context. Isotope samples were analyzed Union College on an elemental analyzer - isotope ratio mass spectrometer.

Results indicate significant differences in δ15NCBOM between sampling localities, with lowest values recorded for shells from Pag Bay (3.73±0.36‰), and highest for shells sampled in Lim channel (7.04±0.63‰). High-resolution δ15NCBOM data obtained from the shell collected from Kaštela Bay corresponded to a time interval from spring 2018 to spring 2019. These data showed relatively small variations (5.02±0.33‰). However, δ15NCBOM values increased to 8.65±1.61‰ closest to the shell margin, and were coupled with a decrease in δ13Cshell values, indicating that this animal was experiencing stressful conditions several months prior to its death. According to our findings, δ15NCBOM values serve as an indicator of the isotopic baseline of the ecosystem as well as a potential powerful tool to study bivalve physiology.

Research was the supported by the Croatian Science Foundation, research project BivACME.

How to cite: Peharda, M., Gillikin, D., Schöne, B., Verheyden-Gillikin, A., Uvanović, H., Markulin, K., Šarić, T., and Župan, I.: Nitrogen isotope sclerochronology - insights into coastal environmental conditions and Pinna nobilis ecology, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-454, https://doi.org/10.5194/egusphere-egu21-454, 2021.

EGU21-7559 | vPICO presentations | BG2.8

Callista chione – geochemical archive of δ18O and δ13C data

Hana Uvanović, Bernd R. Schöne, Ivica Janeković, Cléa Denamiel, Carlotta Mazzoldi, Jorge Baro, Krešimir Markulin, and Melita Peharda

The Smooth clam Callista chione is a commercially important venerid bivalve. It is widely distributed in the eastern Atlantic Ocean and the Mediterranean Sea and inhabits sandy sediments in coastal waters at depths down to 180 m. With specimens that can reach 10 cm of shell length and with a lifespan of more than four decades, C. chione represents an interesting archive for sclerochronological research. The aim of this study was to analyse possible variations in δ18Oshell and δ13Cshell values between C. chione specimens collected in different parts of the Mediterranean Sea.

Callista chione shells were collected alive from three localities: (1) Caleta de Vélez in the north region of the Alborán Sea, Spain; (2) Gulf of Venice, Italy, North Adriatic, and (3) west coast of the Istrian peninsula, Croatia, also in the North Adriatic. At the first two localities, specimens were obtained from catch of the commercial fishing vessels, while in Istria they were collected by SCUBA diving. Prior to analysis, the external shell surface was physically cleaned by grinding. Shell powder for δ18Oshell and δ13Cshell analysis was then collected by milling narrow sample swaths in the outer shell surface and processed at Mainz University using a GasBench II - IRMS.

Modelled daily temperature and salinity values were obtained for each locality and used for calculating the predicted δ18Oshell values. For Caleta de Vélez, daily temperature and salinity values were obtained by MEDSEA model; for the Venetian region by the AdriSC climate model, and for Istria by the 3D numerical model ROMS. Temporal alignment of measured δ18Oshell values was conducted manually in Excel by best-fitting measured isotope data to predicted δ18Oshell curves.

Seasonal δ18Oshell cycles were observed in all studied specimens. Temporal alignment of measured and modelled δ18Oshell values clearly showed that C. chione grew fast during the warm part of the year, while slower growth occurred during the winter months. Samples collected in Caleta de Vélez had the narrowest range of δ18Oshell values (-0.43 to +1.73 ‰), while δ18Oshell values in C. chione from Istria showed the largest amplitudes (-1.61 to +2.67 ‰). Growth patterns varied between sampling localities.

The δ13Cshell values varied strongly between localities and specimens. Highest δ13Cshell values were obtained for C. chione shells from Caleta de Vélez (0.51 ± 0.03 ‰, range -0.19 to +1.06 ‰). The broadest range of δ13Cshell values (-3.37 to -0.08 ‰) were measured in shells from the Venetian region. These samples also had the lowest mean (-1.42 ± 0.14 ‰). Shells from Istria had δ13Cshell values ranging from -1.57 to +0.38 ‰ (mean: -0.42 ± 0.28 ‰). Observed differences between localities are statistically significant (Kruskal Wallis H = 150.4, p < 0.001).  Isotope data obtained for this study were compared with data from a previous study on the same species in the Eastern Adriatic.

Research was supported by the Croatian Science Foundation, research project BivACME.

How to cite: Uvanović, H., Schöne, B. R., Janeković, I., Denamiel, C., Mazzoldi, C., Baro, J., Markulin, K., and Peharda, M.: Callista chione – geochemical archive of δ18O and δ13C data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7559, https://doi.org/10.5194/egusphere-egu21-7559, 2021.

EGU21-11778 | vPICO presentations | BG2.8

Fruit carbonate in Lithospermeae: 14C, stable isotope composition and potential as a paleoenvrionmental proxy

Konstantin Pustovoytov and Simone Riehl

The tribe Lithospermeae (fam. Boraginaceae) represents one of very few taxa vascular plants that accumulate appreciable amounts of calcium carbonate in their tissues. The CaCO3 is localized in the pericarp sclerenchyma, which makes their small fruits (nutlets) mechanically durable and provides their good preservation in sediments and cultural layers. Fossil Lithospermeae fruits appear as whitish, slightly elongated entities, 3-5 mm in length.  At archaeological sites, the nutlets can be of diverse origin: in most contexts they represent carpological evidence for weed flora of the past, however, some findings suggest that they were used for decorative purposes (beads etc.).  

Here we overview the potential use of fruit carbonate of Lithospermeae in paleoecological research.   

14C-dating: Fruit carbonate of the taxon can be successfully dated with radiocarbon.  

The 14C concentration in the CaCO3 fraction of modern nutlets is well-correlated to the recent atmospheric 14C levels. Radiocarbon ages of old nutlets are in good correspondence with the age ranges of archaeological contexts. Obviously, fruit carbonate can represent a geochemically closed system for millennia in sediment environments.               

δ18O values: Our data based on an array of herbarium exemplars of Lithospermeae, suggest that the δ18O of fruit carbonate is distinctively sensitive to the amount of atmospheric precipitation during the warm season. The degree of correlation between δ18O and local air temperatures is lower.

We further performed an experiment on gromwell (Buglossoides arvensis (L.) I.M.Johnst), irrigated by water with different oxygen isotope signatures. The δ18O values of fruit CaCO3 showed correlation to the δ18O of irrigation water. The oxygen isotope fractionation in fruit carbonate turned out to be surprisingly low with 1000lnα = 4.72±3.49, which is relatively close to foraminiferal CaCO3.

 δ13C values: In contrast to the oxygen isotope signature, we did not find a strong correlation of the δ13C values of fruit carbonate to precipitation and temperature.  However, the photosynthetic origin of carbon in fruit CaCO3 admits a possibility of some links of δ13C to ambient factors.  

   

How to cite: Pustovoytov, K. and Riehl, S.: Fruit carbonate in Lithospermeae: 14C, stable isotope composition and potential as a paleoenvrionmental proxy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11778, https://doi.org/10.5194/egusphere-egu21-11778, 2021.

EGU21-6510 | vPICO presentations | BG2.8

Benthic Nepheloid Layers along the U.S. GEOTRACES GA03 Transect in the Western North Atlantic: Characterization and Influence on 230Th and 231Pa Cycling

Siyuan Sean Chen, Olivier Marchal, Paul Lerner, Daniel McCorkle, and Michiel Rutgers van der Loeff

Benthic nepheloid layers (BNLs) are particle-rich layers that can extend over a thousand meter or more above the seafloor and are thought to be produced by the resuspension of fine sediments from strong bottom currents. They can often be subdivided into two sublayers: (i) a lower sublayer in contact with the seabed, where particle concentrations are the largest and which roughly coincides with the bottom mixed layer (BML); and (ii) an upper sublayer in which particle concentration decreases up to a clear water minimum (CWM). Although BNLs have long been recognised in vertical traces of optical instruments lowered to abyssal depths, their influence on ocean biogeochemical cycles – on the cycling of particle-reactive metals in particular – remains poorly understood.

In this study, we characterize the BNLs observed between the New England continental shelf and Bermuda and explore their influence on the cycling of 230Th and 231Pa – two naturally-occurring particle-reactive radionuclides that have found different applications in chemical oceanography and paleoceanography. To this end, we use concomitant measurements of temperature, salinity, particle concentration derived from light beam transmissometry, and 230Th and 231Pa activities in the dissolved and particulate fractions, which have been collected along the western segment of the U.S. GEOTRACES GA03 transect. We estimate that the thickness of strong BNLs (particle concentration > 20 µg l-1) varied from about 72 to 1358 m between different deep stations. At all stations, particle concentrations below the CWM were the highest in the BML, whose thickness ranged from 95 to 320 m, and decreased generally with height above the seafloor. A simplified model of particle-radionuclide cycling in the deep water column, which includes a particle source representing sediment resuspension at topographic reliefs and their subsequent lateral transport, is fitted to observed profiles of particle concentration and radionuclide activities at two selected stations. The model can reproduce simultaneously the increase of particle concentration with depth, the low dissolved activities in the BNLs, and the extremely large particulate activities near the bottom. Analysis of 230Th and 231Pa budgets reveals that the behaviour of both radionuclides in the BNL is fundamentally different from that envisioned in reversible exchange theory. Sensitivity tests with the model suggest that lateral particle sources near continental slopes and similar reliefs can produce significant biases in the paleoceanographic applications of both radionuclides, including the 230Th-normalization method and the interpretation of sediment 231Pa/230Th records.

How to cite: Chen, S. S., Marchal, O., Lerner, P., McCorkle, D., and Rutgers van der Loeff, M.: Benthic Nepheloid Layers along the U.S. GEOTRACES GA03 Transect in the Western North Atlantic: Characterization and Influence on 230Th and 231Pa Cycling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6510, https://doi.org/10.5194/egusphere-egu21-6510, 2021.

EGU21-4909 | vPICO presentations | BG2.8

Oxygen isotope (18O/16O) fractionation between water and hydroxide ion

David Bajnai and Daniel Herwartz

In any reaction involving water, the educt oxygen is either derived from H2O or OH- (i.e., the hydroxide ion). For example, during carbonate precipitation the relative proportion of (de)hydration (CO2 + H2O ⇔ H+ + HCO3-) and (de)hydroxylation (CO2 + OH- ⇔ HCO3-) reactions is pH-dependent. When modelling this system, the oxygen isotopic composition of water can be measured directly, but the oxygen isotopic composition of hydroxide must be calculated from the respective fractionation factor (1000lnαH2O–OH-). Experimental studies from the 1960s determined 1000lnαH2O–OH- to be 39.22(±2.88)‰ at 25 °C and estimated its temperature dependence at ‑0.5‰ °C-1 (1-3). These empirical observations were recently questioned by a theoretical study that implied a much lower fractionation factor of 23.18–18.91‰ at 25 °C as well as a lower temperature dependence of ‑0.05‰ °C‑1 (4).

To provide new experimental data to solve this controversy, we performed quantitative witherite (BaCO3) precipitation experiments. Tank CO2 gas of known oxygen and carbon isotopic composition was injected into saturated Ba(OH)2 solution of known oxygen isotopic composition. Following the hydroxylation of the CO2, BaCO3 instantly precipitated from the high pH (>12) solution. Since the precipitate directly inherited 1/3 of its oxygen from the hydroxide ion and 2/3 from the tank CO2, the δ18O value of the OH- can be calculated via mass balance. Subsequently, the 1000lnαH2O–OH- value can be derived. Altogether 18 experiments were performed at a range of temperatures (1–80 °C) and using solutions of different oxygen isotopic composition (range of ca. 20‰). Minor variations between the δ13C values (< 1‰) of the BaCO3 and the tank CO2 attests the quantitative precipitation of the reference gas.

Our 1000lnαH2O–OH- values show a similar temperature dependence as the recent theoretical study of Zeebe (4), but our fractionation factor at 25 °C is much closer to the values reported in the 1960s. Reasons for the discrepancies between our study and previous publications in terms of 1000lnαH2O–OH- and its temperature dependency will be discussed. One of our hypotheses is that the H2O ⇒ OH- + H+ reaction introduces a large kinetic effect as isotopically light H2O is pyrolysed more frequently. In contrast, the back reaction proceeds rapidly without an isotopic preference. Hence, the self-ionisation of water cannot be described as a classic equilibrium. Alternative explanations such as unidentified kinetic isotope effects in our precipitation experiments (i.e., on the crystal surface) cannot be ruled out.

(1) H. R. Hunt, H. Taube, The relative acidity of H2O18 and H2O16 coördinated to a tripositive ion. J. Phys. Chem. 63, 124-125 (1959).
(2) E. R. Thornton, Solvent isotope effects in H2O16 and H2O18. J. Am. Chem. Soc. 84, 2474-2475 (1962).
(3) M. Green, H. Taube, Isotopic fractionation in the OH-–H2O exchange reaction. J. Phys. Chem. 67, 1565-1566 (1963).
(4) R. E. Zeebe, Oxygen isotope fractionation between water and the aqueous hydroxide ion. Geochim. Cosmochim. Acta 289, 182-195 (2020).

How to cite: Bajnai, D. and Herwartz, D.: Oxygen isotope (18O/16O) fractionation between water and hydroxide ion, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4909, https://doi.org/10.5194/egusphere-egu21-4909, 2021.

EGU21-16113 | vPICO presentations | BG2.8

Application of combined fluid-inclusion and clumped isotope thermometry to biogenic and inorganic carbonates

Jeroen van der Lubbe, Cas Nooitgedacht, Philip Staudigel, and Martin Ziegler

Biogenic and inorganic carbonates are widely used to reconstruct past temperatures and fluid compositions. For decades, calcification temperatures have been inferred from oxygen isotope composition (δ18O) of calcium carbonates (CaCO­3) assuming the δ18O of the parental fluid and isotopic equilibrium precipitation conditions. The development of the clumped isotope (Δ47) thermometer allows for reconstructing equilibrium calcification temperatures without requiring a priori knowledge of the water δ18O values.

Carbonate minerals can also contain several weight percentages of water, which are typically trapped within microscopic pores. These fluid-inclusions may preserve remnants of the parental fluid, which can be analyzed for the δ18O as well as hydrogen isotopic (δ2H) composition. Subsequently, the δ18O of fluid-inclusion and host carbonate may allow for the determination of paleotemperatures by providing constraint on the δ18O water value.

Reasonable equilibrium temperatures can be obtained for speleothem calcites from cave systems. On the contrary, anomalously high temperatures are derived from δ18O fluid-inclusion and calcite pairs in soil carbonates possibly suggesting diffusion of trapped water from host CaCO3. Deeply-buried and subsequently exhumed (inorganic) calcite veins have yielded discrepant paleotemperature estimates between fluid-inclusion and Δ47 thermometers. The distinctly lower fluid-inclusion derived temperatures might be attributed to kinetic fraction during initial vein cementation and/or isotopic re-equilibration between fluid-inclusions and CaCO3 at lower temperatures during uplift.

Heating experiments demonstrate that the oxygen isotope exchange between fluid inclusions and host carbonate is limited for inorganic calcite and aragonite at high temperatures (175oC) for short timescales (90 minutes). In contrast, considerable positive shifts in the δ18O of fluid inclusions have been recorded in biogenic aragonites during experimental heating, which coincide with lower carbonate δ18O values (albeit to a lesser extent due to the overwhelming amount of oxygen in the CaCO3), indicative of re-equilibration between host carbonate and pore fluids. This effect leads to apparently high equilibrium temperatures. In conjunction, the Δ47 derived temperatures do not change significantly after heating of inorganic aragonite, whereas a considerable higher Δ47 temperature is derived from aragonitic bivalve samples after heating. The positive shift in both thermometers has interpreted to reflect re-crystallization of CaCO3 and isotopic re-equilibration between the host carbonate and fluid-inclusions. This exchange might be facilitated by extremely small fluid-inclusions present in biogenic carbonates and/or water associated with organic substances.

Importantly, these isotopic exchange processes in biogenic aragonites took place in the absence of an external fluid and below the temperature thresholds for solid-state-reordering and the aragonite-to-calcite transition. The novel application of combined fluid-inclusion and clumped isotope thermometry has a proven utility in determining equilibrium precipitation temperatures, monitoring preservation of the primary fluid-inclusions and re-crystallization processes during diagenesis. However, additional experiments and analytical improvements are needed to further constrain the diagenetic behavior of this proxy.

 

How to cite: van der Lubbe, J., Nooitgedacht, C., Staudigel, P., and Ziegler, M.: Application of combined fluid-inclusion and clumped isotope thermometry to biogenic and inorganic carbonates, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16113, https://doi.org/10.5194/egusphere-egu21-16113, 2021.

EGU21-10652 | vPICO presentations | BG2.8

No ion is an island: Multiple ions involved during boron incorporation into CaCO3

Michael Henehan, Christa Klein-Gebbinck, Gavin Foster, Jill Wyman, Mathis Hain, and Sang-Tae Kim

Boron isotope ratios, as measured in marine calcium carbonate, are a proven tracer of past seawater and calcifying fluid pH and thus a powerful tool for the reconstruction of past atmospheric CO2 and monitoring of coral physiology. For such applications, understanding the inorganic baseline upon which foraminiferal vital effects or coral pH upregulation are superimposed should be an important prerequisite. Yet, investigations into boron isotope fractionation in synthetic CaCOpolymorphs have often reported variable and even conflicting results, implying that we may not fully understand pathways of boron incorporation into calcium carbonate.  Here we address this topic with experimental data from calcite and aragonite precipitated across a range of pH in the presence of both Mg and Ca. We confirm the results of previous studies that the boron isotope composition of inorganic aragonite precipitates closely reflects that of aqueous borate ion, but that calcites display a higher degree of scatter, and diverge from the boron isotope composition of borate ion at low pH. We discuss these findings with reference to the simultaneous incorporation of other trace and minor elements, and highlight a number of mechanisms by which crystal growth mechanisms may influence the concentration and isotope composition of boron in CaCO3. In particular, we highlight the potential importance of surface electrostatics in driving variability in published synthetic carbonate datasets. Importantly for palaeo-reconstruction, however, these electrostatic effects are likely to play a much more minor role during natural precipitation of biogenic carbonates.

How to cite: Henehan, M., Klein-Gebbinck, C., Foster, G., Wyman, J., Hain, M., and Kim, S.-T.: No ion is an island: Multiple ions involved during boron incorporation into CaCO3, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10652, https://doi.org/10.5194/egusphere-egu21-10652, 2021.

BG2.9 – Remote Sensing applications in the Biogeosciences

EGU21-9691 | vPICO presentations | BG2.9 | Highlight

Temporal variations of atmospheric ammonia (NH3) derived from over a decade of IASI satellite measurements

Martin Van Damme, Lieven Clarisse, Bruno Franco, Mark A Sutton, Jan Willem Erisman, Roy Wichink Kruit, Margreet van Zanten, Juliette Hadji-Lazaro, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur

The Infrared Atmospheric Sounding Interferometer (IASI) mission consists of a suite of three infrared sounders providing today over 13 years of consistent global measurements (from end of 2007 up to now). In this work we use the recently developed version 3 of the IASI NH3 dataset to derive global, regional and national trends from 2008 to 2018. Reported national trends are analysed in the light of changing anthropogenic and pyrogenic NH3 emissions, meteorological conditions and the impact of sulphur and nitrogen oxides emissions. A case study is dedicated to the Netherlands. Temporal variation on shorter timescales will also be investigated.

How to cite: Van Damme, M., Clarisse, L., Franco, B., Sutton, M. A., Erisman, J. W., Wichink Kruit, R., van Zanten, M., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., and Coheur, P.-F.: Temporal variations of atmospheric ammonia (NH3) derived from over a decade of IASI satellite measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9691, https://doi.org/10.5194/egusphere-egu21-9691, 2021.

EGU21-16171 | vPICO presentations | BG2.9

Effects of air quality on the health of Mediterranean forests

Adrián García Bruzón, Patricia Arrogante Funes, and Laura Muñoz Moral

The climate change has turned out to be a determining factor in the development of forest in Spain. Production systems have emitted polluting gases and other particles into the atmosphere, for which some plants have not yet developed adaptation systems. Among the most harmful pollutants for the environment are gases such as nitrous oxides, ozone, particulate matter.

However, this condition is not the same in Peninsular Spain, and the Balearic Islands since the plant compositions differ in the territory and the bioclimatic, topographic, and anthropic characteristics. Monitoring the vegetation with sufficient spatial and temporal resolution, studying variables conditioning plant health is a challenge from the nature of the variables and the amount of data to be handled. 

The Mediterranean forest is one of the most ecosystem affected by climate change because of usually experimented long periods of drought that, in combination with increased temperatures, can drastically reduce the photosynthetic activity of trees and therefore the biomass of forests.

That is why the application of environmental technologies based on Remote Sensing (which provide plant health indices from passive sensors on satellite platforms and other variables of interest), Geographic Information Systems (to integrate, process, analyze spatial and temporal data) and machine learning models (which facilitate the extraction of relationships between variables, conditioning factors and predict patterns). 

In this regard, this work's objective is to evaluate the possible effect that different pollutants have on the health of the vegetation, measured from the annual values of the Normalized Difference Vegetation Index (NDVI), in the Mediterranean forests of Peninsular Spain. To achieve this, we are used machine learning techniques using the Random Forest algorithm. The study has also been done with various climatic, topographic, and anthropic variables that characterize the forest to carry it out. 

The results showed that certain variables such as the aridity index had generated the NDVI values and therefore plant development, while others are limiting factors such as the concentration of certain pollutants and the direct relationship between them particulates and NOx. This study can verify how the Random Forest algorithm offers reliable results, even when working with heterogeneous variables. 

How to cite: García Bruzón, A., Arrogante Funes, P., and Muñoz Moral, L.: Effects of air quality on the health of Mediterranean forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16171, https://doi.org/10.5194/egusphere-egu21-16171, 2021.

Rangelands cover 70% of the world’s land surface, and provide critical ecosystem services of primary production, soil carbon storage, and nutrient cycling. These ecosystem services are governed by very fine-scale spatial patterning of soil carbon, nutrients, and plant species at the centimeter-to-meter scales, a phenomenon known as “islands of fertility”. Such fine-scale dynamics are challenging to detect with most satellite and manned airborne platforms. Remote sensing from unmanned aerial vehicles (UAVs) provides an alternative option for detecting fine-scale soil nutrient and plant species changes in rangelands over smaller extents than typically imaged with satellite and manned airborne platforms. We demonstrate that a model incorporating the fusion of UAV multispectral and structure-from-motion photogrammetry classifies plant functional types and bare soil cover with an overall accuracy of 95% in rangelands degraded by shrub encroachment and disturbed by fire. We further demonstrate that employing UAV hyperspectral and LiDAR (light detection and ranging) fusion greatly improves upon these results by classifying 9 different plant species and soil fertility microsite types (SFMT) with an overall accuracy of 87%. Creosote bush (Larrea tridentata) and black grama (Bouteloua eriopoda) are the most important native species in the rangeland and have the highest producer’s accuracies at 98% and 94%, respectively. The integration of UAV LiDAR-derived plant height differences was critical in these improvements. Finally, we use synthesis of the UAV datasets with ground-based LiDAR surveys and lab characterization of soils to estimate that the burned rangeland potentially lost 1,474 kg/ha of C and 113 kg/ha of N owing to soil erosion processes during the first year after a prescribed fire. However, during the second-year post-fire, grass and plant-interspace SFMT functioned as net sinks for sediment and nutrients and gained approximately 175 kg/ha C and 14 kg/ha N, combined. These results provide important site-specific insight that is relevant to the 423 Mha of grasslands and shrublands that are burned globally each year. While fire, and specifically post-fire erosion, can degrade some rangelands, post-fire plant-soil-nutrient dynamics might provide a competitive advantage to grasses in rangelands degraded by shrub encroachment. These novel UAV and ground-based LiDAR remote sensing approaches thus provide important details towards more accurate accounting of the carbon and nutrients in the soil surface of rangelands.

How to cite: Sankey, T., Sankey, J., Li, J., Ravi, S., Wang, G., Caster, J., and Kasprak, A.: Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-749, https://doi.org/10.5194/egusphere-egu21-749, 2021.

EGU21-5982 | vPICO presentations | BG2.9

UAS mounted LiDAR for Estimating LAI Type Metrics for Winter Wheat

Jordan Bates, Carsten Montzka, Marius Schmidt, and François Jonard

 

Metrics such as Leaf Area Index (LAI) are key factors in agricultural monitoring to understand the health and predictive yield of crops. Knowing the spatial distribution and variability in more detail increases the precision of fertilizer and irrigation practices. Unmanned Aircraft Systems (UAS) provide a means to carry sensors at a low altitude below the clouds providing a much higher spatial and temporal resolution than previously seen with satellite remote sensing while also providing more spatially complete data as compared to ground methods. Being that LiDAR is an active sensor and does not depend on solar reflectance and its corresponding zenith angle like commonly used passive optical sensors, it can further improve upon these UAS characteristics. It can also sense further into the canopy as the laser signals can pass through small gaps and are not affected by the shadowing of plant features created by the canopy itself. Evaluating the penetration of these signals and investigating the gap fraction (GF) that relates to canopy density, we are able to retrieve LAI. However, as LiDAR is sensing all above-ground plant elements it may present the ability to estimate Plant Area Index (PAI) rather than LAI when monitoring an entire growing season for a cereal crop like winter wheat that begins browning during senescence. This study investigates the feasibility of using LiDAR to estimate LAI or similar crop canopy density metrics. As LiDAR sensors for UAS are just becoming more accessible, studies related to this topic are scarcely seen.

In this study, a winter wheat field in Selhausen, Germany (~10 ha in size) was monitored throughout the growing season using the following methods: [1] air campaigns with a DJI Matrice 600 UAS with a YellowScan Surveyor LiDAR system, [2] a DJI Matrice 600 UAS with a Micasense RedEdge-M (five band) multispectral sensor, and [3] ground measurements using a SS1 SunScan ceptometer. The resulting LAI type metrics of the UAS LiDAR methods used were compared to methods commonly used with multispectral (MS) and ground instruments to assess the proposed method’s potential. Additionally, because both products are spatially complete unlike the ground measurements, the LiDAR and multispectral methods were compared for similarities in spatial patterns.

The results showed promise in using UAS LiDAR to estimate metrics that relate to LAI. Pearson correlation coefficient between the LiDAR and multispectral methods were moderate to high (R= 0.39 – 0.66) over the growing season. The comparison of UAS LiDAR towards the ground reference was within a 3% difference at times before senescence. Later in the growing season, the discrepancy increased between LiDAR and MS sensor retrievals mainly because of plant browning related to changes in plant chlorophyll content. This study covers the benefits of using UAS mounted LiDAR for LAI related measurements and its potential for improving crop health monitoring for precision farming.

How to cite: Bates, J., Montzka, C., Schmidt, M., and Jonard, F.: UAS mounted LiDAR for Estimating LAI Type Metrics for Winter Wheat, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5982, https://doi.org/10.5194/egusphere-egu21-5982, 2021.

EGU21-15708 | vPICO presentations | BG2.9

Prediction of above ground biomass and C-stocks based on UAV-LiDAR,multispectral imagery and machine learning methods.

Jaime Caballer Revenga, Katerina Trepekli, Stefan Oehmcke, Fabian Gieseke, Christian Igel, Rasmus Jensen, and Thomas Friborg

Current efforts to enhance the understanding of global carbon (C) cycle rely on novel monitoring campaigns of C sequestration in terrestrial ecosystems.The successful outcome of such efforts will be relevant to sectors ranging from climate change and land use studies (global scale) to precision agriculture and land management consultancy (local scale).To that end, current investigations apply recently developed scientific instrumentation - e.g.  Light detection and Ranging (LiDAR) -  and computational methods - e.g. Machine Learning (ML). Near-field remote sensing - i.e.  Unmanned Aerial Vehicle (UAV)-LiDAR -, can provide high resolution LiDAR data, increasing the monitoring accuracy of C stocks estimates and biophysical variables at the ecosystem scale. In contrast to previous approaches (e.g. image-derived vegetation indices), UAV-LiDAR provides a true 3D description of the canopy vertical structure. In order to evaluate the potential of new approaches towards precise C stock quantification in an agricultural field of Denmark (13 ha.), using near-field remote sensed data, we compare the results based on using 3D canopy metrics - derived from UAV-LiDAR - against the well-established multispectral image based metrics. Then, the performance of six different machine learning (ML) models  - two Random Forest variations, KNN, AdaBoost, ElasticNet, Support Vector, and Linear regression - designed to predict above ground biomass (AGB) based on a set of features derived from (i) UAV-LiDAR point cloud data (PCD), and (ii) multispectral imagery is evaluated. Their prediction quality are tested against unseen data from the same species, and sampling campaigns. Also, the sources of uncertainty are assessed as well as the importance of each predicting feature. The field work was conducted within the footprint of an Integrated Carbon Observation System (ICOS) class 1 station site, facilitating ecosystem traits monitoring in real time. The aerial and biomass sampling campaigns have been operated at 15-days frequency during the crops' growing period, in which, simultaneously, UAV-LiDAR and multispectral image data as well as ground truth biomass data were collected. By means of laboratory analysis, C and nutrient content in the crops' biomass was also determined. Based on arithmetic and morphological methods, the PCD were pre-processed to remove noise and classify them to ground and vegetation points. By means of the methods described, we demonstrate that UAV-LiDAR combined with multispectral data and ML methods can be used to accurately estimate AGB, 3D ecosystem structure as well as C-stocks in agricultural ecosystems. 

How to cite: Caballer Revenga, J., Trepekli, K., Oehmcke, S., Gieseke, F., Igel, C., Jensen, R., and Friborg, T.: Prediction of above ground biomass and C-stocks based on UAV-LiDAR,multispectral imagery and machine learning methods., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15708, https://doi.org/10.5194/egusphere-egu21-15708, 2021.

EGU21-8848 | vPICO presentations | BG2.9

Identification of the preferred areas for animal burrowing activity with regard to the land cover, topography and soil properties using very high resolution WorldView-2 and LiDAR data

Paulina Grigusova, Annegret Larsen, Alexander Klug, Diana Kraus, Peter Chifflard, Nina Farwig, and Jörg Bendix

Bioturbation is assumed to be coupled with vegetation, soil properties and topography. The soil properties influence the amount of nutrients needed for plant growth and determine the resistance of the soil to the burrowing itself and to the burrow stability. Vegetation provides food and shelter for the animals. At the same time, the burrowing destroys the plant roots while the animal presence and changed vegetation distribution affect soil properties. Additionally, the soil properties and vegetation also depend on topographic features as height, aspect or curvature.

This relation between the bioturbation, soil properties and topography are to date understudied, in particular how and if the co-dependencies differ between various climate zones. High resolution remote sensing data provide here a sufficient method to study these dependencies as the soil characteristics change rapidly on microscale. However, the application of fused high resolution WorldView-2 data and LiDAR data for the prediction of bioturbation and soil properties are completely missing.

In our study we used WorldView-2 and LiDAR data with a resolution of 0.5m for a machine learning based prediction of visible indicators of bioturbation activity (number of holes and mounds) and related soil properties. We obtained a land cover classification from the WorldView-2 data and topographic features from the LiDAR data. We then analyzed the relationship between bioturbation, soil properties, land cover and topography in arid, semi-arid and Mediterranean climate zone in Chile.

For this, we measured the number of holes and mounds created by burrowing animals within 60 plots of 10mx10m randomly dispersed on six hillsides in the three climate zones. On each hillside, 20 soil samples were taken in regular distances from the crest to the bottom of each hillside. The soil samples were analyzed for soil skeleton fraction, above ground skeletal fraction, nine soil texture classes, bulk density, water content, organic carbon, porosity, erodibility and skin factor. We carried out an orographic and topographic correction of the WorldView-2 images and classified the land cover into soil, rocks, cacti, shrub, trees and palms. We calculated several topographic features from the LiDAR data as height, slope, aspect, curvature, surface roughness and flow direction. We then used the WorldView-2 bands, vegetation indices and topographic features to upscale the bioturbation activity and soil properties into the area of 5x5 km at each site using the random forest machine learning algorithm.

Our results show that the bioturbation activity is best predicted by WorldView-2 data and vegetation indices while the soil properties can be best predicted by topography. The bioturbation activity strongly depends on land cover and vegetation distribution in the Mediterranean climate zone while there is a stronger link of bioturbation activity to topography and soil properties in the arid and semi-arid climate zone.

How to cite: Grigusova, P., Larsen, A., Klug, A., Kraus, D., Chifflard, P., Farwig, N., and Bendix, J.: Identification of the preferred areas for animal burrowing activity with regard to the land cover, topography and soil properties using very high resolution WorldView-2 and LiDAR data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8848, https://doi.org/10.5194/egusphere-egu21-8848, 2021.

EGU21-12357 | vPICO presentations | BG2.9

Target food security: assimilating ultra-high resolution satellite images into a crop-yield forecasting model

Matteo G. Ziliani, Bruno Aragon, Trenton Franz, Ibrahim Hoteit, Justin Sheffield, and Matthew F. McCabe

Assimilating biophysical metrics from remote sensing platforms into crop-yield forecasting models can increase overall model performance. Recent advances in remote sensing technologies provide an unprecedented resource for Earth observation that has both, spatial and temporal resolutions appropriate for precision agriculture applications. Furthermore, computationally efficient assimilation techniques can integrate these new satellite-derived products into modeling frameworks. To date, such modeling approaches work at the regional scale, with comparatively few studies examining the integration of remote sensing and crop-yield modeling at intra-field resolutions. In this study, we investigate the potential of assimilating daily, 3 m satellite-derived leaf area index (LAI) into the Agricultural Production Systems sIMulator (APSIM) for crop yield estimation in a rainfed corn field located in Nebraska. The impact of the number of satellite images and the definition of homogeneous spatial units required to re-initialize input parameters was also evaluated. Results show that the observed spatial variability of LAI within the maize field can effectively drive the crop simulation model and enhance yield forecasting that takes into account intra-field variability. The detection of intra-field biophysical metrics is particularly valuable since it may be employed to infer inefficiency problems at different stages of the season, and hence drive specific and localized management decisions for improving the final crop yield.

How to cite: Ziliani, M. G., Aragon, B., Franz, T., Hoteit, I., Sheffield, J., and McCabe, M. F.: Target food security: assimilating ultra-high resolution satellite images into a crop-yield forecasting model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12357, https://doi.org/10.5194/egusphere-egu21-12357, 2021.

EGU21-510 | vPICO presentations | BG2.9

Improvements to the Simplified Level 2 Prototype Processor for Retrieving Canopy Biophysical Variables from Sentinel 2 Multispectral Instrument Data

Richard Fernandes, Fred Baret, Luke Brown, Francis Canisius, Jadu Dash, Najib Djamai, Gang Hong, Camryn MacDougall, Hemit Shah, Marie Weiss, and Detang Zhong

The Sentinel 2 (S2) constellation mission was designed to facilitate the systematic mapping canopy biophysical variables at medium resolution on a global basis and in a free and open manner.  The mission concept requires the development of downstream services to map variables such as the fraction of absorbed photosynthetically active radiation (fAPAR), fraction of canopy cover (fCOVER) and leaf area index (LAI) using Level 2A surface reflectance inputs from the S2 ground segment.  Currently, free and open products generation can be performed using the Simplified Level 2 Prototype Processor (SL2P) applied on a product granule basis.  Considering that the processor is a prototype this study addresses three questions: 1) Can the SL2P algorithm, or subsequent versions, be engineered to facilitate systematic product generation over large extents in a free and open manner? 2) What is the uncertainty of SL2P products over North America during the growing season? 3) Can the uncertainty be reduced by changing the calibration database used within SL2P?  



To facilitate validation and product generation, SL2P was ported to a Google Earth Engine application (the Landscape Evolution and Forecasting Toolbox).  This now allows mapping of up to one million square kilometers in near real time using either the original SL2P algorithm or updated versions.  SL2P uncertainty was quantified over North America using direct comparison to 20 in-situ sites within the National Environmental Observing Network in the continental United States of America and within a Canada wide field campaign over forests and shrublands conducted by Canada Centre for Remote Sensing. SL2P outputs were also compared to MODIS and Copernicus Global Land Service products over the Belmanip II regional sites and 30 additional forested regions in North America.  Results from NEON validation indicate SL2P is generally within uncertainty requirements except for forests; where it underestimates fAPAR, fCOVER and LAI.  Results for other sites will also be presented.  To address the forest bias, SL2P was recalibrated using simulations from the FLIGHT 3D radiative transfer model representative of North American forests.  The uncertainty of the recalibrated SL2P algorithm will be compared to baseline SL2P estimates to determine if increased model complexity is warranted.

How to cite: Fernandes, R., Baret, F., Brown, L., Canisius, F., Dash, J., Djamai, N., Hong, G., MacDougall, C., Shah, H., Weiss, M., and Zhong, D.: Improvements to the Simplified Level 2 Prototype Processor for Retrieving Canopy Biophysical Variables from Sentinel 2 Multispectral Instrument Data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-510, https://doi.org/10.5194/egusphere-egu21-510, 2021.

EGU21-12923 | vPICO presentations | BG2.9 | Highlight

Regional-scale analysis of dune-beach systems using Google Earth Engine

Melissa Latella, Arjen Luijendijk, and Carlo Camporeale

Coastal sand dunes provide a large variety of ecosystem services, among which the inland protection from marine floods. Nowadays, this protection is fundamental, and its importance will further increase in the future due to the rise of the sea level and storm violence induced by climate change. Despite the crucial role of coastal dunes and their potential application in mitigation strategies, the phenomenon of the coastal squeeze, which is mainly caused by the urban sprawl, is progressively reducing the extents of the areas where dune can freely undergo their dynamics, thus dramatically impairing their capability of providing ecosystem services.

Aiming to embed the use of satellite images in the study of coastal foredune and beach dynamics, we developed a classification algorithm that uses the satellite images and server-side functions of Google Earth Engine (GEE). The algorithm runs on the GEE Python API and allows the user to retrieve all the available images for the study site and the chosen time period from the selected sensor collection. The algorithm also filters the cloudy and saturated pixels and creates a percentile-composite image over which it applies a random forest classification algorithm. The classification is finally refined by defining a mask for land pixels only. 

According to the provided training data and sensor selection, the algorithm can give different outcomes, ranging from sand and vegetation maps, beach width measurements, and shoreline time evolution visualization. This very versatile tool that can be used in a great variety of applications within the monitoring and understanding of the dune-beach systems and associated coastal ecosystem services. For instance, we show how this algorithm, combined with machine learning techniques and the assimilation of real data, can support the calibration of a coastal model that gives the natural extent of the beach width and that can be, therefore, used to plan restoration activities. 

How to cite: Latella, M., Luijendijk, A., and Camporeale, C.: Regional-scale analysis of dune-beach systems using Google Earth Engine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12923, https://doi.org/10.5194/egusphere-egu21-12923, 2021.

EGU21-14748 | vPICO presentations | BG2.9

A fusion of UAVs, digital cameras and micrometeorology to quantify the link between phenology and the carbon balance of a temperate peatland

Gillian Simpson, Carole Helfter, Caroline Nichol, and Tom Wade

Peatland ecosystems are historical carbon sinks of global importance, whose management and restoration are becoming an increasingly popular approach to reach climate change targets via natural capital. However, the Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) can exhibit substantial variability on seasonal and inter-annual timescales, with some peatlands shifting from being a sink to a source of CObetween years. This variability is due to the complex interaction between factors such as meteorology and phenology, which are both known to control a peatland’s net carbon sink strength. An improved understanding of these two drivers of peatland carbon cycling is needed to allow for better prediction of the impact of climate change on these ecosystems. This task requires us to study these environmental controls at multiple spatial and temporal scales. The role of vegetation in regulating NEE however, can be difficult to determine over shorter timescales (e.g. seasonal) and especially in peatland landscapes, which typically display strong spatial heterogeneity at the microsite scale (< 0.5 m). Digital phenology cameras (PhenoCams) and Unmanned Aerial Vehicles (UAVs), offer novel opportunities to improve the temporal resolution and spatial coverage of traditional vegetation survey approaches. UAVs in particular are a more flexible, often cheaper alternative to satellite products, and can be used to collect data at the sub-centimetre scale. We employ PhenoCam imagery and UAV surveys with a Parrot Sequoia multispectral camera to map vegetation and track its phenology using vegetation indices such as the Normalised Difference Vegetation Index (NDVI) over the course of two growing seasons at Auchencorth Moss, a Scottish temperate peatland. By combining this digital camera imagery with in-situ NEE measurements (closed chambers and eddy-covariance) and meteorological data, we seek to quantify the impact of weather and phenology on carbon balance at the site.

How to cite: Simpson, G., Helfter, C., Nichol, C., and Wade, T.: A fusion of UAVs, digital cameras and micrometeorology to quantify the link between phenology and the carbon balance of a temperate peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14748, https://doi.org/10.5194/egusphere-egu21-14748, 2021.

Studying of the optical properties of agricultural vegetation is one of the methods for plants condition estimation, prediction of their development and changes influenced by natural and anthropogenic factors.

The work is dedicated to the investigation of spectral reflectance function of agricultural Brassica napus taking into account the degree of soil moisture. When most of the agricultural lands in Belarus are covered with vegetation in summer, employing the optical properties of agricultural vegetation for deciphering the soil depends on the degree of soil moisture. Insufficient numbers of days in year when the soil is not covered by vegetation or is in a plowed state requires in-situ optical measurements, because there are more than 50 % cloudy conditions in the year, especially in spring and autumn time.

The study has been carried out near the Minsk 11.06.2020 (53.837004º N, 27.487597º E) in clear, cloudless day. The relief for investigated field is hilly-ridge, characterized by a predominance of elevation marks from 250 to 300 m and it is actively sown field. During the spectrometric measurements, the field has been sown with Brassica napus in the phenological phase of pod formation.

When studying the spectral reflectance of Brassica napus, in-situ spectrometric measurements and analysis of a multispectral image have been carried out. Spectrometric measurements have been carried out by FSR-02 spectrometer (spectral range 400-900 nm, spectral resolution 4.3 nm) aiming to retrieve spectral reflectance function.

The normalized vegetation index NDVI has been used for analyzing the multispectral image from Landsat 8 OLI system with a spatial resolution of 30 m. The results of a study of the correlation between the reflection coefficient of Brassica napus and the area of observed soils will be presented. In addition, the results of the analysis of quasi-synchronous values of the NDVI index and in-situ measurements of the spectral reflectance of Brassica napus will be discussed.

How to cite: Davidovich, Y.: Spectral reflectivity variations of Brassica napus depending on degree of soil moisture, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15781, https://doi.org/10.5194/egusphere-egu21-15781, 2021.

EGU21-2630 | vPICO presentations | BG2.9

Challenges and opportunities of remote sensing for monitoring biodiversity change

Joris Timmermans and Daniel Kissling

Biodiversity is rapidly declining and monitoring biodiversity change is thus of key importance to prevent the destabilization of ecosystems and their services. A key component of monitoring biodiversity change is the development of Essential Biodiversity Variables (EBVs) which facilitate the harmonization and standardization of raw data from disparate sources. In this context, consistent and adequate geospatial information needs to be available to ecologists and policymakers around the world, even for countries in which comprehensive in-situ biodiversity measurements cannot be taken on a regular basis. Satellite remote sensing (SRS) currently represents the only tool which allows to acquiree spatially contiguous and temporally replicated observations for monitoring biodiversity over continental or (near-)global spatial extents. Observations from SRS already provide a wealth of information on the distribution, structure and functioning of ecosystems, but user requirements of ecologists and policymakers have not been systematically quantified for allowing the development of roadmaps by SRS experts.

In response, we performed a top-down user requirement analysis combined with a bottom-up technical review to highlight (i) how currently available remote sensing products can contribute to biodiversity monitoring, and (ii) which immature SRS products could be prioritized for further development. We performed a systematic review of the Post2020 goals (for 2050) and biodiversity targets (for 2030) of the Convention on Biological Diversity (CBD) and their corresponding biodiversity indicators. Subsequently we evaluated SRS products according to relevance (to biodiversity indicators), (im)maturity, feasibility, and suitability for provisioning user-adequate spatio-temporal information. We found that currently existing CBD-relevant biodiversity indicators mainly use EBV-related information on ecosystem structure and distribution (e.g. available from remote sensing products of landcover and Leaf Area Index, LAI) or on species populations (predominantly acquired from in-situ biodiversity measurements because current SRS products are too limited in the spatio-temporal resolutions of their sensors). Moreover, only few biodiversity indicators derived from SRS currently focus on species traits or community composition EBVs, as both the identification of individual species and the quantification of species traits such as LAI and foliar nitrogen, phosphorus, kalium and chlorophyll content remain challenging. We outline how further advances in data-science techniques (e.g. merging SRS observations of high spectral and high spatial resolution) provide tremendous opportunities for advancing community composition and species-focused EBVs for global biodiversity monitoring.

How to cite: Timmermans, J. and Kissling, D.: Challenges and opportunities of remote sensing for monitoring biodiversity change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2630, https://doi.org/10.5194/egusphere-egu21-2630, 2021.

Decisions about preventing further climate change involve human means for obtaining an equal and fair result for all humans. In consequence we have to make room for a complete different discours balancing between natural facts obeying natural laws and social behavior according to Duhem-Quine´s principle. In order to explain complex phenomena such as global warming and the isostatic uplift one should reject any one-hypothesis claim according to Duhem-Quine´s principle.

Considering climatologic problems as only pure positive scientific matter for making decisions for mankind how to deal with, is a pure essentialist and substantivistic conception of decision making. While climatologic models explain changes globally, the more unpredictable weather concerns rather local scales, implying that decisions must be adapted to the local situation. The unpredictability of some processes is universal but the consequences can be very local and form the boundary conditions of living. Stated otherwise, we do not just live on the planet Earth, but we live in a specific village/town in a specific region/country. 

Contrary to the widely accepted dominant paradigm decision making should not be based on the slogan ‘think global, act local’, but from the device ‘think local, manage the local effects of global warming’. Indeed, worldwide climate change will generally cause raising oceans, but more locally it will restore the former water balance of uplifted shear costs in Sweden and Finland and it affects the small fisher and farmer societies.

Here we suggest that knowledge of climate changes does not intervene in terms of their universal value such as truth, but under the local horizon of the social practices, artefacts and hierarchical relations with which they are associated. We advocate to reverse the former dominant technical code monopolized by technocracy from dominance of nature to creation of progress of the encroaching new ecosystems that develops out of the original shear coast in south-western Finland. We show based on Landsat imagery that this coast is rapidly changing due to the uplift. Furthermore, we demonstrate that the Eco-Development paradigm may rebalance nature, environment, humans and culture and that it is a valid alternative against the past and present-day socio-economical approach that have accelerated the change of the Earth’s climate, provided the global technocracy´s codes of the dominant paradigm are converted into local adapted social, economic and political codes.

How to cite: Verstraeten, G. J. M. and Verstraeten, W. W.: Beyond the technocratic truth to establish eco-development in the uplifted area of the Finnish southwestern shear coast as observed from space, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8298, https://doi.org/10.5194/egusphere-egu21-8298, 2021.

EGU21-11084 | vPICO presentations | BG2.9

Development of hybrid models for the operational retrieval of vegetation traits from the hyperspectral CHIME mission

Enrique Portalés, Jochem Verrelst, Charlotte De Grave, Eatidal Amin, Pablo Reyes, Miguel Morata, Katja Berger, and Giulia Tagliabue

The Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is in preparation to carry a unique visible to shortwave infrared spectrometer. This mission is aimed to be operational, providing routine observations to support agricultural management and biodiversity conservation. In addition to the level 1B, 1C and 2A products, the mission will provide L2B products, i.e. among others including a set of vegetation traits. In view of preparing retrieval models applicable in an operational setting, we developed a hybrid retrieval workflow based on the combination of field data and look-up tables (LUT) generated from radiative transfer models (RTM) at leaf and canopy evel. The presented workflow corresponds to the version 1.8 of the L2B vegetation models. For each variable, the LUT was optimized by an active learning (AL) technique ran against field validation data. This hybrid optimization method is aimed to achieve a good trade-off between specialization, generalism and size of the LUT, in order to perform well in a variety of scenarios and deliver fast processing. Eventually the reduced LUTs were used to train final retrieval models. We selected Gaussian process regression (GPR) and heteroscedastic Gaussian process regression (VHGPR). These are nonlinear, machine learning algorithms that lie in a solid probabilistic framework and not only provide competitive estimates, but also associated uncertainties. Based on this workflow we developed 13 vegetation models of leaf and canopy variables, which are under investigation to be implemented into CHIME’s L2B vegetation processing chain. Models performance was tested in ESA’s CHIME end-to-end (E2E) simulator. Furthermore, we applied the prototype models to images derived from current hyperspectral airborne (APEX and HyPlant) and also spaceborne imagery (PRISMA) resampled to CHIME band settings, resulting into meaningful vegetation maps over heterogeneous European landscapes. For some canopy variables such as fraction of absorbed photosynthetically active radiation (FAPAR), fractional vegetation cover (FVC) and canopy nitrogen content (CNC), we obtained relative errors (NMRSE, in %) of 3.80, 4.25 and 16.83 respectively, and high quality maps. Altogether, obtained maps demonstrate the feasibility of routinely providing vegetation products from the CHIME imaging spectroscopy mission. 

 

How to cite: Portalés, E., Verrelst, J., De Grave, C., Amin, E., Reyes, P., Morata, M., Berger, K., and Tagliabue, G.: Development of hybrid models for the operational retrieval of vegetation traits from the hyperspectral CHIME mission, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11084, https://doi.org/10.5194/egusphere-egu21-11084, 2021.

EGU21-12606 | vPICO presentations | BG2.9

Uncertainty estimation of Sentinel-3B tandem data for OLCI-B in the FLEX configuration

Lena Jänicke, Rene Preusker, Marco Celesti, and Dirk Schüttemeyer

During the tandem phase of Sentinel-3A and B the channels of the spectrometer of the Ocean and Land Imager (OLCI) on Sentinel 3-B were reprogrammed to imitate measurements of ESA’s 8th Earth Explorer mission FLEX [1]. FLEX is designed to retrieve the complete fluorescence spectrum from the high resolutive visible spectrum and to quantify the contribution of the two photocycles in green plants [2]. Fluorescence is a valuable proxy of plant photosynthesis activity [3], [4]. By measuring the emitted light of plants on satellites, plant distribution and state can be monitored on a global scale.

The reprogrammed OLCI-B measurements consist of 45 bands between 500 and 800 nm with a bandwidth of about 1.8 nm (FWHM). The spectral and radiometric calibration of the 45 bands has not the same level of maturity as the one for the nominal setting, thus their radiometric uncertainty needs to be quantified. This is done by comparing the 45 FLEX-like bands with the co-located nominal 21 bands of OLCI on Sentinel-3A. The comparison is realised using a transfer function based on radiative transfer simulations. In a first step surface and atmosphere parameters are estimated from the OLCI-B FLEX-like measurements, that explain the measurements. The second step simulates the according OLCI-A measurements at nominal band settings and compares them with the real measurements made by OLCI-A.

This study serves also as a precursor experiment for the FLEX mission, where the radiometric calibration of FLEX will be verified using co-registered OLCI-A (or B) measurements. Based on this study the strategy for the uncertainty of the FLEX intensity measurements will be developed and tested.

The uncertainty estimation is a key factor of the Fluorescence retrieval as the Fluorescence contribution to the top of atmosphere signal is very small. To distinguish between signal and noise, the uncertainty must be kept as small as possible. Additionally, the uncertainty serves as input parameter for subsequent retrieval algorithms.

[1]          M. Celesti et al., ‘In prep.: Sentinel-3B OLCI in “FLEX mode” during the tandem phase: a novel dataset towards the future synergistic FLEX/Sentinel-3 mission’, p. 20, 2020.

[2]          M. Drusch et al., ‘The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8’, IEEE Trans. Geosci. Remote Sensing, vol. 55, no. 3, pp. 1273–1284, Mar. 2017, doi: 10.1109/TGRS.2016.2621820.

[3]          W. Verhoef, C. van der Tol, and E. M. Middleton, ‘Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor data’, Remote Sensing of Environment, vol. 204, pp. 942–963, Jan. 2018, doi: 10.1016/j.rse.2017.08.006.

[4]          L. Guanter, L. Alonso, L. Gómez‐Chova, J. Amorós‐López, J. Vila, and J. Moreno, ‘Estimation of solar-induced vegetation fluorescence from space measurements’, Geophysical Research Letters, vol. 34, no. 8, 2007, doi: https://doi.org/10.1029/2007GL029289.

How to cite: Jänicke, L., Preusker, R., Celesti, M., and Schüttemeyer, D.: Uncertainty estimation of Sentinel-3B tandem data for OLCI-B in the FLEX configuration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12606, https://doi.org/10.5194/egusphere-egu21-12606, 2021.

The next great contribution from NASA to study the Earth’s ecosystems, including the open ocean and coastal and inland waters, is the PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission. PACE will build upon the remote sensing legacy that NASA earth science has established with over four decades of satellite instruments beginning with CZCS (Coastal Zone Color Scanner) launched in 1978 and following with SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer), and VIIRS (Visible Infrared Radiometer Suite). PACE is expected to launch in 2023 and will carry the hyperspectral Ocean Color Instrument (OCI), as well as two multi-angle polarimeters (SPEXone and HARP-2). OCI will provide an unprecedented view of the entire earth every two days.

This presentation will highlight the capabilities of the novel hyperspectral and multi-angular polarimetric instruments on onboard the PACE observatory, showcasing PACE’s ability to fill societal needs and enable decision-making, in support of advanced climate observations, optimized biothreat assessment, food security support and assurance, and sustainable fishery and aquaculture monitoring and prediction for the benefit of humanity and its next generations. PACE will continue heritage MODIS and VIIRS visible, near-infrared, and shortwave-infrared data products at 1 km resolution, as well as produce new hyperspectral and multi-angular polarimetric advanced data products, not possible with MODIS and VIIRS due to their design and technological limits. PACE will leverage emerging remote sensing technologies to advance aquatic and atmospheric remote sensing in ways that fulfill real-world needs.

How to cite: Scott, J. and Urquhart, E.: Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission: Advanced Hyperspectral and Multi-Angular Polarimetric Satellite Observations for Science-driven Applications, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5833, https://doi.org/10.5194/egusphere-egu21-5833, 2021.

BG3.7 – Present and future global vegetation dynamics and carbon stocks from observations and models

EGU21-11046 | vPICO presentations | BG3.7

Mind the gap: New insights on large-scale forest dynamics over Amazonian forests from airborne lidar and canopy gap data

Ricardo Dalagnol, Fabien H. Wagner, Lênio S. Galvão, Annia S. Streher, Oliver L. Phillips, Emanuel Gloor, Jean P. H. B. Ometto, and Luiz E. O. C. Aragão

Tree mortality has been pointed out as a key factor to quantify global forests carbon stocks and turnover. While there have been recent developments on observational studies aiming at detection and attribution of tree mortality using remote sensing data in temperate forests, the spatial and temporal distribution of tropical forests mortality is still poorly understood. Tropical forests pose a challenge for mortality detection due to its rich diversity of plant species and heterogeneous canopy structure, which also leads to the occurrence of very frequent and localized mortality events rather than widespread mortality as seen in some temperate forests. Here, we report on recent developments on estimates of spatialized forest dynamics over tropical forests leveraging large datasets of airborne lidar and a newly established link between canopy gaps and canopy mortality. Using multi-temporal lidar datasets collected at five Brazilian Amazon forests with varied forest structure, we linked static gaps, i.e. holes in the forest observed at one date, to dynamic gaps, i.e. gaps that opened from one date to another. Using 610 flight lines of airborne lidar data covering an area >2,300 km² across the Brazilian Amazon, we mapped the static gaps and used them to analyze potential natural and human-induced drivers using generalized linear models. Finally, we produced estimates of annual dynamic gap rates (% yr-1) for the whole Amazon using the combination of the environmental-climate model and the static-dynamic gaps relationship. Our findings show well-defined spatial patterns of dynamic gaps over the Amazon, with 20-35% faster dynamics in the west and southeast than in the central-east and north. Higher gap fractions were more often found at southern and eastern Brazilian Amazon, bordering the ‘deforestation arch’, i.e. regions with increased human influence. Dynamic gaps showed a significant relationship with field mortality rates (R² = 0.40), but with 60% lower magnitude. In fact, what we have detected is very likely mortality with the predominant emphasis of lidar on detecting uprooted and broken mode of death. The analysis also provided new insights on the dynamics of remote areas where we have never visited before. New challenges include testing the gap-method over other sites with multi-temporal data, developing methods to detect standing dead trees, and mapping other drivers such as liana-infested forests. Merging improved regional quantification of dynamic gap estimates with vegetation modelling offers potential to explore how forest dynamics is influencing carbon stocks and turnover, and how they may evolve in the future.

How to cite: Dalagnol, R., Wagner, F. H., Galvão, L. S., Streher, A. S., Phillips, O. L., Gloor, E., Ometto, J. P. H. B., and Aragão, L. E. O. C.: Mind the gap: New insights on large-scale forest dynamics over Amazonian forests from airborne lidar and canopy gap data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11046, https://doi.org/10.5194/egusphere-egu21-11046, 2021.

EGU21-764 | vPICO presentations | BG3.7

Earth System Models are not capturing observed tropical forest carbon dynamics

Alexander Koch, Wannes Hubau, and Simon L. Lewis

The land surface is absorbing carbon from the atmosphere. Tropical forests play a key role in this carbon uptake. Recent analyses of 565 long-term forest inventory plots across Africa and Amazonia show that structurally intact tropical forest are a large carbon sink, but that this sink has recently saturated and is projected to be in long-term decline. Here we compare these results with estimates from the two most recent generations of Earth System Models, CMIP5 (19 models) and CMIP6 (17 models). We show that, while CMIP5 and CMIP6 are of similar skill, they do not reproduce the observed 1985-2014 carbon dynamics. The pan-tropical net sink from inventory data is 0.99 Pg C yr-1 (95% CI 0.7–1.3) between 2000–2010, the best sampled decade, double the CMIP6 multimodel-mean of 0.45 Pg C yr-1 (95% CI 0.35–0.55) over the same decade. The observed saturating and declining sink beginning in Amazonia in the 1990s and Africa in the 2010s is not captured by the models, which show modest increases in sink strength. The future pan-tropical net sink from the statistical model decreases by 0.23 Pg C per decade (95% CI 0.09–0.39) until the 2030s, while CMIP6 multimodel-means project an increasing carbon sink under all scenarios (0.01–0.03 Pg C per decade; 95% CI 0.00–0.06) except the low-CO2 scenario (-0.02 Pg C per decade; 95% CI -0.01–0.03). CMIP models balance positive CO2 fertilisation with negative responses to higher temperatures and droughts on carbon gains from tree growth similarly to observations, but the modelling of carbon losses from tree mortality does not correspond well to the inventory data. Reason for the model-observation differences is the treatment of mortality in models. Integrated research programs combining continued tropical forest monitoring and targeted experiments are needed to reduce the uncertainties in this key carbon cycle feedback in next-generation models.

How to cite: Koch, A., Hubau, W., and Lewis, S. L.: Earth System Models are not capturing observed tropical forest carbon dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-764, https://doi.org/10.5194/egusphere-egu21-764, 2021.

EGU21-7425 | vPICO presentations | BG3.7

Continental-scale modelling of the effects of climatic and non-climatic disturbances on woody plant encroachment in the grasslands of Africa

Francesco D'Adamo, Rebecca Spake, James Bullock, Booker Ogutu, Jadunandan Dash, and Felix Eigenbrod

Grasslands cover ca. 7% (2,100,000 km2) of the African continent. They provide a wide range of ecosystem services (e.g., forage, water, recreational spaces, carbon sequestration), and host large wildlife communities. Despite their importance, African grasslands are reported to be suffering from degradation and, perhaps more worryingly, have received little consideration within international policies (e.g., United Nations Sustainable Development Goals). A key issue at present is widespread woody plant encroachment (WPE), which it is shifting African grassland from a grassy- to a (less palatable) woody-dominated biome. However, the way climatic (e.g., precipitation, soil moisture) and non-climatic disturbances (e.g., fire, population density) affect WPE is still poorly understood, particularly at large spatiotemporal scales. Here we identified grasslands in sub-Saharan Africa according to the ESA Climate Change Initiative (CCI) land cover product and use vegetation optical depth (VOD) from passive microwave observations as a proxy for woody vegetation change between 1992 and 2011. We then use independent climatic (precipitation and soil moisture) and non-climatic (burn intensity, population change) data to assess how both spatiotemporal variations and interactions between climatic and non-climatic drivers controlled rates of VOD increase during 1992-2011. We consider not only annual precipitation, soil moisture, fire, and population data, but also integrated and lagged precipitation data (both up to five years ahead of VOD) in these models. Preliminary results reveal a large overall increase in woody vegetation in sub-Saharan Africa grasslands as well as considerable spatiotemporal variation in VOD change that is not due to climatic factors alone.

How to cite: D'Adamo, F., Spake, R., Bullock, J., Ogutu, B., Dash, J., and Eigenbrod, F.: Continental-scale modelling of the effects of climatic and non-climatic disturbances on woody plant encroachment in the grasslands of Africa, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7425, https://doi.org/10.5194/egusphere-egu21-7425, 2021.

EGU21-3620 | vPICO presentations | BG3.7

Assessing the representation of the Australian carbon cycle in global vegetation models

Lina Teckentrup, Martin De Kauwe, Andy Pitman, Vladislav Bastrikov, Daniel Goll, Vanessa Haverd, Atul Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick McGuire12, Joe Melton, Julia Nabel, Julia Pongratz, Stephen Sitch, Anthony Walker, Andrew Wiltshire, and Sönke Zaehle

Australia plays an important role in the global terrestrial carbon cycle on inter-annual timescales. While the Australian continent is included in global assessments of the carbon cycle, the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations of net biome productivity (NBP) and the carbon stored in vegetation between 1901 to 2018 from 13 DGVMs (TRENDY v8 ensemble). The TRENDY models simulated differing magnitudes of NBP on inter-annual timescales, leading to marked differences in carbon accumulation in the vegetation on decadal to centennial timescales. We showed that the spread in carbon storage resulted from differences in simulated carbon residence time rather than differences in net carbon uptake. Differences in simulated long-term accumulated NBP between models were mostly due to model responses to land-use change. The DGVMs also simulated different sensitivities to atmospheric CO2 concentration. Notably, models with nutrient cycles did not simulate the smallest response. While our results suggested that changes in the climate forcing do not have a large impact on the carbon cycle on long timescales, the inter-annual variability in precipitation drives the year-to-year variability in NBP. We analysed the impact of key modes of climate variability, including the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). While the DGVMs agreed on sign of the response of NBP to El Niño and La Niña, and to positive and negative IOD events, the magnitude of inter-annual variability in NBP differs strongly between models. In addition, we identified simulated phenology and fire as associated with high model uncertainty, indicating differences in simulated vegetation composition and process representation. Model disagreement in simulated vegetation carbon, phenology and carbon residence time imply different types of vegetation cover across Australia between models, whether prescribed or resulting from model assumptions. Our study highlights the need to evaluate parameter assumptions and key processes that drive vegetation dynamics, such as phenology, mortality and fire, in an Australian context to reduce uncertainty across models.

How to cite: Teckentrup, L., De Kauwe, M., Pitman, A., Bastrikov, V., Goll, D., Haverd, V., Jain, A., Joetzjer, E., Kato, E., Lienert, S., Lombardozzi, D., McGuire12, P., Melton, J., Nabel, J., Pongratz, J., Sitch, S., Walker, A., Wiltshire, A., and Zaehle, S.: Assessing the representation of the Australian carbon cycle in global vegetation models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3620, https://doi.org/10.5194/egusphere-egu21-3620, 2021.

EGU21-11135 | vPICO presentations | BG3.7

The Impact of Mediterranean Droughts and Large Fires on the Carbon Balance of Vegetation

Tiago E. Silva, Ana Russo, and Célia M. Gouveia

Over the last decades, the vegetation dynamics have been severely disturbed due to the increasing intensity and occurrence of extreme events. The activity of terrestrial ecosystems is particularly susceptible to the climate variability, and their recently regional changes, mainly linked to the occurrence of extreme climatic events, are leading to rapid changes on natural vegetation cycle, plants productivity and terrestrial carbon cycle.

Droughts have been broadly recognized, among a wide range of extreme events, as playing a central role on the carbon cycle. Dry conditions contribute to the occurrence of high hydrological stress on vegetation, generating disturbances on the regular photosynthesis and vegetation mechanisms. Furthermore, they may increase the risk of fires, enhancing the losses on carbon stocks and plants productivity and inhibiting the ecosystems to regenerate and recover for a long time.

A wide range of works have recently shown that Europe, and in particular, the Mediterranean region, has been affected by severe droughts and large fires in the last decades. Therefore, we propose to assess the impact of a set of the severest droughts and large fires, between 2001 and 2019, over three different regions of Mediterranean basin, in order to assess their influence on vegetation, by evaluating the persistency of soil dry conditions and the observation of the number of months that vegetation’s activity is disturbed. This analysis allowed the quantification of the carbon losses occurred due to the referred extreme events, and also, the observation of the time response and recovery process of vegetation during the following months. In this study, we used remote sense products to monitor the vegetation production and activity (MODIS GPP and PSNet), to assess the soil moisture (ESA CCI SM) and to detect burned areas (FIRE CCI51).

 This work was supported by FCT through projects IMPECAF (PTDC/CTA-CLI/28902/2017), FIRECAST (PCIF/GRF/0204/2017) and by IDL (UIDB/50019/2020).

How to cite: Silva, T. E., Russo, A., and Gouveia, C. M.: The Impact of Mediterranean Droughts and Large Fires on the Carbon Balance of Vegetation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11135, https://doi.org/10.5194/egusphere-egu21-11135, 2021.

EGU21-9444 | vPICO presentations | BG3.7

Shifts in the frequency of sequentially occurring late-spring frost and drought impact the dynamics of non-structural carbohydrates in European beech

Benjamin F. Meyer, Anja Rammig, Allan Buras, and Christian S. Zang

In the past, terrestrial ecosystems have largely functioned as carbon sinks, capturing nearly 30% of anthropogenic carbon dioxide emissions (Le Quéré et al. 2009). Forest ecosystems, which cover roughly 30% of the land surface, play a fundamental role in maintaining this sink by storing nearly half of all terrestrial carbon (Pan et al. 2011; Bonan 2008). Over large parts of Europe, these forest ecosystems are dominated by European beech. Consequently, the reaction of beech to climate extremes is central to the ability of European forests to act as carbon sinks. Disconcertingly, the projected – and indeed already observed – increase in frequency and severity of drought across Europe threatens to shift forest ecosystems from carbon sinks to carbon sources (Ciais et al. 2005). Concurrently, the incidence of late-spring frost events in Europe is on the rise. While these events are considerably more localized and do not result in the same widespread reduction of ecosystem productivity as droughts, the damage to the photosynthetic apparatus of affected trees forces the mobilization of non-structural carbohydrates (NSC) to ensure tree survival. We analyze high-resolution historical (E-OBS 0.1°) and projected (EURO-CORDEX RCP 2.6 & RCP 8.5 0.11°) climate data to identify localized changes in the frequency of sequentially occurring drought and late-spring frost events across Europe. Subsequently, we use a modified version of the standalone NSC-model SUGAR (Jones et al. 2020) to ascertain the effect of sequentially occurring climate extremes on the carbon reserves of European beech forests. Here, we identify differences in the impact of isolated extremes (either frost or drought) and sequential extremes (frost followed by drought and vice versa) on the regulation of the NSC pool. Through the integration of SUGAR with the LPJ-GUESS DGVM (Smith et al. 2014; Sitch et al. 2003) we further quantify the effect of sequentially occurring climate extremes on the productivity of beech forest ecosystems in central Europe.

 

How to cite: Meyer, B. F., Rammig, A., Buras, A., and Zang, C. S.: Shifts in the frequency of sequentially occurring late-spring frost and drought impact the dynamics of non-structural carbohydrates in European beech, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9444, https://doi.org/10.5194/egusphere-egu21-9444, 2021.

EGU21-1579 | vPICO presentations | BG3.7

On thin ice: contrasting responses of woody NPP to permafrost thaw

Aleksandra Kulawska, Angus Robert MacKenzie, Nicholas Kettridge, Sami Ullah, and Thomas A. M. Pugh

Boreal forests are located at latitudes that are predicted to experience some of the greatest warming on the planet. Forests growing on permafrost may be particularly vulnerable, with accelerated soil warming and permafrost degradation linked to changes in woody net primary productivity (NPPw). Recent evidence suggests that the responses of NPPw to permafrost thaw are mixed, with both increases and decreases in productivity observed following the onset of permafrost degradation. What determines these contrasting responses is currently poorly understood. This leads to uncertainties in predicting the future vegetation and carbon dynamics in permafrost regions, which propagate to climate projections in Earth System Models. Here, we propose a framework, and a set of hypotheses to explain the observed differences in the response of NPPw to permafrost thaw. We argue that the relationship between permafrost thaw and NPPw is non-linear and determined by a set of climatic and environmental variables. On this basis, we partition ecosystems into classes, and describe their relationships between permafrost thaw and NPPw.

How to cite: Kulawska, A., MacKenzie, A. R., Kettridge, N., Ullah, S., and A. M. Pugh, T.: On thin ice: contrasting responses of woody NPP to permafrost thaw, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1579, https://doi.org/10.5194/egusphere-egu21-1579, 2021.

Tundra-taiga ecotone dynamics play a relevant role in the global carbon cycle. However, it is rather uncertain whether these ecosystems could develop into a carbon source rather than continuing atmospheric carbon sequestration under global warming. This knowledge gap stems from the complex permafrost-vegetation interactions, not yet fully understood. Consequently, shedding light on the role of current and future active layer dynamics is crucial for an accurate prediction of treeline dynamics, and thus for aboveground forest biomass and carbon stock developments.

We make use of a coupled model version combining CryoGrid, a one-dimensional permafrost land-surface model, with LAVESI, an individual-based and spatially explicit forest model for larch species (Larix Mill.) in Siberia. Following a parametrization against an extensive field data set of 100+ forest inventories conducted along the Siberian treeline (97-169° E), we run simulations for the upcoming centuries forced by climatic change scenarios.

The coupled model setup benefits from the detailed process implementation gained while developing the individual models. Therefore, we can reproduce the energy transfer and thermal regime in permafrost ground as well as the radiation budget, nitrogen and photosynthetic profiles, canopy turbulence, and leaf fluxes, while at the same time, predicting the expected establishment, die-off, and treeline movements of larch forests. In our analyses, we focus on vegetation and permafrost dynamics and reveal the magnitudes of different feedback processes between permafrost, vegetation, and current and future climate in Northern Siberia.

How to cite: Kruse, S., Stünzi, S. M., Langer, M., Boike, J., and Herzschuh, U.: Assessing the impact of permafrost-vegetation interaction on treeline dynamics in Siberia with the individual-based, spatially explicit treeline model LAVESI coupled to the permafrost land-surface model CryoGrid, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14119, https://doi.org/10.5194/egusphere-egu21-14119, 2021.

EGU21-15109 | vPICO presentations | BG3.7

Tree above-ground biomass dynamics in the Northeast Siberian tundra-taiga from nowadays to 3000 AD

Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, and Stefan Kruse

Changes in future above-ground biomass (AGB) of terrestrial ecosystems is one of the current interests in the light of climate change and essential to forecast for predicting potential climate feedbacks such as influence on the carbon balance. The tundra-taiga ecotone is a region that is prone to notable above-ground biomass changes, in the first instance due to the treeline advance. Forest is expected to occupy non-polygonal tundra. Our study region in central Chukotka (Northeastern Siberia) is a mountainous area on the northern border of the tundra-taiga ecotone that covers a wide range of vegetation types on a density gradient starting with lichen communities via open graminoid tundra to forest tundra. There is only one tree species – a deciduous conifer Larix cajanderi. We applied the individual-based spatially explicit model LAVESI to simulate larch AGB change from nowadays to 3000 AD under different climate scenarios, depending on Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5 and RCP 8.5. We implemented in the model topographical parameters, as well as region-specific individual larch AGB equations, biological parameters of the tree growth and climate variables. We validated the new version of the model against field and Landsat satellite-based data, as well as a high spatial resolution image with distinctive trees visible, provided by ESRI (ArcGIS/World_imagery). Our first results are indicating mostly densification of existing tree stands before 2200 AD and forest expansion in the study region after 2200 AD even under the mildest RCP 2.6 scenario. First evaluations of the average tree AGB increase rates from present to 2200 AD are ranges from 0.007 (RCP 2.6) to 0.01 (RCP 8.5) kg*m-2*yr-1. Obtained rates of tree AGB change and its future distribution on the landscape can be particularly useful for conservation measures and modelling of future above-ground carbon stock dynamics.

How to cite: Shevtsova, I., Herzschuh, U., Heim, B., and Kruse, S.: Tree above-ground biomass dynamics in the Northeast Siberian tundra-taiga from nowadays to 3000 AD, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15109, https://doi.org/10.5194/egusphere-egu21-15109, 2021.

EGU21-13331 | vPICO presentations | BG3.7

Boreal Vegetation and Soil Carbon Dynamics in Response to a Changing Climate and Soil Variables

John Galbraith, Pavel Krasilnikov, and Cornelia Rumpel

EGU21-12422 | vPICO presentations | BG3.7

Where is the carbon going? - A multi-model comparison

Michael O'Sullivan, Pierre Friedlingstein, and Stephen Sitch

Net terrestrial carbon uptake is primarily driven by increases in net primary productivity (NPP) and/or the residence time of carbon in vegetation and soil. As such, it is of critical importance to accurately quantify spatio-temporal variation in both terms and determine their drivers. Both NPP and residence times are modulated by changing environmental conditions, including climate change and variability, atmospheric CO2, and Land Use and Land Cover Changes (LULCC). For the historical period, 1901-2019, outputs from a suite of Dynamic Global Vegetation Models (DGVMs) from the TRENDY consortium, driven with observed changes in climate, CO2, and LULCC are analysed. Changes in global and regional carbon fluxes, stocks, and residence times are quantified, as well as an attribution to the underlying drivers. We find that over the historical period the majority of models simulate an increase in NPP, predominantly driven by enhanced atmospheric CO2 concentrations. This generally leads to increased carbon storage in both vegetation and soils, however there is no agreement across models on the partitioning between vegetation and soils. This increased storage also acts to reduce soil carbon residence times due to a relative increase in carbon allocated in the faster decomposing soil pools. LULCC over this period has acted to reduce carbon inputs to the system and reduce vegetation carbon residence times due to conversion of forests to shorter vegetation. We find there is a large variation in simulated global and regional fluxes, stocks, and residence times in resonse to changes in climate, implying there are considerable uncertainties in current DGVMs. We therefore use long-term global observations of productivity and biomass change to constrain model estimates and provide insight into a process attribution for biospheric change as well as highlighting areas for future model improvement.

How to cite: O'Sullivan, M., Friedlingstein, P., and Sitch, S.: Where is the carbon going? - A multi-model comparison, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12422, https://doi.org/10.5194/egusphere-egu21-12422, 2021.

EGU21-15550 | vPICO presentations | BG3.7

Global sensitivities of forest carbon changes to environmental conditions 

Simon Besnard, Maurizio Santoro, Oliver Cartus, Naixin Fan, Nora Linscheid, Richard Nair, Ulrich Weber, Sujan Koirala, and Nuno Carvalhais

Quantifying the responses of forest dynamics to fluctuations in the atmosphere, hydrosphere and land surface conditions at global scales have been rather challenging. Despite the understanding that favourable environmental conditions promote forest growth, the effects have been challenging to observe across different ecosystems and climate gradients. Based on a global annual time series of aboveground biomass (AGB) from 1992 to 2018, we present forest carbon changes and provide insights on the controls of atmospheric (e.g., climate), hydrosphere (e.g., soil water availability) and land surface (e.g., changes in forest cover) conditions on forest carbon changes from local to global scales. Our findings indicate a gradient of forest gains and losses across AGB classes, with regions with carbon stocks of 50-100 MgC ha-1 depicting both the highest forest gains and losses. Furthermore, we observe that changes in forest carbon stocks were systematically positively correlated with changes in forest cover, while it was not necessarily the case with other environmental variables, such as air temperature and water availability at the uni-variate level. We also used a gradient boosted decision tree model and a variable importance metric (i.e., SHAP values) to demonstrate that atmospheric conditions largely dictate forest carbon changes followed by land surface and hydrosphere conditions. Interestingly, the observed functional relationships indicate a strong sensitivity of forest carbon changes to recent-past carbon stocks and both recent-past and concurrent atmospheric water demand. Regionally, we find evidence that carbon gains from long-term forest growth covary with long-term carbon sink inferred from atmospheric inversions at the ecosystem level. Our study quantifies the contributions from the atmosphere, hydrosphere, and land surface conditions to forest carbon changes and provides new insights into the underlying mechanisms of forest growth on the global carbon cycle.

How to cite: Besnard, S., Santoro, M., Cartus, O., Fan, N., Linscheid, N., Nair, R., Weber, U., Koirala, S., and Carvalhais, N.: Global sensitivities of forest carbon changes to environmental conditions , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15550, https://doi.org/10.5194/egusphere-egu21-15550, 2021.

EGU21-9154 | vPICO presentations | BG3.7

Spatial variability of carbon allocation to soil autotrophic respiration in global forest ecosystems

Xiaolu Tang, Yuehong Shi, Xinrui Luo, Liang Liu, Jinshi Jian, Ben Bond-Lamberty, Dalei Hao, Alexander Olchev, Wenjie Zhang, Sicong Gao, and Jingji Li

Belowground or ‘soil’ autotrophic respiration (RAsoil) depends on carbohydrates from photosynthesis flowing to roots and rhizospheres, and is one of the most important but uncertain components in forest carbon cycling. Carbon allocation plays an important role in forest carbon cycling and reflects forest adaptation to changing environmental conditions. However, carbon allocation to RAsoil is rarely measured directly and has not been fully examined at the global scale. To fill this knowledge gap, the spatio-temporal patterns of RAsoil with a spatial resolution of half degree from 1981 to 2017 were predicted by Random Forest (RF) algorithm using the most updated Global Soil Respiration Database (v5) with global environmental variables; carbon allocation from photosynthesis to RAsoil (CAsoil), was calculated as the ratio of RAsoil to gross primary production (GPP); and its temporal and spatial patterns were assessed in global forest ecosystems. We found strong temporal and spatial variabilities of RAsoil with an increasing trend from boreal forests to tropical forests. Globally, mean RAsoil from forests was 8.9 ± 0.08 Pg C yr-1 (mean ± standard deviation) from 1981 to 2017 increasing at a rate of 0.0059 Pg C yr-2, paralleling broader soil respiration changes and indicating an increasing carbon loss respired by roots. Mean CAsoil was 0.243 ± 0.016 and showed a decreasing trend over time, although there were interannual variabilities, indicating that CAsoil was sensitive to environmental changes. The temporal trend of CAsoil varied greatly in space, reflecting uneven responses of CAsoil to environmental changes. The spatio-temporal variability of carbon allocation should be considered in global biogeochemical models to accurately predict belowground carbon cycling in an era of ongoing climate change. 

How to cite: Tang, X., Shi, Y., Luo, X., Liu, L., Jian, J., Bond-Lamberty, B., Hao, D., Olchev, A., Zhang, W., Gao, S., and Li, J.: Spatial variability of carbon allocation to soil autotrophic respiration in global forest ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9154, https://doi.org/10.5194/egusphere-egu21-9154, 2021.

EGU21-6604 | vPICO presentations | BG3.7

Improving the representation of soil and vegetation carbon stocks at the sub-national scale in a global land data system.

Kanishka Narayan, Chris Vernon, and Alan Di Vittorio

Accurately representing historical soil and vegetation carbon stocks in land data systems is important when evaluating outcomes of land use change decisions (e.g. land use change emissions). Moreover, carbon stocks (especially soil carbon stocks) are subject to uncertainty and vary significantly based on assumptions used by different data sets. For this reason, when representing carbon stocks in data systems, it is important to present a range of values based on the distribution of carbon stock observations for a given unit (region/country/basin) at the grid cell level.

We updated the moirai land data system (LDS) to generate historical estimates of soil carbon stocks (at a depth of 0-30 cms) and vegetation carbon stocks (broken down into above ground and below ground biomass) at the sub-national (basin) level based on global fine resolution raster input data. The LDS has also been programmed to calculate soil carbon stock values based on multiple data sets (such as SoilGrids database maintained by the ISRIC and the harmonized world soil database maintained by the FAO) to enable efficient comparisons of carbon stock estimates by end users between data sets. Moreover, to account for uncertainty, carbon stocks are calculated for 6 “states” based on 5 arcmin grid cell level observations of carbon stocks (The states are -weighted average, median, minimum, maximum, quartile 1 and quartile 3).  This provides a robust representation of soil and vegetation carbon stocks at the sub-national level which are differentiated by data sources and the above-mentioned states, which can be used to represent more realistic outcomes from land use change decisions. To demonstrate the utility of this data, we also implemented the same in the land module of a multi sector dynamics model, Global Change Analysis Model (GCAM) to observe the impacts on land use change decision outcomes with different initializations of carbon stock data.   

How to cite: Narayan, K., Vernon, C., and Di Vittorio, A.: Improving the representation of soil and vegetation carbon stocks at the sub-national scale in a global land data system., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6604, https://doi.org/10.5194/egusphere-egu21-6604, 2021.

EGU21-15469 | vPICO presentations | BG3.7

The relevance of soil moisture for land carbon sink projections

Ryan S. Padrón, Lukas Gudmundsson, Vincent Humphrey, and Sonia I. Seneviratne
During the last century the land biosphere has been a sink of anthropogenic carbon emissions to the atmosphere. Here we analyze future projections of terrestrial carbon fluxes from multiple Earth system models participating in the sixth phase of the Coupled Model Intercomparison (CMIP6) with a focus on the evolution of the land carbon sink under increasing atmospheric carbon concentrations and associated climate change. We find that interannual variability in the land carbon sink given by the net biome production (NBP) is dominantly related to variability in soil moisture across most models and regions. Nevertheless, several models indicate that temperature variations are more strongly related to NBP variations in the core of the Amazon. Model trends in NBP are relatively well explained by trends in both soil moisture and temperature. Finally, the CMIP6 ensemble has a large inter-model spread of the average land carbon sink projected for the end of the century (2071–2100). We show that inter-model differences in soil moisture conditions and in the sensitivity of NBP to soil moisture contribute to explain this spread, particularly in boreal forest regions. Overall, our study highlights the influence of water-carbon interactions on the future evolution of the terrestrial carbon cycle. We suggest that efforts to constrain Earth system model projections should jointly constrain soil moisture and carbon fluxes.

How to cite: Padrón, R. S., Gudmundsson, L., Humphrey, V., and Seneviratne, S. I.: The relevance of soil moisture for land carbon sink projections, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15469, https://doi.org/10.5194/egusphere-egu21-15469, 2021.

EGU21-5177 | vPICO presentations | BG3.7

Predictions of Gross Primary Production from a suite of Terrestrial Biome Models display divergent relationships with key environmental variables

Keith Bloomfield, Benjamin Stocker, Trevor Keenan, and Colin Prentice

Accurate simulations of gross primary production (GPP) are vital for Earth System Models that must inform public policy decisions.  The instantaneous controls of leaf-level photosynthesis, which can be measured in manipulative experiments, are well established.  At the canopy scale, however, there is no consensus on how GPP depends on (a) light or (b) other aspects of the physical environment such as temperature and CO2.  Models of GPP make a variety of different assumptions when ‘scaling-up’ the standard model of photosynthesis.  As a troublesome consequence, they make a variety of different predictions about how GPP responds to projected environmental change.

This problem can be tackled by theoretical modelling and by empirical analysis of GPP as reconstructed from eddy-covariance flux measurements.  Theoretical modelling has provided an explanation for why ‘light-use efficiency’ (LUE) models work well at time scales of a week or longer.  The same logic provides a justification for the use of LUE as a key metric in an empirical analysis.  By focusing on LUE, we can isolate the drivers of GPP independent of its over-riding control by absorbed light.  We have used open-access eddy covariance data from over 100 sites, collated over 20 years (the number of sites has grown with time).  These sites, located in a wide range of biomes and climate zones, form part of the FLUXNET network.  We have combined the flux data with a satellite product (EVI from MODIS) that allows spatial estimates of the fraction of incident light absorbed by green vegetation.  Matching soil moisture data were estimated using the SPLASH model, with appropriate meteorological inputs, and soil water-holding capacity derived using SoilGrids.  LUE was then calculated as the amount of carbon fixed per unit of absorbed light.  We then explored additive models (incorporating multiple explanatory factors) that support non-linear responses.  Recognising that our longitudinal data lack independence, we controlled for the hierarchical nature of the dataset through a variance structure that nests measurement year within site location.

In arriving at a preferred parsimonious model, we show that daytime air temperature and vapour pressure deficit, and soil moisture content are all salient predictors of LUE.  The same explanatory terms are retained in iterations of this analysis run at timescales from weeks to months.  As a model-comparison exercise, we used that portion of our dataset which overlaps the North American Carbon Program to apply our empirical model structure to site-based estimates of GPP generated by 19 discrete Terrestrial Biosphere Models (TBMs).  The comparative analysis reveals wide variation between the TBMs in the shape, strength and even sign of the environmental effects on modelled GPP.

This empirical analysis suggests it is feasible to predict GPP using a single model structure, common across vegetation categories.  And the appeal of such universal approaches is highlighted by inconsistent relationships with key environmental drivers within extant terrestrial models.

How to cite: Bloomfield, K., Stocker, B., Keenan, T., and Prentice, C.: Predictions of Gross Primary Production from a suite of Terrestrial Biome Models display divergent relationships with key environmental variables, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5177, https://doi.org/10.5194/egusphere-egu21-5177, 2021.

EGU21-1744 | vPICO presentations | BG3.7

Sensitivity of global gross primary production to elevated CO2

Wenjia Cai and Iain Colin Prentice

Terrestrial ecosystems have accounted for more than half of the global carbon sink during the past decades and offset 25%-30% of current anthropogenic CO2 emissions. The projected increase in CO2 concentration will depend on the magnitude of terrestrial plants’ feedback to CO2: i.e. the sensitivity of plant carbon uptake in response to elevated CO2, and the strength of the CO2 fertilization effect (CFE) in a changing (and warming) environment. Projecting vegetation responses to future increases in CO2 concentration under climate change is a major uncertainty, as ecosystem models, field experiments and satellite-based models show large disagreements. In this study, using a recently developed, parameter-sparse model (the ‘P model’), we assess the sensitivity of GPP to increasing CO2 under idealized conditions, in comparison with other vegetation models and field experiments. We investigate the impact of two central parameters, the ratio of Jmax to Vcmax (at a common temperature) and the curvature of the light response curve, on the sensitivity of GPP to CO2. We also quantified the spatial-temporal trend of CFE using the β factor, defined as the percentage increase in GPP in response to a 100-ppm increase in atmospheric CO2 concentration over a defined period. We show how modelled β has changed over the satellite era, and infer the possible effect of climatic variables on changes of CFE from spatial patterns of the modelled trend in β.

How to cite: Cai, W. and Prentice, I. C.: Sensitivity of global gross primary production to elevated CO2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1744, https://doi.org/10.5194/egusphere-egu21-1744, 2021.

EGU21-7801 | vPICO presentations | BG3.7

MODELLING THE TERRESTRIAL NITROGEN AND PHOSPHORUS CYCLE IN THE UVic ESCM 

Makcim De Sisto and Andrew MacDougall

The role of nitrogen and phosphorus in terrestrial ecosystems has been shown to be critical in the regulation of the terrestrial carbon cycle. Therefore, the implementation of nutrient limitation in Earth System Models should be considered in order to have a more accurate representation of carbon fluxes, vegetation distribution and the response of the biosphere to climate change. Previous attempts to introduce the terrestrial nitrogen cycle and nutrient limitation in the UVic ESCM resulted in an incomplete project that was not added to the regular structure of the model. Here, we intend to improve the current state of the terrestrial nitrogen cycle and to develop a new terrestrial phosphorus cycle that will be coupled to the carbon cycle. The most prominent changes in the N cycle are the enforcement of N mass conservation and the merge with a deep land surface and a new wetland model. The N and P cycles estimates the fluxes between three organic pools: litter, soil and vegetation compartments (leaf, root and wood), two N pools (NH4+, NO3-) and one inorganic P pool. The basic structure of the N cycle was left in place, it estimates the inputs via biological nitrogen fixation and outputs via leaching, furthermore, with the merger with the new wetland model denitrification was added to the N loss of the system. The P cycle accounts the inputs from estimations of rock weathering and losses from occlusion and leaching. Both cycles regulate the vegetation system in 2 ways: (1) by controlling vegetation biomass if nutrient is limiting, reducing the amount of carbon in the plant compartments until the C:N or C:P ratio is met and (2) directly regulating the primary productivity by taking into account the relationship between leaf N and P and the maximum carboxylation rate (Vcmax). We aim to improve projections of the future CO2 fertilization feedback, and thus carbon budgets and ZEC.

How to cite: De Sisto, M. and MacDougall, A.: MODELLING THE TERRESTRIAL NITROGEN AND PHOSPHORUS CYCLE IN THE UVic ESCM , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7801, https://doi.org/10.5194/egusphere-egu21-7801, 2021.

EGU21-8252 | vPICO presentations | BG3.7

Combining diverse data for the quantification of terrestrial carbon and nitrogen allocations

Yunke Peng, Colin Prentice, Keith Bloomfield, Matteo Campioli, Zhiwen Guo, Yuanfeng Sun, Di Tian, Xiangping Wang, Sara Vicca, and Benjamin Stocker

Plants not only acquire carbon to sustain biomass production, autotrophic respiration, and the production of non-structural compounds, but also require nitrogen to support carboxylation and growth. However, available observations have not fully been integrated and used for modelling growth, carbon allocation to different compartments, and how different compartments’ nitrogen-to-carbon ratio vary across large climatic and soil gradients. This leaves substantial uncertainty in estimates of the global distribution of growth and nitrogen uptake by plants.

 

Here, we used the P-model, a first principles-derived and remote sensing-driven model for terrestrial gross primary production (GPP) to simulate the global distribution of GPP. Using comprehensive datasets with locally measured covariates for climatic and edaphic conditions and vegetation structure, we modelled the fractional allocation of GPP to biomass production (BP), aboveground net primary production (ANPP), and leaf NPP based on linear mixed-effects regression models. We defined BP as the sum of NPP in leaves, wood and roots. It thus does not include additional components such as exudates and labile carbon to mycorrhizae. Leaf nitrogen-to-carbon was modelled based on the maximum rate of carboxylation at 25 degrees Celsius (Vcmax25) and leaf mass per area (LMA). We then used global gridded data for the covariates that entered as predictors in site-level empirical models to simulate global C and N allocated to each component. We finally validated our global simulation results with an extended set of globally distributed GPP, BP and nitrogen-to-carbon ratio observations.

 

GPP was well predicted (R2 = 0.61). In forests, ratios of BP/GPP and ANPP/GPP decreased with soil C/N and stand-age but increased with humidity and with the fraction of absorbed photosynthetically active radiation (fAPAR). The ratio of leaf NPP to ANPP, increased with light availability and growth temperature, but decreased with vapor pressure deficit. Leaf nitrogen-to-carbon ratio was positively related to the ratio of Vcmax25 to LMA. Leaf nitrogen resorption efficiency (NRE) was increased in drier and colder environments. Through our data validation at the end, we have shown a prediction for NPP (R2 = 0.26), ANPP (R2 = 0.28), leaf NPP (R2 = 0.39), NRE (R2 = 0.30), leaf N/C (R2 = 0.26) and leaf N flux (R2 = 0.35).

 

Simulated global total GPP is 125 Pg C yr-1. Based on these statistical models, global mean carbon-use-efficiency (BP/GPP) was estimated to be 40%. The ratio of ANPP/BP was 72%, and ANPP was further split with 46% to leaf NPP and 54% to wood NPP. Simulated global total nitrogen acquisition (total of uptake from the soil and symbiotic N fixation) was 860 Tg N yr-1. Growth in the leaf, wood and root compartment accounted for 39%, 23% and 38% of global N acquisition, respectively. We suggest that plant adaptations result in higher ANPP, leaf NPP and finally leaf N flux under warmer, wetter, more abundant light and N-rich soil conditions, which aims to support higher rate of photosynthesis with greater nitrogen investment in the leaf.

How to cite: Peng, Y., Prentice, C., Bloomfield, K., Campioli, M., Guo, Z., Sun, Y., Tian, D., Wang, X., Vicca, S., and Stocker, B.: Combining diverse data for the quantification of terrestrial carbon and nitrogen allocations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8252, https://doi.org/10.5194/egusphere-egu21-8252, 2021.

EGU21-14841 | vPICO presentations | BG3.7

Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850-2014

Yuan Zhang, Philippe Ciais, Olivier Boucher, Fabienne Maignan, Ana Bastos, Daniel Goll, Thibaut Lurton, Nicolas Viovy, Nicolas Bellouin, and Laurent Li

Aerosols have a dimming and cooling effect and change hydrological regimes, thus affecting carbon fluxes, which are sensitive to climate. Aerosols also scatter sunlight, which increases the fraction of diffuse radiation, increasing photosynthesis. Although previous studies have quantified the impacts of some of these factors separately, there remains no clear conclusion whether the physical impacts of aerosols on land carbon fluxes is larger through diffuse radiation change than through changes in other climate variables. In this study, we quantified the overall physical impacts of anthropogenic aerosols on land C fluxes and explored the contribution from each factor using a set of factorial simulations driven by climate and aerosol data from the IPSL-CM6A-LR experiments from 1850 to 2014. A newly-developed land surface model which distinguishes diffuse and direct radiation in canopy radiation transmission, ORCHIDEE_DF, was used. Specifically, a sub-grid scheme was developed to distinguish the cloudy and clear sky conditions. We found that anthropogenic aerosol emissions since 1850 cumulatively enhanced the land C sink by 22.6 PgC. 78% of this C sink enhancement is contributed by aerosol-induced increase in the diffuse radiation fraction, which is much larger than the effect of the aerosol-induced dimming. The cooling of anthropogenic aerosols increases the C sink in low latitudes but decreases the C sink in high latitudes and overall slightly increases the global land C sink. Compared with radiation and temperature changes, aerosol-induced precipitation changes have limited impacts. The dominant role of diffuse radiation changes in affecting historical land C fluxes found in this study implies that future aerosol emissions may have a much stronger impacts on the C cycle through changing radiation quality than through changing climate alone. Earth system models need to take into account the diffuse radiation fertilization effect, in order to better evaluate the impacts of climate change mitigation scenarios.

How to cite: Zhang, Y., Ciais, P., Boucher, O., Maignan, F., Bastos, A., Goll, D., Lurton, T., Viovy, N., Bellouin, N., and Li, L.: Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850-2014, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14841, https://doi.org/10.5194/egusphere-egu21-14841, 2021.

EGU21-16300 | vPICO presentations | BG3.7

Impact of ozone on the carbon, heat and water fluxes in a land-surface model

Noel Clancy, William Collins, Pier Luigi Vidale, and Gerd Folberth

BG3.8 – Peatland management and restoration

EGU21-3357 | vPICO presentations | BG3.8

Topsoil removal and Sphagnum spreading improve the climate balance of peat bog restoration

Gerald Jurasinski, Vytas Huth, Eva Rosinski, Cordula Gutekunst, Franziska Koebsch, Bernd Hofer, Stefanie Heinze, Karin Ullrich, and Anke Günther

Many peatlands in Central Europe are under unsustainable drainage-based land use with high greenhouse gas emissions counteracting the aims of the Paris Agreement. After decades of drained and intensive land use many peat bogs are in pitiful state. Rewetting can stop the carbon dioxide (CO2) source function but may result in high methane (CH4) emissions and eutrophication. Further, lack of diaspores my hamper the establishment of typical bog species. Restoration measures like topsoil removal (TSR) or spreading target vegetation propagules are known to improve restoration success in fen peatlands or after peat extraction. However, experience on restoration of bogs after previous agricultural use is scarce and the climate effects of these restoration measures including carbon losses from TSR are unknown.

We installed a field trial in a drained bog in North-West Germany to explore the effect of TSR and Sphagnum spreading on greenhouse (GHG) emissions. The trial consists of seven plots (~8 x 24 m each) representing the status quo—intensive grassland use—and six different restoration approaches. Two approaches are rewetting on the original surface with or without regular biomass harvesting. The remaining four represent TSR prior rewetting where two of the four were inoculated with Sphagnum spp. On all plots we measured GHG fluxes fortnightly using closed chambers to obtain two-year GHG budgets. We assessed the climate effects of the status quo and the six restoration approaches by applying a radiative forcing model to the GHG budgets and to published emission factors while incorporating the effect of TSR through different depletion scenarios of the exported topsoil carbon.

Compared to the status quo, rewetting alone reduced CO2 emissions by ~75% but substantially increased CH4 emissions, which were much higher than published emission factors for a similar peatland category. After TSR, on-site CO2 emissions were close to 0 or—with Sphagnum spreading—net negative while CH4 emissions remained very low. Based on our GHG budgets, TSR quickly becomes less climate warming than keeping the status quo and rewetting at the original surface. In contrast, based on emission factors, rewetting at the original surface is initially the least climate warming option. 

In general, the climatic effect of TSR is likely lowest when removing only as much topsoil as necessary to implement nutrient-poor and acidic conditions thereby ensuring rapid establishment of a Sphagnum carpet and by conserving the removed topsoil as long as possible. Here, the climate warming effect of TSR of ~30 cm in combination with rewetting roughly corresponds to the climate warming of rewetted nutrient-rich temperate peatlands without TSR. Therefore, from a climate perspective, we can recommend a shallow TSR of up to 30 cm for peat bog restoration given that the goal is to re-establish typical bog habitats.

How to cite: Jurasinski, G., Huth, V., Rosinski, E., Gutekunst, C., Koebsch, F., Hofer, B., Heinze, S., Ullrich, K., and Günther, A.: Topsoil removal and Sphagnum spreading improve the climate balance of peat bog restoration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3357, https://doi.org/10.5194/egusphere-egu21-3357, 2021.

EGU21-4393 | vPICO presentations | BG3.8

Managing hydrology can reduce methane emissions of high-emitting freshwater marshes by half making them present-day net greenhouse gas sinks

Alex Valach, Elke Eichelmann, Kyle Hemes, Kuno Kasak, Sara Knox, Patty Oikawa, Daphne Szutu, Joseph Verfaillie, and Dennis Baldocchi

Restoring wetlands for climate mitigation purposes could provide an effective method to protect existing soil carbon stocks, as well as act as a negative emission technology by sequestering atmospheric carbon for 100-1000s of years. However, many peatlands have low productivity limiting carbon sequestration, while high productivity marshes often emit large amounts of methane. Studies on water level management to control methane emissions have shown differing results depending on wetland type, climate, as well as measurement method and duration. Here we show with multi-year flux measurements that water level changes were likely responsible for significantly reducing annual methane emissions. To assess management impacts on annual greenhouse gas budgets, continuous high frequency measurements of fluxes are needed, such as by eddy covariance. However, this method is less suited to monitor concurrent manipulation experiments to compare treatments.  We compared the impact of water level fluctuations by creating a second timeseries where water drawdown events were removed, which was then gap-filled by a random forest model trained only on measurements from periods when the water table was above the surface. These estimates were used to compare the annual budgets with the complete data and showed that annual methane emissions were up to 50% lower in years where water levels went sufficiently below the peat surface. This threshold was key, as only reductions in water depth above the surface were related to temporary increases in emissions. We further show that in some cases the drawdowns tipped the greenhouse gas budgets so that marshes were net greenhouse gas sinks, as long as the drawdown did not also reduce plant productivity through drought stress. In comparison, wetlands with average annual fluxes would require between approx. 50 and 200 years given current levels of net carbon uptake to offset high methane emissions and become cumulative greenhouse gas sinks. 

How to cite: Valach, A., Eichelmann, E., Hemes, K., Kasak, K., Knox, S., Oikawa, P., Szutu, D., Verfaillie, J., and Baldocchi, D.: Managing hydrology can reduce methane emissions of high-emitting freshwater marshes by half making them present-day net greenhouse gas sinks, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4393, https://doi.org/10.5194/egusphere-egu21-4393, 2021.

EGU21-11064 | vPICO presentations | BG3.8

Abandoned Peatland Ecosystem Response to Secondary Succession

Annelie Skov Nielsen, Klaus Steenberg Larsen, Lars Vesterdal, Per Gundersen, and Jesper Riis Christiansen

Most of the organic soils in Denmark are drained and used for agriculture. Greenhouse gas (GHG) emissions from these soils alone account for approximately 6-7 % of the total Danish emission. Rewetting, a relatively new climate change mitigation practice, of organic soils and peatland (i.e. lowland) ecosystems has the potential to reduce the net ecosystem GHG emission and over time turn the ecosystem to a net GHG sink. However, our knowledge of the ecosystem’s mitigation potential 50- or 100 years after abandonment is very limited and related to unknown interactions between soil biogeochemistry, vegetation type and growth and hydrology. Few studies have reported the GHG budgets of CO2 and CH4 for rewetted European peatland, and none includes the long-term response of these fluxes to rewetting. Continuous in-situ measurements of GHG emissions are complicated, time consuming and expensive which explains the data- and knowledge gap on long-term climate effects to some degree.  

Within the Danish research project RePeat, one of our main study-aims is to investigate how the long-term (0 – 71 years) ecosystem development (from grassland to secondary succession of woody vegetation) after rewetting impact the soil CO2 and CH4 fluxes in relation to changes in soil and biomass carbon stocks and biogeochemistry. We hypothesize that ‘rewetting and secondary succession of forest of farmed peatland will turn the ecosystem into a net carbon sink faster than if the ecosystem is maintained as extensively managed grasslands’. We expect that our research activities in 2021 and 2022 will allow us to test this hypothesis.

For this study, we have selected four abandoned/rewetted agricultural sites on organic drained soils that represent a chronosequence spanning 7 decades. Two of the sites have recently been rewetted or will be (site A in 2020 and B in 2021) and the other two sites (C, D) have been abandoned and left for secondary succession since 1994 and 1950, respectively. At each site, two subplots with 5 replicate collars serve to measure the net CO2/CH4 exchange by the static chamber approach and use of the Ultra-Portable Greenhouse Gas Analyzer model 915-0011 (© Los Gatos Research). Soil moisture- and temperature and groundwater depth are measured for each collar. Basic meteorological parameters (precipitation, barometric pressure, photosynthetically active radiation (PAR) and wind- speed and direction) are measured at- or nearby each site. In addition to the GHG, soil physical- and meteorological measurements, we will estimate above- and belowground biomass and collect soil- and groundwater samples for a biogeochemical characterization.

Our presentation will show the experimental setup and preliminary findings on CO2/CH4 fluxes and ecosystem hydrology for the four sites.

How to cite: Nielsen, A. S., Larsen, K. S., Vesterdal, L., Gundersen, P., and Christiansen, J. R.: Abandoned Peatland Ecosystem Response to Secondary Succession, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11064, https://doi.org/10.5194/egusphere-egu21-11064, 2021.

EGU21-7644 | vPICO presentations | BG3.8 | Highlight

Not back to their old selves – rewetted peatlands require functional understanding for sound management

Jürgen Kreyling, Franziska Tanneberger, Florian Jansen, Sebastian van der Linden, Hans Joosten, Gerald Jurasinski, and many Many Others

Peatlands, in particular temperate, groundwater-fed fens, have widely been drained for agriculture. However, draining peatlands turns them into globally relevant carbon sources, diminishes water holding capacity and nutrient removal at landscape scales, and threatens their native biodiversity. Consequently, formerly drained peatlands are now being re-wetted in large numbers for mitigating climate change, combating eutrophication, managing water and preserving biodiversity. A comparison between >300 rewetted peatlands to > 260 close to natural peatlands across temperate Europe, however, indicates that rewetting drained peatlands induces a helophytization (a dominance of tall, graminoid wetland plants) with no trend back to their former biodiversity (vegetation) and function (geochemistry, hydrology) for at least several decades. An understanding of these locally novel ecosystems is required for sound and sustainable management of their ecosystem services.

How to cite: Kreyling, J., Tanneberger, F., Jansen, F., van der Linden, S., Joosten, H., Jurasinski, G., and Many Others, M.: Not back to their old selves – rewetted peatlands require functional understanding for sound management, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7644, https://doi.org/10.5194/egusphere-egu21-7644, 2021.

EGU21-9456 | vPICO presentations | BG3.8

Potential of peatland restoration in Germany – a nationwide landscape analysis

Wiltrut Koppensteiner, Johannes Wegmann, and Bärbel Tiemeyer

Peatland restoration projects are important to mitigate climate change, loss of biodiversity and sustain and develop ecosystem services of peatlands. National and global strategies which address the effects of peatlands on climate change and nature conservation as well as the social and economic compatibility of peatland restoration projects are needed. The regional focus of these strategies is crucial for prospective restoration projects as well as for the measurements used to identify regions with high potential for realisation of peatland restoration along with sufficient impact on GHG reduction and nature conservation.

Therefore, we aim to identify regions in Germany in which the potential of realisation of restoration projects is high. Further, we identify important restrictions at regional scale which hinder potential peatland restoration projects.

We assembled a set of regional indicators and analysed the available GIS-data on the nationwide scale of Germany. Indicators comprise natural (e.g. precipitation surplus), legislative (e.g. protected and priority areas) and economic (e.g. land use, marginal return) conditions. Each identified indicator was categorised based on its relevance for the feasibility of implementing peatland restoration projects. Using landscape structure analyses, regions throughout Germany with good prospective for the realisation of peatland restoration projects were identified. These highlighted regions show high potential for optimising and/ or maximising the ecosystem services of peatlands. To characterise the region based on the indicators used, short profiles were created for each resulting region. We recommend to take the analysing method and these highlighted regions into account when developing nationwide strategies for peatland management in Germany.

How to cite: Koppensteiner, W., Wegmann, J., and Tiemeyer, B.: Potential of peatland restoration in Germany – a nationwide landscape analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9456, https://doi.org/10.5194/egusphere-egu21-9456, 2021.

EGU21-9505 | vPICO presentations | BG3.8

Impact of land management on fire resilience and carbon fate in blanket bogs: The FireBlanket project

Roxane Andersen, Stacey Felgate, Paula Fernandez-Garcia, Paul Gaffney, Peter Gilbert, Mark Hancock, David Large, Fraser Leith, Christopher Marshall, Dan Mayor, Jason McIlveny, Don Monteith, Amy Pickard, Richard Sanders, Henk Pieter Sterk, and Benjamin Williamson

Maintenance and enhancement of peatland carbon storage is a major policy objective towards meeting greenhouse gas (GHG) targets. Management interventions can influence both the storage capacity and the vulnerability of the stock to climate-change induced increases in drought frequency and severity, and incidence of wildfires. Quantification of these interactions is vital in informing best management practice, but is also challenging, given the ephemeral nature of climatic extremes and the usual paucity of high-quality ground-based observations within an area of interest capable of providing the necessary pre-impact and control data.

Following a dry and warm spell in spring 2019, a large wildfire burnt approximately >60 km2 of blanket bog and wet heath within the Flow Country peatlands of Caithness and Sutherland, North Scotland. While the Flow Country is a site of global significance currently under consideration for UNESCO World Heritage Site Status, it has also been substantially modified in places by drainage and notably forestry (670 km2) and is now undergoing rapid and large-scale restoration. Serendipitously, the fire scar impacted the whole range of land-uses and occurred in an area actively used for research, and therefore where some baseline datasets were available.

The NERC funded FireBlanket project used this opportunity to investigate how land-uses interacted with wildfire in terms of 1) InSAR-derived “bog breathing” patterns exhibited during the 2018 drought 2) immediate and longer-term effects on vegetation communities 3) export and fate of organic carbon from land to ocean. By understanding how different management strategies of forestry and forest-to-bog restoration influence fire risk and damage, we hope to inform decision-making in the future.

Our preliminary results show that in near-natural and restored (drain-blocked) blanket bogs, the drought of 2018 led to a rapid surface compression that maintained near-surface moisture until 2019, in turn reducing the severity of the wildfire. In drained and degraded blanket bogs, this mechanical feedback is absent, due to higher bulk density and differences in vegetation assemblages, notably reduced cover of Sphagnum mosses. In those areas, the 2018 drought led to a rapid and sustained loss of moisture in the upper peat layers, associated with higher burn severity and more pronounced fire damage on vegetation. Furthermore, while DOM concentrations increased post-fire in streams receiving water from all burnt areas compared to unburnt ones, the changes were more pronounced in catchments with man-made drains.

Whilst further data processing and analysis is still underway, our study currently suggests that restoration is likely to increase wildfire resilience and reduce wildfire severity. When taking management decisions at the landscape scale, strategic re-wetting around vulnerable areas (e.g. highly degraded or undergoing forest-to-bog management leading to large volumes of brash on the ground) may help reduce the risks of occurrence of large catastrophic wildfires, and help minimise the carbon losses associated with these events.

How to cite: Andersen, R., Felgate, S., Fernandez-Garcia, P., Gaffney, P., Gilbert, P., Hancock, M., Large, D., Leith, F., Marshall, C., Mayor, D., McIlveny, J., Monteith, D., Pickard, A., Sanders, R., Sterk, H. P., and Williamson, B.: Impact of land management on fire resilience and carbon fate in blanket bogs: The FireBlanket project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9505, https://doi.org/10.5194/egusphere-egu21-9505, 2021.

EGU21-11449 | vPICO presentations | BG3.8

Depth-dependent decomposition of root litter in drained and rewetted fen ecosystems

Gesche Blume-Werry, Juergen Kreyling, Sarah Schwieger, Kai-Uwe Eckhardt, Levke Henningsen, Hans Hogrefe, Nicole Wrage-Mönnig, Juergen Mueller, and Peter Leinweber

Peatlands cover only 3% of the lands surface, but store roughly a third of the global soil carbon due to inhibited decomposition rates. Over a third of the peatland area in Europe are fens, in which the peat is primarily formed by roots and rhizomes of vascular plants. These fens have been subjected to widespread drainage and conversion into agricultural areas. As a result, they continuously emit large amount of greenhouse gases. One strategy of mitigating the emissions, and ideally restoring the original sink function, is to rewet fen peatlands. However, it remains uncertain how rewetting changes decomposition rates compared to the drained state, and what the underlying biogeochemical processes and organic matter transformations during litter decomposition and peat formation are. We here present decomposition rates of root material in different depth, over 6 months, a year, and two years in different drained and rewetted fen ecosystems (percolation fen, coastal fen, alder forest). In addition to mass loss, we also assessed the composition of carbon compounds over time.

How to cite: Blume-Werry, G., Kreyling, J., Schwieger, S., Eckhardt, K.-U., Henningsen, L., Hogrefe, H., Wrage-Mönnig, N., Mueller, J., and Leinweber, P.: Depth-dependent decomposition of root litter in drained and rewetted fen ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11449, https://doi.org/10.5194/egusphere-egu21-11449, 2021.

EGU21-14750 | vPICO presentations | BG3.8

Incentivising peatland restoration and rewetting actions through a result-based EU carbon farming mechanism

Asger Strange Olesen and Sarah Pyndt Andersen

Intact peatland plays an important role for the carbon cycle, climate mitigation and provision of ecosystems services due to their role as a permanent water-locked carbon stock and ongoing sink. However, years of unsustainable land management practices have resulted in degradation of peatlands in the EU and around 220 Mt CO₂ eq. are emitted in the EU per year[1] from peatland drainage alone. New approaches to peatland restoration and rewetting are being explored to ensure effective and efficient climate actions. Learning from and building on already operational sub-national and national result-based payment peatland mechanism and programmes, this study provides recommendations on designing and operating an effective and efficient result-based carbon farming peatland mechanism in the EU. The findings suggest that a results-based carbon farming mechanism offers a promising way to incentivise, e.g. governments, authorities and farmers to develop and implement peatland restoration and rewetting projects. Results-based mechanisms provide new and additional sources of finance to counter high upfront restoration costs, as well as provide an opportunity to valorise GHG emissions from large, geographically confined emission sources based on current carbon credit prices.

[1] Source: Grifswald Mire Centre (2019). https://www.greifswaldmoor.de/files/dokumente/Infopapiere_Briefings/202003_CAP%20Policy%20Brief%20Peatlands%20in%20the%20new%20EU%20Version%204.8.pdf

How to cite: Olesen, A. S. and Andersen, S. P.: Incentivising peatland restoration and rewetting actions through a result-based EU carbon farming mechanism, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14750, https://doi.org/10.5194/egusphere-egu21-14750, 2021.

Drainage of peatlands for agriculture causes substantial degradation and finally loss, including associated ecosystem functions, but also creates emission hotspots of carbon dioxide (CO2). Mean CO2 emission from drained temperate grassland on peat was reported by IPCC as 22.4 (18.3-26.7) Mg
CO2-eq ha-1 y-1 (95% CI) while methane (CH4) emissions were close to zero. Rewetting of peatlands reduces CO2 emissions while at the same time favouring CH4 emissions. From wet or rewetted nutrient-rich grassland, emissions of CO2 and CH4 were reported by IPCC as 1.8 (-2.8-2.8) and
9.8 (0-39) Mg CO2-eq ha-1 y-1, respectively (GWP CH4 = 34). The uncertainties of the estimates reflect the large variation among the reported studies, which could be caused by different climate conditions, vegetation, groundwater table (GWT), peat composition and biogeochemistry. A mesocosm experiment was established to assess biogeochemical causes of variation in CO2 and CH4 flux dynamics under controlled GWT for peatsoils derived from five different Danish bogs and fens. A total number of 75 mesocosms were grouped into three treatments: GWT -40 cm, bare; GWT -5 cm, bare; and GWT -5 cm, cultivated with reed canary grass (RCG). GHG fluxes were measured using opaque chambers at biweekly intervals from July 2019 to 2020 and extrapolated to annual values. Preliminary results indicate significant differences regarding CO2 and CH4 fluxes across all sites and depending on soil biogeochemical and physical properties. Rewetting raised the contribution of CH4 most on soils from Store Vildmose and Vejrumbro with 1.9 to 12.9 t CO2eq ha-1 yr-1 and 0.1 to 5.7 t CO2eq ha-1 yr-1, respectively. On an annual average, these high emissions were with 69 % and 48 % mitigated by the cultivation of RCG in a paludiculture scenario. Further, the results show that CH4 spikes of up to 37.5 mg m-2 h-1 at elevated GWT during warmer summer months may be mitigated by cultivation with RCG, with maximum peaks of 2.1 mg m-2 h-1. Soil analyses highlighted distinct differences in the soil mineralogical composition across sites and soil depths.

How to cite: Nielsen, C., Elsgaard, L., Jørgensen, U., and Lærke, P. E.: The effect of cultivation with reed canary grass on methane emissions from different Danish wet agricultural peatlands and the correlation with biogeochemical soil properties, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-275, https://doi.org/10.5194/egusphere-egu21-275, 2021.

EGU21-12939 | vPICO presentations | BG3.8

Effects of topsoil removal on greenhouse gas exchange of fen paludicultures

Philipp-Fernando Köwitsch and Bärbel Tiemeyer

Drainage is necessary for conventional agriculture on peatlands, but this practice causes high emissions of the greenhouse gases (GHG) carbon dioxide and nitrous oxide. Paludiculture is an option to mitigate these adverse environmental effects while maintaining productive land use. Whereas the GHG exchange of paludiculture on rewetted bog peat, i.e. Sphagnum farming, is relatively well examined, data on GHG emissions from fen paludicultures is still very scarce. As typical fen paludiculture species are all aerenchymous plants, the release of methane is of particular interest when optimising the GHG balance of such systems. Topsoil removal is, on the one hand, an option to reduce methane emissions as well as phosphorus release upon rewetting, but on the other hand, nutrient-rich topsoils might foster biomass growth.

In this project, Typha angustifolia, Typha latifolia, and Phragmites australis are grown at a fen peatland formerly used as grassland. Water levels will be kept at the surface or slightly above it. In parts of the newly created polder, the topsoil will be removed. To be able to separate the effects of topsoil removal and water level, four smaller sub-polders will be installed. Greenhouse gas exchange will be measured with closed manual chambers for all three species with and without topsoil removal as well as at a reference grassland site close by.

How to cite: Köwitsch, P.-F. and Tiemeyer, B.: Effects of topsoil removal on greenhouse gas exchange of fen paludicultures, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12939, https://doi.org/10.5194/egusphere-egu21-12939, 2021.

EGU21-16511 | vPICO presentations | BG3.8

Time to "Rewet the Swamp" – Application of Georgian Data Cube to Elucidate Drainage Patterns and Potential for Wet Agriculture and Forestry on Kolkheti Lowland

Izolda Matchutadze, Aliosha Bakuridze, Ira Abuladze, Nana Shakarishvili, and Mamuka Gvilava

It was established recently that gravity drainage is inefficient on Kolkheti Lowland along the Black Sea coast of Georgia and that novel approaches are urgently recommend, such as implementing rewetting schemes to restore ecosystem services and enhance economic values of these areas through wet agriculture, biofuel production with native wetland species, and/or afforestation, to achieve sustainable outcomes in both ecologic and economic terms. Water Detection, Fractional Cover and Urbanization remote sensing tools, provided by Georgian Data Cube (comprising Landsat sensor Analysis Ready Data), developed recently with UNEP/GRID support, were applied on multi-year timescale basis for Kolkheti lowland to identify priority areas with high potential for rewetting. Water Detection tool allowed establishment of low effectiveness drainage areas, as demonstrated by high cumulative values for the presence of water, indicating water-logged areas as potential intervention sites for wet agroforestry. Water Detection combined with Fractional Cover tool allowed comparative analysis of non-photosynthetic vegetation and bare soil areas versus high water detection areas to single out those lands on the Kolkheti lowland, where drainage seems effective and dry agriculture is pursued versus those lands where drainage is not effective and dry agriculture is not actually happening. Urbanization tool can also be applied to detect human activities, such as agricultural activities, visualising those areas, which are subjected to active vegetation removal on an annual basis due to crop harvesting and those areas, where vegetation was not removed, staying vegetated most of the time, interpreted as abandoned agricultural lands. Regular patters combining non-use agricultural with cumulative water covered areas could thus help locate candidate sites for piloting wet agriculture on Kolkheti Lowland in Georgia. In addition to sustainable economic practices, rewetting could certainly benefit core ecological areas of Kolkheti Lowland, protected by both national designation as Kolkheti National Park and international designation as Central Kolkheti Ramsar Site.

How to cite: Matchutadze, I., Bakuridze, A., Abuladze, I., Shakarishvili, N., and Gvilava, M.: Time to "Rewet the Swamp" – Application of Georgian Data Cube to Elucidate Drainage Patterns and Potential for Wet Agriculture and Forestry on Kolkheti Lowland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16511, https://doi.org/10.5194/egusphere-egu21-16511, 2021.

EGU21-8175 | vPICO presentations | BG3.8 | Highlight

Which management option has the highest greenhouse gas reduction potential for drained peatlands?

Merit van den Berg, Christian Fritz, Bas van de Riet, Stefan Weideveld, Thomas Gremmen, Eva van den Elzen, Renske Vroom, Jeroen Geurts, and Leon Lamers

Almost all peatlands in the Netherlands are drained for agricultural purposes or in the past for peat extraction. What remains is a peatland area of about 300.000 ha of which 85 % is used for agriculture. As a result of peat oxidation, these areas are still subsiding by about 1 cm per year. Another effect is the enormous emission of CO2, which contributes to about 4% of total Dutch greenhouse gas emissions. With the awareness of a changing climate and the need for protection against flooding of coastal areas, solutions are being searched to reduce or stop peat oxidation and coinciding land subsidence and CO2 emission.

In this presentation we will show different management options (subsoil irrigation, pressurized subsoil irrigation, paludiculture) which are currently being tested in the Netherlands. They will be put into perspective of data from other European studies. These options all focus on increasing the groundwater table to lower oxygen intrusion and consequently lower aerobic decomposition. Depending on crop choices, water levels may need to stay 40 cm below the surface to maximize fodder plant yields, or go to surface level to increase peat ecosystem functions like C-sequestration. The management options range from maintaining the current land-use by elevating summer water levels, with submerged drainage, to the development of peat-forming plant species by complete rewetting. Data of the effects of these management options on CO2 emission show that Sphagnum farming is the most promising mitigation option to reduce greenhouse gas emission from drained peatlands. It turned the land from a carbon and greenhouse gas source into a sink.

How to cite: van den Berg, M., Fritz, C., van de Riet, B., Weideveld, S., Gremmen, T., van den Elzen, E., Vroom, R., Geurts, J., and Lamers, L.: Which management option has the highest greenhouse gas reduction potential for drained peatlands?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8175, https://doi.org/10.5194/egusphere-egu21-8175, 2021.

EGU21-10162 | vPICO presentations | BG3.8

Effects of different land management strategies on greenhouse gas emissions from pre-alpine fens under grassland use.

Clarisse Brehier, Janina Klatt, Martina Schlaipfer, Heta Meyer, and Matthias Drösler

In Germany, 90% of peatlands are drained and mostly used for agriculture. As a result, carbon storage and water retention capabilities are mostly lost. Instead, drained peatlands are significant sources of greenhouse gases. The comprehensive gain of near-natural peatlands and thus their restoration has increasingly come into focus in recent years. Until now, it has very rarely been possible to directly measure and investigate the changes in greenhouse gas emissions during rewetting. We have the unique opportunity to investigate the rewetting of two drained pre-alpine fens used as grassland in southern Bavaria with chamber measurements of CO2, CH4 and N2O.

The first one in Karolinenfeld (60 km south-east from Munich) has an intensive management (with three cuts per year, application of manure/fertilizer and a really low water-table: mean value around 90cm). The other one in Benediktbeuern (60 km south-west from Munich) has an extensive management (with two cuts per year, no use of manure/fertilizer since 1990, and mean water-table around 30cm). For each study sites, we have several plots, which have significant different water-table depths. Since December 2019, CO2, CH4 and N2O emissions are measured with closed chambers method. Climate data are monitored and recorded every half hour (as ground temperatures, air temperature, photosynthetic photon flux density, water-table depth, air pressure …). We also collected data of environmental parameters with biomass analyses, vegetation description, soil analyses, and we measure regularly vegetation indexes (NDVI and LAI).

During the first year of measurement, we already noticed a significant difference between the two study sites. The depth of the water table seems to be the major explanatory parameter for the different emissions. Moreover, the impact of the cuts on CO2 emissions is notable, whereas we did not measure any difference after the application of fertilizer.

At the end of 2020 the Karolinenfeld has been rewetted while keeping the management types unchanged. Benediktbeuern will be rewetted during the year 2021. In order to achieve this goal, water management practices have been introduced using the existing drainage pipes in combination with a pumping system for subsurface irrigation. We expect to gain insight into the greenhouse gas exchange of peatlands according to water management and agricultural activities and to highlight the short-term effects of the transitional stage during and after rewetting. We also would like to determinate the key factors who drive the greenhouse gases emissions on grasslands according to different water management and land-use.

The work is part of the KliMoBay project, funded by the Bavarian State Ministry for the Environment and Consumer Protection through the European Regional Development Fund (ERDF).

How to cite: Brehier, C., Klatt, J., Schlaipfer, M., Meyer, H., and Drösler, M.: Effects of different land management strategies on greenhouse gas emissions from pre-alpine fens under grassland use., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10162, https://doi.org/10.5194/egusphere-egu21-10162, 2021.

EGU21-15819 | vPICO presentations | BG3.8 | Highlight

Wetter, but not wet enough – limited greenhouse gas mitigation effects of submerged drains and blocked ditches in an intensively used grassland on fen peat

Sebastian Heller, Peter Gatersleben, Sebastian Oehmke, Ullrich Dettmann, Melanie Bräuer, and Bärbel Tiemeyer

The vast majority of peatlands in the North German Plain are cultivated as grassland. Intensive drainage measures are a prerequisite for conventional agricultural use of peatlands, but this practice causes high emissions of greenhouse gases (GHG), mainly carbon dioxide (CO2). Thus, raising the water levels is necessary to reduce or stop CO2 emissions. Water management options such as submerged drains (SD) and ditch blocking (DB) are discussed as a potential compromise between maintaining the trafficability for intensive grassland use and reducing the GHG emissions. Furthermore, grassland renewal is regularly practiced to improve the fodder quality for dairy farming; however, this might cause additional release of GHGs, especially nitrous oxide (N2O). Here, we present results of a four-year study on the GHG emissions from an intensively used grassland on fen peat equipped with SD and DB. Additionally, the effect of grassland renewal by shallow ploughing and direct sowing was evaluated.

The target groundwater levels were set to -0.30 m below ground. In the first year, the water management system was optimized. In the following years, mean annual water levels at the parcels with SD were -0.23 m and at the parcels with DB -0.37 m. The groundwater level at the SD parcels was around 0.18 m higher than at the conventionally drained control parcels. Thus, water management by SD enabled us to even surpass the target water levels. However, year two and three of the study were dryer than usual, the differences between the SD parcels and the control parcels are expected to be lower in wet years. DB, in contrast, raised the water levels only marginally.

During the first three years, control parcels with ditch drainage emitted 27-49 t CO2-eq. ha-1 a-1. This is within the typical range of emissions from grasslands on fen peat in Germany. On average, the parcels with SD showed slightly lower emissions than the drained control parcels, but these were highly variable (16-60 t CO2-eq. ha-1 a-1). Due to similar groundwater levels the emissions from the parcel with DB (23-43 t CO2-eq. ha-1 a-1) were comparable to the drained control parcels. Reasons for the high CO2 emissions despite increased groundwater levels by SD remain so far unclear. Both types of grassland renewal lead to higher N2O emissions during the first year after renewal. Afterwards, effects became ambiguous.  

Results from the fourth measurement year (2020) will be presented as well. So far, the data seems to support the results of the previous years.

How to cite: Heller, S., Gatersleben, P., Oehmke, S., Dettmann, U., Bräuer, M., and Tiemeyer, B.: Wetter, but not wet enough – limited greenhouse gas mitigation effects of submerged drains and blocked ditches in an intensively used grassland on fen peat , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15819, https://doi.org/10.5194/egusphere-egu21-15819, 2021.

EGU21-2640 | vPICO presentations | BG3.8

Reducing agricultural peatland CO2 emissions with hydrological conservation measures

Jim Boonman, Mariet Hefting, Ko van Huissteden, Han Dolman, and Ype van der Velde

Peat soils are an important carbon stock in the global carbon cycle containing more than two third of the atmospheric carbon amount (600 GtC of 760 GtC) despite their relatively small landmass of 3% worldwide. Drainage of peatlands contributes significantly to the enhanced global warming, as it allows oxygen to intrude the soil, intensifying aerobic microbial decomposition associated with carbon dioxide emission. Water management strategies that result in a raise in (summer) groundwater tables can have the opposite effect. These measures, such as raising the surface water level and/or the application of submerged drain subsurface irrigation systems, are already being applied. However, the outcome of these strategies remains debated and is still largely to be tested. We aim to explore the potential effects of these water management strategies on reducing GHG emission in peatlands.

We simulated the effects of several water management strategies on potential aerobic peat decomposition in a managed Dutch grassland on sedge peat under various hydrological and climatological conditions. To estimate potential microbial activity in the unsaturated zone two main drivers, temperature and water filled pore space (WFPS) were used. We found that increasing ditch water levels yields a decrease in potential aerobic peat decomposition independent of summer drought, hydrological regime and peat hydrological conductivity. Furthermore, we found that submerged drainage-irrigation systems tend to establish a stable moist zone relatively close to the warm soil surface in which potential microbial activity can remain high over the complete summer period. Due to these stable conditions, we expect peat decomposition in this layer to be high, possibly counteracting the effects of decreased aeration depth due to higher water tables. Submerged drainage-irrigation systems generally decrease potential microbial activity in environments with downward flow, but increase the activity in environments with upward flow. Increased benefits of the submerged systems are found for dry years, with high surface water levels and/or decreasing hydrological conductivity of the intact peat.

How to cite: Boonman, J., Hefting, M., van Huissteden, K., Dolman, H., and van der Velde, Y.: Reducing agricultural peatland CO2 emissions with hydrological conservation measures, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2640, https://doi.org/10.5194/egusphere-egu21-2640, 2021.

EGU21-8829 | vPICO presentations | BG3.8

Spatial variability of greenhouse gas fluxes in two drained Northern peatlands

Andreas Ibrom, Norbert Pirk, Klaus Steenberg Larsen, Linsey Marie Avila, Konstantinos Kissas, and Poul Larsen

Peatlands store large amounts of organic carbon, which is subject to microbial decomposition and mineralization to either CO2 or CH4.  Drained peatlands are characterized by large horizontal variability in soil water contents and saturation, with dryer parts closer to the drainage ditches. The greenhouse gas (GHG) production in these systems is expected to be sensitive to temperature, substrate chemistry, oxygen concentration thus on soil water contents. Methane production should take place in the wetter parts, while respiration should dominate in drier parts. The seasonality of weather conditions modulates the spatial variability. In this complex situation, we are interested in how the seasonal weather variability triggers the microbial processes in the different micro-topographical situations and how this affects the overall GHG budgets of such sites.

We investigate two neighboring, drained ombrotrophic bogs in Norway close to Trysil, Innlandet, 61.1N- 12.25E, 640 m a. s. l.. One site (South) on an upper slope is about 45 m higher than the other site (North) in a saddle like flattening.  We use an automated chamber method to examine the seasonality of GHG production at microsites that cover some contrasting local situations with in the large range of small scale spatial heterogeneity. With eddy covariance CO2 and CH4 flux measurements, we integrate over a larger spatial scale, with, however, shifting footprints depending on weather conditions and wind direction. We present a comparative  analysis of 1.5 years continuous measurements, where we examine shifting spatial patterns of GHG production at different scales and relate them to soil conditions.

While the CO2 fluxes compared very well between the two investigated sites, the CH4 fluxes in the lower and wetter of the two sites (North) was higher and their spatial variability was lower than in the South site. Only in the South site, the CH4 fluxes correlated with the coverage of well drained versus less well drained areas. We will present results on how the spatial variability changed with the seasonality of soil temperatures and the water table.

The automated chambers (five chambers within each footprint of the eddy flux towers) showed higher spatial variability for CH4 fluxes than for CO2 with higher CH4 emissions in the wetter plots furthest away from ditches, i.e. CH4 fluxes correlate well to ground water depth at both sites. N2O emissions were observed in short events during the early summer season. Overall, there was a good alignment of fluxes measured with eddy flux and chamber technologies.

Information on factors that constrain the spatio-temporal variability are important for estimating areal GHG budgets and for predicting possible effects of peatland management, such as draining or re-wetting on the climate effects from these ecosystems.  From the results, we expect higher effects of peatland restoration on GHG budgets in the South site.

How to cite: Ibrom, A., Pirk, N., Steenberg Larsen, K., Avila, L. M., Kissas, K., and Larsen, P.: Spatial variability of greenhouse gas fluxes in two drained Northern peatlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8829, https://doi.org/10.5194/egusphere-egu21-8829, 2021.

EGU21-10285 | vPICO presentations | BG3.8

Greenhouse gas budget of an extensively managed grassland on drained peat soil in the Irish Midlands

Marine Valmier, Matthew Saunders, and Gary Lanigan

Grassland-based agriculture in Ireland contributes over one third of national greenhouse gas (GHG) emissions, and the LULUCF sector is a net GHG source primarily due to the ongoing drainage of peat soils. Rewetting of peat-based organic soils is now recognised as an attractive climate mitigation strategy, but reducing emissions and restoring the carbon sequestration potential is challenging, and is not always feasible notably due to agricultural demands. Nonetheless, reducing carbon losses from drained organic soils has been identified as a key action for Ireland to reach its climate targets, and carbon storage associated with improved grassland management practices can provide a suitable strategy to offset GHG emissions without compromising productivity. However, research is still needed to assess the best practices and management options for optimum environmental and production outcomes. While grasslands have been widely studied internationally, data on organic soils under this land use are still scarce. In Ireland, despite their spatial extent and relevance to the national emission inventories and mitigation strategies, only two studies on GHG emissions from grasslands on peat soils have been published.

Here we present results from a grassland on a drained organic soil that is extensively managed for silage production in the Irish midlands. Continuous monitoring of Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) using eddy covariance techniques, and weekly static chamber measurements to assess soil derived emissions of methane (CH4) and nitrous oxide (N2O) started in 2020. The seasonal CO2 fluxes observed were greatly dependent on weather conditions and management events. The grassland shifted from a carbon source at the beginning of the year to a sink during the growing season, with carbon uptakes in April and May ranging from 15 to 40 µmol CO2 m-2 s-1 and releases in the order of 5 µmol CO2 m-2 s-1. Following the first harvest event in early June, approximately 2.5 t C ha-1 was exported, and the sink capacity took around one month to recover, with an average NEE of 10 µmol CO2 m-2 s-1 during that period. Carbon uptake then reached a maximum of 25 µmol CO2 m-2 s-1 in August. After the second cut in mid-September, which corresponded to an export of 2.25 t.ha-1 of carbon, the grassland acted once again as a strong carbon source, losing almost 30 g C m-2 in a month, before stabilising and behaving as an overall small source during the winter period.

In summary, this grassland demonstrated high rates of carbon assimilation and productivity that translate in a strong carbon sink capacity highly dependent on the management. The biomass harvest is a major component of the annual budget that has the potential to shift the system to a net carbon source. Moreover, while initial measurements of CH4 and N2O fluxes appeared to be negligible, some management events were not assessed due to national COVID 19 restrictions on movement, which might have impacted the sink strength of the site studied.

How to cite: Valmier, M., Saunders, M., and Lanigan, G.: Greenhouse gas budget of an extensively managed grassland on drained peat soil in the Irish Midlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10285, https://doi.org/10.5194/egusphere-egu21-10285, 2021.

EGU21-12670 | vPICO presentations | BG3.8 | Highlight

Insights into the carbon dynamics of a wasted peatland under long term drainage and intensive agriculture.

Thomas Newman, Jörg Kaduk, and Susan Page

Lowland fen peatlands in East Anglia, United Kingdom (UK), have had a long history of drainage and agricultural use, with some having been drained for several centuries. This has led to the loss of up to 4.0 m of the original peat layer through initial consolidation and subsequent decomposition.

Today, the primary land use of these peatlands is intensive arable and horticultural agriculture, resulting in continued loss and degradation of the remaining peat layer. This has led to the classification of a large part of these peatlands as ‘wasted’ - i.e. the peat-forming vegetation has been lost along with a significant depth of peat and the underlying mineral layer increasingly determining soil properties.

Despite a significant fraction of the UK lowland peatlands being classified as wasted (1922 km2 or 13.5%), there have been no previous studies of the carbon (C) emissions from these peatlands. Studies on non-wasted ‘deep’ agricultural peatlands (peat depths > 1m) suggest emission factors of 5.2 to 8.3 t CO2-C ha-1 yr-1 indicating the potential for wasted peatlands, despite having a lower soil organic C content, to still generate large emissions representing a significant component of the UK’s national greenhouse gas inventory.

Using Eddy Covariance, the CO2 emissions of two co-located fen peatlands within East Anglia under similar intensive agriculture were quantified throughout 2018-2020.  The first site, EN-SP3, is a wasted fen peatland where the surface organic layer has been depleted to <40cm. The second site, EF-DA, is a deep peat with an organic soil layer >1m deep. We present initial analysis of C emissions data from EN-SP3, which represent the first emission estimates from a wasted agricultural fen peatland in the UK, in comparison with data collected from EF-DA, the co-located deep peat agricultural fen peatland, over the last ~6 years.

Preliminary analysis of the first full year of emissions data from the wasted peat site (EN-SP3) indicates an approximate net C balance of  5.4 t C ha-1 yr-1 (17th May 19 – 17th May 20, Celery crop following a Phacelia & Buckwheat cover crop), whilst there was a higher estimated rate of emission during the previous year under a maize crop (222 days; 4th May 18 – 11th Dec 18) indicating a net C balance of 4.7 t C ha-1 over the 222 day period. These data compare with 7.8 - 11.2 t C ha-1 yr-1 from between 2012-2019 from the deep peat site (EF-DA). We highlight key differences between sites, enabling us to draw early insights into how C dynamics may differ between shallow and deep lowland agricultural peat soils.

How to cite: Newman, T., Kaduk, J., and Page, S.: Insights into the carbon dynamics of a wasted peatland under long term drainage and intensive agriculture., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12670, https://doi.org/10.5194/egusphere-egu21-12670, 2021.

EGU21-10119 | vPICO presentations | BG3.8 | Highlight

Contributions of methane and nitrous oxide to peat greenhouse gas emissions from forests and oil palm plantations in an Indonesian peatland

Erin Swails, Kristell Hergoualc'h, Louis Verchot, and Deborah Lawrence

Land-use change in tropical peatlands substantially impacts emissions of methane (CH4) and nitrous oxide (N2O) in addition to emissions of carbon dioxide (CO2). However, assessments of peat GHG budgets are scarce and the contributions of CH4 and N2O remain highly uncertain. The objective of our research was to assess changes in peat GHG flux and budget associated with peat swamp forest disturbance and conversion to oil palm plantation and to evaluate drivers of variation in trace gas fluxes. Over a period of one and a half year, we monitored monthly CH4 and N2O fluxes together with environmental variables in three undrained peat swamp forests and three oil palm plantations on peat in Central Kalimantan. The forests included two primary forests and one 30-year-old secondary forest. We calculated the peat GHG budget in both ecosystems using soil respiration and litterfall rates measured concurrently with CH4 and N2O fluxes, site-specific soil respiration partitioning ratios, and literature-based values of root inputs and dissolved organic carbon export. Peat CH4 fluxes (kg CH4 ha-1 yr-1) were insignificant in oil palm (0.3 ± 0.4) while emissions in forest were high (14.0 ± 2.8), and larger in wet than in dry months. N2O emissions (kg N2O ha-1 yr-1) were highly variable spatially and temporally and similar across land-uses (5.0 ± 3.9 and 5.2 ± 3.7 in oil palm and forest). Temporal variation of CH4 was controlled by water table level and soil water-filled pore space in forest and oil palm, respectively. Monthly fluctuations of N2O were linked to water table level in forest. The peat GHG budget (Mg CO2 equivalent ha-1 yr-1) in oil palm (31.7 ± 8.6) was nearly eight times the budget in forest (4.0 ± 4.8) owing mainly to decreased peat C inputs and increased peat C outputs. The GHG budget was also ten times higher in the secondary forest (10.2 ± 4.5) than in the primary forests (0.9 ± 3.9) on the account of a larger peat C budget and N2O emission rate. In oil palm 96% of emissions were released as CO2 whereas in forest CH4 and N2O together contributed 65% to the budget. Our study highlights the disastrous atmospheric impact associated with forest degradation and conversion to oil palm in tropical peatlands and stresses the need to investigate GHG fluxes in disturbed undrained lands.

How to cite: Swails, E., Hergoualc'h, K., Verchot, L., and Lawrence, D.: Contributions of methane and nitrous oxide to peat greenhouse gas emissions from forests and oil palm plantations in an Indonesian peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10119, https://doi.org/10.5194/egusphere-egu21-10119, 2021.

EGU21-1871 | vPICO presentations | BG3.8

Development of new drainage factor in ECOSSE model to improve water dynamics and prediction of CO2 fluxes from drained peatlands

Alina Premrov, David Wilson, Matthew Saunders, Jagadeesh Yeluripati, and Florence Renou-Wilson

ABSTRACT

Drained peatlands often act as carbon source and their drainage characteristics can be challenging to accommodate in biogeochemical models. This study uses the ECOSSE process-based  biogeochemical model [to simulate water-table level and CO2 fluxes (heterotrophic respiration) [1]], and empirical data from two Irish drained peatlands: Blackwater and Moyarwood, which were partly rewetted (both sites are extensively described in earlier studies [2]). Here we explain details on the development of a new drainage factor with seasonal variability Dfa(i) for drained peatlands, based on our recently published work [3]  that we hope can contribute towards the potential future development of IPCC Tier 3 emissions reporting. The Dfa(i) was developed using empirical data from Blackwater drained bare-peat site (BWdr) and its application was further tested at the Moyarwood site under drained (MOdr) and rewetted conditions (MOrw) [3]. The development of the Dfa(i) was carried out in three main steps [3]: 1 - identification of the ‘wt-discrepancy event’; 2 - development of Dfa without seasonal variability, and 3 - accounting for seasonal variability and development of Dfa(i). Dfa(i) was then applied to the rainfall inputs for the periods of active drainage in conjunction with the measured water-table inputs [3]. As explained in our published work [3], the results indicate that the application of Dfa(i) could improve the model performance to predict water-table level (BWdr: r2 = 0.89 MOdr: r2 =  0.94); and CO2 fluxes [BWdr: r2 = 0.66 and MOdr: r2 = 0.78) under drained conditions, along with ability of the model to capture seasonal trends [2]. The model simulation of CO2 fluxes at MOrw site was also satisfactory (r2=0.75); however, the MOrw water-table simulation results suggest that additional work on the water model component under rewetted conditions is still needed [3]. We further discuss our insights into potential opportunities for future additional improvements and upgrading of the ECOSSE model water module.

 

Acknowledgements

The authors are grateful to the Irish Environmental Protection Agency (EPA) for funding the AUGER: Project (2015-CCRP-MS.30) under EPA Research Programme 2014–2020. Full acknowledgements are provided in Premrov et. al (2020) [3].

 

Literature

[1] Smith, J., et al. 2010. ECOSSE. User Manual.

[2] Renou-Wilson, F., et. al. 2019. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol. Eng. 127:547-560.

[3] Premrov, A., D. Wilson, M. Saunders, J. Yeluripati and F. Renou-Wilson (2020). CO2 fluxes from drained and rewetted peatlands using a new ECOSSE model water table simulation approach. Sci. Total Environ. (https://doi.org/10.1016/j.scitotenv.2020.142433; on-line 2020; in print Vol. 754, 2021; under CC BY 4.0).

How to cite: Premrov, A., Wilson, D., Saunders, M., Yeluripati, J., and Renou-Wilson, F.: Development of new drainage factor in ECOSSE model to improve water dynamics and prediction of CO2 fluxes from drained peatlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1871, https://doi.org/10.5194/egusphere-egu21-1871, 2021.

EGU21-9170 | vPICO presentations | BG3.8

Importance of mosses and vascular plants in peat soil carbon sequestration

Åsa Kasimir and Per-Erik Jansson

Nutrient rich peat soils have earlier been shown to loose carbon despite higher photosynthesis and litter production compared to nutrient poor soils, where instead carbon accumulated. To understand this phenomena data from two drained Finnish sites, nutrient poor Kalevansuo and nutrient rich Lettosuo, was combined with a process-oriented model (CoupModel). Uncertainty based calibrations were made using eddy-covariance data (hourly values of net ecosystem exchange) and tree growth data. The model design was three vegetation layers: trees, smaller vascular plants and a bottom layer with mosses, all with different LAI and degree of coverage. Adding a moss layer was a new approach, having a modified physiology compared to vascular plants. Soil organic carbon was described by two separate litter pools for vascular plants and mosses together with a common inert pool of decomposed organic matter. Over a period of 10 years the model showed similar photosynthesis rate for the two sites but higher biomass accumulation for the fertile stand. Moss biomass did not increase, instead mosses delivered high litter inputs with low turnover rates compared with litter from vascular plants. Both the soil organic carbon received from vascular plant litter and the old decomposed matter declined by time, while litter originating from mosses was accumulating by time. Large differences between the sites were obtained during dry spells where soil heterotrophic decomposition was enhanced in the vascular plants dominated site, due to a larger water depletion by roots. Important for carbon accumulation in the poor soil was the mosses, adding larger litter quantities with a resistant quality together with less water depletion in dry spells.

This project was funded by the Swedish Research Council FORMAS, the Research Council of Norway (MYR-project), and the Swedish strategic research area BECC.

How to cite: Kasimir, Å. and Jansson, P.-E.: Importance of mosses and vascular plants in peat soil carbon sequestration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9170, https://doi.org/10.5194/egusphere-egu21-9170, 2021.

EGU21-4530 | vPICO presentations | BG3.8

Modelling the effect of mechanical deformation on the peatland carbon stock resilience

Adilan Mahdiyasa, David Large, Bagus Muljadi, and Matteo Icardi

Mathematical models of peatland growth have been developed for many purposes, including understanding the effect of past or future climate change on peatland carbon accumulation. This is important because peatland contains a vast amount of carbon and has a significant role in the global carbon cycle through carbon dioxide and methane exchange with the atmosphere. In general, the models produced so far suffer from the fact that the mechanical process has an essential role in the peatland carbon stock resilience because they only focus on ecohydrological feedback. We propose a one-dimensional mathematical model that includes ecological, hydrological, and mechanical feedback on the peatland through the poroelasticity concept, which coupling between fluid flow and solid deformation. The formulation is divided into two categories, fully saturated and unsaturated, to accommodate peatland characteristics. We compare the numerical solution of the fully saturated case with analytical solutions of Terzaghi’s problem for validation. We assume that peat is an elastic material with flat, impermeable, and stiff substrate properties.  Based on the initial simulation results,  we find that compression reduces the thickness of acrotelm, leading to the shorter residence time of plant litter, and consequently, higher cumulative carbon is obtained. Furthermore, mechanical deformation of the pore structure effectively maintains carbon stock in the peatland against climate change because it reduces water table depth fluctuations.

How to cite: Mahdiyasa, A., Large, D., Muljadi, B., and Icardi, M.: Modelling the effect of mechanical deformation on the peatland carbon stock resilience, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4530, https://doi.org/10.5194/egusphere-egu21-4530, 2021.

EGU21-7136 | vPICO presentations | BG3.8

Modelling peatland development in temperate alluvial environments

Ward Swinnen, Nils Broothaerts, and Gert Verstraeten

It is well known that C accumulation rates are much higher when focusing on short-term measurement periods in areas with active peat growth when compared to the net C storage at longer timescales as obtained from palaeo-studies. When selecting effective management options that aim to sustain or increase rates of peat development and, hence, C sequestration, a detailed insight into the factors controlling C storage in peatlands at longer timescales is therefore required. Several peatland models have been developed to simulate long-term peatland development and such models thus can be a useful tool to evaluate the effect of environmental changes and management on peatland dynamics at centennial to millennial scales. Many of these models assume the peat to form in a geomorphically stable environment. However, for river floodplains these assumptions cannot always be made. In temperate Europe for example, many river floodplains have known phases of active peat growth throughout the Holocene, influenced by the local geomorphic dynamics of the river channel(s) and associated sediment dynamics. In addition, many restoration efforts in floodplain environments are accompanied by allowing the river channel(s) to behave more freely, with increased meandering and more natural channel dynamics. As these dynamics are currently lacking in peatland models, a detailed assessment of the interactions between river channel(s) and the adjacent peatland in terms of long-term peat growth and carbon accumulation remains difficult.

Here, we developed a new peatland model, specifically designed for alluvial environments, by modifying an existing local peat growth model (1D version of Digibog), coupled with a raster-based river basin hydrology model (STREAM). This model allows to assess the effect of changes in both the river hydrology and local river channel properties on alluvial peatland development and the associated carbon dynamics. The model was applied at two contrasting lowland river basins in northern Belgium, located in the European loess (Dijle river) and sand (Grote Nete river) belts. Local peat growth was simulated at an annual resolution over a period of 10,000 years under a range of climate and land cover scenarios, as well as varying river channel characteristics (number of channels, channel dimensions, channel roughness and channel slope).

The results demonstrate that changes in river discharge through regional climate or land cover changes have a negligible effect on the floodplain peat growth as these changes mostly affect the magnitude of peak discharges. In contrast, the configuration of the local river network such as the number of river channels and their position relative to the peatland surface show to have a strong effect on the equilibrium peat thickness. Especially the number of drainage channels strongly affects the peat thickness with a fourfold reduction in number of channels leading to a threefold increase in simulated peat thickness. This demonstrates that limiting the number of drainage channels in a floodplain and raising the elevation of the channel bed can be effective strategies in stimulating floodplain peat formation and allow to quantify the long-term carbon sequestration potential of these different management practices.

How to cite: Swinnen, W., Broothaerts, N., and Verstraeten, G.: Modelling peatland development in temperate alluvial environments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7136, https://doi.org/10.5194/egusphere-egu21-7136, 2021.

EGU21-9262 | vPICO presentations | BG3.8

Mapping land use on Irish raised bogs using Sentinel-2 imagery and Google Earth Engine

Wahaj Habib, John Connolly, and Kevin McGuiness

Peatlands are one of the most space-efficient terrestrial carbon stores. They cover approximately 3 % of the terrestrial land surface and account for about one-third of the total soil organic carbon stock. Peatlands have been under severe strain for centuries all over the world due to management related activities. In Ireland, peatlands span over approximately 14600 km2, and 85 % of that has already been degraded to some extent. To achieve temperature goals agreed in the Paris agreement and fulfil the EU’s commitment to quantifying the Carbon/Green House Gases (C/GHG) emissions from land use, land use change forestry, accurate mapping and identification of management related activities (land use) on peatlands is important.

High-resolution multispectral satellite imagery by European Space Agency (ESA) i.e., Sentinel-2 provides a good prospect for mapping peatland land use in Ireland. However, due to persistent cloud cover over Ireland, and the inability of optical sensors to penetrate the clouds makes the acquisition of clear sky imagery a challenge and hence hampers the analysis of the landscape. Google Earth Engine (a cloud-based planetary-scale satellite image platform) was used to create a cloud-free image mosaic from sentinel-2 data was created for raised bogs in Ireland (images collected for the time period between 2017-2020). A preliminary analysis was conducted to identify peatland land use classes, i.e., grassland/pasture, crop/tillage, built-up, cutover, cutaway and coniferous, broadleaf forests using this mosaicked image. The land-use classification results may be used as a baseline dataset since currently, no high-resolution peatland land use dataset exists for Ireland. It can also be used for quantification of land-use change on peatlands. Moreover, since Ireland will now be voluntarily accounting the GHG emissions from managed wetlands (including bogs), this data could also be useful for such type of assessment.

How to cite: Habib, W., Connolly, J., and McGuiness, K.: Mapping land use on Irish raised bogs using Sentinel-2 imagery and Google Earth Engine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9262, https://doi.org/10.5194/egusphere-egu21-9262, 2021.

EGU21-3397 | vPICO presentations | BG3.8

Development of tools to assess and mitigate the impacts of peat harvesting on aquatic ecosystems

André St-Hilaire, Sophie Duchesne, Claude Fortin, Sabiha Hafdi, Hermine Bettis, and Moez Khadri

Peat harvesting in an important industry in northern Europe and in North America. In Canada peat is harvested to be used as a horticulture substrate. The harvesting is generally done by vacuuming the thin dried upper layer of peat found below the acrotelm, after removing the latter and draining the water. Drained water is typically routed to settling basins prior to being released in neighbouring natural water courses. This communication summarizes our research efforts to develop tools to optimize settling pond design and minimize suspended sediment loads and to provide the industry with means to assess the health of aquatic ecosystems that receive the drained water.

Current settling pond designs are based on simple rules of thumb (e.g. 25 m3/ha of harvested peatland). In our study, a hydraulic model was used to test different basin configurations (basins with and without weirs at the outlet, basins in series, basins equipped with a geotextile curtain). It was found that while the trapping efficiency was not significantly improved by adding a second basin compared to a single one, adding a geotextile curtain improved the trapping of coarser sediments. Our results moreover showed that fine sediments deposited during low flow periods, in the downstream end of the basins, could be easily resuspended during and after rainfall events, thus showing the importance of frequent maintenance. There are also some strong indications that wind erosion could be a major source of sediments in the drainage water.

Different indicators of stream ecosystem health were compared to quantify the impact of peat harvesting on the receiving water bodies. They included 1) using fish abundance and species richness; 2) quantifying sediment deposition and its organic content; 3) determining ionic composition of effluents and receiving waters; and 4) developing a water quality index (WQI) based on multiple physico-chemical measurements (ammonia, conductivity, pH and suspended sediment concentrations). The developed WQI was shown to be the most promising indicator of ecosystem health and allows for a simple classification of water quality downstream of the confluence between the drain outlet and the receiving stream.

How to cite: St-Hilaire, A., Duchesne, S., Fortin, C., Hafdi, S., Bettis, H., and Khadri, M.: Development of tools to assess and mitigate the impacts of peat harvesting on aquatic ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3397, https://doi.org/10.5194/egusphere-egu21-3397, 2021.

EGU21-7527 | vPICO presentations | BG3.8

The resource potential of peat bogs of the European part of Russia (in the case of the Arkhangelsk region)

Svetlana Selyanina, Valerya Tatarintseva, Tamara Ponomareva, Vladimir Skripnichenko, Elena Daibova, Marina Kirillova, and Alexander Orlov

Currently, the interest in the development of the northern territories in the world increases. This is associated with the involvement of wetlands in the economic turnover, the degree of which reaches 40-50% in certain regions. A quarter of the industrial peat reserves of the European Russia are concentrated in the Arkhangelsk region. Bogs are traditionally used for gathering wild plants, as hunting lands, for obtaining fuel and substrates for agriculture based on peat, and, after draining, as fertile lands. Oligotrophic bogs are the most spread in the European North; therefore they are of the most interest for the assessment of the possibility of use of the peat in the region. In this case, drainage is a mandatory stage. A change in the groundwater level during drainage inevitably affects the structure and properties of the peat; therefore, the resource potential should be assessed using the example of drained but not exploited peatlands typical for the region, as in the case of the Ovechye bog (64°07'N; 41°35'E). The territory was drained in 1962-1965. Drainage ditches were laid at a distance of 100-110m and are well preserved nowadays. The bog was first assessed in 1961 (before drainage), and then (after drainage) in 2017.

The studied bog is composed mainly of high-moor sphagnum peat with underlying glacial clays. The amplitude of changes in the degree of peat decomposition as a result of drainage narrowed significantly (5-60% and 25-61% before and after drainage, respectively), the average value increased from 30% to 40%. Natural moisture content decreased from 73.3-95.6% to 60.1-74.5%. The average ash content slightly increased to 10.8%. The peat is gradually deoxidizing – the pH value changed from 3.4-3.8 to 4.4-5.9. The groundwater level during the summer low water period declines from 0-0.3m to 1.5-2.5m. The mass fraction of organic carbon is 42.2±8.5%, ammonia nitrogen – 70.1±14.2mg/100g, nitrate nitrogen – 4.5±0.3mg/100g, available potassium – 11.4±3.2mg/100g, available phosphorus – less than 2%, exchangeable calcium– 0.37±0.05%, exchangeable magnesium – 0.28±0.06%, total exchangeable bases – 27.2mEq/100g, hydrolytic acidity – 160.7±21.3mmol H/100g. Thus, the agrochemical properties of the studied peat are extremely low. Its use in agriculture requires the introduction of significant amounts of neutralizing (deoxidizing) compounds and enrichment with biogenic elements. The development of paludiculture seems to be more promising.

The bituminous content (more than 3%) and the content of humic substances at the level of 47-54% are consistent with the increase in the degree of decomposition of peat as a result of drainage. This indicates the possibility of advanced processing of peat with the production of humic preparations and biologically active products from its bituminous part.

It should also be noted that the cellular structure of plant residues is well preserved throughout the depth of the deposit. This provides a low apparent density of the peat (65-225kg/m3) and its high sorption capacity (for example, for kerosene 4-10g/g). Therefore, obtaining sorbents seems to be the most promising direction for using peat in the region.

 

This work was supported by the RFBR grant No. 18-05-70087.

How to cite: Selyanina, S., Tatarintseva, V., Ponomareva, T., Skripnichenko, V., Daibova, E., Kirillova, M., and Orlov, A.: The resource potential of peat bogs of the European part of Russia (in the case of the Arkhangelsk region), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7527, https://doi.org/10.5194/egusphere-egu21-7527, 2021.

EGU21-11528 | vPICO presentations | BG3.8

Prospects for surfactant peat derivatives

Valerya Tatarintseva, Marina Trufanova, Svetlana Selyanina, Olga Yarygina, and Ivan Zubov

Peat is a caustobiolith traditionally used as a renewable source of organic substances, in particular humic substances (HS). They are considered to have high biological activity and therefore are widely used in industry and agriculture.

Geoclimatic conditions have a significant impact on the peat accumulation process. Accordingly, peat from various regions differs in composition and physicochemical characteristics of the main components. This affects the properties of peat-based products.

The study of the group chemical composition of high-moor peat from different climatic regions (Western Siberia and the Belomor-Kuloy plateau) was performed according to the certified author’s method. The study revealed that there are both similarities and a number of differences in peat group chemical composition. All samples showed the low ash-content (up to 3.5%) and the content of easily-hydrolyzable components is inversely proportional to the degree of peat decomposition. This is due to their greater bioavailability compared to other organic matter components. Despite the similar values of the bitumen content in the peat samples (3.5-4.2%), the composition and content of HS differ significantly: 26% and 13-15% for the peat samples from the Siberian region and the Belomor-Kuloy plateau respectively. The ratio of humic and fulvic acids in the peat samples are 3.8 and 1.8 that is consistent with differences in the degree of decomposition.

Humic substances macromolecules are diphilic, so they can show surface activity in solutions. By the Wilhelmy method it was found that for the adsorption of humic substances into the surface layer to an equilibrium state is required 16-20 hours. While the greatest changes (by 65-85%) occur during the first 30-60 minutes. The maximum depression of surface tension was 31.5-35.8 mN/m. This is characteristic of compounds with high molecular weight. The presence of bitumen components, which also have surface activity, in the HS solution, accelerates the achievement of adsorption equilibrium at the air–water interface.

Based on the measuring of the surface tension the surface activity was determined. The surface activity characterizes the process of the surface layer formation of a surfactant solution at the air–water interface with an infinite dilution. This parameter was calculated depending on HS solution concentration. The surface activity value of HS solutions extracted from Siberian peat is 2 2.1 N/ m*g that is 2 times higher than the HS solutions from the Belomor-Kuloy plateau. Removal of bitumens from the peat leads to an increase of the surface activity of HS solution from Siberian peat at twice it was before, but for Belomor-Kuloy plateau peat it decreases by 10%. The observed differences can be associated with the peculiarities of the composition of the bitumen. This trend has been confirmed by calculation of the critical micelle concentration and the measurement of the hydrodynamic sizes of particles in solutions using the dynamic light-scattering method.

It was revealed high surface activity of HS solution. So the range of their possible use could be extended (synthetic detergents, emulsifiers, etc.).

The reported study was funded by RFBR according to the research projects № 20-35-90037, 18-05-60151, and 18-05-70087.

How to cite: Tatarintseva, V., Trufanova, M., Selyanina, S., Yarygina, O., and Zubov, I.: Prospects for surfactant peat derivatives, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11528, https://doi.org/10.5194/egusphere-egu21-11528, 2021.

BG3.10 – Forests under pressure: Detecting, attributing and modelling of tree mortality

EGU21-1964 | vPICO presentations | BG3.10

Increased vulnerability of European ecosystems to two consecutive extreme summers

Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin Oh, Julia Pongratz, and Stephen Sitch

Extreme summer temperatures in western and central Europe have become more frequent and heatwaves more prolonged over the past decades. The summer of 2018 was one of the driest and hottest in the observational record and led to losses in vegetation productivity in central Europe by up to 50%. Legacy effects from such extreme summers can affect ecosystem functioning over several years, as vegetation slowly recovers. In 2019 an extremely dry and hot summer was registered again in the region, imposing stress conditions at a time when ecosystems were still recovering from summer 2018.

Using Enhanced Vegetation Index (EVI) fields from MODIS, we evaluate how ecosystems in central Europe responded to the occurrence of two consecutive extreme summers. We find that only ca. 21% of the area negatively impacted by drought in summer 2018 fully recovered in 2019.

We find that the strongest EVI anomalies in 2018/19 diverge from the long-term relationships between EVI and climate, indicating an increase in ecosystem vulnerability to heat and drought events. Furthermore, 18% of the area showed a worsening of plant status during summer 2019 in spite of drought alleviation, which could be explained by interannual legacy effects from 2018, such as impaired growth and increased biotic disturbances.

Land-surface models do not simulate interannual legacy effects from summer 2018 and thereby underestimate the impact of drought in 2019 on ecosystems. The poor representation of drought-induced damage and mortality and lack of biotic disturbances in these models may result in an overestimation of the resilience and stability of temperate ecosystems in the future.

How to cite: Bastos, A., Orth, R., Reichstein, M., Ciais, P., Viovy, N., Zaehle, S., Anthoni, P., Arneth, A., Gentine, P., Joetzjer, E., Lienert, S., Loughran, T., McGuire, P. C., Oh, S., Pongratz, J., and Sitch, S.: Increased vulnerability of European ecosystems to two consecutive extreme summers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1964, https://doi.org/10.5194/egusphere-egu21-1964, 2021.

EGU21-15377 | vPICO presentations | BG3.10

Tree vitality and forest health: any better indicators?

Paolo Cherubini, Giovanna Battipaglia, and John L. Innes

Forest health, although not yet unanimously defined, has been monitored in the past forty years assessing tree vitality, trying to estimate tree photosynthesis rates and productivity. Used in monitoring forest decline in Central Europe since the 1980s, crown foliage transparency has been commonly believed to be the best indicator of tree condition in relation to air pollution, although annual variations appear more closely related to water stress. Although crown transparency is not a good indicator of tree photosynthesis rates, defoliation is still one of the most used indicators of tree vitality. Tree rings have been often used as indicators of past productivity. However, long-term tree-growth trends are difficult to interpret because of sampling bias, and ring-width patterns do not provide any information about tree physiological processes. In the past two decades, tree-ring carbon and oxygen stable isotopes have been used  to reconstruct the impact of past climatic events, such as drought. They have proven to be useful tools for retrospectively understanding physiological processes and tree response to  stress factors. Tree-ring stable isotopes integrate crown transpiration rates and photosynthesis rates and may enhance our understanding of tree vitality. They are promising indicators of tree vitality. We call for the use of tree-ring stable isotopes in future monitoring programmes.

How to cite: Cherubini, P., Battipaglia, G., and Innes, J. L.: Tree vitality and forest health: any better indicators?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15377, https://doi.org/10.5194/egusphere-egu21-15377, 2021.

EGU21-3850 | vPICO presentations | BG3.10

Mediterranean trees vulnerability to climate change will not be minimized through hydraulic safety traits adjustments.

Myriam Moreno, Guillaume Simioni, Jean-Marc Limousin, Jesus Rodriguez-Calcerrada, Julien Ruffault, Hervé Cochard, José Torres, Sylvain Delzon, Amélie Tournant, Pierre-Jean Dumas, Hendrik Davi, and Nicolas Martin-StPaul

Climate change in the Mediterranean region leads to an intensification of summer droughts. These episodes of extreme water stress threaten the survival of tree species and, by the same token, would affect the structure and ecosystem services of woodlands. Indeed, in conditions of prolonged and intense drought, one of the major risks for trees is the hydraulic failure due to high embolism level. Xylem embolism risk depends essentially on various leaf and hydraulic traits including (i) the vulnerability of their xylem to cavitation, (ii) the turgor loss point (a surrogate for stomatal control) and (iii) their cuticular transpiration (gmin). The two former traits can be used to compute hydraulic safety margins (HSM).

In order to assess whether trees will survive future climatic conditions, it is necessary to quantify and assess the plasticity of these traits to intensified drought. In this study, we used three rainfall exclusion experiments established in mature forests in south-eastern France (Font-blanche, Puéchabon and O3HP experimental sites) to measure these traits and evaluate their ability to adjust to aggravated drought conditions for three Mediterranean widespread species: Quercus ilex, Quercus Pubescens, and Pinus halepensis. We performed pressure-volume curves of trees from rainfall exclusion and control plots to see if adjustments of gmin and leaf hydraulic traits involved in stomatal regulation occurred in these three species. Using the optical method and cavitron, we also quantified the plasticity of xylem vulnerability to cavitation by comparing the values of water potential leading to a 50% reduction in plant hydraulic conductance (P50).

Our results show that Quercus pubescens has the lowest HSM while Quercus ilex has the highest. In addition, gmin is higher for Quercus pubescens than for the other two species. All together these results suggest that Quercus pubescens is the most vulnerable to drought among the three studied. Globally, for most traits and species no significant difference was found between treatments. The only exception was for Quercus ilex that exhibited lower turgor loss point (Ψtlp) in the dry treatment. Drought acclimation for these species may rather depend on other traits, such as leaf area reduction or rooting depth. To integrate the role of these traits to estimate the historic and future mortality risk for these species, the use of hydraulic based models will be of interest.

How to cite: Moreno, M., Simioni, G., Limousin, J.-M., Rodriguez-Calcerrada, J., Ruffault, J., Cochard, H., Torres, J., Delzon, S., Tournant, A., Dumas, P.-J., Davi, H., and Martin-StPaul, N.: Mediterranean trees vulnerability to climate change will not be minimized through hydraulic safety traits adjustments., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3850, https://doi.org/10.5194/egusphere-egu21-3850, 2021.

EGU21-7512 | vPICO presentations | BG3.10

Mediterranean forests responses to drought and forest fires: continuous monitoring through the TreeTalker system

Francesco Niccoli, Arturo Pacheco-Solana, Simona Castaldi, Riccardo Valentini, and Giovanna Battipaglia

Forests play a key role in mitigating greenhouse gases and fighting climate change. However, numerous environmental stressors threaten the integrity and ecological functionalities of forests. In recent decades, the increase of drought events and fires occurrence is negatively influencing forest health, causing dieback events and higher rates of mortality, especially in the Mediterranean environments.

Studying the mechanisms of plants in response to these events and relating them to the duration and intensity of stress can be the key to understand the vulnerability and sensitivity at individual and regional scale. Currently, most of the available studies are severely limited in time and space, providing information with a relatively poor temporal resolution.

In this context, our research aims to examine the effects of these events on the ecophysiology of Pinus pinaster Aiton, a very common conifer species in the Mediterranean environment, through the use of the innovative TreeTalker device (TT+). This instrument is able to monitor multiple physiological and environmental parameters of the tree such as sap flow, the amount of light absorbed by the canopy, meteorological information etc. The study is conducted in Southern Italy, more precisely at the Vesuvius National Park, affected in recent years by severe drought conditions and where a large wildfire occurred in July 2017. To evaluate the incidence of stress conditions, during the spring of 2020, 10 TT+ devices were installed in a pine stand affected by fire (Burned Site -BS) and 10 TT+ devices in a second stand called Control Site (CS) in which plants were not affected by the 2017 fire.

The preliminary monitoring data show interesting information about the hydraulic and stomatal strategies implemented by the trees on both stands according to the variation of the climatic conditions. While in the spring a rather regular sap flow trend was observed in both stands, during the summer months (July, August and good part of September), the trees show a reduction in their stomatal activity during the hottest hours of the day (11 am -15 pm), predictably as a mean to avoid episodes of xylem cavitation and to contrast the high temperatures. In the autumn months of October and November, however, vegetative activity has continued uninterrupted although a considerable decrease in hydraulic flow was registered. Finally, from the data collected it emerges that the severe reduction of the crown suffered by the plants of the BS has determined a lower absorption capacity of photosynthetic light, exposing these individuals to a greater possibility of carbon starvation.

The monitoring activities will continue for the next few years, allowing to understand better the eco-physiological dynamics leading the individuals of this species to overcome or succumb to stress events and/or extreme climatic conditions.

How to cite: Niccoli, F., Pacheco-Solana, A., Castaldi, S., Valentini, R., and Battipaglia, G.: Mediterranean forests responses to drought and forest fires: continuous monitoring through the TreeTalker system, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7512, https://doi.org/10.5194/egusphere-egu21-7512, 2021.

EGU21-189 | vPICO presentations | BG3.10

Potential of typical highland and mountain forests in the Czech Republic for climate-smart forestry: ecosystem-scale drought responses

Georg Jocher, Natalia Kowalska, Manuel Acosta, Jan Krejza, Irena Marková, John Marshall, Tereza Uchytilová, Marian Pavelka, and Michal Marek

Climate-smart forestry (CSF) consists of an extensive framework of actions directed to mitigating and adapting to global climate change impacts on the resilience and productivity of forest ecosystems. This study investigates the impact of the pan-European 2018 drought on carbon exchange dynamics in typical highland and mountain forests in the Czech Republic, including two coniferous (Norway spruce at Bílý Kříž and Rajec) and one deciduous (European beech at Štítná) stand. Our results show annual net ecosystem CO2 uptake at Rajec to be reduced by 50% during the drought year in comparison to a reference year with normal climatic conditions. Bílý Kříž is less affected by drought, as the local microclimate ensures sufficient water supply. The European beech forest at Štítná is most resilient against drought and its negative impacts: there we detect no differences in carbon exchange dynamics between the drought year and the reference year. We consider the matching of tree species to site conditions as crucial in the context of CSF, specifically regarding the stand response to water limitation and water supply and demand. Successively replacing spruce with beech trees in areas with high water demand but limited water supply, like Rajec, will support the goals of CSF.

How to cite: Jocher, G., Kowalska, N., Acosta, M., Krejza, J., Marková, I., Marshall, J., Uchytilová, T., Pavelka, M., and Marek, M.: Potential of typical highland and mountain forests in the Czech Republic for climate-smart forestry: ecosystem-scale drought responses, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-189, https://doi.org/10.5194/egusphere-egu21-189, 2021.

EGU21-14707 | vPICO presentations | BG3.10

Differential age and species growth responses to climate warming detected in old-growth Mediterranean mountain forests 

Michele Colangelo, Jesus Julio Camarero, Antonio Gazol, Marco Borghetti, Michele Baliva, Tiziana Gentilesca, Gianluca Piovesan, Angelo Rita, Antonio Lapolla, Aldo Schettino, and Francesco Ripullone

Mediterranean mountainous forest ecosystems are key hotspots to study the impact of climate change, thus understanding the species-specific growth response is of great relevance. In this study, we take advantage of the few remnant patches of old-growth forests located in the Pollino Massif (southern Italy), to evaluate how the growth of conspecific young and old trees responded to climate. Indeed, thanks to their remote critical topographic conditions in which these patches are located, they have remained nearly untouched from human pressure over the last centuries. We compared two conifer species (Abies alba, Pinus heldreichii var. leucodermis) vs. two hardwood species (Fagus sylvatica, Quercus cerris) in four stands situated along an altitudinal gradient. Younger trees grew faster than their conspecific oldest trees during their juvenile stage, regardless of the environmental conditions and species studied, highlighting more favorable recent climatic and environmental conditions for growth compared to the past. Rising temperature had a positive effect on growth rate in high-elevation young and old P. leucodermis individuals. However, F. sylvatica, inhabiting mesic sites at lower elevation, had slow growth with the least difference in growth rates between young and old trees. Similarly, the growth rates of old tree species found at lower elevation (Q. cerris and A. alba, respectively) tended to be relatively stable since 1950, except for A. alba, increased over the last two decades. Climate sensitivity in recent decades differed between young and old trees in some of the species, with younger trees tending to be more sensitive in Pinus and Abies, and older trees being more sensitive in Fagus. Such disparity in climate sensitivity and long-term growth reactions to climate should be recognized and considered when forecasting the future dynamics of old-growth forests.

How to cite: Colangelo, M., Camarero, J. J., Gazol, A., Borghetti, M., Baliva, M., Gentilesca, T., Piovesan, G., Rita, A., Lapolla, A., Schettino, A., and Ripullone, F.: Differential age and species growth responses to climate warming detected in old-growth Mediterranean mountain forests , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14707, https://doi.org/10.5194/egusphere-egu21-14707, 2021.

With changing climate boreal forest need to shift their distribution further north and become threatened by droughts in the south. However, whether boreal forest species can adapt to novel situations and reduce their extinction risk is largely unknown but crucial to predict future performance of populations. Exploring variable traits and ultimately trait inheritance in an individual-based model could improve our understanding and help future projections.

 

Hence, we updated the individual-based spatially explicit vegetation model LAVESI to allow for variation in traits values that are normally distributed and the option of determining the trait values based on the parental values, thus allowing full inheritance.

 

Using historical climate data and future projections, we ran simulation experiments of Larix gmelinii stands in the two areas of interest, the northern treeline expanding due to increasing temperatures, and the southern area experiencing increased drought. At these regions, the trait of ‘seed weight’ regulate migration further north and the ‘drought resistance’ protecting stands in the south, a comparison of the model variants: uniform, variable and inherited traits is being performed.

The results will be presented and will allow to disentangle how far migration rate and survival rate are influenced by this. In preliminary tests, it was already shown that both the allowing trait variation and inheritance led to an increase in migration rate, with the latter having a stronger impact. Similarly, the early tests for the drought resistance show that in changing temperatures leading to droughts the trait variation allows for adaption and leads to better surviving populations.

 

We expect that variable traits ensure that if the environment changes necessary trait variants are available. Inheritance could let the populations adapt to environments and promote successful trait values and therefore lead to more optimised populations, that are able to spread faster and be as resilient as needed.

 

With this, we show that implementing trait variation and inheritance may contribute to creating more accurately predicting models and understanding responses of boreal forests to global change.

How to cite: Gloy, J., Kruse, S., and Herzschuh, U.: Integrating variable traits and inheritance into the individual-based model LAVESI for evaluation of their importance for larch forest performance under future adverse conditions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13515, https://doi.org/10.5194/egusphere-egu21-13515, 2021.

EGU21-13511 | vPICO presentations | BG3.10

Assessment of the climate change-induced impact on forest vegetation in the Mediterranean Basin using an integrated approach

Maria Castellaneta, Angelo Rita, Jesus Julio Camarero, Michele Colangelo, and Francesco Ripullone

The recent increase in the frequency and severity of heat weaves and droughts has intensified efforts to understand their impact on forest productivity and tree vigor. These climate extreme events are expected to reduce productivity and increase the tree mortality rate, particularly in drought-prone Mediterranean forests. Thus, our goal is to quantify the impacts of hotter droughts on forests vulnerable to drought in the Italian and Iberian peninsulas by using remotely sensed data (NDVI, Normalized Difference Vegetation Index) to track vegetation changes and tree-ring data from forest sites showing dieback to assess tree’s growth trends. The survey involved the comparison of stands showing dieback where trees showed growth decline and high defoliation rates (decay) versus stands where trees showed low or no defoliation. Our outcomes will be discussed i) to describe the effects of climate anomalies on forest vulnerability in terms of resistance and resilience, and ii) to evaluate the existence of a correlation between vegetation response and “post-disturbance” recovery.

How to cite: Castellaneta, M., Rita, A., Camarero, J. J., Colangelo, M., and Ripullone, F.: Assessment of the climate change-induced impact on forest vegetation in the Mediterranean Basin using an integrated approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13511, https://doi.org/10.5194/egusphere-egu21-13511, 2021.

EGU21-12096 | vPICO presentations | BG3.10

The Global Emergence of Hotter-Drought Drivers of Forest Disturbance Tipping Points

Craig D. Allen and William M. Hammond

Current research is presented on global-scale patterns and trends of forest responses to increasingly hotter droughts, particularly extensive tree mortality and forest die-offs involving a range of interactive disturbances (e.g., water stress, insect outbreaks, high-severity wildfire), illustrating emerging ecological changes and growing tipping-point risks to forests worldwide from hotter-drought extremes.  Cross-scale observations and empirical findings – ranging from controlled experiments in pots and local plot-level vegetation data, to networks of carbon flux monitoring sites and globally synoptic remote-sensing data – increasingly indicate that amelioration of hotter-drought stress via fertilization of photosynthesis from elevated atmospheric CO2concentrations may soon be overwhelmed by heat and accelerated atmospheric drought.  These findings highlight some current challenges in realistically projecting the future of global forest ecosystems (and their associated carbon pools and fluxes) with process-based Earth system models.  In particular there is substantial evidence that ‘historical forests’ – established by circa 1880 and dominated by larger, older trees – may be disproportionately vulnerable to increased growth stress and mortality under hotter-drought conditions from ongoing anthropogenic climate change.  The fates of the world’s biggest, oldest trees and historical forests in response to global change are of vital importance, given that they are essential as:  a) disproportionately large carbon sinks;  b) among the most biodiverse and rare terrestrial ecosystems;  c) irreplaceable archives of environmental history;  and d) venerated for many spiritual, aesthetic, and other cultural reasons.  Key scientific uncertainties that impede modeling progress are outlined, and examples of promising empirical modeling approaches are illustrated.

How to cite: Allen, C. D. and Hammond, W. M.: The Global Emergence of Hotter-Drought Drivers of Forest Disturbance Tipping Points, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12096, https://doi.org/10.5194/egusphere-egu21-12096, 2021.

EGU21-6153 | vPICO presentations | BG3.10 | Highlight

A hotter-drought fingerprint on Earth’s forest mortality sites–warming accelerates risks

William M. Hammond, A. Park Williams, John T. Abatzoglou, Henry D. Adams, Tamir Klein, Rosana López Rodríguez, Cuauhtémoc Sáenz-Romero, Henrik Hartmann, David D. Breshears, and Craig D. Allen

Earth’s forests face grave challenges in the Anthropocene, including hotter droughts increasingly associated with widespread forest die-off. But despite the vital importance of forests—especially historical forests—to global ecosystem services, their fates in a warming world remain highly uncertain. Critically missing is quantitative determination of hotter-drought climatic drivers at globally-distributed, ground-based, tree-mortality sites. We established a precisely geo-referenced global database documenting climate-induced mortality events spanning all tree-supporting biomes from 154 studies since 1970. Here we quantify a lethal global hotter-drought fingerprint from these tree-mortality sites across 675 locations encompassing 1,303 database plots. Frequency of these lethal climate conditions accelerates under projected warming, up 140% by +4℃. Our database, soon available at tree-mortality.net, provides initial footing for further community development of quantitative, ground-based monitoring of global tree mortality (e.g., still including peer-reviewed observations, but importantly also those from forestry professionals, land managers, and citizen scientists). Furthermore, our database immediately enables critical predictive model validation and improved remote sensing of mortality. While our initial database enabled empirical quantification of a global climate signal for hotter-drought triggered tree mortality, ongoing and online contributions to the database (with efforts to be more spatially representative) will enable myriad future analyses and progress toward understanding the role of hotter-drought in the mechanistically complex process of tree mortality. Our global fingerprint of lethal hotter-drought confirms many of Earth’s forests are increasingly imperiled by further warming.

How to cite: Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., Rodríguez, R. L., Sáenz-Romero, C., Hartmann, H., Breshears, D. D., and Allen, C. D.: A hotter-drought fingerprint on Earth’s forest mortality sites–warming accelerates risks, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6153, https://doi.org/10.5194/egusphere-egu21-6153, 2021.

EGU21-14527 | vPICO presentations | BG3.10

Examining the vulnerability of Australian eucalypts to future drought-induced tree mortality

Martin De Kauwe, Manon Sabot, Andrew Pitman, Sami Rifai, Patrick Meir, Lucas Cernusak, Belinda Medlyn, and Anna Ukkola

Australia is the driest inhabited continent. Annual rainfall is low and is accompanied by marked inter-annual variability, leading to multi-year droughts. Climate change is expected to alter the frequency, magnitude, and intensity of future droughts, with potentially major environmental and socio-economic consequences for Australia. However, Australian vegetation is well adapted to extended dry periods, thus, the likelihood of drought-induced mortality in the future depends both on the severity of future drought events and inherent vegetation resilience. Here, we used the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model, coupled with a stomatal optimisation scheme, to examine the projected impact of future drought for 24 Eucalyptus species. We forced CABLE with future climate from four global climate models (MIROC, ECHAM, CCCMA, and CSIRO) dynamically downscaled by three regional climate models. We separated the impact of climate change (e.g. increasing VPD, precipitation variability) from rising CO2 (increasing water use-efficiency) to provide the first assessment of future drought risk to Australian trees.

How to cite: De Kauwe, M., Sabot, M., Pitman, A., Rifai, S., Meir, P., Cernusak, L., Medlyn, B., and Ukkola, A.: Examining the vulnerability of Australian eucalypts to future drought-induced tree mortality, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14527, https://doi.org/10.5194/egusphere-egu21-14527, 2021.

EGU21-4365 | vPICO presentations | BG3.10

Tracking tree mortality across sites with repeat LiDAR data

Toby Jackson, Matheus Nunes, Grégoire Vincent, and David Coomes

Repeat airborne LiDAR data provides a unique opportunity to study tree mortality at the landscape scale. We use maps of canopy height derived from repeat LiDAR (two or more scans collected a few years apart) to detect changes in forest structure. Visually, the most obvious changes are caused by large treefall events, which are difficult to study using field plots due to their rarity. While repeat LiDAR data provides exciting new possibilities, validation is a challenge, since we cannot easily determine how many trees have died and we may miss trees which are dead but still standing. I will discuss our progress so far, studying large-tree mortality rates across multiple countries and forest types.

How to cite: Jackson, T., Nunes, M., Vincent, G., and Coomes, D.: Tracking tree mortality across sites with repeat LiDAR data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4365, https://doi.org/10.5194/egusphere-egu21-4365, 2021.

EGU21-7214 | vPICO presentations | BG3.10

What makes a tree die? - Bark beetle-induced mortality causes abrupt declines in tree diameter

Samuli Junttila, Teemu Hölttä, Ninni Saarinen, and Mikko Vastaranta

The climate change has brought better environmental conditions for numerous bark beetles to reproduce in unmet amounts. Large-scale tree mortality events have been witnessed globally due to mass outbreaks of phloem feeding pest insects, such as Ips typographus (L.), that are jeopardizing numerous ecosystem services forests provide. To be able to assess the current and future bark beetle-induced tree mortality, we need more profound understanding of the processes that occur after the infestation of a tree, eventually leading to tree mortality. We measured the diurnal variation in tree stem diameter from four healthy and four infested trees trees during an I. typographus infestation in Helsinki, Finland, of which the four infested trees died during the investigation period between June and September in 2020. The condition of the tree crowns was also visually assessed in the beginning and the end of the study period.

We found that the amplitude of diurnal diameter variation was considerably smaller in the infested trees compared to healthy trees indicating smaller diurnal variation in the water content of the stem. The decrease in diurnal diameter variation was followed by abrupt and irreversible declines in tree diameter likely indicating tissue damage due to hydraulic failure. The declines were triggered largely by increased atmospheric water demand during the hottest days of the investigation period. The condition of the tree crown in the beginning of the study did not reflect the timing of the decline in tree diameter, but one of the most visually vital trees declined first.

The results indicate that hotter summer temperatures will increase and hasten bark beetle-induced tree mortality. This happens because irreversible hydraulic failure seems to occur in a cross pressure of bark beetle-induced stress and increased atmospheric water demand. Trees are likely more vulnerable to bark beetle-related hydraulic failure in the future because of increasing atmospheric water demand and more intense droughts. The triggers and processes that cause bark beetle-related tree mortality need more careful investigation to incorporate them into models that forecast tree mortality.

How to cite: Junttila, S., Hölttä, T., Saarinen, N., and Vastaranta, M.: What makes a tree die? - Bark beetle-induced mortality causes abrupt declines in tree diameter, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7214, https://doi.org/10.5194/egusphere-egu21-7214, 2021.

EGU21-618 | vPICO presentations | BG3.10

The predictive power of wood traits on species mortality change during tree development 

Andres Gonzalez-Melo and Juan Posada

One foundational assumption of trait-based ecology is that functional traits can predict species demography. Yet, in general, the links between traits and demographic rates are not as strong as usually assumed. These weak associations may be due to two main reasons: the use of easy-to-measure traits as proxies of tree species performance, and the lack of consideration of size-related variations in both traits and demographic rates.

Here, we examined the associations between wood functional traits and mortality rates of 19 tree species from Eastern Amazonia. We measured eleven wood traits (i.e., structural, anatomical and chemical) in sapling, juvenile and adult wood, and related them to corresponding mortality rates.

Both sapling and juvenile mortality rates were best explained by wood specific gravity (WSG) and vessel lumen area (Va), while adult mortality was predicted only by Va. On the other hand, we found that the predictive power of wood trait on mortality rates decreased from saplings to adults.

These results indicate that the associations between traits and mortality rates can change during tree development, and also that hard-to-measure traits, such as wood chemical or anatomical traits, may be better predictors mortality rates than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests.

 

 

How to cite: Gonzalez-Melo, A. and Posada, J.: The predictive power of wood traits on species mortality change during tree development , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-618, https://doi.org/10.5194/egusphere-egu21-618, 2021.

EGU21-8832 | vPICO presentations | BG3.10 | Highlight

Does forest growth acceleration lead to denser stands? Insights from Swiss forests and mechanistic modelling

Laura Marques, Ensheng Weng, Harald Bugmann, David I. Forrester, Martina Hobi, Henna-Riikka Kettunen, Brigitte Rohner, Esther Thuerig, Volodymyr Trotsiuk, and Benjamin D. Stocker

Forest demographic processes - growth, recruitment and mortality - are being altered by global change. The changing balance between growth and mortality strongly influences forest dynamics and the carbon balance. Elevated atmospheric carbon dioxide (eCO2) has been reported to enhance photosynthesis and tree growth rates by increasing both light-use efficiency (LUE) and water-use efficiency (WUE). Tree growth enhancement could be translated into an increase in biomass stocks or could be associated with a reduction in the longevity of trees, thus reducing the ability of forest ecosystems to act as carbon sinks over long timescales. These links between growth and mortality, and the implications for forest stand density and self-thinning relationships are still debated. Scarce empirical evidence exists for how changing drivers affect tree mortality due to existing data and modelling limitations. Understanding the causes of observed mortality trends and the mechanisms underlying these processes is critical for accurate projections of global terrestrial carbon storage and its feedbacks to anthropogenic climate change.

Here, we combine a mechanistic model with empirical forest data to better understand the causes of changes in tree mortality and the implications for past and future trends in forest tree density. Specifically, we test the Grow-Fast-Die-Young hypothesis to investigate if a leaf-level CO2 fertilization effect may lead to an increase in the biomass stock in forest stands. We use a novel vegetation demography model (LM3-PPA) which includes vegetation dynamics with biogeochemical processes allowing for explicit representation of individuals and a mechanistic treatment of tree mortality. The key links between leaf-level assimilation and stand dynamics depend on the carbon turnover time. In this sense, we investigate alternative mortality assumptions about the functional dependence of mortality on tree size, tree carbon balance or growth rate. These formulations represent typical approaches to simulate mortality in mechanistic forest models. Model simulations show that increasing photosynthetic LUE leads to higher biomass stocks, with contrasting behavior among mortality assumptions. Empirical data from Swiss forest inventories support the results from the model simulations showing a shift upwards in the self-thinning relationships, with denser stands and bigger trees. This data-supported mortality-modelling helps to identify links between forest responses and environmental changes at the leaf, tree and stand levels and yields new insight into the causes of currently observed terrestrial carbon sinks and future responses.

How to cite: Marques, L., Weng, E., Bugmann, H., Forrester, D. I., Hobi, M., Kettunen, H.-R., Rohner, B., Thuerig, E., Trotsiuk, V., and Stocker, B. D.: Does forest growth acceleration lead to denser stands? Insights from Swiss forests and mechanistic modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8832, https://doi.org/10.5194/egusphere-egu21-8832, 2021.

EGU21-3831 | vPICO presentations | BG3.10

Importance of drivers and processes for the predictive uncertainty in vegetation dynamics change across European forests

Johannes Oberpriller, Peter Anthoni, Almut Arneth, Christine Herschlein, Andreas Krause, Anja Rammig, and Florian Hartig

Model predictions about future states of ecosystems under environmental change are uncertain. Understanding which factors drive these uncertainties is of immense value for directing research, but also for their interpretations. Here, we analyse sensitivities and uncertainties of a state of the art dynamic vegetation model (LPJ-GUESS) across European forests. We found that predictions of carbon fluxes are most sensitive to structure-related and mortality-related parameters, but most uncertainty is induced by drivers, nitrogen-, water- and mortality-modules. The uncertainty induced by drivers increases with increasing temperature, decreasing precipitation and from north to south across Europe. Moreover, environmental conditions change the resulting uncertainties in other processes. In this context, we encounter that the stress-gradient hypothesis is implicitly displayed in the model processes. In conclusion, our study stresses the importance of  environmental drivers for ecosystem predictions not only due to their uncertainty contributions but also because they determine the uncertainties of other processes.  

How to cite: Oberpriller, J., Anthoni, P., Arneth, A., Herschlein, C., Krause, A., Rammig, A., and Hartig, F.: Importance of drivers and processes for the predictive uncertainty in vegetation dynamics change across European forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3831, https://doi.org/10.5194/egusphere-egu21-3831, 2021.

BG3.11 – Natural disturbance, forest management, and ecosystem functioning

EGU21-12625 | vPICO presentations | BG3.11 | Highlight

Natural disturbances and protective effect: the role of biological legacies in protection forests

Maximiliano Costa, Niccolò Marchi, Irene Trevisan, Davide Marangon, and Emanuele Lingua

Natural disturbance regimes are expected to be greatly altered in the next future byclimatechanges (e.g.increase in frequency and intensity, changing in seasonality). Among natural disturbances, windstorms represent one of the main large-scale factor that shape European landscape and that influence European forest structure. Moreover, windstorms may affect ecosystem services that are normally provided by mountain forests such as protection against natural hazards, conservation of biodiversity or erosion mitigation. However, after a disturbance event, structural biological legacies, like deadwood, may enhance or maintain some of these ecosystem services. After a stand-replacing event, the conservation or fast restoration of all these services should be the target of post disturbance management, but currently traditional practices (mainly salvage logging) are often leading to their depletion. The study of the impact of salvage logging (i.e. the removal of almost all the biological legacies) on the protective function of mountain stands has been poorly addressed. Structural biological legacies (i.e. snags, logs, stumps) may provide protection for the natural regeneration as well as they may increase the terrain roughness, providing a shielding effect against gravitative hazards like rockfall. The aim of the present study was to investigate how biological legacies affect the multifunctionality of mountain forests, focusing on the protective function. To observe the role of biological legacies we performed software simulations of rockfall activity on windthrown areas located in the Dolomites, region highly affected by the Vaia windstorm in October 2018.  Results showed the short-term important role of biological legacies in mitigating rockfall propagation, mainly as barrier effect rather than an energy reduction effect. After a natural disturbance, forest management should take into consideration the residual protective function of structural legacies. Salvage logging operations should be limited in areas where rockfall hazard is high, in order to take advantage on the multifunctionality of biological legacies during the recovery process.

How to cite: Costa, M., Marchi, N., Trevisan, I., Marangon, D., and Lingua, E.: Natural disturbances and protective effect: the role of biological legacies in protection forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12625, https://doi.org/10.5194/egusphere-egu21-12625, 2021.

EGU21-14348 | vPICO presentations | BG3.11 | Highlight

Is deadwood helping regeneration? Natural regeneration dynamics in a stand replacing windthrow area.

Davide Marangon, Mattia Pilotti, Federico Zancanaro, Maximiliano Costa, and Emanuele Lingua

Forests provide many important ecosystem services. Natural disturbances, such as wildfires, pest outbreaks and windrows, are the main phenomena shaping forest ecosystems. Due to both climate and global changes, extreme events are increasing in frequency and forests are thus increasingly being affected by stand replacing disturbances. Mountain forest dynamics and ecosystems services are critically influenced by disturbances, in particular storm. In this framework, is crucial to understand these environmental modifications, finding the best management strategies to restore or maintain ecosystem services provided by forests. After large disturbance, there are two different issues to deal with: the large amount of deadwood on the ground, and the needs of  regeneration in order to re-establish the forest cover. To face these problems different management strategies can be adopted. Salvage logging (total or partial) and no-intervention are the two opposite approaches to handle the large amount of deadwood. Natural regeneration or reforestation, instead, are the main strategies to consider to re-establish forest cover. In this study we focused on post-windstorm conditions, in particular concerning large windthrows caused by the Vaia storm, occurred in October 2018 on Eastern Italian Alps. After such large-scale event, natural regeneration is the most convenient strategy to regenerate forest. This process should take place in an area with a high amount of coarse wood debris (CWD). For this reason is crucial to understand the interaction between windthrown timber and regeneration dynamics. In this study we analyzed how CWD is able to create a favorable regeneration microsite enhancing seedling establishment probability. In particular, we focused on two different facilitative mechanisms provided by CWD: microsite amelioration and seedling protection. The former has been analyzed measuring temperature and SWC in the proximity of seedling planted in the surrounding of deadwood elements, the latter by recording browsing evidence at the end of the season.  In order to infer the CWD contribution, control sites have been established in empty sites (no CWD presence in the surrounding). Our results showed that in southern slopes, microsite with significative lower temperature are found northern to the logs, decreasing water stress for saplings. The ameliorative function of logs and CWD in general contribute to decrease the transplanting shock, increasing the probability to establish for saplings. Moreover, the presence of lying deadwood decreased significantly the browsing on saplings. The result of our study highlighted the importance of favorable regeneration microsites provided by deadwood, both for natural regeneration dynamics and for increasing the survival probability for planted saplings. Favorable microsites and nurse biological legacies should be considered in defining post-disturbance management strategies, promoting only a partial salvage logging or non-intervention  approaches as much as possible.

How to cite: Marangon, D., Pilotti, M., Zancanaro, F., Costa, M., and Lingua, E.: Is deadwood helping regeneration? Natural regeneration dynamics in a stand replacing windthrow area., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14348, https://doi.org/10.5194/egusphere-egu21-14348, 2021.

EGU21-2097 | vPICO presentations | BG3.11

Boreal soil carbon fluxes one year after a forest wildfire: impacts of burn severity and forest management

Julia Kelly, Theresa Ibáñez, Cristina Santín, Stefan Doerr, Marie-Charlotte Nilsson, Thomas Holst, Anders Lindroth, and Natascha Kljun

In 2018, an extreme drought affected large parts of Europe and led to the worst fire season in over a century in Sweden. We investigated the impacts of the Ljusdal fire, the largest fire complex that year, on soil CO2 and CH4 fluxes, nutrient concentrations and microclimate in a Scots pine forest. The measurements were conducted during the first growing season after the fire. In three separate analyses, we compared stands that differed in terms of burn severity (unburnt, low and high burn severity), salvage-logging (logged or unlogged) and stand age (young: 12 years old or mature: ~100 years old at the time of the fire).

 

A mature stand affected by a high severity burn (100% tree mortality) had significantly lower soil respiration compared to a stand affected by a low severity burn (nearly 100% tree survival), but there was no difference in soil respiration between the low burn severity and unburn stands. These results indicate that autotrophic respiration plays a key role in determining post-fire soil respiration. After a high severity burn, salvage logging had no significant effects on forest soils compared to a stand where the dead trees had been left standing, although differences between these two stands are likely to become significant in the future. Stand age had a clear impact on most of the soil properties tested. Despite mean soil temperature being 5 °C warmer at a young site compared to a mature site after a high severity burn, soil respiration was lower at the young site. The young site had been clear-cut and undergone soil scarification and replanting 12 years before the fire, which is likely to have contributed to the lower nutrient availability and thinner soil organic layer there compared to the mature site. Short return intervals between disturbances such as harvesting and wildfire that remove part of the soil organic layer can thus have significant and long-term impacts on nutrient cycling and carbon exchange in the boreal forest. The boreal forest is thus vulnerable to becoming a carbon source, especially in regions where climate change is increasing the frequency of high severity wildfire and commercial timber production is expanding.

How to cite: Kelly, J., Ibáñez, T., Santín, C., Doerr, S., Nilsson, M.-C., Holst, T., Lindroth, A., and Kljun, N.: Boreal soil carbon fluxes one year after a forest wildfire: impacts of burn severity and forest management, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2097, https://doi.org/10.5194/egusphere-egu21-2097, 2021.

Key words: forest regeneration, Conniflex, Trico, mechanical site preparation

Forest regeneration is crucial stage in commercial forest management because actions during this stage impact future forest productivity and value. Scots pine is one of the main tree species in forestry of the northern part of Europe. Foresters have to overcome different risk factors during regeneration process and two of them are seedling damage by Pine weevil (Hylobius abietis L) and browsing by herbivores of Cervidae family. Pine weevil is one of the main forest pests in Europe that damage regenerated coniferous stands. Damage caused by this pest can produce 70% mortality of planted seedlings. Another significant risk factor is browsing. With increase of deer (Cervidae) population the damaged forest area also increases to the extent that foresters choose other tree species for regeneration. The mitigation of these risks is possible with appliance of forest management practices.  There are used different repelents against Cervidae animals.  Regarding Pine weevil, due to restrictions on insecticide use in EU, different protective coating materials have been developed, and several studies show that soil preparation before planting reduce amount of damaged Pine seedlings and increase possibility of successful regeneration.  We evaluated if and how forest management methods - soil preparation techniques (spot mounding, disc trenching) in combination with different plant protection products (Conniflex, Trico) - affects the degree of damage caused by pine weevil and Cervidae animals to Scots pine seedlings one and two years after outplanting in four forest stands in Latvia. The results from this study shows that application of Conniflex reduce number of damaged trees by 16.8% first and 20.3% second year after outplanting compared to untreated seedlings. Soil preparation has significant impact on reduction of pine weevil damage. The best results have been achieved by planting with Conniflex treated seedlings on spot mounds (2.4% damaged trees compared to 48.9% in unprepared soil without treatment). Repellent Trico do not provide additional protection against Pine weevil and do not have long term protection effect against browsing. Overall conclusion is that combination of soil preparation and use of appropriate coating material (Conniflex) can provide sufficient protection without usage of insecticides, and Trico has to be applied before winter season to achieve effect of protection.

How to cite: Dūmiņš, K., Timma, S., and Lazdiņa, D.: Forest management practices in reduction of damage caused by Pine weevil (Hylobius abietis L.) and Cervidae animals in newly planted Scots pine forests., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14555, https://doi.org/10.5194/egusphere-egu21-14555, 2021.

EGU21-7529 | vPICO presentations | BG3.11

Causes and effect of latest windthrow on further development of beech-fir stands in Slovenian forests

Matjaž Čater, Aleksander Marinšek, Mitja Ferlan, Ajša Alagić, Jurij Diaci, Gal Fidej, Jernej Jevšenak, and Primož Simončič

In the December 2017, 211 000 ha of Slovenian forests or 2 201 000 m3 were severely damaged by the windstorm. The damage was greatest in the adult beech-silver fir forest stands. In each management district (FMD) with different share of damaged forested area - Kočevje (69%), Postojna (22%) and Ljubljana (19%), research location were established to evaluate soil properties, root characteristics and ecophysiological regeneration response of predominating tree species in damaged stands as well as the economic effect of the windstorm on sensitive high karst sites. The restoration and regeneration efficiency of latest disaster (2017) was also compared with restoration efficiency of areas damaged in 2008, identifying possible specifics / differences and providing guidelines for their optimal recovery.

Timber database from Slovenian Forest Service with data about felling and felling reasons between Dec. 2017 and the end of 2019 was used to evaluate economic losses. The total amount from the database was multiplied by the shares of individual quality category, obtaining the quantitative assortment structure according to the actual felling. We used tables of assortment losses caused by wind to estimate the actual assortment loss and multiplied those with 2018 roundwood market prices. Estimated cumulative biomass loss amounted 205 855 m3 - 5.6% less, compared to regular felling, or 16.1 million €.

Physical soil properties between plots damaged by wind and control areas without damage did not confirm any significant difference in relation to weather and microsite conditions (rootstock, exposition, altitude, species structure of stands, microrelief). Characteristics of root systems of the most affected tree species - fir, spruce and beech did not differ between damaged and neighboring undamaged sites. An overview of fir and spruce windbreaks during the 1995 - 2018 period outlined the cumulative effect of multiple site conditions with strong wind, severely reducing the mechanical stability of fir and spruce; consequently, the following weather events with even mild wind intensities resulted in calamity.

Natural regeneration ability on all plots of recent windthrow shows successful regeneration of beech, maple, and fir in all light categories of damaged stands, but questionable regeneration of fir, which is in tight relation with ungulate browsing.  For comparison with regeneration after windthrow in 2017, we analyzed successional development in three windthrow areas from 2008. Seedling densities ranged from 5000 to 9000 ha-1, with the highest densities in the 150-300 cm height class. Within plots with natural regeneration, height and species diversity were better compared to planted plots. Shade-tolerant species increased in plots at lower elevations, while pioneer species still increased at higher elevations. Overall browsing was moderate, but silver fir and sycamore had difficulty establishing. The results indicate that regeneration spreads from areas that were covered with seedlings shortly after windthrow and that certain parts will not be covered with regeneration for a longer period.

How to cite: Čater, M., Marinšek, A., Ferlan, M., Alagić, A., Diaci, J., Fidej, G., Jevšenak, J., and Simončič, P.: Causes and effect of latest windthrow on further development of beech-fir stands in Slovenian forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7529, https://doi.org/10.5194/egusphere-egu21-7529, 2021.

EGU21-15536 | vPICO presentations | BG3.11

Management legacies and forest structure shape the root rot risk of coniferous forests in Finland

Juha Honkaniemi, Juha Heikkinen, Helena Henttonen, and Mikko Peltoniemi

Forest management and land use can strongly alter the forest ecosystem with long-lasting legacy effects by shaping e.g. species composition and age structure in stand and landscape scales. These changes may lead to changes in the local disturbance regime. In addition, forest management may directly affect the dynamics of disturbance agents. Heterobasidion root rot is one of the most important diseases of conifers in the Northern hemisphere. The epidemiology of the fungus relies heavily on the availability of fresh wood material which the spores need to cause an infection. In managed forests, fresh stump surfaces provide massive amounts of perfect growth media.  Once the fungus has infected a stand, the disease remains in there over tree generations slowly deteriorating the timber quality, killing trees and predisposing trees to subsequent disturbance agents such as wind. Thus, host availability in landscape scale, stand conditions and the management history all are assumed to play an important role in the epidemiology. The aim of this study was to analyze the drivers of current distribution of Heterobasidion root rot in Finland in order to understand the disease dynamics better and to manage the disease in the future. Specifically, we asked how important the legacies of different past management and land-use methods are. The National Forest Inventory (NFI) in Finland has recorded root rot observations since 1995 covering in total over 348 000 sample plots over four inventories. We combined that database with 20 different explanatory variables with a hypothetical relation to the biology and epidemiology of the fungus. The variables were categorized to three categories; (i) management legacies, (ii) landscape structure, and (iii) site conditions. Management legacies included for example the historical locations of sawmills and the share of forest pastures. Landscape structure combined structural characteristics, such as Norway spruce and old forest (120+ years) shares from different time periods. Site conditions were described with e.g. temperature sum and Shannon index for tree species richness. By using Boosted Regression Tree and Generalized Liner Models, we found that variables from all the three categories contributed to the presence of Heterobasidion root rot. The distance from an NFI plot to the nearest sawmill operating in 1910 (historical intensity of logging) and the distance to a waterway (timber rafting as main transportation methods) were shown to be one of the most important variables together with temperature sum and current Norway spruce share in landscape scale. This indicates that the management legacies, especially the past management intensity, has a significant effect on the epidemiology of Heterobasidion root rot.

How to cite: Honkaniemi, J., Heikkinen, J., Henttonen, H., and Peltoniemi, M.: Management legacies and forest structure shape the root rot risk of coniferous forests in Finland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15536, https://doi.org/10.5194/egusphere-egu21-15536, 2021.

EGU21-7893 | vPICO presentations | BG3.11

Modeling FoRTE, the Forest Resilience Threshold Experiment

Kalyn Dorheim, Ben Bond-Lamberty, Chris Gough, Lisa Haber, and Alexey Shiklomanov

Forested ecosystems represent a large yet uncertain fraction of the global terrestrial carbon sink. Their future state depends on a number of natural and anthropogenic influences; a particularly large uncertainty is how disturbance affects vegetation structure and ecosystem biogeochemistry.  We used the Ecosystem Demography model to explore the ecological and biogeochemical consequences of disturbance as part of the Forest Resilience Threshold Experiment (FoRTE), a dual modeling and manipulative field experiment investigating the effects of disturbance at different severities on a century-old deciduous forest. The field component was conducted at the University of Michigan Biological Station (UMBS), where stem girdling was applied to achieve four different severity levels of disturbance (0, 45, 65, and 85% gross defoliation) before the 2019 growing season. Since then, we have tracked the subsequent changes in vegetation and biogeochemistry. The modeling component attempted to simulate the FoRTE disturbance treatments within its framework. While we were able to instantiate a forest in ED with a similar climatology, soil characteristics, disturbance history, and vegetation of UMBS,  baseline ED is ultimately unable to reproduce the vegetation dynamics and carbon fluxes observed at the UMBS control plots. This is consistent with previous work where the model is not capable of matching observed carbon and vegetation dynamics. However, ED’s response to the disturbance treatments is consistent with observations from UMBS: in both the model and UMBS experimental results, we observed different resiliences and carbon cycle responses with respect to disturbance severity. These intriguing results point to both weaknesses and new possibilities in the modeling of ecosystems facing rising disturbances and climate change.

How to cite: Dorheim, K., Bond-Lamberty, B., Gough, C., Haber, L., and Shiklomanov, A.: Modeling FoRTE, the Forest Resilience Threshold Experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7893, https://doi.org/10.5194/egusphere-egu21-7893, 2021.

EGU21-7113 | vPICO presentations | BG3.11

Hydraulic diversity stabilizes forest productivity in a large-scale subtropical tree biodiversity experiment

Florian Schnabel, Xiaojuan Liu, Matthias Kunz, Kathryn E. Barry, Franca J. Bongers, Helge Bruelheide, Andreas Fichtner, Werner Härdtle, Shan Li, Claas-Thido Pfaff, Bernhard Schmid, Julia A. Schwarz, Zhiyao Tang, Bo Yang, Jürgen Bauhus, Goddert von Oheimb, Keping Ma, and Christian Wirth

Extreme climatic events such as droughts threaten forests and their climate mitigation potential globally. Stability, the ability of forests to maintain functioning in periods of stress, is therefore expected to be a primary focus of forest management in the 21st century. A key management strategy suggested for enhancing stability may be to increase tree species richness in secondary and plantation forests. Here, we aim to understand the drivers that may promote forest stability in mixed-species tree communities. We use structural equation models to explain how tree species richness, asynchronous species dynamics and diversity in hydraulic traits affect the stability of yearly forest productivity along an experimentally manipulated biodiversity gradient ranging from monocultures up to mixtures of 24 tree species. Tree species richness improved stability by increasing species asynchrony. That is, at higher species richness, inter-annual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was mediated by diversity in species’ hydraulic traits in relation to drought tolerance and stomatal control within the community, but not by the community-weighted means of these hydraulic traits. The examined hydraulic traits may be used to select suitable tree species and design mixtures that stabilize productivity in an increasingly variable climate through diverse response strategies, while excluding those that would succumb to drought or competition. The identified mechanisms by which tree species richness stabilizes forest productivity emphasize the importance of hydraulically diverse, mixed-species forests to adapt to climate change.

How to cite: Schnabel, F., Liu, X., Kunz, M., Barry, K. E., Bongers, F. J., Bruelheide, H., Fichtner, A., Härdtle, W., Li, S., Pfaff, C.-T., Schmid, B., Schwarz, J. A., Tang, Z., Yang, B., Bauhus, J., von Oheimb, G., Ma, K., and Wirth, C.: Hydraulic diversity stabilizes forest productivity in a large-scale subtropical tree biodiversity experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7113, https://doi.org/10.5194/egusphere-egu21-7113, 2021.

EGU21-8867 | vPICO presentations | BG3.11

Does foraging impact tropical forest composition?

Sijeh Asuk, Nicholas Kettridge, Jonathan Sadler, Thomas Pugh, Thomas Matthews, Vincent Ebu, and Nzube Ifebueme

Growing evidence suggests that low-intensity anthropogenic activities affect ecological communities. The resultant changes in the forest structure and composition can also be influenced by elevational gradients. During foraging for food collection, humans can cover a wider spatially and elevational range compared to other high-intensity activities. These foraging activities can alter the species richness and evenness patterns either through preferential planting or intentionally or inadvertently influence the propagule pool. This study investigated the impact of foraging on forest composition and structure along an elevation gradient in Cross River National Park in the tropical rainforest zone of Nigeria. Fifteen permanent 40 x 40 m sample plots, covering an area of 2.4 hectares, were established in the forest located in the park along an elevational gradient of 120m to 460m. All trees of 10cm diameter at breast height (dbh) and above in all the plots were measured for dbh and identified to species level. Structured questionnaires on tree species utilization amongst forest-dependent rural communities were used to create edible and inedible tree species categories. Species abundance distributions were calculated at community level. Pairwise beta diversity between all plots along the elevational gradient was calculated using Sorensen’s dissimilarity index (βsor) and the turnover component of βsor using Simpson’s dissimilarity index (βsim). A total of 35 edible species with a density of 128 stems/hectare and basal area of 11.99 m2/ha and 109 inedible species with a density of 364 stems/hectare and basal area of 22.42 m2/hectare were encountered. A reversed j-shaped function characteristic of a ‘natural’ uneven-aged tropical forest stand was observed in the diameter size distribution for all species categories. The pairwise beta diversity trend of inedible species showed that there was a positive trend between beta diversity and elevation, and this was driven by turnover; the replacement of species in the species pool along the elevational gradient. In comparison, edible species differed significantly from inedible species and showed a negligible trend indicating that the species turnover was not enough to cause a change in beta diversity with increase in elevation. These results suggest that low-impact activities such as foraging may be subtly but notably altering the composition of tropical forest, perhaps by preferential planting, or influencing the propagule pool along elevational gradients. Further tests across a wider range of sites are required to assess if this is a widespread phenomenon and to identify the driving mechanisms.

How to cite: Asuk, S., Kettridge, N., Sadler, J., Pugh, T., Matthews, T., Ebu, V., and Ifebueme, N.: Does foraging impact tropical forest composition?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8867, https://doi.org/10.5194/egusphere-egu21-8867, 2021.

EGU21-9349 | vPICO presentations | BG3.11

Remotely sensed quantification of non-fire-related disturbances and their contribution to global forest dynamics

Nezha Acil, Thomas Pugh, Jonathan Sadler, and Cornelius Senf

Stand-replacing disturbances vary in their type, frequency and severity across regions, with consequent heterogeneity in their effects on forest stand age, structure and carbon cycling. These effects can be assessed using dynamic global vegetation models (DGVMs), but representations of disturbances in these models are generally limited to wildfire, with other major natural agents, such as windthrow and biotic outbreaks, typically neglected. Furthermore, human actions, such as harvest and forest management, may intensify or dampen disturbance regimes and modulate forest susceptibility to certain agents. Here, we assess the relative importance of non-fire-related disturbances in canopy turnover, as opposed to fire-related, accounting for human influence across the world. Using the Landsat-derived Global Forest Change product, we delineate contiguous patches of tree cover loss at 30m resolution for the period 2001-2016 and combine them with different global satellite-based data products to identify fire disturbances, land conversion and exposure to human activities. We then calculate disturbance rates by forest ecoregion, excluding land use change and differentiating by fire association and forest intactness. We find that the rate of non-fire-related disturbances in intact forests, mainly windthrow and biotic outbreaks, exceeds the rate of fire in most tropical regions, as well as in British Columbia’s coastal and mountain temperate conifer forests and West Scandinavian and Russian taiga, whereas wildfire dominates in remaining boreal regions. Outside intact forests, the rate of non-fire-related disturbances, with the addition of anthropogenic disturbances, mainly harvest, exceeds the rate of fire in most regions of the world, apart from the fire-prone boreal Siberia, Mediterranean Australia, boreal North America and West American mountain temperate conifer and Mediterranean forests. The dominant disturbance agent shifts from fire in intact forests to non-fire outside intact forests, mainly in West Siberian taiga, East Australian temperate broadleaf and mixed forests, and some North American boreal forests. This analysis shows the potential of leveraging satellite remote sensing for assessing disturbance regimes and provides a globally consistent dataset that can help achieve more realistic disturbance simulations in DGVMs and reduce uncertainties in projections appraising the future role of forests in global carbon cycling.

How to cite: Acil, N., Pugh, T., Sadler, J., and Senf, C.: Remotely sensed quantification of non-fire-related disturbances and their contribution to global forest dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9349, https://doi.org/10.5194/egusphere-egu21-9349, 2021.

EGU21-7795 | vPICO presentations | BG3.11

Forest Disturbance Mapping with Sentinel-2 Time Series in Austria

Markus Löw and Tatjana Koukal

Worldwide, forests provide natural resources and ecosystem services. However, forest ecosystems are threatened by increasing forest disturbance dynamics, caused by direct human activities or by altering environmental conditions. It is decisive to reconstruct and trace the intra- to transannual dynamics of forest ecosystems. Therefore, the monitoring of large and small scale vegetation changes such as those caused by natural events (e.g., pest infestation, higher mortality due to altering site conditions) or forest management practices (e.g., thinning or selective timber extraction) becomes more and more crucial. National to local forest authorities and other stakeholders request detailed area-wide maps that delineate forest disturbance dynamics at various spatial scales.

We developed a time series analysis (TSA) framework that comprises data download, data management, image preprocessing and an advanced but flexible TSA. We use dense Sentinel-2 time series and a dynamic Savitzky–Golay-filtering approach to model robust but sensitive phenology courses. Deviations from the phenology models are used to derive detailed spatiotemporal information on forest disturbances. In a first case study, we apply the TSA to map forest disturbances directly or indirectly linked to recurring bark beetle infestation in Northern Austria.

In addition to spatiotemporal disturbance maps, we produce zonal statistics on different spatial scales that provide aggregated information on the extent of forest disturbances between 2018 and 2019. The outcomes are (a) area-wide consistent data of individual phenology models and deduced phenology metrics for Austrian forests and (b) operational forest disturbance maps, useful to investigate and monitor forest disturbances, for example to facilitate sustainable forest management.

At a forest stand level, we reconstruct the origin date of forest disturbances (FDD – Forest Disturbance Date). Theses FDD outputs show the spatiotemporal patterns and the development of damages and indicate that most dynamics are caused by recurring and spreading bark beetle infestation. The validation results based on field data confirm a high detection rate and show that the derived temporal information is reliable. In total, 23400 hectares, i.e., on average 2.8% of the forest area in the study area, are found to be affected by forest disturbance. The zonal statistic maps point out hotspots of significant forest disturbances, where adequate forest management measures are highly needed. Furthermore, this study highlights the TSA’s potential to also depict and monitor minor human impacts on forests, such as thinning, selective timber extraction or other moderate forest management practices.

Keywords:  forest disturbance; forest monitoring; bark beetle infestation; forest management; time series analysis; phenology modelling; remote sensing; satellite imagery; Sentinel-2

How to cite: Löw, M. and Koukal, T.: Forest Disturbance Mapping with Sentinel-2 Time Series in Austria, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7795, https://doi.org/10.5194/egusphere-egu21-7795, 2021.

EGU21-13223 | vPICO presentations | BG3.11

Natural disturbances and protection forests: at the cutting edge of remote sensing technologies for a rapid assessment of a stand protective function

Emanuele Lingua, Niccolò Marchi, Francesco Bettella, Maximiliano Costa, Francesco Pirotti, Marco Piras, Matteo Garbarino, Donato Morresi, Raffaella Marzano, and Frédéric Berger


Protection forests can be severely affected by natural disturbances, whose consequences could greatly alter the fundamental ecosystem services they are providing. Assessing and monitoring the status of the protective function, particularly within disturbed stands, is therefore of vital importance, with timing being a critical issue. Remote sensing technologies (e.g. satellite images, LiDAR, UAV) are nowadays thoroughly available and can be usefully applied in order to quantify and monitor the protective role of Alpine forests, especially after abrupt changes in their cover and structure following the occurrence of a disturbance event. In this contribution, after a brief introduction on these technologies and their potential contribution to protection forest management, some specific case studies will be presented. In particular, we will focus on case studies involving protection forests affected by windthrows (the post-Vaia situation in the Eastern Italian Alps; Lidar and UAV surveys) and by forest fires in the Western Italian Alps (Fall 2017 fires; Sentinel-2 Images).

How to cite: Lingua, E., Marchi, N., Bettella, F., Costa, M., Pirotti, F., Piras, M., Garbarino, M., Morresi, D., Marzano, R., and Berger, F.: Natural disturbances and protection forests: at the cutting edge of remote sensing technologies for a rapid assessment of a stand protective function, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13223, https://doi.org/10.5194/egusphere-egu21-13223, 2021.

The EU’s climate change mitigation plans of 55% reduction in greenhouse gas emission by 2030 and reaching climate-neutrality by 2050 rely significantly on maintaining and increasing the carbon sink in European forests. In addition to direct consequences of climate change and ageing forests, this sink is becoming threatened by the new invasive forest pests which can decrease forest productivity. The Oak lace bug (Corythucha arcuata, Say 1832), native to North America, is a new invasive species rapidly spreading since 2012 from the east to the west of Europe. The oak lace bug (OLB) after establishment in an area shows no signs of retreating and negatively affects the tree photosynthetic capacity by feeding on leaf sap. The consequences of such new and persistent pest, which are not imminently life-threatening to trees but are long-lasting, have yet to be determined.

In our study, we used remotely sensed MODIS NDVI (MOD09Q1), gridded meteorological data (FORESEE), soil water content (ERA5 Land), available national forest management and land cover data to develop methods for detecting the presence and the assessment of the impact of the OLB. The study was focused on the modelling tools to decouple the effects caused by the environmental variables from the pest damage on the measured NDVI. To this different NDVI models were created based on the Least Absolute Shrinkage and Selection Operator (LASSO) technique and the most influential periods, to support accurate forest pest detection. We investigated forests containing oak trees in the transboundary area of Hungary and Croatia. The results show that the LASSO technique is a promising tool in NDVI modelling using meteorological and environmental data. The performance of the models based on the Most Influential Periods (MIP) of the different variables showed just slightly worse results, although their application is more intuitive. In the case of the OLB, the damage assessment results with the LASSO and MIP methods showed that the pest-caused NDVI decrease in pure oak stands during the late August to early September period can be as much as -14.5% and -15.6%, respectively.

 

Asknowledgments:

The research has been supported by the Croatian Science Foundation project MODFLUX (HRZZ IP-2019-04-6325), by the Hungarian Scientific Research Fund (OTKA FK-128709) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

How to cite: Marjanovic, H. and Kern, A.: Decoupling the effect of the forest pest damage from the effects of meteorology using space-borne remote sensing and modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14584, https://doi.org/10.5194/egusphere-egu21-14584, 2021.

EGU21-10857 | vPICO presentations | BG3.11

Assessment of wind damage risk in forest areas: application with GIS and Fuzzy-AHP MATLAB graphical user interface tool

Meryem Tahri, Jan Kašpar, Miroslav Novotny, Haytham Tahri, and Mohamed Maanan

In the current situation, the forest degradation areas caused by severe wind-breaking has steadily risen. This research proposes an efficient decision support tool to reduce wind damage risk and monitor forest zones. This study provides an outcome of the role of the combination of geographical information system (GIS) and Fuzzy-AHP MATLAB graphical user interface (GUI) for forest managers and environmental consultants. The user-friendly application shows how the research work ensures forest spatial planning and monitoring on ecological and forest management purposes on a regional and national worldwide scale. A representative Czech case study was chosen regarding different parameter characteristics to test our approach. The study also used map surfaces from field survey sampling results and compared the ground truth values at specific locations with data from the new model. The GIS and Fuzzy-AHP GUI are helpful for various consultants in optimizing the decision-support process in many fields.

How to cite: Tahri, M., Kašpar, J., Novotny, M., Tahri, H., and Maanan, M.: Assessment of wind damage risk in forest areas: application with GIS and Fuzzy-AHP MATLAB graphical user interface tool, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10857, https://doi.org/10.5194/egusphere-egu21-10857, 2021.

EGU21-4155 | vPICO presentations | BG3.11

Deciduous tree segmentation using airborne lidar point clouds and geometric networks: Examples from the Park Sanssouci, Potsdam, Germany

Max Hess, Aljoscha Rheinwalt, Maximilian Brell, and Bodo Bookhagen

Automated tree segmentation in anthropogenically shaped environments is challenging. Large differences in deciduous tree species composition narrows down suitable solutions. Tree crowns and vegetation structures exhibit wide varieties and trees often form complex tree aggregations. Clear delineation of individual deciduous tree crowns in dense tree stands is difficult, and methods developed for conifer trees may not be applicable. The dense overlapping structures require alternative approaches.

 

To overcome some of these limitations, we have developed a new method using individual point locations and their neighborhood information. We build a network of connected lidar points with the following steps: (1) We use a k-d tree to derive immediate neighborhoods of points. (2) For each point a vector is generated pointing to the centroid of higher located points within a neighborhood. (3) Each point is then connected to the nearest point above its corresponding centroid. Points which do not connect to higher points based on this rule are identified as endpoints. Since each point is connected to only one higher point if such a point exists in the neighborhood, these connections form a forest of trees network. (4) With adaptive parameters each tree crown is represented by a single component of the network, i.e., each tree crown is represented by a mathematical tree in the network.

 

Our new method is tested with a dense airborne point cloud (88 pts/m2) collected in 2018 for the Park Sanssouci in Potsdam, Germany. This area of high biodiversity contains more than 25.000 mapped trees from over 75 different species that we use as reference and validation datasets. We demonstrate the successful application of our algorithm and present segmentation uncertainties.

How to cite: Hess, M., Rheinwalt, A., Brell, M., and Bookhagen, B.: Deciduous tree segmentation using airborne lidar point clouds and geometric networks: Examples from the Park Sanssouci, Potsdam, Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4155, https://doi.org/10.5194/egusphere-egu21-4155, 2021.

EGU21-15609 | vPICO presentations | BG3.11

Fire history and the relationship with late Holocene anthropogenic activity in Tăul Mare peat bog in the Lăpuș Mts (Eastern Carpathians). Romania

Ancuta Petras, Gabriela Florescu, Simon M. Hutchinson, and Marcel Mindrescu

Predicted climate warming and increasing anthropogenic pressure on environmental resources are expected to increase wildfire risk in Central and Eastern Europe (including Romania) and thus may affect areas currently outside fire risk areas. Therefore, knowledge of the natural and anthropogenic variability of wildfire, as well as its long-term impacts on the environment can provide an important perspective and be used to enhance the environmental management of this region.

Our study aims to reconstruct fire history in relation to anthropogenic disturbances and climate variability, over the last 2000 years in a now forested but former mining area from Lăpuș Mts (Eastern Carpathians, Romania) based on an ombrotrophic peat sequence. To reconstruct past fire activity, we employed sedimentary macroscopic charcoal (counts and morphological characteristics), a widely used proxy for gaining insight into long-term fire history and vegetation burning. Ombrotrophic peat bogs are sensitive to local environmental changes and, given that the deposition of allochthonous material is exclusively atmospheric, they are ideal archives for recording charcoal fluxes resulted from vegetation burning. Past local soil/bedrock erosion and regional atmospheric pollution from (pre)historical mining were reconstructed on the basis of abiotic sediment properties such as elemental geochemistry, mineral magnetic characteristics, organic matter content and particle size. Published sources were used to extract information regarding regional climate variability and extra-local to regional vegetation history.

Results show that increases in macro-charcoal concentration, particularly the woody charcoal morphotype, were shortly followed by marked increases in heavy metal concentration and by enhanced soil and bedrock erosion, as inferred from geochemical, magnetic and grain-size proxies. This suggests increased local disturbance during intervals with mining activities and indicates the likelihood that humans used fire to clear the forests and open the access to the mining sites. Alternatively, humans could have deforested the landscape to obtain charcoal in kilns, for ore smelting. Such actions likely resulted in topsoil removal and exposed bedrock surfaces, which is supported by the increase in the concentration of detrital elements and small, topsoil-derived magnetic particles in our record. Over recent centuries, the recovery of the local environment is evident in the proxies, with low fire activity and decreased soil/bedrock erosion, which coincides with the abandonment of the mining sites. This multi-proxy study shows the impact of anthropogenic disturbances and the recovery of the local environment and can be used to predict future possible responses of the local environment to stressors.

How to cite: Petras, A., Florescu, G., Hutchinson, S. M., and Mindrescu, M.: Fire history and the relationship with late Holocene anthropogenic activity in Tăul Mare peat bog in the Lăpuș Mts (Eastern Carpathians). Romania, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15609, https://doi.org/10.5194/egusphere-egu21-15609, 2021.

EGU21-12000 | vPICO presentations | BG3.11 | Highlight

The effect of road networks on the forest wildfires ‘size

Zohreh Mohammadi, Peter Lohmander, Jan Kašpar, and Robert Marušák

Forest roads are crucial to forest conservation. They can be perfect barriers against forest wildfires if they maintained appropriately and firefighting equipment were provided. This paper discusses the effect of forest roads in context of forest transportation and fire fighting in Czech Republic forestry. The results prove that, the wildfire sizes are reduced if the fire brigade can reach the fires more rapidly.  In other words, the wildfire sizes were evaluated from a function of the distances to roads. Increasing road density can decrease wildfire size. Enhancement of the road network can decrease the future wildfire problems as attack times strongly effects on wildfire sizes. This motivates the location of some firefighting stations close to the forest areas. Furthermore, the importance of road density, road quality and other infrastructure to attack time and efficiency, such as bridges and water reservoirs, may be enhanced. In case forest management methods, infrastructure and the capacities of fire brigades are not updated to the new climate, larger areas destroyed by wildfires can be predicted.

Keywords: attack time, forest roads, forest management, forest wildfires, Czech Republic forestry.

How to cite: Mohammadi, Z., Lohmander, P., Kašpar, J., and Marušák, R.: The effect of road networks on the forest wildfires ‘size, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12000, https://doi.org/10.5194/egusphere-egu21-12000, 2021.

EGU21-11964 | vPICO presentations | BG3.11

Mixture-effects on tree biomass production and soil organic C quality in a temperate plantation forest

Iftekhar Ahmed, Andrew Smith, and Douglas Godbold

Forest restoration and afforestation on degraded lands are receiving tremendous research efforts globally as a climate change mitigation option. There is a growing interest in mixed species plantation to ensure sustainable ecosystem services and biodiversity. However, successful mixture of achieving these potential benefits is rare. We studied the polyculture of two pioneer fast growing species (i.e. B. pendula,  and A. glutinosa- of which A. glutinosa is N-fixing) and one shed tolerant species with slow juvenile growth (i.e. F. sylvatica) to examine the effects of species mixture on biomass production and quality of soil organic C stock following the replacement series approach. Standing woody biomass in polyculture demonstrated no over-yielding, presumably due to concurrent impacts of suppression of F sylvatica by two fast growing species and competitive reduction benefits in A. glutinosa. Similarly, standing fine root biomass production and turnover showed no significant mixture effect.  Although the quantity of soil organic C stock was unaffected by tree mixture, the vertical distribution of biodegradable C fractions was differed between mono and polyculture stands,  most probably due to slow decay rate of mixed litter. We found that species mixture decreased soil C lability in the upper soil layers, and increased recalcitrant C  in deep soil (>40 cm) that has enormous potential for long-term sequestration. We concluded that contrasting growth responses can result in no biomass over-yielding in polyculture stands but the mixed litter can affect soil C quality.

Key words: Mixture effects, Tree polyculture, biomass, over-yielding, C quality, recalcitrant C

How to cite: Ahmed, I., Smith, A., and Godbold, D.: Mixture-effects on tree biomass production and soil organic C quality in a temperate plantation forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11964, https://doi.org/10.5194/egusphere-egu21-11964, 2021.

EGU21-12387 | vPICO presentations | BG3.11

Effect of bench terracing on ground dwelling arthropods 

Liliana B Simões, Martinho A S Martins, João R L Puga, Jan J Keizer, and Nelson Abrantes

Eucalypt trees are the most planted tree in the world, and in Portugal these plantations occupy 26% of the forested area. The area of Eucalypt monoculture is growing since the 50’s due to the importance of this tree for the pulp and paste industry. With short rotation cycles, it is important to facilitate the cut and transport of the logged trees. In this sense, many forested areas in mountainous regions are being terraced with bulldozers.

Terracing is a well know soil conservation practice, reducing runoff peak flows, increasing water infiltration and subsequent low soil erosion rates. Nevertheless, the impacts of terracing for eucalypt plantations are still unknown, especially in terms of biodiversity of soil fauna. Hence, to address this research gap, the present study aimed to assess the impacts of terracing on the ground dwelling arthropods in eucalypt plantations.

This study took place in a mountain slope with old eucalypt trees that were logged (May 2019) and then terraced (July) as ground preparation to receive a new eucalypt plantation. The community of ground dwelling arthropods were accessed using pitfall traps.  The arthropods were collected before the terracing process, in Spring 2019, and then seasonally after terracing until the Spring of 2020Total abundance and richness at order level, as well as, abundance, richness, Shannon-Wiener diversity and Pielou’s Evenness indexes, at Family level of Coleoptera, Araneae and Hymenoptera, were used to depict differences between pre- and post-terracing. The results showed that although terracing did not reduce the total abundance or richness, it changed the community structure. In particular, it was observed an increase in opportunist and generalist families after terracing such as Staphylinidae and Myrmicinae. The spider community also changed, with more hunter families captured after the terrace construction. In overall, the results of our study reveal that although the total abundance and richness of arthropods was not altered by the construction of terraces, their structure was modified.

How to cite: Simões, L. B., Martins, M. A. S., Puga, J. R. L., Keizer, J. J., and Abrantes, N.: Effect of bench terracing on ground dwelling arthropods , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12387, https://doi.org/10.5194/egusphere-egu21-12387, 2021.

BG3.12 – Emerging constraints of photosynthesis (including chlorophyll fluorescence), respiration and transpiration at ecosystem to global scales

In natural environments plants are subjected to variable light conditions and therefore need an efficient regulatory system to regulate photosynthesis and the downstream metabolism. Most of the measurements available are taken at steady state and at leaf level but those may overestimate total carbon uptake in a more dynamic environment. Furthermore, some plants may be more adapted than others to deal with light fluctuations and therefore is difficult to draw general conclusions. We then grew a commercial soybean variety and a chlorophyll deficient mutant in a recently developed growth chamber system (DYNAMISM) which allowed to obtain instantaneous gas exchange data at canopy level for several weeks. By doing so we could investigate both short term responses and long term adaptations to light dynamic conditions of the two varieties. At steady state, chlorophyll deficient crops are thought to have a similar or even a higher photosynthetic rate compared to the green wildtypes, enhanced by a higher light transmittance throughout the canopy. But little is known about how they respond to fluctuations in light. The two varieties were grown either in fluctuating (F) or non-fluctuating (NF) light conditions to evaluate how variable light would affect biomass accumulation. Two different light treatments were applied, low light (LL) and high light (HL) with different light intensities and amplitude of fluctuations. The LL treatment did not entail any difference among F and NF in both varieties. The chlorophyll-deficient mutant was instead found to be susceptible to the fluctuations of light in the HL treatment, by accumulating less biomass. It is hypothesised that this might be due to its longer non‐photochemical quenching relaxation time  in light transitions, but other acclimatation mechanisms need to be investigated.

How to cite: Salvatori, N.: The effect of fluctuating light on canopy photosynthesis: a focus on a chlorophyll-deficient Soybean mutant, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12543, https://doi.org/10.5194/egusphere-egu21-12543, 2021.

EGU21-11021 | vPICO presentations | BG3.12

Estimating mesophyll and biochemical limitations to carbon assimilation of potato crop during drought

Quentin Beauclaire and Bernard Longdoz

Understanding how plant crops respond to drought is essential for both improving photosynthesis modelling and predicting the impacts of climate change on agricultural production. Over the past years, researches have focused on identifying the stomatal processes that restrict the net photosynthetic rate and quantifying the importance and how different factors limit it. However, the constraints to photosynthesis coming from perturbation in the mechanisms taking place from sub-stomatal cavities to carboxylation sites in chloroplasts are not yet fully understood especially in plant crops. The aim of our study was to investigate the impact of drought on the light-limited photosynthesis rate for potato (Solanum Tubersosum) by measuring the photosynthesis limitations and partitioning them between stomatal, mesophyll and biochemical constrains during a field-experiment that took place in Wallonia during the summer 2020. Gas-exchange and fluorescence techniques were used to quantify mesophyll conductance (gm), stomatal conductance (gs), Rubisco carboxylation rate (Vcmax) and electron transport rate (Jmax) in response to low soil water content during the tuber development stage. We obtained a clear reduction of the leaf assimilation and performed a limitation analysis identifying which factor contributed the most to the light-saturated photosynthetic rate (An) decrease. During the one-month drought treatment, An, gm, Jmax and Vcmax significantly decreased when the relative extractable water (REW) passed below a threshold ranging from 0.5 to 0.7 . On the opposite, g1, the slope of the gs dependence on environmental factors, remained constant. When soil water was not limiting, most of the light-saturated photosynthetic rate variation was explained by VPD while mesophyll and biochemical influence progressively increased when soil water content declined. At the maximum drought intensity, gm and Vcmax reduction explained respectively 40 % and 30% of the light-saturated photosynthetic rate decrease. The coexistence of aerial drought (high VPD) accounted only for 3% of the total limitation. This highlights the importance of mesophyll and biochemical limitations on potato photosynthesis and development.

How to cite: Beauclaire, Q. and Longdoz, B.: Estimating mesophyll and biochemical limitations to carbon assimilation of potato crop during drought, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11021, https://doi.org/10.5194/egusphere-egu21-11021, 2021.

EGU21-3094 | vPICO presentations | BG3.12

Chlorophyll fluorescence-gross primary productivity relationships during the spring awakening of an evergreen needleleaf forest

Michaela Schwarz, Karolina Sakowska, Klaudia Ziemblińska, Paulina Dukat, Marek Urbaniak, Janusz Olejnik, Albin Hammerle, and Georg Wohlfahrt

Solar-induced chlorophyll fluorescence (SIF) has been shown as a promising approach for the estimation of gross primary productivity (GPP), but whether SIF is merely a function of canopy structure or also contains precious physiological information, is presently heavily discussed. In this study, the SIF-GPP relationship was quantified at a Pinus sylvestris forest (Mezyk, Poland) during a series of short-term cold spells throughout the spring awakening to investigate the potential of SIF as a proxy for GPP during this period characterized by cold stress. GPP was inferred from the net ecosystem CO2 exchange measured by the eddy covariance technique. Canopy-scale SIF was measured using a high-resolution spectrometer system and retrieved via spectral fitting (SFM) algorithms. Active leaf-scale chlorophyll fluorescence measurements were conducted on seven branches using an automated field-deployable fluorometer system. Our results demonstrate a clear difference in GPP and the utilization of chlorophyll-absorbed energy between cold spell and warm days. At short, sub-daily time scales, the correlation between SIF and GPP was minor, but increased significantly when observed over extended temporal periods, when SIF exhibited a seasonal pattern that was more closely aligned with the GPP. Furthermore, the strong relationship between non-photochemical quenching (NPQ) and the photochemical reflectance index (PRI) shows good potential to better estimate GPP when integrated in the SIF-GPP model, as the integration of PRI overall increased the relation between SIF and GPP.

How to cite: Schwarz, M., Sakowska, K., Ziemblińska, K., Dukat, P., Urbaniak, M., Olejnik, J., Hammerle, A., and Wohlfahrt, G.: Chlorophyll fluorescence-gross primary productivity relationships during the spring awakening of an evergreen needleleaf forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3094, https://doi.org/10.5194/egusphere-egu21-3094, 2021.

EGU21-16102 | vPICO presentations | BG3.12

Canopy structure and stress induced changes in chlorophyll fluorescence – a mesocosm experiment

Albin Hammerle, Mirco Migliavacca, Felix Spielmann, Javier Pacheco-Labrador, and Georg Wohlfahrt

Solar radiation absorbed by chlorophyll in plants is either used for photosynthesis, dissipated as heat or is re-emitted as fluorescence at a slightly higher wavelength. Sun induced chlorophyll fluorescence (SIF) has thus the potential to act as a sensitive indicator for early stress detection in ecosystems. SIF signals at the top of the canopy are however influenced by canopy structure and not only by plant physiology, due to light scattering and (re)absorption.

In this study we present the first results of a mesocosm experiment on the effect of drought stress on chlorophyll fluorescence in two plant stands differing in their canopy structure. In total we investigated 24 plots of planophile (Trifolium repens) and erectophile (Lolium perenne) plant stands. 12 plots acted as a control plots, while the remaining 12 plots underwent a progressively intensifying drought stress treatment. During the course of the experiment regular measurements of SIF using a passive spectrometer system were conducted. Furthermore, active chlorophyll fluorescence measurements with a multiplexed field spectrometer system were used to derive the maximum PSII efficiency (Fvm) and non-photochemical quenching (NPQ). Ancillary measurements included meteorological, leaf physiological, soil water and canopy structure variables.

The drought treatment led to a relatively stronger decrease in NDVI and a relatively higher increase in PRI in the Trifolium repens stand, which also experienced a more pronounced increase in NPQ, especially during hot days. For both stands surface temperatures were clearly higher in the treatment groups, with a larger effect in the Trifolium stand. SIF-yield (SIF/aPAR) did remain more or less constant or increased slightly for the control groups. In both stands it dropped towards the end of the experiment for both treatment groups at very low soil water content levels, about at the same time when the active chlorophyll fluorescence measurements started to indicate persistent reductions in Fvm. The relative decrease in SIF and SIF-yield for the treatment groups was not significantly different between the two stands.

How to cite: Hammerle, A., Migliavacca, M., Spielmann, F., Pacheco-Labrador, J., and Wohlfahrt, G.: Canopy structure and stress induced changes in chlorophyll fluorescence – a mesocosm experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16102, https://doi.org/10.5194/egusphere-egu21-16102, 2021.

Dry Mediterranean forests are characterized by a short rainy season followed by a long dry period with high temperatures and radiation levels. These ecosystem are also exposed to large interannual variations in precipitation. Taking advantage of contrasting rainfall years, we investigated the opportunistic nature of pine trees in this region.  In our study site (the Yatir forest) mean annual precipitation is 288 mm, but it was 220 and 420 mm in the hydrological years 2018/19 and 2019/20, respectively. We used fluorescence measurements at the leaf, tower, and satellite scales, together with reflectance indices and eddy covariance measurements to assess the physiological response in the dry stressful season in these contrasting years.

The results showed that following a low rainfall season, soil moisture contes (SWC) reaches the 16% threshold of no traspirable water in spring, followed by larg decrease in carbon uptake and quantum yield of photosynthesis and the activation of protection mechanisms, such as decrease in chlorophyll content, large NPQ, and drop in the chlorophyll to cartenoid ratio (CCI index, obtained from canopy reflectance). Following the high rainfall year, the active season is extended (as indicated also by the satellite data), but even after the SWC threshold is reached, and mid-day VPD reaches ~5 KPa), carbon uptake continues, the amount of energy allocated to photochemistry remains high (high Fv/Fm and Y(II) levels), without the onset of protective mechanisms: No decrease in leaf chlorophyll and in NPQ, or decrease in CCI. We hypothesize that the opportunistic response of the dry-land forest must rely on yet unidentified water storage outside the root zone (e.g. deep soil pockets within the bedrock, or within the plants), which allow the plant to maintain high, with the only apparent adjustment reflected in shift of activity to early morning hours, when VPD is still low but the PAR levels are sufficiently high.

How to cite: Cochavi, A., Rotenberg, E., Tatarinov, F., Kӧhler, P., Frankenberg, C., and Yakir, D.: Combining SIF, reflectance, and leaf scale measuremnts to assess the effcets of interannual changes in winter rainfall on tree physiology during the following summer drought period in a dry Mediterranean pine forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15086, https://doi.org/10.5194/egusphere-egu21-15086, 2021.

During the regular seasonal drought conditions in our semi-arid pine forest, soil water content decrease below the 16% threshold of no transpirable soil water availability, and VPD increase to values of >5 kPa. Soil drought in one forest plot was eliminated by using supplemental drip irrigation during summer. We used automatic branch chambers to measure CO2/H2O exchange together with laser-based COS exchange, and retrieving canopy sun induced fluorescence (SIF) using a high-resolution spectrometer above the canopy that was moved between the control and irrigated plots on a weekly basis. Using these research tools, we investigated the ecophysiological response (including rates of gas exchange, conductances, and photochemical response) of the mature pine trees to the differential effects of soil and atmospheric droughts. Leaf relative uptake (LRU) ratio of COS to CO2 fluxes was used to constrain estimates of carbon assimilation (An) and changes in the An/gl ratio (where gl is leaf conductance), and leaf COS and H2O exchange fluxes were also used to partition leaf conductance. We will report on the first seasonal cycle of COS and CO2 fluxes, LRU and SIFA of mature pine trees under field conditions in the semi-arid forest, which includes the summer dry stress period, the recovery during the transition to the winter wet season, and the spring peak activity period.

How to cite: Qubaja, R., Stern, R., Oz, I., Cochavi, A., Muller, J., and Yakir, D.: Combining branch-scale COS/CO2 exchange and canopy-scale SIF measurements to disentangle the effects of high VPD and low soil moisture in mature pine trees under field conditions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6430, https://doi.org/10.5194/egusphere-egu21-6430, 2021.

EGU21-8939 | vPICO presentations | BG3.12

Evaluating the relationship between SIF and GPP under climate extremes

Sebastian Wieneke, Ana Bastos, Manuela Balzarolo, José Miguel Barrios, and Ivan Janssens

Sun Induced Chlorophyll Fluorescence (SIF) is considered as a good proxy for photosynthesis given its closer link to the photosynthetic light reactions compared to remote sensing vegetation indices typically used for ecosystem productivity modelling (eg. NDVI). Satellite-based SIF shows significant linear relationships with gross primary production (GPP) from in-situ measurements across sites, biomes and seasons. While SIF can be considered a good proxy for large scale spatial and seasonal variability in GPP, much of the SIF-GPP co-variance can be explained by their common dependence on the absorbed photosynthetically active radiation. Whether SIF can be an equally good proxy for interannual variability in GPP especially during periods of vegetation stress (drought/heat) is, so far, not clear.

In this study, we evaluate the relationship between satellite-based SIF and in-situ GPP measurements during vegetation stress periods (drought/heat), compared to non-stress periods. GPP is obtained from eddy-covariance measurements from a set of forest sites pre-filtered to ensure homonegeous footprints. SIF is obtained from GOME-2 covering the period 2007-2018. Because of scale mismatch between each site’s footprint (in the order of hundred meters) and the spatial resolution of GOME-2 (ca. 50km), we additionally use SIF from the downscale product from Duveiller et al. 2020 (ca. 5km) and the more recent dataset from TROPOMI (ca. 7 x 3.5 km), covering only the last year of the study period.

We develop a classification of stress periods that is based on both the occurrence of drought/heat extreme events and the presence of photosynthetic downregulation. We then evaluate the relationship between SIF and GPP and their yields, for different plant functional types and at site-level. We evaluate how these relationships vary depending on environmental conditions and in particular for “stress” versus “non-stress” days.

Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data, 12, 1101–1116, https://doi.org/10.5194/essd-12-1101-2020, 2020.

How to cite: Wieneke, S., Bastos, A., Balzarolo, M., Barrios, J. M., and Janssens, I.: Evaluating the relationship between SIF and GPP under climate extremes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8939, https://doi.org/10.5194/egusphere-egu21-8939, 2021.

EGU21-3583 | vPICO presentations | BG3.12

Detecting the Drought-Response Difference in Semiarid Ecosystems on the Mongolian Plateau: 10-Year Observation Using GOSAT SIF and MODIS PRI

Tomoki Kiyono, Hibiki Noda, Tomo’omi Kumagai, Haruki Oshio, Yukio Yoshida, Tsuneo Matsunaga, and Kouki Hikosaka

Atmospheric aridity and soil drought control vegetation water use and affect the terrestrial water and carbon cycles. Separating these two types of drought is difficult but crucial because they relate to different ecosystem properties and their impacts depend on vegetation types. We examine how well satellite-observed solar-induced chlorophyll fluorescence (SIF) captures the drought responses of taiga and steppe in semiarid areas on the Mongolian plateau, which have experienced a historic drought since the late 1990s. Ten-year records of the GOSAT SIF and the MODIS-band-1 photochemical reflectance index (PRI, also known as chlorophyll/carotenoid index) from Aqua consistently suggest that the taiga is sensitive to vapor-pressure deficit but insensitive to surface-soil drought, and that the opposite is the case for the steppe. The MODIS PRI changes reasonably with temperature and drought stress, and also with canopy shades, which is attributable to the xanthophyll cycle. However the most influential factor on the PRI is leaf area in both vegetations, and temperature is the second in the taiga, indicating the dominant effect of its pigment-pool size. The leaf area index of the taiga has almost similar values and seasonal patterns in each year, while the SIF shows remarkable interannual changes. The SIF yield in the taiga decreases 36–48% on average with the increase of vapor-pressure deficit from 1 kPa to 3 kPa under high-PRI conditions. Almost all detectable information from the SIF yield in the steppe is correlated with PRI on a monthly basis. The SIF in the steppe decreases nonlinearly when the surface-soil-water content fell below ∼0.154 m3 m−3, which agrees well with an eddy-covariance result in this region and implies the capability of satellite-based wilting-point estimation. We will further clarify which biological factors affected the observed results of SIF and PRI using the process-based model 'Soil-Canopy-Observation of Photosynthesis and Energy fluxes' (SCOPE) and show the impact of drought on the gross primary production in the past decade.

How to cite: Kiyono, T., Noda, H., Kumagai, T., Oshio, H., Yoshida, Y., Matsunaga, T., and Hikosaka, K.: Detecting the Drought-Response Difference in Semiarid Ecosystems on the Mongolian Plateau: 10-Year Observation Using GOSAT SIF and MODIS PRI, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3583, https://doi.org/10.5194/egusphere-egu21-3583, 2021.

EGU21-7321 | vPICO presentations | BG3.12

Solar Induced Fluorescence measured from satellite sensors captures mostly structural than physiological responses to environmental stressors

Athanasios Paschalis, Pierre Gentine, Duncan Graham, and Simone Fatichi

A deep understanding of the responses of terrestrial vegetation to environmental forcing is crucial for understanding the global carbon dynamics, especially under a changing climate. Vegetation responses to stress can manifest first as plant physiological responses, and at later stages through changes in canopy structure. Remote sensing of vegetation has been proven very valuable in providing such understanding. One of the major breakthroughs has been the use of multi and hyper spectral sensors on board satellites that can retrieve Solar Induced Fluorescence (SIF), which is closely linked with plant photosynthesis.

In this study we assess whether (SIF), as observed by instruments on board of satellites, can adequately capture both of those responses. Using 7 different global SIF products, water and CO2 flux data from 120 eddy-covariance towers and climate reanalysis products, we found a good agreement between the 16-day responses of flux tower observed gross primary productivity (GPP) and SIF to soil moisture and light, and a weaker agreement regarding the responses to temperature and atmospheric humidity. Overall, we found that current satellite SIF responses to environmental stressors mostly reflect structural changes in vegetation structure, and that satellite SIF has limited skill in capturing early stress plant physiological responses except for the light availability response at higher latitudes. While satellite SIF significantly outperforms more traditional vegetation indices (EVI, NDVI), as it does not saturate unlike the latter ones, it does not provide major additional information regarding vegetation physiological responses to either hydrological or atmospheric droughts.

How to cite: Paschalis, A., Gentine, P., Graham, D., and Fatichi, S.: Solar Induced Fluorescence measured from satellite sensors captures mostly structural than physiological responses to environmental stressors, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7321, https://doi.org/10.5194/egusphere-egu21-7321, 2021.

EGU21-15375 | vPICO presentations | BG3.12

Constraining the Eurasian biogenic boreal carbon-cycle with satellite-SIF

Lena Schreiner, Katja Grossmann, André Butz, Sanam N. Vardag, and Eva-Marie Schömann

The Eurasian boreal ecosystem acts as a major terrestrial carbon sink in the northern hemisphere. Under changing climatic conditions, it is crucial to monitor biogenic carbon fluxes in this area. The Siberian in-situ CO2 data are, however, sparse in spatial coverage and limit model-validation there. Satellite observations of CO2 and Sun-Induced Fluorescence (SIF) can provide essential information to constrain the Eurasian boreal biogenic carbon-cycle and further, to improve carbon cycle inverse models.

In this study, we investigate the Eurasian boreal carbon cycle with satellite observations of the Orbiting Carbon Observatory 2 (OCO-2) and the Greenhouse gase Observing SATellite (GOSAT). We compare the observed carbon cycle dynamics to model data such as provided by CarbonTracker (CT2019, CT-NRT.v2020-1) and find differences in the ppm range. Various sensitivity studies with respect to region selection, sampling biases and model choices are used to consolidate the robustness of the detected pattern. Using SIF and FLUXCOM GPP data, we will show first attempts to attribute the model-measurement differences to uncertainties in biogenic carbon fluxes.

How to cite: Schreiner, L., Grossmann, K., Butz, A., Vardag, S. N., and Schömann, E.-M.: Constraining the Eurasian biogenic boreal carbon-cycle with satellite-SIF, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15375, https://doi.org/10.5194/egusphere-egu21-15375, 2021.

EGU21-7019 | vPICO presentations | BG3.12

Towards improved estimation of the atmosphere - terrestrial biosphere CO2 exchange over India using a diagnostic satellite based model

Aparnna Ravi P, Dhanyalekshmi K Pillai, Christoph Gerbig, Julia Marshall, and Chandra Shekhar Jha

Several countries across the world have initiated considerable efforts to curb Greenhouse Gas emissions to limit the increase in global temperature to 2°C. However, planning of proper emission reduction policies and their successful implementation require accurate carbon budgeting. The objective of this study is to accurately quantify various sources and sinks of carbon dioxide over Indian domain using inverse modelling techniques. 

In order to better represent and quantify the atmosphere-biosphere CO2 exchange fluxes and ecosystem behaviour in the inverse modeling framework, the Vegetation Photosynthesis and Respiration Model (VPRM) is employed over Indian region. VPRM is a satellite based assimilation scheme with very simple model structure, so as to facilitate successive optimization of parameters in the inverse modelling framework. As an initial step, we evaluated the VPRM model with eddy covariance observations over India from two different vegetation types (Betul; Deciduous forest and Sundarbans; Evergreen forest) for the year 2017. The comparison reveals that the model needs further refinement in parametrization even though the VPRM showed better performance than other existing terrestrial biosphere models (e.g ., TRENDY and Carbon Tracker (CT)) over Indian domain. Among the VPRM products (Net ecosystem exchange (NEE), Gross Primary Productivity (GPP), and Ecosystem Respiration (Re)), the ecosystem respiration shows large deviations from observation. The analysis, based on the soil moisture (SM) data from IITM monsoon mission project shows that the SM plays a significant role, which is currently missing in the VPRM respiration calculations. Further, the study attempts to utilize Solar induced Fluorescence (SIF) as a proxy to estimate GPP and to be included in VPRM for the better representation of biospheric fluxes over India. Preliminary results will be presented and discussed.

How to cite: Ravi P, A., K Pillai, D., Gerbig, C., Marshall, J., and Jha, C. S.: Towards improved estimation of the atmosphere - terrestrial biosphere CO2 exchange over India using a diagnostic satellite based model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7019, https://doi.org/10.5194/egusphere-egu21-7019, 2021.

EGU21-8420 | vPICO presentations | BG3.12

A new SIF (solar‐induced chlorophyll fluorescence) product derived from TROPOMI onboard Sentinel-5 Precursor

Cédric Bacour, Luis Guanter, Andreas Schneider, Ilse Aben, Fabienne Maignan, Leo Grignon, Mahmoud El Hajj, and Christian Retscher

The total amount of CO2 absorbed and turned into organic matter through photosynthesis can be quantified as Gross Primary Productivity (GPP). Terrestrial vegetation GPP is responsible for offsetting about 30% of carbon dioxide emissions released by anthropogenic activities into the atmosphere. This corresponds to approximately 120 to 170 PgC/year, making terrestrial vegetation both the largest and most uncertain component of the global carbon cycle. Over the last few years, solar- induced chlorophyll fluorescence (SIF) observations from space have emerged as a promising resource for evaluating the spatio-temporal distribution of GPP by terrestrial ecosystems. SIF is an electromagnetic signal emitted by the chlorophyll a of green plants: part of the absorbed energy not used for photosynthesis is emitted at longer wavelengths as a two-peak spectrum roughly covering the 650–850 nm spectral range. The SIF signal responds instantaneously to perturbations in  environmental conditions such as light and water stress, which makes it a direct proxy for photosynthetic activity.

SIF has been estimated at the global scale from several space-borne spectrometers originally intended for atmospheric research because they provide the necessary spectral  resolution and radiometric sensitivity. However, the exploitation of SIF estimates has remained limited by their coarse spatial resolution (GOSAT, GOME-2) or low number of observations (OCO-2). This has been strongly alleviated by the advent of the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5 Precursor which combines a global continuous spatial sampling with a 5.5 km x 3.5 km pixel size at nadir, a daily  revisit time, a wide spectral coverage and an enormous increase in the number of clear-sky measurements per day in comparison to previous missions, as demonstrated by the first SIF retrievals from TROPOMI derived by Caltech (Köhler et al. 2018).

In this study, we present a new independent SIF product derived from TROPOMI observations using two fitting windows at 743-758 nm (all sky SIF) and 735-758 nm (clear sky SIF). The first one is very robust against atmospheric effects (especially cloud contamination) whereas the second one is less sensitive to estimation errors (due to the greater number of spectral points in the fitting window). The retrieval scheme is not much different from the one from Caltech (in 743-758 nm) but relies on different cloud fraction inputs. We will present the principles of the retrieval scheme, the format of the output TROPOSIF product, and the results of the comparison of our SIF estimates against the Caltech ones as well as SIF data derived from OCO-2 which show a very good consistency between all SIF products.

How to cite: Bacour, C., Guanter, L., Schneider, A., Aben, I., Maignan, F., Grignon, L., El Hajj, M., and Retscher, C.: A new SIF (solar‐induced chlorophyll fluorescence) product derived from TROPOMI onboard Sentinel-5 Precursor, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8420, https://doi.org/10.5194/egusphere-egu21-8420, 2021.

EGU21-8335 | vPICO presentations | BG3.12

Implementation of vegetation and soil carbonyl sulfide exchanges in the ORCHIDEE land surface model to better constrain ecosystem gross primary production

Camille Abadie, Fabienne Maignan, Marine Remaud, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Róisín Commane, Richard Wehr, J. Elliott Campbell, Sauveur Belviso, Stephen A. Montzka, Nina Raoult, Ulli Seibt, Yoichi Shiga, Nicolas Vuichard, Mary Whelan, and Philippe Peylin

Better constraining the ecosystem gross photosynthetic CO2 uptake (GPP) is necessary to reduce the uncertainties on continental vegetation response to climate change. As GPP cannot be directly measured at the ecosystem scale, different proxies of vegetation CO2 uptake have emerged. These proxies are essential for land surface modelers to estimate GPP at large scale. Carbonyl sulfide (COS) shows many similarities with CO2, following the same diffusional pathways through the leaves. However, unlike CO2 that is also emitted by plants during respiration, COS is essentially only taken up by leaves and not re-emitted back to the atmosphere. Therefore, COS is a promising proxy of photosynthetic activity. In previous studies, fixed values of the leaf relative uptake (LRU) ratio of COS to CO2 fluxes normalized by their respective concentration have typically been used to infer GPP for the different biomes. However, it has been shown that LRU ratio changes with varying Photosynthetically Active Radiation (PAR), which limits its accuracy to constrain photosynthetic activity. Therefore, we redefined the COS-based GPP estimation approach to better capture GPP response to changing environmental conditions, by implementing a mechanistic model of COS exchange by continental vegetation in the ORCHIDEE land surface model. We compared the modelled fluxes against field measurements at two sites and studied the model behavior and environmental drivers. Then, we ran global simulations and computed the annual COS vegetation uptake that was found in the middle range values of previous reported budgets (-490 to -1335 Gg S yr-1), with -756 Gg S yr-1. The simulated fluxes were transported, and COS concentrations were evaluated against measurements from the NOAA atmospheric stations. Our results show that the mechanistic approach is more appropriate when studying photosynthetic activity at high temporal resolution, but similar results in concentrations are obtained between the mechanistic and LRU approaches at the global scale. Accurate evaluation of the continental vegetation COS uptake is necessary as it is the main COS sink. However, COS can also be absorbed or emitted by soils, a flux that complicates the use of eddy covariance COS flux measurements or atmospheric COS measurements to derive information on GPP estimates. Therefore, the soil COS exchange should also be represented in land surface models. We implemented two soil COS exchange models in ORCHIDEE, a mechanistic model (based on Ogée et al. 2016) and a second model based on an empirical relationship with soil respiration (following Berry et al., 2013). We evaluated the two models at several sites against field measurements. We also performed global simulations to evaluate the spatial distribution of soil COS fluxes and their seasonal variations. Finally, we estimated the contributions of the combined impact of soil COS exchange and leaf COS uptake (both from the ORCHIDEE model) to the global COS budget and on the COS atmospheric concentration latitudinal gradient.

How to cite: Abadie, C., Maignan, F., Remaud, M., Kooijmans, L. M. J., Kohonen, K.-M., Commane, R., Wehr, R., Campbell, J. E., Belviso, S., Montzka, S. A., Raoult, N., Seibt, U., Shiga, Y., Vuichard, N., Whelan, M., and Peylin, P.: Implementation of vegetation and soil carbonyl sulfide exchanges in the ORCHIDEE land surface model to better constrain ecosystem gross primary production, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8335, https://doi.org/10.5194/egusphere-egu21-8335, 2021.

EGU21-15957 | vPICO presentations | BG3.12

A description of the Carbonyl Sulfide (COS) budget inferred by inverse modelling

Marine Remaud, Camille Abadie, Sauveur Belviso, Antoine Berchet, Frédéric Chevallier, Fabienne Maignan, and Philippe Peylin

Carbonyle Sulphide, a trace gas exhibiting a striking similarity with CO2 in the biochemical diffusion path of leaves, has been recognized to be a promising surrogate of CO2 for estimating carbon storage in the terrestrial vegetation. Based on the similarity between COS and CO2, an empirical linear model relating both gas concentrations provides constraints on the estimation of the Gross Primary Productivity (GPP), the amount of carbon dioxide that is absorbed by ecosystems. However, large uncertainties on the other components of its atmospheric budget prevent us from directly relating the atmospheric COS measurements to the the GPP at global scale. The largest uncertainty arises from the closure of its atmospheric budget, with a source component missing. We explore here the benefit of assimilating both COS and CO2 measurements into the LMDz atmospheric transport model to gain insight on the COS budget. We develop an analytic inverse system which optimized the biospheric fluxes within the 14 Plant functional Type (PFTs) as defined in the ORCHIDEE land surface model. The vegetation uptake of COS is parameterized as a linear function of GPP and of the leaf relative uptake (LRU), which is the ratio of COS to CO2 deposition velocities in plants. A possible scenario leads to a global biospheric sink between 800-900 GgS/y, with a higher GPP in the high latitudes and higher total oceanic emissions between 400 and 600 GgS/y over the tropics. The COS inter-hemispheric gradient is in better agreement with HIPPO independent aircraft measurements. The comparison against NOAA COS airborne profiles and Solar Induced Fluorescence shed light on a too strong GPP in spring in ORCHIDEE in northern America,  leaving room for improvements. We also show that uncertainty in the location of hot spots in the prior anthropogenic inventory limits the use of atmospheric COS measurements in inverse modeling.

How to cite: Remaud, M., Abadie, C., Belviso, S., Berchet, A., Chevallier, F., Maignan, F., and Peylin, P.: A description of the Carbonyl Sulfide (COS) budget inferred by inverse modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15957, https://doi.org/10.5194/egusphere-egu21-15957, 2021.

EGU21-13322 | vPICO presentations | BG3.12

Exploring the diurnal cycle of Δ17O in CO2 at the ecosystem level

Gerbrand Koren, Getachew A. Adnew, Jordi Vilà-Guerau de Arellano, Michiel K. van der Molen, Bart Kruijt, Thomas Röckmann, and Wouter Peters

The triple oxygen isotope signature Δ17O in atmospheric CO2 is a potential tracer for gross primary production (GPP). However, interpretation of Δ17O in atmospheric CO2 is complicated by the contributions from respired CO2, isotopic exchange with soil and ocean water, and the release of CO2 by fossil fuel combustion and biomass burning. We studied Δ17O in CO2 at the ecosystem level, which is the domain that integrates the contributions from vegetation and soil to the atmospheric signal.  

We report for the first time the observed diurnal variation of Δ17O in CO2, measured from air samples collected on 15-16 August 2019 at the mid-latitude pine forest Loobos (ICOS L2 ecosystem site). We also measured the isotopic signatures δ13C and δ18O in CO2 close to the surface (at 0.5 m height, inside the canopy) and from the top of the tower (1-2 m above the canopy). To support the interpretation of the measurements, we used a land-atmosphere model that satisfactorily reproduces the diurnal variability of the interaction between leaf/canopy and the convective boundary layer using mixed-layer theory assumptions (CLASS). Also, we used the global atmospheric transport model TM5 to (1) quantify the contribution of different sources that affect Δ17O in CO2 at Loobos; and (2) extend our analysis of the diurnal cycle to the global scale.  

Our methodology demonstrates the added value of isotope measurements at ICOS ecosystem and tall-tower sites, and how to integrate meteorological and ecological observations from the canopy up to the atmospheric boundary layer. This study contributes to our ongoing effort of creating an overview of different methods for quantifying photosynthesis from a top-down perspective (concentration-based methods and remote sensing) in a review paper for which we are open to other contributions. 

How to cite: Koren, G., Adnew, G. A., Vilà-Guerau de Arellano, J., van der Molen, M. K., Kruijt, B., Röckmann, T., and Peters, W.: Exploring the diurnal cycle of Δ17O in CO2 at the ecosystem level, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13322, https://doi.org/10.5194/egusphere-egu21-13322, 2021.

EGU21-12464 | vPICO presentations | BG3.12

Inferring ecosystem-level rates of gross primary productivity, respiration, and evapotranspiration with automatic light-dark measurement chambers

Klaus Steenberg Larsen, Johannes Wilhelmus Maria Pullens, Linsey Avila, Sander Bruun, Ji Chen, Jesper Riis Christiansen, Andreas Ibrom, Poul Larsen, Poul Erik Lærke, Preben Jørgensen, and Azeem Tariq

In experimental ecosystem ecology, plot sizes are most often too small to apply eddy flux techniques and estimation of ecosystem gas exchange rates relies on various chamber measurement technologies. Furthermore, drained areas often results in increased growth of trees which complicates application of eddy flux measurements on small plots.

We combined ECO2FluX ecosystem-level automatic chambers (prenart.dk) with an LI-8100/LI-8150 multiplexer systems (licor.com) in a range of Danish and Norwegian ecosystems experiments spanning agriculture, grassland/heathlands and peatland ecosystems. The automatic closed, none-steady state chambers each cover an area of 3,117 cm2 (63 cm diameter), are 80 cm tall (volume: 250L), and are capable of switching automatically between transparent and darkened mode, enabling separation of light-sensitive and light-indifferent processes in the ecosystems covered. For CO2 fluxes, net exchange (NEE) was estimated as the flux in transparent mode, ecosystem respiration (RE) in darkened mode, while Gross Ecosystem Productivity (GPP) was estimated as NEE – RE.

Chambers were set up to measure gas concentrations every second using enclosure times of 4-5 minutes, first in light mode and 10-30 minutes later in dark mode, with 3-48 repetitions per day. The longest time series spans 5 years of measurements and contain >60,000 point measurements.

In this presentation, we will present an analysis of the ability of the light-dark chamber data to infer ecosystem-level rates of gross primary productivity, respiration, net CO2 exchange, and evapotranspiration. In the two Norwegian peatland sites, flux measurements may be compared directly with eddy flux measurements. We also compare the rates of the direct estimates of GPP from the light-dark chamber measurements to estimates inferred from using the light (NEE) measurements only followed by applying methodologies normally used for eddy flux measurements. This comparison may help constrain potential biases in both the closed chamber and eddy flux techniques. Finally, we investigate the ability of using such closed chambers to estimate ecosystem evapotranspiration rates at the plot scale. Such application may be useful for estimating the effects on evapotranspiration in field-scale experiments manipulating the ecosystem water balance either directly or indirectly.

How to cite: Larsen, K. S., Pullens, J. W. M., Avila, L., Bruun, S., Chen, J., Christiansen, J. R., Ibrom, A., Larsen, P., Lærke, P. E., Jørgensen, P., and Tariq, A.: Inferring ecosystem-level rates of gross primary productivity, respiration, and evapotranspiration with automatic light-dark measurement chambers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12464, https://doi.org/10.5194/egusphere-egu21-12464, 2021.

EGU21-14177 | vPICO presentations | BG3.12

Improved eddy covariance flux based transpiration estimates at high relative humidity and comparison to sap flux

Weijie Zhang, Jacob A. Nelson, Rafael Poyatos, Diego Miralles, Mirco Migliavacca, Markus Reichstein, and Martin Jung

Eddy covariance (EC) directly measures evapotranspiration (ET), which consists of transpiration and evaporation (E) from the soil and other surfaces. For process understanding it is pivotal to separate ET into its components. Yet, its computation is highly sensitive to the methodology used to estimate T. Among the multiple methods proposed in recent years, T has been estimated from EC via the Transpiration Estimation Algorithm (TEA, Nelson et al., 2020), and from the sap flux measurement network SAPFLUXNET (Poyatos et al., 2020). These methods are applicable to a large number of measurement sites worldwide, and can help constrain the global estimates of the ratio of T to ET, T/ET. While EC measures water and carbon fluxes across ecosystems globally, water vapor flux measurements can be underestimated at high relative humidity (Ibrom et al., 2007; Mammarella et al., 2009) causing errors in the measured ET and propagating into the predicted T.

Here we report a method to detect and correct the high relative humidity error caused by attenuation of high frequency in water vapor measurements of a closed-path EC system. Our results of the comparison between present water use efficiency (WUE) with previous TEA-based WUE show that the corrected WUE is lower at high relative humidity than that derived from previous TEA at the sub-daily scale. Besides, we compare the corrected T estimates from EC to concurrent SAPFLUXNET sites to show an improved relationship between sap flux and EC based T, T/ET, and WUE. Finally, we explore the main abiotic factors, such as vapor pressure deficit, air temperature, and precipitation, influencing WUE estimated from different T estimation methodologies. These results provide an improved data-driven approach to the ongoing research on ET partitioning and the factors influencing the WUE across ecosystems globally.

 

Ibrom, A. et al. (2007) ‘Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems’, Agricultural and Forest Meteorology. doi.org/10.1016/j.agrformet.2007.07.007.

Mammarella, I. et al. (2009) ‘Relative humidity effect on the high-frequency attenuation of water vapor flux measured by a closed-path eddy covariance system’, Journal of Atmospheric and Oceanic Technology. doi.org/10.1175/2009JTECHA1179.1.

Nelson, J. A. et al. (2020) ‘Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites’, Global Change Biology. doi: 10.1111/gcb.15314.

Poyatos, R. et al. (2020) ‘Global transpiration data from sap flow measurements: the SAPFLUXNET database’, Earth System Science Data. doi:10.5194/essd-2020-227.

How to cite: Zhang, W., A. Nelson, J., Poyatos, R., Miralles, D., Migliavacca, M., Reichstein, M., and Jung, M.: Improved eddy covariance flux based transpiration estimates at high relative humidity and comparison to sap flux, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14177, https://doi.org/10.5194/egusphere-egu21-14177, 2021.

BG3.13 – Whole system approach for in-situ & long-term environmental system research on life supporting systems (WAILS)

EGU21-16425 | vPICO presentations | BG3.13 | Highlight

Whole System Approach for in-situ research on Life Supporting Systems in the Anthropocene (WAILS)

Michael Mirtl, Ingolf Kuhn, Don Montheith, Jaana Bäck, Daniel Orenstein, Antonello Provenzale, Steffen Zacharias, Peter Haase, and Mosche Shachak

Driven by the increasing awareness that innovative approaches to solving the problems at hand in our complex human-environment interactions require closer collaboration among scientific disciplines and communities, inter- and transdisciplinary integration is continuously gaining importance in R&D agendas and Research Infrastructure (RI) development strategies. In addition, the complexity and costs of RIs have substantively increased in many realms triggered by technological developments and the need to organize beyond national and continental boundaries. This suggests cross-disciplinary collaborations, sharing and multiple usage of infrastructures. Alignments of infrastructure developments needed for this purpose require a conceptual framework for disciplinary integration suited for identifying common approaches and resulting infrastructure design and service components. We will report on recent advancements in building a common theoretical base between major communities that is – inter alia - underlying the ongoing implementation of the Integrated European Ecosystem, critical zone and socio-ecological Research Infrastructure (eLTER RI). An overview of considered theories  on within- and cross-scale interactions and feedback loops will be given and the pathway to the “Whole System Approach for in-situ research on Life Supporting Systems in the Anthropocene” (WAILS) will be presented. We will also expand on the potential of such unifying approach in theory-guided integration and division of tasks amongst related environmental RIs. Expected practical implications are answers to questions like where concretely existing and planned European environmental RIs are challenged to interact in response to common overarching questions, and what practical fora and mechanisms (across RIs) would be needed to bridge the gap between research teams driven (bottom-up) efforts and the centralistic RI design and operations.

How to cite: Mirtl, M., Kuhn, I., Montheith, D., Bäck, J., Orenstein, D., Provenzale, A., Zacharias, S., Haase, P., and Shachak, M.: Whole System Approach for in-situ research on Life Supporting Systems in the Anthropocene (WAILS), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16425, https://doi.org/10.5194/egusphere-egu21-16425, 2021.

EGU21-9567 | vPICO presentations | BG3.13 | Highlight

Amplifying Signals and avoiding surprises: Potential synergies between ICOS and eLTER at the Water-Climate-Greenhouse Gas nexus

Martyn Futter, Syed Ashraful Alam, Roland Baatz, Jaana Bäck, Eugenio Diaz-Pines, Jan Dick, Martin Forsius, Veronika Gaube, Matthew Jones, Nikolaos Nikolaidis, Christian Poppe, Katri Rankinen, Ed Rowe, Marcus Schaub, Ute Skiba, Harry Vereecken, and Thomas Dirnböck

Environmental thresholds. tipping points and subsequent regime shifts associated with the water/climate/greenhouse gas nexus pose a genuine threat to sustainability. Both the ongoing forest dieback in Central Europe caused by the extreme droughts of the last years and the effect of global warming on ecosystem functioning have the potential to cause ecological surprise (sensu Lindenmayer et al. 2010) where ecosystems are pushed into new, unexpected and usually undesirable states.

Formulating appropriate scientific and societal responses to such regime shifts requires breadth, depth, intensity and duration of environmental, ecological and socio-ecological monitoring. Broad geographic coverage to encompass relevant biophysical and societal gradients, consideration of all appropriate parameters, adequate measurement frequency and long-term, standardized observations are all needed to provide reliable early warnings of severe environmental change, test ecosystem models, avoid double counting in carbon accounting and to reduce the likelihood of undesirable ecological outcomes. This is especially true of events driven by simultaneous changes in climate, the water cycle and human activities.

Well-supported, site-based research infrastructures (RIs; e.g., eLTER and ICOS) are essential tools with the necessary breadth, depth, intensity and duration for early detection and attribution of environmental change. Individually, the eLTER and ICOS RIs generate a wealth of data supporting the ecosystem and carbon research communities. Achieving synergies between the two RIs can add value to both communities and potentially offer meaningful insight into the European water-climate-greenhouse gas nexus.

The unique insights into processes and mechanisms of ecosystem dynamics and functioning obtained from high intensity monitoring conducted by the ICOS RI greatly increase the likelihood of detecting signals of environmental change. These signals must be placed into the context of their long-term trajectory and potential societal and environmental drivers. The spatially extensive, long-term, multi-disciplinary monitoring conducted at LTER sites and LTSER platforms under the umbrella of the eLTER programme can provide this context.

Here, we outline one potential roadmap for achieving synergies between the ICOS and eLTER RIs focussing on the value of co-location for improved understanding of the water/climate/greenhouse gas nexus. Based on data and experiences from intensively studied research sites, we highlight some of the possibilities for reducing the likelihood of ecological surprise that could result from such synergies.

Lindenmayer, D.B., Likens, G.E., Krebs, C.J. and Hobbs, R.J., 2010. Improved probability of detection of ecological “surprises”. Proceedings of the National Academy of Sciences, 107(51), pp.21957-21962.

How to cite: Futter, M., Ashraful Alam, S., Baatz, R., Bäck, J., Diaz-Pines, E., Dick, J., Forsius, M., Gaube, V., Jones, M., Nikolaidis, N., Poppe, C., Rankinen, K., Rowe, E., Schaub, M., Skiba, U., Vereecken, H., and Dirnböck, T.: Amplifying Signals and avoiding surprises: Potential synergies between ICOS and eLTER at the Water-Climate-Greenhouse Gas nexus, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9567, https://doi.org/10.5194/egusphere-egu21-9567, 2021.

EGU21-15726 | vPICO presentations | BG3.13

AQUACOSM-plus: an International Network for Aquatic Mesocosm Facilities Supporting Experimental Ecosystem Studies and cross-disciplinary RI- RI collaborations

Jens C Nejstgaard, Stella A Berger, Katharina Makower, Robert Ptacnik, Herwig Stibor, and Iordanis Magiopoulos

To understand underlying mechanisms of aquatic ecosystem functioning in relating to the global Grand Challenges (climate change, biodiversity loss, eutrophication, emerging pollutants, etc.), it is necessary to consider processes in adjacent systems, such as atmosphere and adjacent aquatic and terrestrial systems. For freshwater and coastal systems, the aquatic-terrestrial coupling on the watershed level is specifically important. We argue that for a better understanding of both aquatic and terrestrial ecosystems a combination of long-term data from connected environments, coupled with experimental ecosystem-scale experiments, have a greater potential for successful model testing and development of predictive concepts, than using only long-term data (without experiments) from separate systems. This talk will present the EU-funded RI-project AQUACOSM-plus (www.aquacosm.eu, 2020-2024) that offers access to >60 research facilities across the EU and is linked to world-wide cooperation through the MESOCOSM.EU portal, a virtual network of >100 research facilities. These networks comprise mesocosm facilities in all aquatic systems, including rivers, ponds, lakes, estuaries and marine systems – offering unique opportunities to conduct ecosystem-scale experimental studies of relevance to aquatic-terrestrial coupling. These facilities allow for process studies to test models based on trend or response observations from long-term-data, in order to better understand underlying mechanisms of ecosystem responses to the present global Grand Challenges. The AQUACOSM-plus mesocosm facilities, are also open for conducting ecosystem solution-based experiments to enable effective management in aquatic ecosystems. The AQUACOSM network will open calls to fund access to >13.000 days for a wide range of external users. We will also present examples of developing RI-RI collaborations and development of technological solutions and instrumentation to enhance the mobility of mesocosms and increase opportunities for relevant scenario-testing by the scientific community at large.

How to cite: Nejstgaard, J. C., Berger, S. A., Makower, K., Ptacnik, R., Stibor, H., and Magiopoulos, I.: AQUACOSM-plus: an International Network for Aquatic Mesocosm Facilities Supporting Experimental Ecosystem Studies and cross-disciplinary RI- RI collaborations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15726, https://doi.org/10.5194/egusphere-egu21-15726, 2021.

EGU21-231 | vPICO presentations | BG3.13

Assessing the biogeographical and socio-ecological representativeness of the ILTER site network

Christoph Wohner, Thomas Ohnemus, Steffen Zacharias, Hannes Mollenhauer, Erle Ellis, Hermann Klug, Hideaki Shibata, and Michael Mirtl

The challenges posed by climate and land use change are increasingly complex, with rising and accelerating impacts on the global environmental system. Novel environmental and ecosystem research needs to properly interpret system changes and derive management recommendations across scales. This largely depends on advances in the establishment of an internationally harmonised, long-term operating and representative infrastructure for environmental observation. One example for such an infrastructure for environmental observation is the International Long-Term Ecological Research (ILTER) network. ILTER is a global network of networks consisting of research sites in a wide array of ecosystems that focuses on long-term, site-based research, and builds on a “bottom-up” governance structure. To assess the biogeographical and socio-ecological representativeness of the ILTER site network, we analysed all of the 743 formally accredited sites in 47 countries with regard to their spatial distribution. So-called “Representedness” values were computed from six global datasets. The analysis revealed a dense coverage of Northern temperate regions and anthropogenic zones most notably in the US, Europe and East Asia. Notable gaps are present in economically less developed and anthropogenically less impacted hot and barren regions like Northern and Central Africa and inner-continental parts of South America. These findings provide the arguments for our recommendations regarding the geographic expansion for the further development of the ILTER network, most notably in inner continental parts of South America, the Arctic region and Western and Central Africa.

How to cite: Wohner, C., Ohnemus, T., Zacharias, S., Mollenhauer, H., Ellis, E., Klug, H., Shibata, H., and Mirtl, M.: Assessing the biogeographical and socio-ecological representativeness of the ILTER site network, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-231, https://doi.org/10.5194/egusphere-egu21-231, 2021.

EGU21-5273 | vPICO presentations | BG3.13

Designing the eLTER Research Infrastructure: representativity, priority regions and recommendations for development

Thomas Ohnemus, Hannes Mollenhauer, Michael Mirtl, and Steffen Zacharias

The integrated European Long-Term Ecosystem, critical zone and socio-ecological Research Infrastructure (eLTER RI) was accepted onto the ESFRI roadmap in 2018. While several existing thematic environmental RIs in Europe focus on impacts of climate change and/or other elements of environmental change, eLTER RI will be the only research infrastructure embracing holistically the integrated impacts of such stressors on a wide variety of European benchmark ecosystems (major geo-eco-sociological systems across the continent’s ecoclimatological zones and Earth’s critical zone). In the beginning of 2020 eLTER RI entered the preparatory phase aiming at the development of the legal, financial and technical maturity required for an ESFRI Research Infrastructure.

The core of the eLTER RI will be ca. 200 selected sites covering all biogeographical zones in Europe, where biological, biogeochemical, hydrological and socio-ecological data will be collected - according to common standards - and analyzed. The European landscape of LTER sites and national networks has mainly been developed in a bottom-up manner. The sites have mostly been established for different monitoring and research purposes and are heterogeneous in terms of investigated ecosystem types, scales of investigation, complexity and instrumentation. Consequently, the transformation of the selected elements of the eLTER RI into a harmonized, high-performance, complementary and interoperable infrastructure is one of the key challenges of eLTER. Achieving the best possible representativity is on the major building blocks in eLTER’s design strategy.

To evaluate the representativity of eLTER a novel statistical approach combining information on biogeographical, ecological and socio-economic gradients with the management-relevant distribution of established sites was developed aiming at  i) identification of areas in Europe that are geographically underrepresented by the existing eLTER RI site network, ii) definition of priority regions for the geographical extension of the eLTER site network and, iii) development of suggestions for conceptual and infrastructural upgrades for existing less developed eLTER sites.

Reference datasets depicting biogeographical, ecological and socio-economical gradients were used to describe underrepresentation with a summation parameter called Aggregated Representedness. This statistical criterion was then used to classify five types of “priority regions” from very low to very high priority for geographical and/or conceptual extension. In a second step this information on priority regions was refined using additional information describing the geographical distribution based on Euclidean distances between established eLTER sites.  The combination of these two analyses allowed to identify less developed eLTER sites most suitable for conceptual and infrastructural upgrades. Thus, the presented analysis provides important information for the development of the design strategy for eLTER RI on the continental scale.

Concluding, a novel approach combining information on biogeographical, ecological and socio-economic gradients with the management-relevant information on the geographical distribution of established sites was developed. This tool allows to evaluate the strategies for further extension of established site networks. 

How to cite: Ohnemus, T., Mollenhauer, H., Mirtl, M., and Zacharias, S.: Designing the eLTER Research Infrastructure: representativity, priority regions and recommendations for development, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5273, https://doi.org/10.5194/egusphere-egu21-5273, 2021.

EGU21-2293 | vPICO presentations | BG3.13 | Highlight

Integration of long-term collocated ecological datasets: examples from the UK Environmental Change Network (ECN)

Chak-Hau Michael Tso, Aaron Lowther, Don Monteith, Linsay Flynn Banin, William Simm, Susannah Rennie, Michael Hollaway, Peter Henrys, Rebecca Killick, John Watkins, and Gordon S. Blair

It is increasingly recognized that a whole-system approach is needed to address many challenging environmental research questions. While the whole-system approach is increasingly adopted by integrating data and models from various sub-systems, the ambition to apply this approach more widely across the environmental sciences requires infrastructure, methodologies, and a culture shift in order to facilitate seamless collaboration and re-deployment of workflows. 

We report our recent progress in addressing some of these issues. We focus our examples here on work related to the UK Environmental Change Network (ECN, an eLTER member network). A transdisciplinary project team comprised of environmental scientists, statisticians, and computer scientists collaborated through the medium of a virtual research platform (DataLabs). Within the DataLabs platform, all data and analysis code are centrally stored via a cloud service and easily accessible via an internet browser from any operating system. Access to cloud computing resources for analyses are also available. More importantly, all users have access to the same versions of the data and software running on the same hardware throughout the collaboration process.

Such close collaboration allows us to co-develop statistical/data science algorithms that are suitable for a wide range of environmental data. These algorithms are not domain-specific and are generic enough to be used on any environmental datasets. Here we demonstrate how they are used to highlight periods of data with significant change. The first example is a "state tagging" algorithm, where each point in time of a dataset is classified as belonging to an arbitrary state based on clustering of covariates. Subsequently, confidence intervals, based on the statistics of each state, are computed and any data points that lie outside the confidence intervals are flagged for further investigation. A second example is the development of an algorithm for the identification of changepoints across multiple time series comprising different sampling frequencies or misaligned sampling times.  Existing multivariate changepoint algorithms assume that each time series is sampled at the same time (a situation not commonly applicable to environmental data). Our method removes this assumption, and emerged after consultation and collaboration with domain scientists. It has many potential applications, such as confirming whether changepoints occur across sites or across multiple variables within sites, or combinations thereof. In the final example, we show how DataLabs can facilitate the acquisition and application of third-party data to improve understanding of ECN atmospheric deposition chemistry data. Specifically, it allows users to take advantage of cloud computing and storage and collaborate seamlessly; where each collaborator is not required to have independent versions of software and data, saving time and effort. 

The developments reported herein highlight the benefits of collaborative research using DataLabs to advance the integration of data, models, and methods across the environmental sciences. It provides the infrastructure, data, and culture to allow scientists to work more closely together. This in turn allows rapid incorporation of novel data science methods. It also allows the data integration workflows developed to be more readily applied elsewhere, while stakeholders can view and manipulate resultant data products.

 

How to cite: Tso, C.-H. M., Lowther, A., Monteith, D., Banin, L. F., Simm, W., Rennie, S., Hollaway, M., Henrys, P., Killick, R., Watkins, J., and Blair, G. S.: Integration of long-term collocated ecological datasets: examples from the UK Environmental Change Network (ECN), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2293, https://doi.org/10.5194/egusphere-egu21-2293, 2021.

EGU21-3491 | vPICO presentations | BG3.13

The phylogeny of Critical Zone Observatories, or how to better structure existing observation networks to match the whole system approach

Isabelle Braud, Jérôme Gaillardet, François Mercier, Sylvie Galle, and Virginie Entringer

Implementing the Whole System Approach for long-term ecosystem, critical zone and socio-ecological system research requires going beyond existing structuration of scientific communities and observation networks. Indeed, existing observation networks were often built independently from each other, on a very disciplinary basis, with their own scientific objectives, funding mechanisms and institutional constraints. To tackle the observation challenges of the “new climatic regime” in the Anthropocene, a new type of observational platforms, more compatible with a scientific systemic approach needs to be built taking into account the history and institutional contexts of long-term observatories.


We have attempted to represent the diversity of critical zone observatories, sites and network of observatories that exist and that have been founded by different research institutions in France over the last 40 years and that are now gathered in the OZCAR Critical Zone network. Our representation encapsulates three main characteristics: the spatial scales of investigation (from the plot scale to the continental-scale watershed), the diversity of monitored compartments (catchments, glaciers, peatlands, aquifers…), and the institutional dimension (labeling and founding at the national level).  We found that a representation in the form of a tree, mimicking the phylogenetic tree of life, named the OZCAR-tree, was offering a visualization tool able to capture the philosophy and rationale of the network and was useful to improve the communication with the neighboring infrastructures, users and stakeholders. The branches of the tree represent the nested monitored scales, with the small branches of the tree representing monitored parcels or small catchments. The trunks represent networks of sites investigating the same compartment. For monitored catchments, the representation directly shows the various sampled scales and their nested organization from upstream to downstream. At each site, colored pie charts allow us to visualize rapidly the types of data that are collected, each part of the pie being a component of the critical zone (atmosphere, soil water, aquifers, vegetation, snow, ice…). This visualization directly shows the focus of the various sites, the completeness of measurements conducted by the different scientists, but also the missing compartments. It also shows that, if the network, as a whole is able to sample the various compartments and variables required for implementing the whole system approach, it is rarely the case when considering individual sites.

Beyond being a visualization tool, the OZCAR-tree helps representing the requirements of a “whole critical zone approach”. Because all compartments of the critical zone are connected vertically and horizontally by processes and fluxes of energy and matter, the tree is meant to represent all the components to be monitored and what should be the spatial architecture of a monitoring network fulfilling the disciplinary questions and approaches. The tree is therefore an illustration of a conceptual and idealized network (devoid of cost issues) of terrestrial surfaces monitoring infrastructure respectful of disciplinary approaches.

Finally, this representation is open to ecological and socio-ecological communities and may serve as a template for fostering collaboration with ecological and socio-ecological communities and networks and implementing observation platforms at the scale of changing territories.

How to cite: Braud, I., Gaillardet, J., Mercier, F., Galle, S., and Entringer, V.: The phylogeny of Critical Zone Observatories, or how to better structure existing observation networks to match the whole system approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3491, https://doi.org/10.5194/egusphere-egu21-3491, 2021.

EGU21-15758 | vPICO presentations | BG3.13

A Mathematical Gaïagraphy: systematizing the new visualization of the Critical Zone in the Anthropocene.

Jérôme Gaillardet, Quentin Louis, and alexandra Arènes

EGU21-5525 | vPICO presentations | BG3.13

Infiltration processes in karst aquifers affected by large-scale forest disturbances

Urša Vilhar, Mitja Ferlan, Janez Kermavnar, Erika Kozamernik, Aleksander Marinšek, Metka Petrič, Tanja Pipan, Daniel Žlindra, and Nataša Ravbar

Karst systems represent 10–15% of land surface in the world and supply around 25% of the global demand for drinking water. In Slovenia karst areas are merely covered by forest and important for their rich and unique ecosystems. However, prevailing beech and mixed fir-beech forests in the region have been exposed to severe large-scale disturbances in the past few years, e.g., ice storms and heavy snow, windthrow, severe and prolonged periods of droughts and secondary insect damage, which have caused episodes of forest decline. Modification of the vegetation cover indirectly impacts the water balance. Despite the important role of karst water resources for supplying the population with drinking water, few studies exist that adequately evaluate the impact of predicted global changes on their quantity and quality. The effects of large-scale forest disturbances have been only marginally addressed, despite evaporation of water from the soil and epikarst being recognized as a significant process affecting hydrological cycle in karst regions. In many hydrological studies, the role and importance of vegetation in infiltration mechanisms, in particular the effect of trees and their root networks, has been widely neglected. In this study we present a holistic approach to infiltration processes research. An in-situ environmental monitoring network of the atmosphere-vegetation-soil-unsaturated zone of the aquifer has been designed to better understand infiltration in different compartments of the karst aquifer. Special focus is given to different forest development phases after large-scale disturbances and karst terrain morphology. The amount of precipitation in the open, canopy interception in mature forest and in canopy gaps with varying forest development phases, soil moisture and soil temperature are measured on the surface and subsurface. These measurements are performed in the area of an eLTER site Postojna-Planina cave system, i.e., on the top and bottom of karst depressions, while in the underground water discharge and electrical conductivity are measured in cave drips. By observing the time lag of the measured parameters to the recharge events, the effective infiltration of precipitation into the aquifer is evaluated and quantified. The results enabled to distinguish the recharge conditions under different forest development phases after large-scale disturbances and under different geomorphological conditions. The findings will in the later stage of the research serve as an input information for coupled vegetation-hydrological modelling of recharge conditions. Upscaling the modelling results from local to entire catchment scale would be useful for the evaluation of impacts of large-scale forest disturbance on the water balance of the entire karst aquifer system.

How to cite: Vilhar, U., Ferlan, M., Kermavnar, J., Kozamernik, E., Marinšek, A., Petrič, M., Pipan, T., Žlindra, D., and Ravbar, N.: Infiltration processes in karst aquifers affected by large-scale forest disturbances, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5525, https://doi.org/10.5194/egusphere-egu21-5525, 2021.

EGU21-12627 | vPICO presentations | BG3.13 | Highlight

Monitoring agroecological transformation processes induced by climate and agricultural innovations over time and space

Heide Spiegel, Julia Miloczki, Bernhard Freyer, Andreas Surböck, Jürgen K. Friedel, Hans-Peter Kaul, Helmut Wagentristl, Andreas Schaumberger, Renate Mayer, Andreas Bohner, Veronika Gaube, and Taru Sandén

Sustainable agricultural production of food, feed, fibre and fuel with limited agricultural land to cover human demands and at the same time to secure natural resources is currently one of the biggest global challenges. Changes in agricultural management to ensure fertile soils, stable yields and product qualities and to avoid adverse environmental impacts, affect various soil and plant characteristics, agrobiodiversity and the micro-climate of agroecosystems.

Long-term field experiments (LTEs) are indispensable to detect and understand impacts of climate (drought, heat, floods, frost) and agricultural innovations on soils and plants. Amongst agricultural innovations are adaptions of crop rotations to climate change, efficient fertilisation systems with and without livestock, reduced soil tillage intensity, the conversion of a whole landscape section from conventional to organic farming and introducing landscape elements like flowering strips or hegdes that serve, e.g., as habitats for pollinators and beneficials.

For the evaluation of impacts of climate change and agricultural innovations, researchers of agricultural long-term ecological research (LTER) sites in Austria have developed indicators to enable the systematic comparison of long-term trials impact on soil-plant systems in different agroecological zones of Austria and Europe, respectively, including different agro-ecosystems, e.g., arable land and grassland. Examples for soil indicators include soil characteristics like organic carbon, nutrients and contaminants, biological and physical (e.g., porosity, structure) indicators that have already been measured since many years in various field experiments. Embedded in long-term socio-ecological regions (LTSER), which allow analyzing long-term socio-economic and biophysical drivers of change in agricultural management, these agricultural LTER sites contribute crucial insights into the interaction between nature and society.

How to cite: Spiegel, H., Miloczki, J., Freyer, B., Surböck, A., Friedel, J. K., Kaul, H.-P., Wagentristl, H., Schaumberger, A., Mayer, R., Bohner, A., Gaube, V., and Sandén, T.: Monitoring agroecological transformation processes induced by climate and agricultural innovations over time and space, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12627, https://doi.org/10.5194/egusphere-egu21-12627, 2021.

EGU21-13014 | vPICO presentations | BG3.13

Modelling of long term brownification process in Southern Finland 

Katri Rankinen, Maria Holmberg, José Cano Bernal, and Anu Akujärvi

Browning of surface waters due to increased terrestrial loading of organic carbon is observed in boreal regions. It is explained by large scale changes in ecosystems, including decrease in sulphur deposition that affects soil organic matter solubility, increase in temperature that stimulates export of dissolved organic carbon (DOC) from organic soils, and increase in precipitation and thus runoff. Land use changes and forestry measures are also observed to be one reason for increased transport of DOC. The effects of brownification extend to ecosystem services like water purification, but also freshwater productivity through limiting light penetration and creating more stable thermal stratification. We studied past trends of organic carbon loading from catchments based on observations since early 1990’s. We made simulations of loading by the physical Persist and INCA models to three small catchments at the Lammi LTER area. We upscaled simulations to the Kokemäenjoki river basin (17 950 km2). Even though river processes did not play a role in small catchments, they had influence on DOC concentration at the whole river basin. Brownification was driven mainly by the change in climate and decay of organic matter in soil, with smaller impact of land use change on organic soil types. Decrease in sulphur deposition had only minor effect on brownification.

How to cite: Rankinen, K., Holmberg, M., Cano Bernal, J., and Akujärvi, A.: Modelling of long term brownification process in Southern Finland , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13014, https://doi.org/10.5194/egusphere-egu21-13014, 2021.

Understanding how natural processes arise from complex interactions between particular processes at small spatiotemporal scales and in turn how these processes form patterns at large spatiotemporal scales is one of the current principal questions in environmental science. The problem is very complicated, as in many cases, key processes are often studied by researchers in separate disciplines such as ecology, soil science or hydrology. One of the major obstacles is that the processes at a landscape scale are difficult to manipulate and, in many cases, even measure. In particular, the belowground processes are in many cases overlooked or at least understudied. Here we briefly describe a methodological solution used to cope with this problem and describe artificial catchments designed for experimental manipulation at the level of a landscape, called FALCON. This array has two treatments: one mimics a site reclaimed using an alder plantation and the other was left to unassisted primary succession. For each treatment, there were two replicates in four similar catchments. Individual catchments are hydrologically isolated from the environment and equipped with instruments, so that all the main processes and all significant flows of substances and energy in the ecosystem can be monitored, including the cycling of water, nutrients and gas between the ecosystem and the atmosphere. In addition, in each catchment there are sets of lysimeters, which allow the study of small-scale processes and how these can be extrapolated to the catchment scale. In addition, two lysimetric fields exist alongside the catchments for monitoring the effects of the experimental manipulation.

How to cite: Frouz, J.: Controlled large scale ecosystem manipulation to explore key ecosystem components at multiple scales, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14061, https://doi.org/10.5194/egusphere-egu21-14061, 2021.

BG3.14 – Silicon in the critical zone under global change: towards an integrated view from ecological, agronomical, paleo and geochemical perspectives

Plant Si plays considerable roles in plant, animal. Ecosystem and global ecologies, including biogeochemical cycles. Understanding the ecological roles of plant Si and their evolutionary history is fundamental for increasing our understanding of this phenomenon, its origins, and its significance for past, present and future ecosystems. For these reasons, plant Si research is becoming increasingly interdisciplinary and superdisciplinary. Nevertheless, understanding the evolution of this phenomenon and its interactions with biogeochemical cycles – and furthermore understanding the implications for current and prospected environmental change – is hindered by inappropriate consideration of chronology and community ecology.

studies of the evolution of plant Si uptake, its ecology and its effects on ecosystem functioning suggest multiple types of Si-C interactions. These include – for example – Si-C tradeoffs within plants, a role of Si uptake and cycling in the C cycle (mostly C sequestration through NPP, weathering and occlusion), and Si mediating plant responses to CO2 changes. While these suggest that plant Si may have evolved partially in response to changing CO2 concentrations throughout the Cainozoic, implied by the contemporaneous spread of Si-rich grasslands when CO2 levels drop. However, recent paleontological and molecular suggest no temporal match. Likewise, the possibility of Si-rich grasses and abrasion-adapted grazers is also challenged by evidence for Si having an antiherbivory role on the one hand, and lack of chronological matches on the other hand. These discrepancies may stem, in part, from two considerations that may often be overlooked, about chronology, ecology and how they connect.

First, species and their traits, as well as whole ecosystems, should be seen in the context of their entire evolutionary history, and may therefore reflect not only adaptations to extant selective forces but be anachronisms. Moreover, evolutionary history and evolutionary transitions are complex, resulting in true and apparent asynchronisms. Second, evolution and ecology are multi-scalar, in which various phenomena and processes act at various scales. In ecology, there can be great differences between how a single species responds (e.g., in monoculture) and how different responses of different species interact to shape communities, and further how changes in communities interact with other ecosystem components to shape ecosystems.

Consequently, our understanding of how plant Si may have evolved in response to CO2 and herbivory, and how it may affect ecosystem functions such as biogeochemical cycling under current environmental changes, requires further thinking.

How to cite: Katz, O.: It is time to interact: chronology and ecology in studying plant Si, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7064, https://doi.org/10.5194/egusphere-egu21-7064, 2021.

EGU21-1876 | vPICO presentations | BG3.14

Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations

Chengpeng Huang, Li Wang, Xiaoqiang Gong, Zhangting Huang, Miaorong Zhou, Jiong Li, Jiasen Wu, Scott X. Chang, and Peikun Jiang

The use of exogenous silicon (Si) amendments, such as Si fertilizers and biochar, can effectively increase crop Si uptake and the formation of phytoliths, which are siliceous substances that are abundant in numerous plant species. Phytolith-occluded carbon (C) (PhytOC) accumulation in soil plays an important role in long-term soil organic C (SOC) storage. Nevertheless, the effects of both Si fertilizer and biochar application on PhytOC sequestration in forest plant-soil systems have not been studied. We investigated the impact of Si fertilizer and biochar applications on 1) the PhytOC pool size, the solubility of plant and soil phytoliths, and soil PhytOC in soil physical fractions (light (LFOM) and heavy fractions of organic matter (HFOM)) in Moso bamboo (Phyllostachys pubescens) forests; and 2) the relationships among plant and soil PhytOC concentrations and soil properties. We used a factorial design with three Si fertilizer application rates: 0 (S0), 225 (S1) and 450 (S2) kg Si ha−1, and two biochar application rates: 0 (B0) and 10 (B1) t ha−1. The concentrations of PhytOC in the bamboo plants and topsoil (0–10 cm) increased with increasing Si fertilizer addition, regardless of biochar application. Biochar addition increased the soil PhytOC pool size, as well as the LFOM- and HFOM-PhytOC fractions, regardless of Si fertilizer application. The Si fertilizer application increased or had no effect on soil phytolith solubility with or without biochar application, respectively. Soil PhytOC was correlated with the concentration of soil organic nitrogen (R2=0.32), SOC (R2=0.51), pH (R2=0.28), and available Si (R2=0.23). Furthermore, Si fertilizer application increased plant and soil PhytOC by increasing soil available Si. Moreover, biochar application increased soil PhytOC concentration in LFOM-PhytOC and the unstable fraction of PhytOC. We conclude that Si fertilizer and biochar application promoted PhytOC sequestration in the plant-soil system and changed its distribution in physical fractions in the Moso bamboo plantation in subtropical China.

How to cite: Huang, C., Wang, L., Gong, X., Huang, Z., Zhou, M., Li, J., Wu, J., Chang, S. X., and Jiang, P.: Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1876, https://doi.org/10.5194/egusphere-egu21-1876, 2021.

Biogenic silicon (BSi) has been found to play a fundamental role in the link between global Si and carbon cycles, because it represents a key factor in the control of Si fluxes from terrestrial to aquatic ecosystems. Furthermore, various beneficial effects of Si accumulation in plants have been revealed, i.e., increased resistance against abiotic and biotic stresses. Thus Si is of great importance for agricultural plant-soil systems. Due to intensified land use humans directly influence Si cycling on a global scale. For example, Si exports through harvested crops and increased erosion rates generally lead to a Si loss in agricultural systems with implications for Si bioavailability in agricultural soils, which is controlled by BSi to a great extent. However, while corresponding research on phytogenic BSi (i.e., BSi synthesized by plants) has been established for decades now, studies dealing with protozoic BSi (i.e., BSi synthesized by testate amoebae) have been conducted just recently. By reviewing these studies I found them to indicate that testate amoebae might play a key role in Si cycling in terrestrial ecosystems. Actually, annual biosilicification rates of idiosomic testate amoebae are comparable to or even exceed annual Si uptake rates of trees. Furthermore, it is most likely that total protozoic Si pools (considering not only intact shells but also single idiosomes, the building blocks of testate amoeba shells) are much bigger than given in publications yet, because it can be assumed that idiosomes most likely can be as stable as phytoliths (representing the phytogenic Si pool in soils), and thus are well preserved in soils. Consequently, it would be not surprising if total protozoic Si pool quantities (shells plus single idiosomes) would be found to equal phytogenic Si pool quantities in soils. With my contribution I would like to encourage further field and laboratory research to verify this assumption and gain a deeper understanding of Si cycling by testate amoebae in terrestrial ecosystems.

How to cite: Puppe, D.: It is not plants alone – Protozoic silica and its role in terrestrial silicon cycling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2679, https://doi.org/10.5194/egusphere-egu21-2679, 2021.

EGU21-1105 | vPICO presentations | BG3.14

Long-term silicon dynamics in terrestrial ecosystems: insights from 2-million years soil chronosequences

Félix de Tombeur, Benjamin Turner, Etienne Laliberté, Hans Lambers, Grégory Mahy, Michel-Pierre Faucon, Graham Zemunik, and Jean-Thomas Cornélis

Silicon (Si) is widely recognized as an important regulator of the global carbon (C) cycle via its effect on diatom productivity in oceans and the weathering of silicate minerals on continents. Si is also a beneficial plant nutrient, improving resistance to herbivory and pathogens and mitigating the negative effects of several abiotic stresses, including nutrient limitation. However, changes in Si sources and cycling during long-term development of terrestrial ecosystems remain poorly understood. We studied Si in soils and plants along two 2-Ma coastal dune chronosequences in southwestern Australia (Jurien Bay and Guilderton). Soil development along these chronosequences includes carbonate leaching in Holocene soils, formation of secondary Si-bearing minerals in Mid-Pleistocene soils, followed by their loss via dissolution, to yield quartz-rich soils of Early-Pleistocene age. The chronosequences also exhibit an extreme gradient of soil fertility in terms of rock-derived nutrients, and shifts from nitrogen (N) to phosphorus (P) limitation of plant productivity as soils age. Along each chronosequence, we quantified the pools of reactive Si-bearing phases and plant-available Si in the soils, and physically extracted soil phytoliths (amorphous silica formed in plant tissues). We also quantified Si, macronutrients and total phenols in the most abundant plants growing along the best-studied of the two chronosequences (Jurien Bay). We found that plant-available Si was lowest in young and carbonate-rich soils, because carbonates weathering reduces the weathering of silicate minerals by consuming protons, and Si is strongly sorbed by secondary minerals in alkaline soils. Plant-available Si increased in intermediate-age soils during the formation of secondary minerals (kaolinite), and finally decreased in old, quartz-rich soils, due to continuous desilication. As pedogenic Si pools became depleted with increasing soil age, Si availability was increasingly determined by soil phytoliths. At Jurien Bay, foliar Si increased continuously as soils aged, in contrast with foliar macronutrients that declined markedly in strongly weathered soils. Finally, foliar phenol concentrations declined with increasing soil age and were negatively correlated with foliar Si at the community and individual species level, suggesting a tradeoff between these two leaf defense strategies. Our results highlight a nonlinear response of plant-available Si to long-term pedogenesis, with an increase during carbonate loss and a decrease in the silicates weathering domain. They also demonstrate that the retention of Si by plants during ecosystem retrogression sustains its terrestrial cycling by leveraging the high reactivity of soil phytoliths compared with soil-derived aluminosilicates. Moreover, the continuous increase of plant Si concentrations as rock-derived nutrients are depleted suggests important plant benefits associated with Si in P-impoverished environments. This is in line with the resource availability hypothesis, which predicts that plants adapted to infertile soils have high levels of anti-herbivore leaf defenses. In particular, old and P-depleted soils increased the relative expression of Si-based defenses, while young soils where plant productivity is limited by N promoted leaf phenol accumulation. Overall, our results demonstrate that long-term ecosystem and soil development strongly influence soil-plant Si dynamics, with cascading effects on plant ecology and global Si and C biogeochemistry.

How to cite: de Tombeur, F., Turner, B., Laliberté, E., Lambers, H., Mahy, G., Faucon, M.-P., Zemunik, G., and Cornélis, J.-T.: Long-term silicon dynamics in terrestrial ecosystems: insights from 2-million years soil chronosequences, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1105, https://doi.org/10.5194/egusphere-egu21-1105, 2021.

EGU21-2004 | vPICO presentations | BG3.14

Phytolith biogeochemistry and silicon regulation of terrestrial biogeochemical carbon cycle

Zhaoliang Song and Yuntao Wu

Phytoliths in most terrestrial plant tissues as a result of silica biomineralization may occlude 0.1–6% of organic carbon (C). Phytolith-occluded carbon (PhytOC) comes mainly from photosynthesis and can be stable in soil and sediment environments for several hundred to thousand years. Phytolith turnover may influence terrestrial biogeochemical C cycle either directly through phytolith C sequestration or indirectly through regulating plant biomass C composition and accumulation, and soil organic carbon (SOC) stability. Phytolith C sequestration rates in terrestrial ecosystems of China increase in the following order: grasslands < forests < croplands. Active management practices including cultivation of silicon (Si)-rich plants and amendment of Si-rich materials (e.g., basalt powder and biochar) to increase aboveground net primary productivity (ANPP) and Si supply can significantly increase phytolith C sequestration. The dissolved Si from silicate weathering and phytolith dissolution can decrease plant lignin content and increase the accumulation of plant biomass C through mitigating abiotic and biotic stresses and improving stoichiometry of C, nitrogen (N) and phosphorus (P). The recovery of plant biomass C in response to Si accumulation usually exhibits an S-shaped curve under biotic stress and a bell-shaped curve under abiotic stresses. Generally, Si can recover approximately 30 to 40% of plant biomass C under abiotic and biotic stresses. Phytolith and related dissolved Si in soils can increase SOC stability through phytolith adsorption, Si and aluminum interaction, and Si and iron interaction.

How to cite: Song, Z. and Wu, Y.: Phytolith biogeochemistry and silicon regulation of terrestrial biogeochemical carbon cycle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2004, https://doi.org/10.5194/egusphere-egu21-2004, 2021.

EGU21-573 | vPICO presentations | BG3.14

Effect of forest management on the formation and stability of phytolith and PhytOC in forest ecosystem

Lin Xu, Yongjun Shi, Wanjie Lv, Zhengwen Niu, Ning Yuan, and Yufeng Zhou

Forest ecosystem has a high carbon sequestration capacity and plays a crucial role in maintaining global carbon balance and climate change. Phytolith-occluded carbon (PhytOC), a promising long-term biogeochemical carbon sequestration mechanism, has attracted more attentions in the global carbon cycle and the regulation of atmospheric CO2. Therefore, it is of practical significance to investigate the PhytOC accumulation in forest ecosystems. Previous studies have mostly focused on the estimation of the content and storage of PhytOC, while there were still few studies on how the management practices affect the PhytOC content. Here, this study focused on the effects of four management practices (compound fertilization, silicon fertilization, cut and control) on the increase of phytolith and PhytOC in Moso bamboo forests. We found that silicon fertilization had a greater potential to significantly promote the capacity of carbon sequestration in Moso bamboo forests. this finding positively corresponds recent studies that the application of silicon fertilizers (e.g., biochar) increase the Si uptake1 to promote phytolith accumulation and its PhytOC sequestration in the plant-soil system2. Of course, the above-mentioned document2 also had their own shortcomings, i.e., the experimental research time was not long, lacking long-term follow-up trial and the bamboo forest parts were also limited, so that the test results lack certain reliability. We have set up a long-term experiment plot to study the effects of silicon fertilizer on the formation and stability of phytolith and PhytOC in Moso bamboo forests. But anyway, different forest management practices, especially the application of high-efficiency silicon-rich fertilizers1, may be an effective way to increase the phytolith and PhytOC storage in forest ecosystems, and thereby improve the long-term CO2 sequestration capacity of forest ecosystems. Research in this study provides a good "forest plan" to achieve their national voluntary emission reduction commitments and achieves carbon neutrality goals for all over the world.

Refences:

1Li et al., 2019. Plant and soil, 438(1-2), pp.187-203.

2Huang et al., 2020, Science of The Total Environment, 715, p.136846.

How to cite: Xu, L., Shi, Y., Lv, W., Niu, Z., Yuan, N., and Zhou, Y.: Effect of forest management on the formation and stability of phytolith and PhytOC in forest ecosystem, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-573, https://doi.org/10.5194/egusphere-egu21-573, 2021.

EGU21-3989 | vPICO presentations | BG3.14

Contribution of terrestrially derived phytolith as a marine silicon sink

Vidusanka Thilakanayaka, Luo Chuanxiu*, and Rong Xiang

Silicon is important as a nutrient for phytoplankton (diatom, radiolarian, silicoflagellates and sponges) and for the phytolith production by terrestrial vegetation. Silicon also contributes in removing carbon dioxide from the atmosphere through silicate weathering.  Hence it is important to understand the behavior of the silicon cycle throughout earth history. Silica is the second most abundant element in the earth's crust and the concentration of silicic acid in the marine environment has not changed since the past 10,000 years. Phytolith plays an important role in the silicon cycle. While the phytoplankton in marine environment bioengineers silica within the water column, phytolith transports terrestrial biogenic silica into the marine environment and act as a silicon sink. Though astonishingly, very few researches have been carried out in the field of marine phytolith sink and also on the phytoliths in the marine environment.

For this study, we have chosen the world highest terrestrial sediment receiving submarine fan, the Bengal fan. The core sample was extracted at a water depth of 3520m at 85.960985 N, 9.99351 E. 24 phytolith types were identified and all the morphotypes were counted dividing into three size classes. These size classes were specific to considering morphotypes. Most related simple geometries were used to calculate the volume of phytolith cells and these volume data were used in calculating the total volume of phytolith in one gram of sediment by combining with an absolute abundance of phytolith data for each size class, which were later used to calculate the total weight of phytolith in one gram of marine sediment. According to the results in deep oceanic sediment at the core, the location contains ⁓0.15mg/g phytolith during the low phytolith flux periods (ex. Late Holocene) and ⁓2.678mg/g of phytolith during the high phytolith flux periods such as 25ka to 30ka B.P. and around the beginning of deglaciation. After removing 10% from the total weight as phytolith occluded carbon (PhytOC), phytolith derived biogenic silica content in sediment varies from ⁓0.135mg/g - ⁓2.41mg/g. Thus, phytolith in marine sediment contributes as a permanent silicon and carbon sink. By considering average marine sediment density as 1.7g/cm3, in a 1cm thick, one square km sediment layer contains ⁓2 to 40 metric tons of biogenic silica derived from phytolith, during low and high phytolith flux periods. This study serves as the pioneer of this field of study and further it is important to investigate the release of biogenic silica in to marine environment by phytolith and PhytOC content in different morphotypes and in different geological regions, for better understanding the contribution of phytolith to the biogenic silicon cycle in the marine environment.

Keywords: Marine phytolith, Deep oceanic sediment, Silicon cycle, Phytolith Flux, Silicon sink.

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC 41876062) and Key Special Project for Introduced Talents Team of Southern Marine Science and EngineeringGuangdong Laboratory (Guangzhou) (GML2019ZD0206).

 

How to cite: Thilakanayaka, V., Chuanxiu*, L., and Xiang, R.: Contribution of terrestrially derived phytolith as a marine silicon sink, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3989, https://doi.org/10.5194/egusphere-egu21-3989, 2021.

EGU21-9709 | vPICO presentations | BG3.14

Anti-herbivore silicon defences in a model grass are greatest under Miocene levels of atmospheric CO2

Fikadu Biru, Tarikul Islam, Ximena Cibils-Steward, Christopher Cazzonelli, Rivka Elbaum, and Scott Johnson

Silicon (Si) has important role in mitigating diverse biotic and abiotic stresses, mainly via silicification of plant tissues. However, environmental changes such as reduced atmospheric CO2 concentrations may affect grass Si concentration which, in turn, can alter herbivore performance. Recently, we demonstrated that pre-industrial atmospheric CO2 increased Si accumulation in a grass, however, how Si is deposited and whether this affects insect herbivores performance is unknown. We, therefore, investigated how pre-industrial (reduced) (rCO2, 200 ppm), ambient (aCO2, 410 ppm) and elevated (eCO2, 640 ppm) CO2 concentrations and Si-treatments (Si+ or Si-) affect Si accumulation in the model grass, Brachypodium distachyon and its subsequent effects on the performance of the global insect, Helicoverpa armigera. rCO2 caused Si concentrations to increase by 29% and 36% compared to aCO2 and eCO2, respectively. Furthermore, increased Si accumulation under rCO2 decreased herbivore relative growth rate (RGR) by 120% relative to eCO2, whereas rCO2 caused herbivore RGR to decrease by 26% compared to eCO2. Moreover, Si supplementation increased the density of trichomes, silica and prickle cells, and these changes in leaf surface morphology reduced larval feeding performance. The observed negative correlation between macrohair density, silica cell density, prickle cell density and herbivore RGR supports this. To our knowledge, this is the first study to demonstrate that increased Si accumulation under pre-industrial CO2 environment reduced the performance of this generalist insect herbivore performance. Contrastingly, we found  reduced Si accumulation under higher CO2, which suggests  that some grasses might become more susceptible to insect herbivore under the projected climate change scenarios.

How to cite: Biru, F., Islam, T., Cibils-Steward, X., Cazzonelli, C., Elbaum, R., and Johnson, S.: Anti-herbivore silicon defences in a model grass are greatest under Miocene levels of atmospheric CO2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9709, https://doi.org/10.5194/egusphere-egu21-9709, 2021.

EGU21-16003 | vPICO presentations | BG3.14

Terrestrial ecosystem Si budgets, past and present

Julia Cooke

Estimates of silicon (Si) pools and fluxes in diverse extant ecosystems have been published, including for grasslands, and deciduous and evergreen forests.  These illustrate diversity in dominant pools of biogenic Si in soils versus living biomass, reflecting the vegetation type and variation in Si accumulation of plant groups. This presentation will explore potential to estimate Si pools and fluxes for a selection of past environments, based on the species recorded in fossil records teamed with Si accumulation data from extant relatives. Where possible, changes over time will also be considered incluing impacts of vegetation on weathering and other envrionmental feedbacks.

How to cite: Cooke, J.: Terrestrial ecosystem Si budgets, past and present, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16003, https://doi.org/10.5194/egusphere-egu21-16003, 2021.

EGU21-12083 | vPICO presentations | BG3.14

Silicon isotopes: linking soil Si availability and plant Si strategies

Camille Delvigne, Catherine Keller, Abel Guihou, Isabelle Basile-Doelsch, Bernard Angeletti, Pierre Deschamps, and Jean-Dominique Meunier

One of the most puzzling properties of silicon (Si) is its differential absorption by plants. Depending on the plant species, water and soil Si availability, environmental factors such as grazing and temperature, plant Si contents can vary from 0.1 % to 10 %(on a dry weight basis). Advances in genomics improved our understanding of biochemical and molecular mechanisms underlying plant Si uptake providing a framework to explain the variability of Si in plants and its distribution. Yet complex Si roles in plant strategies, its dependence on environmental factors and in mediating interactions with their environments and other organisms remain misunderstood. How is plant Si uptake affected by soil Si availability and how is Si distribution between tissue types controlled? It is hard for us to answer those questions even if Si plant traits are an indicator of the soil Si status. For example, a few studies showed that Si content and phytolith distribution are mainly controlled by Si availability. In this study, a pot experiment was conducted in a greenhouse where wheat (Triticum turgidum L.) was grown on three different soils: an aric podzol, an andosol and a calcosol. These soils are contrasted in term of clay size distribution, SiO2 concentrations and organic matter content and are presumed to reflect French soils variability in term of Si dynamics. Here, we focus on how plant Si patterns, both Si content and Si isotopes, are linked to soil Si availability leading to new insights to the mechanisms underlying the different Si uptake and translocation strategies. This work is supported by the BIOSiSOL project (ANR-14-CE01-0002).

How to cite: Delvigne, C., Keller, C., Guihou, A., Basile-Doelsch, I., Angeletti, B., Deschamps, P., and Meunier, J.-D.: Silicon isotopes: linking soil Si availability and plant Si strategies, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12083, https://doi.org/10.5194/egusphere-egu21-12083, 2021.

EGU21-3733 | vPICO presentations | BG3.14

Rapid silicon accumulation affects carbon-based plant defences and enhances plant resistance to a global insect pest 

Jamie Waterman, Ximena Cibils-Stewart, Casey Hall, Meena Mikhael, Christopher Cazzonelli, Susan Hartley, and Scott Johnson

1) Crop loss due to insect herbivory is one of the largest challenges facing the agricultural industry. As herbivore populations continue to grow in light of global change, securing crop resources is becoming increasingly critical. Silicon (Si) has been shown to effectively mitigate the adverse effects of herbivores such as the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), in crop species (namely grasses), that have evolved the ability to uptake large amounts of Si through their roots and accumulate it in aboveground tissues. Nevertheless, the effectiveness of Si accumulation as a plant defence against herbivory in the short term, and its consequential effects on alternative defence responses, remain unclear.
2) We conducted two discrete experiments to determine the short-term dynamics of Si, chemical defences and resistance to herbivory in the model grass, Brachypodium distachyon: 1) Both Si-supplemented (+Si) and control (-Si) plants were treated with methyl jasmonate (MeJA) as a form of simulated herbivory and we measured the interplay of Si accumulation, the phytohormones jasmonic acid (JA) and salicylic acid (SA), and carbon-based defences over 24 hr. 2) We exposed H. armigera larvae to B. distachyon plants grown under three conditions: +Si, -Si, or treated with Si only once H. armigera feeding began. We measured the effect of short-term plant exposure to Si on H. armigera performance and plant resistance.
3) MeJA-induced Si accumulation occurred as early as 6 hr after treatment via increased JA concentrations. Si supplementation decreased SA concentrations, which could have implications on additional downstream defences. We show a trade-off between Si and phenolics in untreated plants, but this relationship was weakened upon MeJA treatment. Although foliar Si concentrations remained lower, within 72 hr of exposure to Si, plants obtained virtually the same level of resistance to H. armigera as plants exposed to Si for over 30 days. H. armigera feeding also accelerated Si deposition after 6 hr of exposure to Si, however, in as little as 24 hr, levels of Si deposition were similar to plants exposed to Si long term.
4) In addition to its well-documented role as a long-term defence against herbivores, we demonstrate that, over short-term temporal scales, Si accumulation responds to herbivore signals and impacts on plant defence machinery. Further, we provide novel evidence that plants can rapidly incorporate Si into their tissues to mitigate the adverse effects of herbivory as effectively as plants exposed to Si long term.

How to cite: Waterman, J., Cibils-Stewart, X., Hall, C., Mikhael, M., Cazzonelli, C., Hartley, S., and Johnson, S.: Rapid silicon accumulation affects carbon-based plant defences and enhances plant resistance to a global insect pest , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3733, https://doi.org/10.5194/egusphere-egu21-3733, 2021.

EGU21-10431 | vPICO presentations | BG3.14

Epichloë-endophytes increase constitutive and herbivore-induced silicon defences in grasses but do not directly increase grass resistance to a chewing insect herbivore

Ximena Cibils-Stewart, Wade J Mace, Alison J Popay, Susan E Hartley, Fernando A Lattanzi, Casey R Hall, Jeff R Powell, and Scott N Johnson

Grasses accumulate large concentrations of silicon (Si) which alleviates a range of stresses including defence against herbivores. Likewise, grasses symbiotically associate with foliar Epichloë-fungal endophytes which provide herbivore defence, mainly via the production of alkaloids. Some Epichloë-endophytes increase foliar Si concentrations, particularly in tall fescue (Festuca arundinacea) but also in perennial ryegrass (Lolium perenne); it is unknown whether this impacts herbivores. Likewise, while Si is primarily a physical defence against herbivores, it can also affect defensive secondary metabolites; Si supply might therefore also affect alkaloids produced by Epichloë-endophytes, however, this remains untested. We grew tall fescue and perennial ryegrass in a factorial combination with or without Si supplementation, in the absence or presence of a chewing herbivore; Helicoverpa armigera. Grasses were associated with four different Epichloë-endophyte strains (tall fescue: AR584; perennial ryegrass: AR37, AR1, or wild type) or as Epichloë-free controls. Specifically, we assessed how Si supply and Epichloë-endophyte presence impacts plant growth and chemistry, and how their interaction with herbivory affects foliar Si concentrations and alkaloid production. Subsequently, their effects on H. armigera relative growth rates (RGR) were evaluated. In Fescue, the AR584-endophyte increased constitutive (herbivore-free) and induced (herbivore-inoculated) silicon concentrations when Si was supplied. In perennial ryegrass, AR37-endophyte increased constitutive and induced silicon concentration, meanwhile, AR1-endophyte increased constitutive levels only. Si supply and herbivory did not affect alkaloids produced by AR584- or AR1/Wt-endophyte in tall fescue and perennial ryegrass, respectively. However, Si suppressed herbivore-induced production of alkaloids in the AR37-endophyte perennial ryegrass association. Si was a more effective defence in tall fescue than perennial ryegrass, significantly reducing H. armigera RGR. Our results suggest that Si reduced herbivore performance to such an extent in tall fescue that it was operating at maximum effect and endophyte-mediated increases in Si concentration made no further difference. Si had a more modest impact on herbivores in perennial ryegrass, potentially linked to silicon decreasing herbivore feeding and thus, suppressing herbivore-induced alkaloids. We provide novel evidence that increased Si concentrations in some cases interact with endophyte-produced chemical defences, which could ultimately impact plant resistance to herbivores.   

How to cite: Cibils-Stewart, X., Mace, W. J., Popay, A. J., Hartley, S. E., Lattanzi, F. A., Hall, C. R., Powell, J. R., and Johnson, S. N.: Epichloë-endophytes increase constitutive and herbivore-induced silicon defences in grasses but do not directly increase grass resistance to a chewing insect herbivore, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10431, https://doi.org/10.5194/egusphere-egu21-10431, 2021.

EGU21-10497 | vPICO presentations | BG3.14

Is silicon a double-edged sword against insect herbivores? 

Tarikul Islam, Ben D. Moore, and Scott N. Johnson

In recent years, silicon (Si) has been increasingly linked to biotic stress management in plants including insect herbivory. The effectiveness of Si against chewing insects is now well recognized. Silicification of plant tissues makes them abrasive and tougher, reducing their masticability and digestibility to insect herbivores. This can cause mandibular wearing of chewers and affect their growth and feeding. Although there has been extensive research on the effects of Si on plant defences (i.e. antixenosis and antibiosis), it remains unclear how feeding on silicified plants affects insect defences to their natural enemies. Insect herbivores show morphological and behavioural defences when encountering predators and parasitoids. For example, lepidopteran larvae can regurgitate, twist the body, or even drop off the plants when attacked by natural enemies. Moreover, insects possess innate immunity (physiological defence) against the attackers, demonstrating cellular and humoral responses upon attack. Notably, there could be potential trade-offs between different defence and immunity traits. Given that feeding on Si-rich plants affects insect growth rates, this could impact their relative investment in different defences, thereby making insects more susceptible to their enemies. We are investigating the effects of Si on plant resistance and tolerance to herbivory and its cascading effects on insect defences to their enemies. We have been growing the model grass, Brachypodium distachyon, a high Si-accumulator, hydroponically with or without Si and examining the effects of Si against the global insect herbivore, Helicoverpa armigera. Our preliminary results suggest that Si supplementation enhances plant antixenotic and antibiotic traits and increases plant tolerance to herbivory. We are currently exploring insect defence and immunity traits when fed on silicified versus non-silicified plants. Our study would shed light on the impacts of Si on insects’ susceptibility to biocontrol agents and provide a better understanding of the effects of Si on insect-plant-natural enemy interactions.

How to cite: Islam, T., Moore, B. D., and Johnson, S. N.: Is silicon a double-edged sword against insect herbivores? , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10497, https://doi.org/10.5194/egusphere-egu21-10497, 2021.

EGU21-180 | vPICO presentations | BG3.14

Drought influences the phytolith morphology variation and its occluded carbon of leaves in Dendrocalamus Ronganensis during growing season

Rencheng Li, Mengdan Wen, Xinyue Tao, Richard S. Vachula, Shuhui Tan, Haiyan Dong, and Lintong Zhou

Abstract: Being an important carbon (C) sink on Earth, phytolith occluded carbon (PhytOC) has been investigated in various soil-plant systems. Yet, the environmental factor (i.e., drought) is less studied on the variation of phytolith, its relative depositions in plant tissues, morphology variations, and occluded carbon in the soil-plant systems. In this study, we analyzed the monthly variations of phytolith production and phytolith-occluded carbon (PhytOC) in the leaves of Dendrocalamus ronganensis grown on a karst mountain in southwestern China. This study aimed to understand the drought factors influencing phytolith formation, morphology variation and carbon sequestration in plants. Our results showed that the phytolith assemblages and PhytOC between new and old leaves were significantly different, and varied with plant growth stages. The average PhytOC of old leaves and new leaves was 3.2% and 2.2%, respectively. In particular, both PhytOC and proportions of elongate, cuneiform and stomata phytolith in new leaves significantly decreased during drought months (from September to November). This study suggests that PhytOC in plants is closely related to phytolith morphologies, and significantly affected by growth stage and hydrologic conditions of the growth environment. This indicates that we can improve the efficiency of phytolith carbon sequestration in plants and potentially reduce the atmospheric carbon dioxide content by improving the soil water conditions required for plant growth.

Keywords: Dendrocalamus ronganensis; phytolith; phytolith-occluded carbon; soil drought

How to cite: Li, R., Wen, M., Tao, X., Vachula, R. S., Tan, S., Dong, H., and Zhou, L.: Drought influences the phytolith morphology variation and its occluded carbon of leaves in Dendrocalamus Ronganensis during growing season, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-180, https://doi.org/10.5194/egusphere-egu21-180, 2021.

EGU21-643 | vPICO presentations | BG3.14

How do silicious trichomes influence leaf decomposition by meso- and macrofauna?

Ryosuke Nakamura, Gaku Amada, Hirofumi Kajino, Kei Morisato, Kazuyoshi Kanamori, and Motohiro Hasegawa

Decomposition of plant leaves is influenced by multiple traits, however, discrete structures of Si such as silicious trichomes on the leaf surface have been overlooked, although similarly to defense against insect herbivores, trichomes are thought to protect leaves from decomposers. This study hypothesized that silicious trichomes slow down leaf decomposition by soil meso- and macrofauna. We used two mesh bags (<0.2 mm and 5 mm) and examined ash-free mass loss of green leaves of Broussonetia papyrifera and Morus australis, closely related Moraceae species apparently different in trichome size and density, after 25 days of decomposition in a common garden. We also measured 10 traits of initial leaves and performed microscopic observation of the leaf surface with an energy dispersive X-ray analyzer. Of the leaf traits, trichome density on the lower leaf surface differed greatly between the two species. Our microscopic observation showed that short trichomes densely arranged on the lower leaf surface of B. papyrifera were highly silicified and that some of long trichomes were also composed of calcium. Ash-free mass loss of M. australis was greater in 5-mm mesh bag than in <0.2-mm mesh bag, while that of B. papyrifera did not differ by mesh size, which represents a suppressive effect of silicious trichomes on decomposition by meso- and macrofauna. The trichomes of B. papyrifera remained apparently intact on the decomposed surface, supporting a view of their continuously deferring influence on the large decomposers during the experimental period. For the meso- and macro-detritivore community, three taxa (Acari, Collembola and Isopoda) showed high population density in the common garden. Overall, our results suggest that distinct forms of Si bodies in plants such as trichomes are worth considering in better understanding of leaf decomposition by meso- and macrofauna.

How to cite: Nakamura, R., Amada, G., Kajino, H., Morisato, K., Kanamori, K., and Hasegawa, M.: How do silicious trichomes influence leaf decomposition by meso- and macrofauna?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-643, https://doi.org/10.5194/egusphere-egu21-643, 2021.

EGU21-7891 | vPICO presentations | BG3.14

Impact of transpiration rates on foliar silicon concentrations across a range of angiosperm species exposed to water stress.

Thomas Guzman, Regis Burlett, Camille Delvigne, Camille Parise, Sabrina Dubois, Paula Martin-Gomez, Sophie Opfergelt, and Lisa Wingate

It is widely observed that silicon availability (Si) can enhance plant growth and increase the tolerance of plants to a range of biotic and abiotic stresses, although the specific mechanisms underlying these positive effects are not always understood. Silicon is acquired by plants both actively via transporters located in roots and/or passively as plants transport water during transpiration. The relative importance of each of these mechanisms depends strongly on the plant species and the level of stress experienced by the plant. Currently there is a lively debate in the literature regarding the relationship between plant Si accumulation and transpiration rates. Rates of transpiration can affect the amount of Si moving through a plant and in turn the concentration of available Si in soils can make the plant less vulnerable to the effects of drought stress. In order to better understand these relationships between plant water fluxes and Si accumulation in leaves, nine angiosperm tree species (from five families including both deciduous and evergreen species) were grown in a greenhouse and exposed to contrasting watering treatments. For each species, three trees were well watered throughout the growing season whilst three others were exposed to water stress. Whole plant transpiration fluxes were monitored continuously with balances, and pre-dawn leaf water potentials were measured regularly during the experiment. In addition the foliar Si concentrations of each plant were measured by ICP-AES after alkaline fusion both at the beginning and the middle of the growing season. In this presentation, we show our first results examining the relationship between leaf Si concentrations and plant water fluxes in contrasting species. We tested the hypothesis that drought stress significantly decreased the foliar Si concentration in all of the species measured and that foliar Si concentrations were correlated with the cumulative transpiration rates of plants and thus expected to increase significantly over the growing season. 

How to cite: Guzman, T., Burlett, R., Delvigne, C., Parise, C., Dubois, S., Martin-Gomez, P., Opfergelt, S., and Wingate, L.: Impact of transpiration rates on foliar silicon concentrations across a range of angiosperm species exposed to water stress., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7891, https://doi.org/10.5194/egusphere-egu21-7891, 2021.

Returning crop straw into soil is an important practice to balance biogenic and bioavailable silicon (Si) pool in paddy, which is crucial for rice healthy growth. However, it remains elusive how straw return affects Si bioavailability, its uptake, and rice yield, owing to little knowledge about soil microbial communities responsible for straw degradation. Here, we investigated the change of soil Si fractions and microbial community in a 39-year-old paddy field amended by a long-term straw return. Results showed that rice straw-return significantly increased soil bioavailable Si and rice yield to from 29.9% to 61.6% and from 14.5% to 23.6%, respectively, compared to NPK fertilization alone. Straw return significantly altered soil microbial community abundance. Acidobacteria was positively and significantly related to amorphous Si, while Rokubacteria at the phylum level, Deltaproteobacteria and Holophagae at the class level were negatively and significantly related to organic matter adsorbed and Fe/Mn-oxide combined Si in soils. Redundancy analysis of their correlations further demonstrated that Si status significantly explained 12% of soil bacterial community variation. These findings suggest that soil bacteria community and diversity interact with Si mobility via altering its transformation, resulting in the balance of various nutrient sources to drive biological silicon cycle in agroecosystem.

How to cite: Song, A., Li, Z., and Fan, F.: Soil bacterial communities interact with silicon fraction transformation and promote rice yield after long-term straw return, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-760, https://doi.org/10.5194/egusphere-egu21-760, 2021.

EGU21-308 | vPICO presentations | BG3.14

Reliability of phytoliths for reconstructing vegetation dynamics in northeast China

Dongmei Jie, Guizai Gao, and Deihui Li

  Phytolith provides a new preconstruction and interpretation of palaeovegetation in either forest or grassland regions. In particular, the phytolith reliability records in both vegetation types should be assessed when they are employed on palaeovegetation reconstruction in north temperate region. Yet this issue has not been clearly investigated. Being two vegetation types (including forest and grassland) in northeast China (NE China) where it is an integrated physical geography unit, they provide some crucial references regarding the phytolith reliability. Thus, we firstly focused the study site of NE China to collect 108 topsoil samples from five dominant community types in forest region and 154 topsoil samples from four dominant community types in grassland region, respectively, to their phytolith assemblages. This study was to establish the reference databases of modern soil phytolith to demonstrate their record reliability. These phytolith data thus better serve palaeovegetation reconstruction in sedimentary sequences using their corresponding vegetation types in two selected regions.

    Analytical results showed that topsoil phytolith assemblages and their phytolith indices (Iw, Ic and W/G) varied substantially with different vegetation types in NE China; phytolith indices were also variations aligned with vegetation compositions. These finding suggest that phytolith is a reliable proxy using reconstructing palaeovegetation.

  The palaeovegetation reconstruction based on these phytolith reference databases indicated that NE China had experienced substantial vegetation changes since the late-glacial period. Community types in forest region may have experienced a succession sequence from the open Larix mixed forest to the open woodland, then turning to the closed broadleaf forest, and finally to the closed Pinus koraiensis mixed forest. In particular, we found that vegetation types in grassland region was dominated by a flourish C3 grass steppe since late-glacial period, with a total coverage higher than 50%. The coverage of C3 grass and C4 grass were higher than 25% and 16%, respectively.

  The palaeovegetation interpretation using these phytolith reference databases since the late-glacial period were consistent with that reconstructed using pollen assemblages in the same stratigraphic profile, confirming the phytolith reliability for reconstructing vegetation type and community type in the NE China. Phytolith record analysis also provided some detailed vegetation information such as the vegetation composition of the understory and Larix abundance in forest region, and the proportion of C3/C4 grass, their biomass and community coverage in grassland region.

  Thus, this study demonstrates the phytolith reliability to provide new perspectives on palaeovegetation reconstruction in northern temperate regions. Furthermore, this finding acts as a potential reference for exploring the relationship between phytolith and (palaeo)vegetation in other temperate regions.

(Supported by the National Natural Science Foundation of China (Grant No.41971100,41771214 )

How to cite: Jie, D., Gao, G., and Li, D.: Reliability of phytoliths for reconstructing vegetation dynamics in northeast China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-308, https://doi.org/10.5194/egusphere-egu21-308, 2021.

EGU21-13562 | vPICO presentations | BG3.14

Overlooked interactions between the leguminous plant and silicon: Concepts, contexts and consequences

Rocky Putra, Jeff R. Powell, Susan (Sue) E. Hartley, and Scott N. Johnson

Plants associate with bacteria over the course of evolution. For example, leguminous plants (Leguminosae/Fabaceae) have evolved a distinct symbiosis with nitrogen-fixing bacteria (rhizobia) about 60 million years ago. Rhizobia are housed in specialised root structures, the nodules, and provide the host plants with available nitrogen. In exchange, the host plant rewards rhizobia with carbon-based compounds. The legume-rhizobia symbiosis differs from being mutualistic to somewhat parasitic. One of the driving factors of that is soil nutrients, e.g. silicon (Si). Yet, the functional role of Si in legumes is largely overlooked.

Previous studies suggest that Si has positive impacts on the legume-rhizobia symbiosis. For example, existing literature demonstrates that Si alleviates a broad range of environmental stresses. Crucially, there is a growing number of studies reporting that Si promotes symbiotic traits, such as increased root nodulation and nitrogen fixation across several leguminous species. To better understand this, a conceptual framework was recently proposed. It is hypothesised that Si uptake and accumulation (silicification) in plant tissues may compensate the high metabolic expenditure of carbon in cell wall formation, accelerate solute transport and gas exchange in the nodules, and protect the plants against stresses.

To investigate the impacts of Si enrichment on functional traits in legumes, a glasshouse experiment was conducted with a model legume, barrel medic (Medicago truncatula) associated with a rhizobial (Ensifer meliloti) strain SM1021. Three plant genotypes were either enriched with Si (+Si) or untreated (-Si). Furthermore, a suite of key functional traits broadly grouped as plant growth, physiology, elemental chemistry, nodule activity and nitrogen fixation were quantified using several analytical/chemical techniques. Si enrichment altered several traits depending on plant genotype and symbiosis with rhizobia. For example, nodule activity was generally promoted in +Si relative to -Si plants, but with a more profound impact in one specific genotype (Sephi). This promotion was correlated positively with silicification either in the foliar or nodule depending on plant genotype.

To examine a context dependency of Si impacts in legumes, a full-factorial experiment in a glasshouse was undertaken with the same model legume (two genotypes) and two rhizobial strains, i.e. SM1021 and SM1022, which the former strain is less effective than the latter. Each host-rhizobial association was supplemented with and without Si and challenged with the foliar-chewing cotton bollworm (Helicoverpa armigera) for a 5-day larval infestation (+herbivore and -herbivore). At 30-day post infestation, plants were harvested and further analysed for nodule traits and plant chemistry. Silicon enrichment strongly increased nodule numbers in both rhizobial strains but only in -herbivore plants and this impact was wiped out in +herbivore plants. However, foliar Si was induced only in +Si relative to -Si in +herbivore plants and the reverse was true for foliar C that might indicate a trade-off between Si and C following herbivory. In addition, Si enrichment generally promoted total soluble protein. Finally, when foliar amino acids (AAs) were clustered into essential, non-essential and total compounds, Si enrichment consistently promoted AAs only when herbivory was absent and shifted to a lesser extent when herbivory was present.

How to cite: Putra, R., Powell, J. R., Hartley, S. (. E., and Johnson, S. N.: Overlooked interactions between the leguminous plant and silicon: Concepts, contexts and consequences, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13562, https://doi.org/10.5194/egusphere-egu21-13562, 2021.

EGU21-8311 | vPICO presentations | BG3.14

Millet arrived in the South China Coast around 5,500 years ago

Jinqi Dai, Xipeng Cai, Jianhui Jin, Wei Ge, Yunming Huang, Wei Wu, Taoqin Xia, Fusheng Li, and Xinxin Zuo

Crop dispersal has long been recognised as an important topic in agricultural archaeology and food globalisation. One of most pressing questions facing archaeologists is determining when and where millet arrived in the South China Coast. Our study focused on the millet phytoliths remains from three Neolithic sites in southeast coastal Fujian. Multiple dating methods, including charred carbon dating, phytolith carbon dating, and optically stimulated luminescence were used to construct the chronologies of the sites. The dating results showed that BTS was initially occupied at approximately 5,500 cal a BP. The millet phytoliths recovered in this study are likely the earliest millet remains found in Fujian, suggesting that millet arrived in the South China Coast at least 5,500 years ago. However, questions about whether millet agriculture in northern China dispersed southward through the inland or coastal routes remain unanswered. Given that millet remains were found in Jiangxi and northern Fujian – two important gaps in the inland route – no earlier than 5,000 cal a BP, it seems that the millet remains recovered from the coastal sites of Fujian might have dispersed following a coastal route from northern China. Nevertheless, Fujian is an important junction of the coastal route for the dispersal of millet from northern China. These findings not only provide new insights to millet dispersal routes in China, but also have significant implications for crop communications between Taiwan and mainland China during the Neolithic age.

 

 

How to cite: Dai, J., Cai, X., Jin, J., Ge, W., Huang, Y., Wu, W., Xia, T., Li, F., and Zuo, X.: Millet arrived in the South China Coast around 5,500 years ago, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8311, https://doi.org/10.5194/egusphere-egu21-8311, 2021.

EGU21-10976 | vPICO presentations | BG3.14

Learning Principles in the Biochemistry of Plant Silica Precipitation 

Vincent Ayieko and Rivka Elbaum

Plants produce silica in large quantities, up to 2-10% per dry weight, depending on growth conditions and plant species. The roots absorb monosilicic acid from the soil, and it is transported with water and distributed in nearly all plant tissues. With evapotranspiration, the silicic acid solution is concentrated, and eventually silica forms at leaf epidermis. Nonetheless, the distribution of silica deposits is not uniform within plant tissues. This suggests that there are biological processes that control the deposition of the mineral. In a recent work, the protein Siliplant1 (Slp1) was discovered to precipitate silica in plants. Slp1 is expressed in sorghum leaf epidermal cells called silica cells. Biological molecules active in silica formation typically present positive charge moieties and form some 3D aggregation pattern that allows monosilicic acid to condense into bigger organized structures. Slp1 contains a 24 amino acid N-terminal signal peptide, followed by 124 amino acid linking sequence and a 7-repeat sequence. Slp1 without the signal peptide and a short, conserved peptide appearing five times in Slp1 precipitate silica in vitro. However, the activity of other parts of Slp1 in silica precipitation remains unknown. To analyze sequence motifs that precipitate silica, we synthesized segments of the repeating sequence in Slp1, and characterized the precipitation reactions by yield and spectroscopy. Thermal gravimetric and electron microscopy analyses are planned. Preliminary results show that the most conserved region in the repeating sequence precipitates silica at a concentration range of 1-1.5 mg/mL in a 100 mM silicic acid solution. Under buffered conditions, this peptide is positively charged, precipitating silica at pH between 6 and 7. In contrast, silica-gel formed at pH 8 or 5 after overnight incubation. In comparison, the full length Slp1 (missing the signal peptide) precipitates silica at an estimated concentration of 2.9 mg/mL and pH 6-8. Peptides flanking the conserved sequence did not precipitate silica. Precipitation reactions with combinations of peptides precipitated silica only when the conserved peptide was mixed with the peptide following it at a 1:1 ratio. This part of Slp1 presents –OH moieties that may interact with silica. The reaction produced silica gel as well as silica. When the conserved region was mixed with a preceding peptide, only silica-gel formed. This region presents acidic groups that may block the positive charge on the conserved region. We conclude that the conserved peptide is the only part of the Slp1 repeating region that actively precipitates silica. The peptides flanking the conserved region are not directly involved in silica precipitation.  However, they may allow silica precipitation at increased pH, as seen in the full length Slp1. Further investigation is planned to understand their roles in silica formation.

How to cite: Ayieko, V. and Elbaum, R.: Learning Principles in the Biochemistry of Plant Silica Precipitation , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10976, https://doi.org/10.5194/egusphere-egu21-10976, 2021.

EGU21-12176 | vPICO presentations | BG3.14

Silica formation in sorghum (Sorghum bicolor) roots

Nerya Zexer and Rivka Elbaum

Silicon oxides are the most abundant mineral group in soils. Therefore, plant roots are always exposed to some silicic acid (Si(OH)4), which is the soluble form of silicates. Monosilicic acid molecules are taken up by roots, carried in the xylem, and subsequently polymerize to silica in varied silicifying target sites. This biogenic silica (SiO2·nH2O) can constitute several percent by dry weight in certain plant taxa. However, the mechanisms of its formation remain mostly unknown. In the roots of sorghum (Sorghum bicolor), silica aggregates form in an orderly pattern along the cell walls of endodermis cells. To investigate the structure and composition of root silica aggregates, we studied their development along roots of hydroponically grown sorghum seedlings. By using Raman micro-spectroscopy, auto-fluorescence, and scanning electron microscopy, we found that putative silica aggregation loci could be identified in roots grown under Si starvation. These micrometer-scale spots were constructed of tightly packed modified lignin and were capable of nucleating trace concentrations of silicic acid. Substantial variation in cell wall auto-fluorescence between roots grown with and without silicic acid demonstrated the impact of silicon on cell wall chemistry. Taken together, this work demonstrates a high degree of control over lignin and silica deposition in cell walls. Such regulation implies an important, yet unknown, function for silicon in plant biology.

How to cite: Zexer, N. and Elbaum, R.: Silica formation in sorghum (Sorghum bicolor) roots, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12176, https://doi.org/10.5194/egusphere-egu21-12176, 2021.

BG3.17 – Complex case studies for ecosystem responses to climate and hydrological extremes

EGU21-11030 | vPICO presentations | BG3.17 | Highlight

Drought years of 2018 and 2019 affect CO2 balance of urban forest ecosystems in the Ruhr Metropolitan Region (Germany) differently

Tobias Scholz, Lutz Weihermüller, and Thomas Schmitt

Forests are important ecosystems for mitigating CO2. However, droughts affect the vitality of forests and alter CO2 uptake. In worst cases, forest ecosystems can even turn from a carbon sink to a source in consequence of water shortage. Forest stands in urban areas are more prone to droughts because of elevated temperatures in comparison to rural land and unfavorable growth conditions such as limited rooting depth and low soil carbon content.

The drought years 2018 and 2019 in the Ruhr Metropolitan Region (Germany) were characterized by a 0.6 K higher mean annual temperature as normal and only 75 % of the normal annual precipitation. During this period, we investigated the CO2 balance of urban forest ecosystems, considering annual changes in carbon stocks of tree biomass and litterfall and annual CO2 effluxes from soil respiration, at eleven monitoring sites across the Ruhr Metropolitan Region by combining measuring and modelling approaches. The chosen sites represent the different urban forest types found here: old-grown semi-natural forests (beech, oak, maple), autochthon non-managed succession forests of birch, poplar or willow on brownfields and allochthone mixed forest stands planted in urban parcs and on heaps (urban greening forests).

Tree growth, leaf expansion, and CO2 efflux decreased at nearly all sites in 2019 in comparison to 2018 in consequence of the ongoing drought. While the semi-natural forests were able to increase CO2 uptake by 11 % in 2019, the urban greening forests decreased their CO2 uptake by 62.9 %. The succession forests were CO2 sources in both years but increased the CO2 release in the second year by 85 % in comparison to the first year. Two sites turned from carbon sinks in 2018 to carbon sources in 2019. Correlation analyses showed that the soil hydraulic properties such as depth of the rooting zone, soil carbon content, and plant available water were the main influencing factors describing the decrease in tree growth and leaf development. Overall, the results indicate that, semi-natural forests on mesophilic sites are more resilient against droughts due to unlimited rooting zone, high soil carbon content, which favor the amount and accessibility of plant available water, while urban greening and succession forests are more vulnerable to droughts due to limiting rooting zone, low soil carbon content, and low plant available water. More vulnerable to droughts are also semi-natural forests on more extreme sites, like an examined Stellario-Carpinetum, which turned from a carbon sink in 2018 to a source in 2019. Furthermore, two patterns of seasonal changes in soil respiration were found in reaction to the drought. i) those of elevated soil respiration associated to elevated temperature in 2018 and decrease of soil respiration in 2019 in consequence of thermal denaturation of the microbial community, and one ii) those where, the mineralization activity was shifted to winter when the upper soil layer was rewetted, leading to larger soil respiration during the cold season.

Urban planners should ensure a deep rooting zone and carbon rich soils by establishing new urban forest stands to tackle drought periods.

How to cite: Scholz, T., Weihermüller, L., and Schmitt, T.: Drought years of 2018 and 2019 affect CO2 balance of urban forest ecosystems in the Ruhr Metropolitan Region (Germany) differently, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11030, https://doi.org/10.5194/egusphere-egu21-11030, 2021.

EGU21-2374 | vPICO presentations | BG3.17

Vegetation dynamics in a climate change hotspot: trend analysis in a Spanish dehesa

Fabian Reddig, Georg Bareth, and Christina Bogner

      Introduction The Mediterranean region has been identified as a hotspot of climate change characterized by a large tree mortality. Extended drought periods, shifts in rainfall patterns, and increasing water stress are probably the main drivers. Especially holm (Quercus ilex L.) and cork oak trees (Quercus suber L.) in high-value and nature-based agroforestry systems (in Spain known as dehesa) have multiple positive effects on the microclimate, carbon storage, erosion prevention, increase of soil water content, and soil nutrient concentration, for example. With their positive effect on wind velocity, they are also considered the last natural barrier protecting the Iberian Peninsula and Central Europe from desertification processes advancing from North Africa.
     Objective We assume that wrong management, biotic causes like pests and diseases, and especially water stress are responsible for a decreased resilience of oak trees. Our goal was to analyse the vegetation dynamics with the help of the Normalized Difference Vegetation Index (NDVI) time series as an indicator for greenness and vitality. In particular, we focused on the trend of NDVI over about two decades.
    Material and Methods We have selected eight plots (250 m x 250 m) with different topographical conditions and analysed an 18 years long NDVI time series (2003 - 2020) from MODIS (MYD13Q1). To extract the trend, we decomposed the time series into trend, seasonal component, and the high-frequency remainder. Subsequently, we did the Mann-Kendall test on the trend component to determine whether the trend is significant. Since environmental time series are rarely linear or stationary, many statistical decomposition methods are not suitable to produce physically meaningful results. Therefore we used the data-driven method Complete Ensemble Empirical Mode Decomposition with adaptive Noise (CEEMDAN) by Torres et al. 2011.
     Results Depending on the topographical conditions of the plot, we were able to extract different NDVI trend signals from the time series. The NDVI values on the north-facing plots were larger than on the south-facing plots. The extracted trends were positive and significant (p <0.01). The seasonal component corresponded to the expected annual cycle.
      Conclusion In order to assess vegetation dynamics, NDVI time series can be regarded as a good starting point, although one indicator alone does not allow to make final conclusions about vegetation changes. The purely data-driven decomposition method CEEMDAN avoids strong assumptions about the shape of the trend.

How to cite: Reddig, F., Bareth, G., and Bogner, C.: Vegetation dynamics in a climate change hotspot: trend analysis in a Spanish dehesa, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2374, https://doi.org/10.5194/egusphere-egu21-2374, 2021.

EGU21-4990 | vPICO presentations | BG3.17

Prediction of future development of soil water erosion in small agricultural chatchment

Silvia Kohnová, Zuzana Németová, and Zuzana Sabová

It is well known that the impact of climate change affects various areas such as hydroclimatical factors which can cause increased occurrence of heavy precipitation events, ice melting, rising temperature or sea-level as a consequence of the global warming. It is assumed that the average surface temperature on Earth has increased by more than 1° Celsius since 1880. Climate change of the Earth has changed naturally over the past 650.000 years as a result of external factors that impact the climate. Despite of this fact, over the last 100 years is global warming strongly accelerated by different kind of human activities. One of those activities represents inappropriate land use management which is directly connected with soil degradation and soil erosion as the major threat of global soil degradation. The study presents the assessment of the future development of soil water erosion processes in one small agricultural catchment located in the Slovak Republic. The calculations were done based on the long-term simulation using the event and physically-based soil erosion model and one-hour rainfall events. The model used was calibrated and validated in the previous studies. The period time analysed covers 80 years, i.e., from 2020 until 2100. From the period the years where the most intensive rainfall events have occurred were chosen. The rainfall events were determined by climate CLM model. In order to compare the suitability of land-use management, three scenarios were created. They include three different types of land cover, i.e., agricultural crops (wheat and corn) and grassland. The modelled results show development of soil erosion in the future period up to 2100 together with the comparison of land use management in the area under research. The study predicts the future development of soil water erosion where the short term extreme rainfall events play key element as a crucial factor in the soil erosion assessment processes.

 

How to cite: Kohnová, S., Németová, Z., and Sabová, Z.: Prediction of future development of soil water erosion in small agricultural chatchment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4990, https://doi.org/10.5194/egusphere-egu21-4990, 2021.

EGU21-5074 | vPICO presentations | BG3.17 | Highlight

Simulating the impact of future climate change on runoff processes in selected catchments of Slovakia

Roman Výleta, Milica Aleksić, Patrik Sleziak, and Kamila Hlavcova

The future development of the runoff conditions, as a consequence of climate change, is of great interest for water managers. Information about the potential impacts of climate change on the hydrological regime is needed for long-term planning of water resources and flood protection.

The aim of this study is to evaluate the possible impacts of climate change on the runoff regime in five selected catchments located in the territory of Slovakia. Changes in climatic characteristics (i.e., precipitation and air temperature) for future time horizons were prepared by a regional climate model KNMI using the A1B emission scenario. The selected climatic scenario predicts a general increase in air temperature and precipitation (higher in winter than in summer). For simulations of runoff under changed conditions, a lumped rainfall-runoff model (the TUW model) was used. This model belongs to a group of conceptual models and follows a structure of a widely used Swedish HBV model. The TUW model was calibrated for the period of 2011 – 2019. We assumed that this period would be similar (to recent/warmer climate) in terms of the average daily air temperatures and daily precipitation totals. The future changes in runoff due to climate change were evaluated by comparing the simulated long-term mean monthly runoff for the current state (1981-2010) and modelled scenarios in three time periods (2011-2040, 2041-2070, and 2071-2100). The results indicate that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future. The runoff should increase in winter months compared to the reference period. This increase is probably related to a rise in temperature and anticipated snowmelt. Conversely, during the summer periods, a decrease in the long-term runoff could be assumed. According to modelling, these changes will be more pronounced in the later time horizons.

It should be noted that the results of the simulation are dependent on the availability of the inputs, the hydrological/climate model used, the schematization of the simulated processes, etc. Therefore, they need to be interpreted with a sufficient degree of caution

How to cite: Výleta, R., Aleksić, M., Sleziak, P., and Hlavcova, K.: Simulating the impact of future climate change on runoff processes in selected catchments of Slovakia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5074, https://doi.org/10.5194/egusphere-egu21-5074, 2021.

EGU21-5156 | vPICO presentations | BG3.17

Differences in the parameters and calibration efficiencies of two HBV model types

Adam Brziak, Silvia Kohnová, Martin Kubáň, and Jan Szolgay

Accurate modeling of discharges in catchments plays important role in solving a large variety of water management tasks. Rainfall-runoff models are widely used for the estimation of the hydrological phenomena such as runoff, soil moisture, and snow water equivalent, etc. Three basic error factors may affect modeled outputs: quality of input data, parameter uncertainties, and model structure. This study is focused on a comparison of the performance of the lumped and semi-distributed version of the conceptual rainfall-runoff TUW model, which represents two different model structures. We focused on how the model structure can affect the parameters and the runoff model efficiencies. For that purpose, we select the 180 Austrian catchments with different morphological and geographical characteristics. We analysed the variability of efficiencies and parameters of both the HBV models types which are calibrated on discharge in the period from 1991 to 2000. As a result, we can conclude that the semi-distributed version of the HBV type model performs better, with the lower spread of the parameters and better runoff model efficiencies in both Lowland and Alpine catchments types.

How to cite: Brziak, A., Kohnová, S., Kubáň, M., and Szolgay, J.: Differences in the parameters and calibration efficiencies of two HBV model types, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5156, https://doi.org/10.5194/egusphere-egu21-5156, 2021.

EGU21-5260 | vPICO presentations | BG3.17 | Highlight

Case study of integrating ecosystem managememnt into spatial planning in rural environment

Michaela Danacova, Roman Vyleta, Kamila Hlavcova, Silvia Kohnova, and Jan Szolgay

The landscape is an open system driven by interactions between natural and anthropogenic elements. Their long-term impact is responsible for the current form and status of the landscape. Integrated landscape management enables to implement particular solutions to mitigate the effects of threats to the ecological stability of the environment, to preserve and support diversity of ecosystems, to improve ecologically less stable parts of landscape and their spatial spread, as well as the possibility to maintain important cultural heritage of the landscape. The aim of the study was to aid local and regional spatial planning in a headwater catchment by a complex quantitative assessment of risks of flash flooding, muddy floods and soil erosion caused by extreme rainfall.  The research on and the design of protection measures were realized in the cadaster of the village situated on the border to Moravia in Slovakia. Generally accepted robust quantitative methods for risk mitigation, which are simple enough, but are yielding reliable predictions, were integrated into complex mitigation measures in order to improve the ecological stability and recreational potential of the area. Present land management practices are increasing the risk of flash flooding and soil erosion, including rill erosion on the arable land in the region with prevailingly flysch geological structures. A set of flood detention storages, infiltration trenches and agrotechnical measures on the arable land were proposed for the reduction of the extreme runoff and erosion. The effectiveness of the proposed measures showed that we were able to reduce the amount of soil erosion to permissible values. The results were integrated into a spatial erosion and flood protection scheme which will be the bases of spatial planning on a local scale for sustainable agriculture and will enable recreational use of the riverine areas and of the hilly landscape.

How to cite: Danacova, M., Vyleta, R., Hlavcova, K., Kohnova, S., and Szolgay, J.: Case study of integrating ecosystem managememnt into spatial planning in rural environment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5260, https://doi.org/10.5194/egusphere-egu21-5260, 2021.

EGU21-5268 | vPICO presentations | BG3.17

Detecting future changes of short-term rainfall characteristics in the mountainous regions of Slovakia

Gabriel Földes, Marija Mihaela Labat, Silvia Kohnová, and Miroslav Kandera

The study focuses on future changes in short-term rainfall characteristics. The analysis was performed for the mountainous regions in the northern part of Slovakia at 10 selected climatological stations. The rainfall data are simulated by Community Land Model Scenario which represents the future climate change.  The Community Land Model Scenario is a multidisciplinary project between scientists and several working groups mainly in the USA. The model includes impacts of changes in vegetation on the climate. The scenario has semi- pessimistic characteristics with a predicted global temperature increase by 2.9°C by the 2100. The analysis was performed for five rainfall durations (60, 120, 180, 240 and 1440 minutes) for the historical (1961-2020) and for the future (2071-2100) periods.  The detection of the future changes in short-term rainfall characteristics was made by several methods; for the seasonal changes the Burn´s vector was used, for the trend testing the data the Mann-Kendall test was applied. Results provide information how climate change impacts the short-term rainfall intensities in the mountainous regions of Slovakia.

How to cite: Földes, G., Labat, M. M., Kohnová, S., and Kandera, M.: Detecting future changes of short-term rainfall characteristics in the mountainous regions of Slovakia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5268, https://doi.org/10.5194/egusphere-egu21-5268, 2021.

EGU21-11405 | vPICO presentations | BG3.17 | Highlight

Soil moisture as a reliable pedunculate oak (Quercus robur L.) radial growth driver

Saša Kostić, Wolfgang Wagner, Tom Levanič, Tzvetan Zlatanov, Ernest Goršić, Nickolay Tsvetanov, and Dejan Stojanović

New technologies, such as satellites and sensors, provide a wealth of new information about all ecosystems. In dendrochronological studies, all drought-related factors are of great importance for a more comprehensive understanding of associations between radial growth and water loss. Soil moisture directly reflects the wetness of immediate root surroundings, which is vital to the water uptake by trees. Owing to the advances in satellite observation systems and sensors, soil moisture (SM) can be remotely measured, opening new window in dendrochronological research.

Using the pedunculate oak (Quercus robur L.) lowland SE Europe forests dataset, which count 23 stands and more than 300 tree ring width (TRW) series, we observed reliable associations between satellite-based SM and TRW. Specifically, we observed different TRW−SM patterns based on the precipitation regime. SM in the hottest months (July and August) boosted radial growth, whereas opposite results were noted in the wettest spring months oaks that growing in wetter stands. Unlike oaks from drier and wetter stands that exhibited strong response to SM, those growing on moderately wet (optimal) stands are less sensitive to SM, making these stands optimal oak surroundings.

On the other hand, by applying a Generalized Additive Mixed Model (GAMM), we noted moderate−weak interactions between TRW series and smoothed SM timescales, with stronger deviations in extreme dry/wet years. Based on the TRW sensitivity to SM findings, which were interpreted via Pearson’s correlation technique and GAMM modeling, strong relations can be inferred, and SM can be labelled as reliable pedunculate oak driver.

Keywords: Forestry, Remote sensing, Dendrochronology, Soil moisture, Pedunculate oak, GAMM

Acknowledgments: This research was supported by the Science Fund of the Republic of Serbia, PROMIS, #6066697, TreeVita.

Note: This contribution is a summary of a study by Kostić S, Wagner W, Orlović S, Levanič T, Zlatanov T, Goršić E, Kesić L, Matović B, Tsvetanov N, Stojanović DB. Different tree-ring width sensitivities to satellite-based soil moisture from drier, moderate and wetter pedunculate oak (Quercus robur L.) stands across a southeastern distribution margin (In press)

How to cite: Kostić, S., Wagner, W., Levanič, T., Zlatanov, T., Goršić, E., Tsvetanov, N., and Stojanović, D.: Soil moisture as a reliable pedunculate oak (Quercus robur L.) radial growth driver, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11405, https://doi.org/10.5194/egusphere-egu21-11405, 2021.

EGU21-16109 | vPICO presentations | BG3.17

The comparative analysis of the Hungarian and European methodology of discharge measurement

Gábor Keve, János Sziebert, Dániel Koch, Enikő Anna Tamás, György Varga, Fruzsina Majer, Sándor Krikovszky, Johanna Ficsor, and Árpád Fekete

According to the climate change and Water Framework Directive 2000/60/EC (WFD) the analysis od the status of waterbodies and their continuous monitoring has to be carried out based on unified methodologies and standards. Individual prescriptions have to be in harmony with national and international standards, in order to ensure equal scientific value and comparability of the data. The international standard EN ISO 748 entitled „Hydrometry - Measurement of liquid flow in open channels using current-meters or floats” was issued in 2008. This standard is based on the discharge measurement methods in the European Union (EU) and it differs in some aspects from the Hungarian standard (ME-10-231-16:2009). The goal of our study was to identify and answer the questions related to the introduction of this standard into Hungarian practice. The issue is crucial for the hydrometry units of Hungarian Water Directorates, as if the introduction of a new standard is not correctly substantiated the consequences can include avoidable economical burdens and/or changes in the quality of data. The research was initiated and financed by the Hungarian General Directorate of Water management and targeted at the comparative analysis of the measurement and calculation methodologies of the two standards, carried out on watercourses in Hungary. Thus we have executed a series of measurements in 31 cross-sections on 18 different watercourses in Hungary. Based on our results we can state that the difference between the results of the different methodologies generally does not exceed the uncertainties originating from the measurements themselves. Under specific circumstances (e.g. very low flow velocities) the effect of the chosen methodology can be significant.

How to cite: Keve, G., Sziebert, J., Koch, D., Tamás, E. A., Varga, G., Majer, F., Krikovszky, S., Ficsor, J., and Fekete, Á.: The comparative analysis of the Hungarian and European methodology of discharge measurement, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16109, https://doi.org/10.5194/egusphere-egu21-16109, 2021.

EGU21-4863 | vPICO presentations | BG3.17

Investigation of the two-decade environmental impact of large-scale agricultural cultivation and its impact on climate change in the Lajta-Project

András Polgár, Karolina Horváth, Imre Mészáros, Adrienn Horváth, András Bidló, Sándor Faragó, and Veronika Elekné Fodor

Crop production is applied on about half of Hungary’s land area, which amounts to approximately 4.5 million hectares. The agricultural activity has significant environmental impacts.

Our work aims the time series investigation of the impacts of large-scale agricultural cultivation on environment and primarily on climate change in the test area by applying environmental life cycle assessment (LCA) method.

The investigated area of Lajta Project can be found in the triangle formed by the settlements Mosonszolnok, Jánossomorja and Várbalog, in the north-western corner of Hungary, in Győr-Moson-Sopron county. The area has intense agri-environment characteristics, almost entirely lacking of grasslands and meadows.

We were looking for the answer to the question “To what extent does agricultural activity on this area impact the environment and how can it contribute to climate change during a given period?” The selection of the plants included in the analysis was justified by their significant growing area. We analysed the cultivation data of 5 crops: canola, winter barley, winter wheat, green maize and maize. Material flows of arable crop production technologies were defined in time series by the agricultural parcel register data. These covered the size of the area actually cultivated, the operational processes, records on seeds, fertilizer and pesticide use and harvest data by parcels. The examined environmental inventory database contained also the fuel consumption and lubricating oil usage of machine operations, and the water usage of chemical utilization.

In the life cycle modelling of cultivation, we examined 13 years of maize, 20 years of green maize, 20 years of winter barley, 18 years of winter wheat and 15 years of canola data calculated on 1 ha unit using GaBi life cycle analysis software.

In addition, we also calculated by an average cultivation model for all cultivated plants with reference data to 1 ha and 1 year period.

We applied methods and models in our life cycle impact assessment. According to the values of the impact categories, we set up the following increasing environmental ranking of plant cultivation: (1) canola has minimum environmental impacts followed by (2) green maize and (3) maize with slightly higher values, (4) winter barley has 6 times higher values preceded by (5) winter wheat with a slight difference. The previous environmental ranking of the specific cultivated plants’ contribution was also confirmed as regards the overall environmental impact: canola (1.0%) – green maize (4.9%) – maize (7.1%) – winter barley (43.1%) – winter wheat (44.0%).

Environmental impact category indicator results cumulated to total cultivation periods and total crop growing areas (quantitative approach) display the specific environmental footprints by crops. Increasing environmental ranking of environmental impacts resulted from cultivating the sample area is the following: (1) canola – (2) maize – (3) green maize – (4) winter barley – (5) winter wheat. The slight difference resulted in the rankings in quantitative approach according to the rankings of territorial approach on the investigated area is due to the diversity of cultivation time factor and the crop-growing parameter of the specific crops.

Acknowledgement: Our research was supported by the „Lajta-Project”.

How to cite: Polgár, A., Horváth, K., Mészáros, I., Horváth, A., Bidló, A., Faragó, S., and Elekné Fodor, V.: Investigation of the two-decade environmental impact of large-scale agricultural cultivation and its impact on climate change in the Lajta-Project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4863, https://doi.org/10.5194/egusphere-egu21-4863, 2021.

EGU21-12921 | vPICO presentations | BG3.17

Estimation of water holding capacity of soils using data from different types of particle size analyses

Adrienn Horváth, András Makó, András Bidló, and Orsolya Szecsődi

Determining the particle size distribution of soils helps to monitor the hydrophysical properties of the soil (e.g. water conductivity or water holding capacity). Climate change increases the importance of water retention and permeability, as extreme weather events can severely impair the water supply of drought-prone plant stocks. The amount of water is expected to decrease. At the beginning of the research, we have developed a measurement method to replace the classical “pipette” sedimentation method with the laser diffraction method. The theoretical background of laser diffraction measurements is already known, but its practical application for estimating soil’s water holding capacity is uncommon in detail. The developed, modified Thornthwaite model considers soil properties (e.g. root depth, topsoil layer thickness) and size distribution (silt and clay fraction) of soil particles combined with the most significant soil properties. The pre-sieving of soil aggregates, the pre-treatment (disaggregation and dispersion) of the samples greatly influence the obtained results. In addition to the sedimentation method, instrumental measurements (Mastersizer 3000) were applied with three variants of pre-treatment. For comparison, the results of a Leptosol, a Cambisol, and a Luvisol were prepared for the first modified Thornthwaite water balance model. Significant differences appeared especially during drought periods that could be a basis for studying the drought sensitivity of soils. By the development of our method, the water holding capacity of soil can be estimated; therefore, adapting forest management could be planned against climatic and pedological transformations.

How to cite: Horváth, A., Makó, A., Bidló, A., and Szecsődi, O.: Estimation of water holding capacity of soils using data from different types of particle size analyses, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12921, https://doi.org/10.5194/egusphere-egu21-12921, 2021.

EGU21-12182 | vPICO presentations | BG3.17

Riparian forests production related to water supply along southern Hungarian Danube

Benjámin Kaizer, Zoltán Gribovszki, and Péter Kalicz

The current climatic conditions of the Hungarian Great Plain is not adequate for the forest cover. Surplus water is essential to maintain good ecological status and growth rate of forests. Moreover, in the drying climate of the Great Plain without excess water the survival of forest vegetation is  questionable.

In this study, we try to indicate the positive effect of the excess water on the growth of the trees next to the Danube in Gemenc wetland (close the southern border of Hungary). The logging data were collected from 2000 to 2009. Sampled forest compartments were clustered into two groups based on the stand position to the levee (exposed to inundation of Danube or not). The effects of the Danube are evaluated using local hydrological measurements (e.g. gauge at Mohács).

The forest growth itself is not the best indicator because it is also influenced by several other ecological variables. To control better these variables two forest stands were selected aged about 110 years. One of them is located behind a summer levee (low crown height levee), which is inundated only by the high floods. Another forest compartment is outside the main levee and never inundated. These stands are sampled to prepare dendrochronological analysis, which gives us higher time-resolution data. We hope these analyses will help us to interpret the relationship between forest growth and water
conditions.

This research has been supported by the Ministry of Agriculture in Hungary.

How to cite: Kaizer, B., Gribovszki, Z., and Kalicz, P.: Riparian forests production related to water supply along southern Hungarian Danube, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12182, https://doi.org/10.5194/egusphere-egu21-12182, 2021.

EGU21-12285 | vPICO presentations | BG3.17 | Highlight

Hydro-meteorological data preparation for ecosystem hydrological modelling in the riparian forest of Hidegvíz Valley experimental catchment

Csenge Nevezi, Tamás Bazsó, Zoltán Gribovszki, Előd Szőke, and Péter Kalicz

In the Hidegvíz Valley experimental catchment in Hungary the meteorological data have been collected since the 1990s and used for various purposes including hydrological studies. Current research began in 2018–19, that aimed to reveal the connections between the hydrological and botanical characteristics in riparian forests and a wet meadow. Changes that occurred in both ecosystems in the groundwater levels, soil moisture and vegetation, showed that the local meteorological events influence these factors. Therefore we decided to analyse longer periods in which meteorological extremes
strongly influenced hydrological conditions and so status of ecosystems. Further measurements and their analysis were also required because more accuracy and detail were needed for future water balance modelling.

The measured data between 2017–2020 were chosen as a starting database. For the first analysis we selected three meteorological parameters, i. e. the precipitation, the air temperature, and the air humidity. These parameters were measured by automated instruments, except for the precipitation. We found that the automated tipping-bucket rain gauge needs validation by a manual measurement (Hellmann-type rain gauge), because the data that collected by the automated device will be invalid if the rain intensity is too high.

In 2017 and 2018, the annual precipitation was distributed evenly, but in the following two years we observed some extremes. In 2019 and
2020, the spring was especially dry, the lowest monthly sum was 1.2 mm in 2020 April. 2019 April was similar (19.5 mm), but after the drought
period intense rainfall events arrived in May, resulted a monthly total of 214.1 mm. Air temperature and air humidity has not been showed such extremes as the precipitation.

This study showed that detailed analysis of meteorological parameters is crucial for hydrological modelling data preparation because errors and extreme event can cause serious problems during modelling process and, also in case of evaluation of model results.

The research has been supported by the Ministry of Agriculture in Hungary.

How to cite: Nevezi, C., Bazsó, T., Gribovszki, Z., Szőke, E., and Kalicz, P.: Hydro-meteorological data preparation for ecosystem hydrological modelling in the riparian forest of Hidegvíz Valley experimental catchment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12285, https://doi.org/10.5194/egusphere-egu21-12285, 2021.

EGU21-12023 | vPICO presentations | BG3.17

Riparian zone hydrological rehabilitation along the Gyöngyös stream (Hungary)

Előd Szőke, Péter Csáki, Péter Kutschi, Péter Kalicz, and Zoltán Gribovszki

Climate change induced drought periods are likely to cause decline in groundwater level,
which can degrade riparian ecosystems (such as riparian forest). With a reasonable water
supply, water scarcity can be stopped and these valuable ecosystems can be preserved.

The aim of the research was to evaluate the impact of water supply interventions regarding
habitat reconstruction of Doroszló meadows near Kőszeg (west Hungary). Groundwater
monitoring wells have been installed at 4 representative sites of the area. Groundwater wells
were 3–5 m deep and screened at their bottoms (2–4 m). The water level of the wells was
recorded manually, on a weekly basis, with an accuracy of 1 mm. In the neighborhood of the
wells surface close soil moisture values were also measured. Data from April 2019 to
October 2020 were collected. Local meteorological data measured in Kőszeg were also
used for analysis.

Evaluating the data from each well in the pre-intervention period (the analysis of the
relationship of the wells with the control well), we came to the conclusion that the Well-1 and
Well-2 behave similarly. The impacts of the water supply on the groundwater level were
analysed using a “double mass curve” and a “treatment-control space-time deviations”
approach. Result showed that the intervention had a positive effect only on the Well-3 from
the examined wells. The data evaluation denoted that unfortunately the control well was also
affected by water supply interventions.

This research has been supported by the Ministry of Agriculture in Hungary.

How to cite: Szőke, E., Csáki, P., Kutschi, P., Kalicz, P., and Gribovszki, Z.: Riparian zone hydrological rehabilitation along the Gyöngyös stream (Hungary), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12023, https://doi.org/10.5194/egusphere-egu21-12023, 2021.

BG3.18 – Bridging understanding of carbon and water fluxes from leaf to continent with observations and simulations

EGU21-10443 | vPICO presentations | BG3.18

Predicted and observed multidecadal variations of tree physiological responses to climate and rising  CO2: insights from tree-ring carbon isotopes in temperate forests.

Soumaya Belmecheri, R. Stockton Maxwell, Alan. H Taylor, Kenneth. J Davis, Rossella Guerrieri, David. J.P. Moore, and Shelly. A Rayback

Increasing water-use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2 (ca). Existing theory and empirical evidence suggest a proportional increase of WUE in response to rising ca as plants maintain a relatively constant ratio between the leaf internal (ci) and ambient (ca) partial CO2 pressure (ci/ca). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2 effects on WUE on longer time-scales and the role of climate in modulating these effects is uncertain. We evaluated the long-term WUE responses to ca and climate from 1901-2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We further replicated iWUE reconstructions at eight additional sites for the 1992-2012 period-overlapping with the common period of the longest flux-tower record at Harvard Forest to evaluate the spatial coherence of recent iWUE variation across the region. Finally, we compared tree-ring based and modelled ci/ca over the 1901-2012 period to examine whether temporal patterns of ci/ca reconstructions are consistent with predictions based on the optimality principle of balancing the costs of water loss and carbon gain.

We found that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously rising ca. This finding is consistent with a passive physiological response to ca and coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi-decadal time-scales and did not maintain a constant ci/ca in response to rising ca indicating that a point was reached where rising CO2 had a diminishing effect on tree iWUE.  The ci/ca derived from tree-ring d13C and the predicted values based on the optimality theory model had similar median values over the 1901-2012 CE period, though with a modest agreement (R2adj = 0.22, p < 0.001). The reconstructed and predicted ci/ca trends were not statistically different from 0 when estimated over the 1901-2012 CE period; however, isotope-based reconstruction of the ci/ca trendshowed distinct multidecadal variation while the predicted ci/ca remained nearly constant. Our results challenge the mechanism, magnitude, and persistence of CO2’s effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.

How to cite: Belmecheri, S., Maxwell, R. S., Taylor, A. H., Davis, K. J., Guerrieri, R., Moore, D. J. P., and Rayback, S. A.: Predicted and observed multidecadal variations of tree physiological responses to climate and rising  CO2: insights from tree-ring carbon isotopes in temperate forests., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10443, https://doi.org/10.5194/egusphere-egu21-10443, 2021.

Plant photosynthetic physiology is a crucial process reflecting plant growth and productivity. The maximum rate of Rubisco carboxylation (Vc,max) and the maximum rate of electron transport (Jmax) of plant leaves are the main limiting factors of photosynthetic capacity and indispensable parameters in ecosystem mechanism models. Accurate simulation of Vc,max and Jmax is vital to improve the prediction precision of vegetation dynamics under the background of climate changes. However, using traditional CO2 response curves to obtain Vc,max and Jmax was time-consuming (about 30 to 60 minutes for each CO2 response curve) and labor-intensive in the field. The rapid photosynthesis-intercellular CO2 concentration (A-Ci) response technique (RACiR) provided a potential convenient way to obtain A-Ci curve in an open gas exchange system, which would greatly improve the measurement efficiency. Nevertheless, whether the RACiR detecting method verified by limited conifers and deciduous species (especially poplar trees) in previous studies could be generally used for other plant functional groups remains unclear.

 

Therefore, here we selected Viburnum Odoratissimum as the target and used Li-cor 6800 to test the applicability of the rapid RACiR detecting method on evergreen species. As the changes of CO2 ranges and rates are the most important parameters in the method, we set 10 different change ranges of reference [CO2] (i.e., 400-1500 ppm, 400-200-800 ppm, 420-20-620 ppm, 420-20-820 ppm, 420-20-1020 ppm, 420-20-1220 ppm, 420-20-1520 ppm, 420-20-1820 ppm, 450-50-650 ppm, 650-50-650 ppm) to verify the accuracy of traditional CO2 response curves and RACiR and to explore suitable [CO2] change ranges for evergreen species.

 

Finally, our results showed that Vc,max and Jmax calculated by 10 rapid A-Ci response curves except Jmax calculated by 650-50-650 ppm [CO2] were not significantly different from those calculated by traditional A-Ci response curves. Moreover, 400-200-800 ppm [CO2] compared with the other [CO2] ranges was suitable for V. Odoratissimum. Our results indicated the advantage of RACiR method for evergreen species and implied that preliminary experiments should be carried out according to specific tree species to determine the most appropriate change range of [CO2] when using RACiR to calculate Vc,max and Jmax.

How to cite: Lin, Q., Zhao, C., Liu, Z., and Tian, D.: A test of the rapid measurement of leaf photosynthesis-intercellular CO2 concentration response curve of an evergreen shrub Viburnum Odoratissimum, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15242, https://doi.org/10.5194/egusphere-egu21-15242, 2021.

EGU21-4257 | vPICO presentations | BG3.18

Mismatch between the optimal ages for ecosystem productivity and net CO2 sequestration in Norway spruce forests

Junbin Zhao, Holger Lange, and Helge Meissner

Forests have climate change mitigation potential since they sequester carbon. However, their carbon sink strength might depend on management. As a result of the balance between CO2 uptake and emission, forest net ecosystem exchange (NEE) reaches optimal values (maximum sink strength) at young stand ages, followed by a gradual NEE decline over many years. Traditionally, this peak of NEE is believed to be concurrent with the peak of primary production (e.g., gross primary production, GPP); however, in theory, this concurrence may potentially vary depending on tree species, site conditions and the patterns of ecosystem respiration (Reco). In this study, we used eddy-covariance (EC)-based CO2 flux measurements from 8 forest sites that are dominated by Norway spruce (Picea abies L.) and built machine learning models to find the optimal age of ecosystem productivity and that of CO2 sequestration. We found that the net CO2 uptake of Norway spruce forests peaked at ages of 30-40 yrs. Surprisingly, this NEE peak did not overlap with the peak of GPP, which appeared later at ages of 60-90 yrs. The mismatch between NEE and GPP was a result of the Reco increase that lagged behind the GPP increase associated with the tree growth at early age. Moreover, we also found that newly planted Norway spruce stands had a high probability (up to 90%) of being a C source in the first year, while, at an age as young as 5 yrs, they were likely to be a sink already. Further, using common climate change scenarios, our model results suggest that net CO2 uptake of Norway spruce forests will increase under the future climate with young stands in the high latitude areas being more beneficial. Overall, the results suggest that forest management practices should consider NEE and forest productivity separately and harvests should be performed only after the optimal ages of both the CO2 sequestration and productivity to gain full ecological and economic benefits.

How to cite: Zhao, J., Lange, H., and Meissner, H.: Mismatch between the optimal ages for ecosystem productivity and net CO2 sequestration in Norway spruce forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4257, https://doi.org/10.5194/egusphere-egu21-4257, 2021.

EGU21-8947 | vPICO presentations | BG3.18

Adsorption of water vapor by soil in semi arid ecosystems: reconciling estimates from Lysimeters and Eddy Covariance

Sinikka Paulus, Tarek S. El-Madany, René Orth, Jacob A. Nelson, Anke Hildebrandt, Markus Reichstein, Arnaud Carrara, Gerardo Moreno, and Mirco Migliavacca

Current climate change scenarios project altered rainfall frequencies which boosts scientific interest in ecosystems' responses to prolonged dry conditions. Under less rainfall, NRWI may play an increasingly important role, Yet, only sparse data are available to assess the role of non-rainfall water input (NRWI) during times of low water availability across ecoregions. Particularly, soil water vapor adsorption has received little attention at field scale. This term is used for the phase change of water from gas to liquid at highly negative matric potential. Under such conditions, water condensates already at relative humidity < 100%. The process has been broadly studied in laboratories but little is known from field experiments, which rarely cover periods longer than one month. Yet, several studies report soil water uptake from the atmosphere during soil surface cooling and in the early mornings. Lysimeters have played a strong role in quantifying these NRWI. Eddy Covariance (EC) measurements, in contrast, are known for their limited data quality under nighttime conditions when a stable boundary layer hinders the turbulent exchange of mass and energy. Therefore, EC has not been tested yet to trace soil adsorption.
    
In this contribution we adapt a methodology to derive NRWI from lysimeters data and compare them to EC measurements. We focus mainly on adsorption and evaluate the consistency between adsorption estimated with the lysimeters and negative (downward) latent heat (LE) fluxes from EC. We apply the method to a data set that comprises three years of observations from a semi-arid Spanish tree grass ecosystem. 

Our results show that during the dry season the gradient in water vapour established between the atmosphere (more humid) and the soil pores (more dry) leads to adsorption by the soil. The observations from both instruments suggest that during the dry season, nightly transport of humidity from the atmosphere towards the ground is driven by soil vapor adsorption. This process occurs each night typically in the second half, but begins increasingly earlier in the evening the dryer the conditions are. The amount of water adsorbed is not directly comparable between EC and the lysimeter readings. With the latter, we quantified a yearly mean uptake between 8.8 mm and 25 mm per year. With the lysimeters we measure additionally 23.1 mm of water that condenses as dew and fog in winter, when EC is impeded by stable conditions. We further analyze EC LE measurements from different sites to evaluate if adsorption can be detected from EC data collected at different locations.

We conclude that the temporal patterns of adsorption estimates from lysimeters match the nighttime negative LE data from the EC technique, although the absolute numbers are uncertain. This might open interesting perspective to fill the knowledge gap of the role of soil water vapor adsorption from the atmosphere at field scale and open the opportunity to broaden the topic across ecosystem research communities. Our results also highlight a potential shortcoming in the interpretation of EC measurements in the case that negative nighttime values, representing physically plausible adsorption, are neglected.

How to cite: Paulus, S., El-Madany, T. S., Orth, R., Nelson, J. A., Hildebrandt, A., Reichstein, M., Carrara, A., Moreno, G., and Migliavacca, M.: Adsorption of water vapor by soil in semi arid ecosystems: reconciling estimates from Lysimeters and Eddy Covariance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8947, https://doi.org/10.5194/egusphere-egu21-8947, 2021.

EGU21-3765 | vPICO presentations | BG3.18

Evapotranspiration and CO2 exchange of wet and snow-loaded canopy in an evergreen temperate coniferous forest

Linjie Jiao, Yoshiko Kosugi, Yuichi Sempuku, Ayaka Sakabe, and Ting-Wei Chang

Learning about the gas exchange dynamic (evapotranspiration and photosynthesis) relating to precipitation and leaf wetness is important for understanding the forest hydrological and carbon sink function. Precipitation can lead to the change in meteorological factors, depression on leaf gas exchange as well as increasing CO2 emission from soil. However, few studies fully consider the effect of these changes in ecosystem scale.

This study conducted continuous eddy covariance measurement over a temperate evergreen Japanese cypress forest canopy in the Asian monsoon area from 2016 to 2019. By applying the eddy covariance method with the enclosed path gas analyzer, evapotranspiration and CO2 exchange from the canopy to the atmosphere during and after rainfall and snow are precisely monitored. The chamber method is used to simultaneously measure the soil respiration. Especially, to reveal the mechanism of wet canopy gas exchange mechanism, a SVAT multilayer model with two rainfall interception solution (Model 1: free gas exchange with interception only by the adaxial surface; Model 2: no gas exchange with interception by both surfaces) is applied to figure out the interception distribution over the leaf surface.

The annual average daytime latent heat flux (λE) was 70.92 W m-2, 22.31 W m-2, 139.40 W m-2 for wet canopy, snow-loaded canopy and the first 6 hours after wetness ended; the annual average daytime net ecosystem exchange was -1.9 μmol m-2s-1, -0.42 μmol m-2s-1, -7.43 μmol m-2s-1 for wet canopy, snow-loaded canopy and the first 6 hours after wetness ended. Correspondingly, the annual average daytime soil CO2 flux was 2.53 μmol m-2s-1, 0.26 μmol m-2s-1, 2.93 μmol m-2s-1 when the canopy was wet, snow-loaded and during the first 6 hours after wetness ended. The gas exchange at the first 6 hours after wet is more active than that of wet canopy and snow-loaded canopy despite rainfall increased the CO2 emission from the soil. Both measured data and simulation show the wet canopy can process gas exchange. The simulation showed that both interception situations are possible to happen but Model 1 is more suitable for this temperate forest. Meanwhile, the difference between the two models’ performance is smaller during the rainfall than in the wet period after the rainfall, which means interception distribution had a larger impact on wet canopy gas exchange at the later wet period. Future studies should also concern about the mechanism and effect of gas exchange dynamics relating to different precipitation patterns and water sources for latent heat flux.

How to cite: Jiao, L., Kosugi, Y., Sempuku, Y., Sakabe, A., and Chang, T.-W.: Evapotranspiration and CO2 exchange of wet and snow-loaded canopy in an evergreen temperate coniferous forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3765, https://doi.org/10.5194/egusphere-egu21-3765, 2021.

EGU21-7228 | vPICO presentations | BG3.18

Carbon sequestration in mixed deciduous forests: The importance of mid-storey trees for forest productivity

Anne Holtmann, Andreas Huth, Felix Pohl, Corinna Rebmann, and Rico Fischer

Forests play an important role in climate regulation due to carbon sequestration. However, a deeper understanding of forest carbon flux dynamics are often missing due to a lack of information about forest structure and species composition, especially for non-even-aged and mixed forests. In this study, we combined field inventory data of a mixed deciduous forest in Germany with an individual-based forest gap model to investigate daily carbon fluxes and to examine the role of tree size and species composition for the overall stand productivity. Simulation results show that the forest model is capable to reproduce daily eddy covariance measurements (R2 of 0.73 for gross primary productivity and of 0.65 for ecosystem respiration). The simulation results showed that the forest act as a carbon sink with a net uptake of 3.2 tC ha-1 yr-1  (net ecosystem productivity) and an overall gross primary productivity of 18.2  tC ha-1 yr-1. At the study site, medium sized trees (30-60cm) account for the largest share (66%) of the total productivity. Small (0-30cm) and large trees (>60cm) contribute less with 8.5% and 25.5% respectively. Simulation experiments showed, that species composition showed less effect on forest productivity. Stand productivity therefore is highly depended on vertical stand structure and light climate. Hence, it is important to incorporate small scale information’s about forest stand structure into modelling studies to decrease uncertainties of carbon dynamic predictions. Experiments with such a modelling approach might help to investigate large scale mitigation strategies for climate change that takes local forest stand characteristics into account.

How to cite: Holtmann, A., Huth, A., Pohl, F., Rebmann, C., and Fischer, R.: Carbon sequestration in mixed deciduous forests: The importance of mid-storey trees for forest productivity, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7228, https://doi.org/10.5194/egusphere-egu21-7228, 2021.

EGU21-3684 | vPICO presentations | BG3.18

Exploring the role of lags and legacies in the productivity of Australian ecosystems

Jon Page, Martin De Kauwe, and Gab Abramowitz

The vegetation’s response to climate change is a major source of uncertainty in terrestrial biosphere model (TBM) projections. Constraining carbon cycle feedbacks to climate change requires improving our understanding of both the direct plant physiological responses to global change, as well as the role of legacy effects (e.g. reductions in plant growth, damage to the plant’s hydraulic transport system), that drive multi-timescale feedbacks. In particular, the role of these legacy effects - both the timescale and strength of the memory effect - have been largely overlooked in the development of model hypotheses. This is despite the knowledge that plant responses to climatic drivers occur across multiple time scales (seconds to decades), with the impact of climate extremes (e.g. drought) resonating for many years. Using data from 13 eddy covariance sites, covering two rainfall gradients in Australia, in combination with a hierarchical Bayesian model, we characterised the timescales of influence of antecedent drivers on fluxes of net carbon exchange and evapotranspiration. Using our data assimilation approach we were able to partition the influence of ecological memory into both biological and environmental components. Overall, we found that the importance of ecological memory to antecedent conditions increased as water availability declines. Our results therefore underline the importance of capturing legacy effects in TBMs used to project responses in water limited ecosystems.

How to cite: Page, J., De Kauwe, M., and Abramowitz, G.: Exploring the role of lags and legacies in the productivity of Australian ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3684, https://doi.org/10.5194/egusphere-egu21-3684, 2021.

EGU21-8316 | vPICO presentations | BG3.18

Using different solutions for radiative transfer of solar-induced fluorescence in a land surface model

Tea Thum, Javier Pacheco-Labrador, Troy Magney, Mirco Migliavacca, Tristan Quaife, and Sönke Zaehle

Chlorophyll fluorescence (ChlF) takes place in green leaves of the plants during photosynthesis. It has therefore been proposed that ChlF can be used to track the photosynthetic activity of plants and the current possibility to observe sun-induced chlorophyll fluorescence (SIF) via remote sensing provides an unprecedented tool to monitor terrestrial photosynthesis at global scale. However, the relationship between photosynthesis and ChlF is not linear at all scales and is partly controlled by the non-photochemical quenching - which dissipates excess energy as heat. The relationship between the photochemical and fluorescence yields changes when the photochemical quenching is dominating at low irradiance conditions or at high stress conditions. Interpretation of observed SIF is complicated by its dependence on incoming absorbed radiation, observation geometry and radiative transfer of SIF photons within the canopy. To fully exploit remotely sensed SIF to estimate photosynthesis at ecosystem and global scales, it is important to account for these aspects through modelling that include ecosystem processes.

In this work we have implemented a ChlF model into a state-of-the-art land surface model QUantifying Interactions between terrestrial Nutrient CYcles and the climate system (QUINCY) simulating the terrestrial energy, water and biogeochemical cycles of carbon, nitrogen and phosphorus. The simulation of radiative transfer is highly influential for the simulated SIF signal, but the complex solutions of radiative transfer are computationally too heavy, making them impractical approaches at global scale. Therefore, we have investigated different radiative transfer techniques for the SIF signal of varying complexity at site scale in Niwot Ridge, U.S. The most complex solution is based on the mSCOPE and Fluspects model, that explicitly calculates signal transfer. The intermediate solution is based on a two-stream flux approach and the most simple is using a simple fraction for the escape ratio of SIF. Our aim is to assess which solution is most suitable for simulating the SIF signal at different scales and also test different formulations for modelling of non-photochemical quenching.

How to cite: Thum, T., Pacheco-Labrador, J., Magney, T., Migliavacca, M., Quaife, T., and Zaehle, S.: Using different solutions for radiative transfer of solar-induced fluorescence in a land surface model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8316, https://doi.org/10.5194/egusphere-egu21-8316, 2021.

EGU21-11445 | vPICO presentations | BG3.18

Evaluation of key parameters controlling phenology-induced variability of surface fluxes in land surface models

Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Ivan Janssens, Fabienne Maignan, and Françoise Gellens-Meulenberghs

Over the past decades, land surface models have evolved into advanced tools which comprise detailed process descriptions and interactions at a broad range of scales. One of the challenges in these models is the accurate simulation of plant phenology. It is a key element at the nexus of the simulated hydrological and carbon cycle, where the leaf area index (LAI) plays a major role in flux partitioning, water balance and gross primary production.
In this study, three well-established models are used to simulate the intrinsically coupled fluxes of water, energy and carbon from terrestrial vegetation. ORCHIDEE, ISBA-CC and the LSA-SAF algorithm each have a different approach to represent plant phenology. Whereas ISBA-CC has a fairly simple biomass allocation scheme to represent the phenological cycle, ORCHIDEE relies on a dedicated phenology module, and LSA-SAF is driven by remote-sensed forcing variables, such as LAI. Simulations were performed for a wide range of hydro-climatic biomes and plant functional types at field scale. The simulated fluxes were validated using eddy-covariance measurements, and the simulated phenology was compared to remote-sensed observations.
These models are tools to extrapolate leaf-level processes to global scale climate predictions. The origin of the parameters controlling phenology-induced variability in these models ranges from plant-scale lab experiments to global-scale calibration. The aim of this study is to investigate the key parameters controlling phenology-induced variability in these models.

How to cite: De Pue, J., Barrios, J. M., Liu, L., Ciais, P., Arboleda, A., Hamdi, R., Balzarolo, M., Janssens, I., Maignan, F., and Gellens-Meulenberghs, F.: Evaluation of key parameters controlling phenology-induced variability of surface fluxes in land surface models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11445, https://doi.org/10.5194/egusphere-egu21-11445, 2021.

EGU21-210 | vPICO presentations | BG3.18

A new approach for improving representation of boreal forest phenology in land surface models

Titta Majasalmi and Miina Rautiainen

In a boreal region, terrestrial vegetation carbon balance is controlled by vegetation phenology, which steers photosynthesis, respiration, and biomass turnover processes. In the absence of a full mechanistic understanding of environmental processes controlling vegetation phenology (i.e. senescence, dormancy, chilling), empirically-based models are often applied. These models are typically based on greenness proxies (obtained from satellite data) with fixed amplitude thresholds (e.g. of 15%, 50%, 90%) to determine timings of different phenological events. Yet, it is not known how well those percentiles correspond with the timings of events such as the green-up and the senescence. Especially in the boreal region, estimating timings of different phenological events across large spatial scales remains challenging due to the lack of sufficient ground validation data representative of both forest tree canopy and forest understory species compositions, which are both observed by a satellite sensor. From the land surface modeling perspective, there is a need to develop methods to improve the mapping of phenological events for prudent prediction of the land vegetation-atmosphere interactions under different future climates. In this study, we developed a new approach for calibrating boreal forest greenness amplitude thresholds which indicate timings of different phenological transitions in satellite data. The new approach to calibrate satellite-based greenness thresholds was demonstrated using boreal Finland as a case study area (60-70 N°). Using the approach, we computed satellite-based phenological events and compared them to ground reference data on temperature from a network of meteorological stations across Finland. We also investigated the effects of using different phenological events or ground reference temperature data on estimated growing season length. Results showed that while the standard greenness amplitude threshold values corresponded fairly well with the growing season start, the autumn phenology was not well captured by the standard greenness amplitude threshold values, which has direct impact on growing season length. Based on our data, boreal conifer forest senescence (default is 90%) corresponds with the timing of greenness amplitude of ~45%, while boreal conifer forest dormancy (default is 15%) corresponds with the timing of reaching greenness amplitude of ~0%. The approach allows flexible application across spatial scales (i.e. point or grid) and different satellite sensors, and may be combined with any land cover product, and it provides a meaningful linking between surface temperature data and seasonal reflectance measured by satellite sensors.

How to cite: Majasalmi, T. and Rautiainen, M.: A new approach for improving representation of boreal forest phenology in land surface models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-210, https://doi.org/10.5194/egusphere-egu21-210, 2021.

EGU21-8331 | vPICO presentations | BG3.18

Vegetation responses to climate extremes recorded by remotely sensed atmospheric formaldehyde

Catherine Morfopoulos, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Isabelle De Smedt, Pierre Friedlingstein, Ian Colin Prentice, and Pierre Regnier

Accurate monitoring of vegetation stress is required for better modelling and forecasting of primary production, in a world where heatwaves and droughts are expected to become increasingly prevalent. Variability in formaldehyde (HCHO) concentrations in the troposphere is dominated by local emissions of short-lived biogenic (BVOC) and pyrogenic volatile organic compounds. BVOCs are emitted by plants in a rapid protective response to abiotic stress, mediated by the energetic status of leaves (the excess of reducing power when photosynthetic light and dark reactions are decoupled, as occurs when stomata close in response to water stress). Emissions also increase exponentially with leaf temperature. New analytical methods for the detection of spatiotemporally contiguous extremes in remote-sensing data are applied here to satellite-derived atmospheric HCHO columns. BVOC emissions are shown to play a central role in the formation of the largest positive HCHO anomalies. Although vegetation stress can be captured by various remotely sensed quantities, spaceborne HCHO emerges as the most consistent recorder of vegetation responses to the largest climate extremes, especially in forested regions.

How to cite: Morfopoulos, C., Müller, J.-F., Stavrakou, T., Bauwens, M., De Smedt, I., Friedlingstein, P., Prentice, I. C., and Regnier, P.: Vegetation responses to climate extremes recorded by remotely sensed atmospheric formaldehyde, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8331, https://doi.org/10.5194/egusphere-egu21-8331, 2021.

EGU21-1816 | vPICO presentations | BG3.18

Reconciling the carbon balance of northern Scandinavia through the integration of observations and modelling

Anusha Sathyanadh, Guillaume Monteil, Marko Scholze, Anne Klosterhalfen, Hjalmar Laudon, Zhendong Wu, Christoph Gerbig, Erik van Schaik, Vladislav Bastrikov, Mats B. Nilsson, and Matthias Peichl

The boreal biome is an important component of the global carbon (C) cycle. However, current estimates of its sink-source strength at regional scales and its responses to climate change rely primarily on models and thus remain uncertain. We investigated the C balance over a north Scandinavian boreal region by integrating observations of land-atmosphere fluxes and atmospheric CO2 concentrations at landscape to regional scales. We also placed a special focus to understand the impact of 2018 drought on the region. Flux estimates can be obtained through various techniques such as in-situ flux measurements, eddy covariance (EC) observations, vegetation modelling and inverse modelling of CO2 observations. These techniques are however typically relevant at very different spatial scales ranging from plot scale to country-scale, which makes it difficult to compare them. The -Svartberget site (SVB), an established ICOS (Integrated Carbon Observation System) station in Northern Sweden offers a unique range of observations, from in-situ flux measurements to EC fluxes and tall-tower concentration measurements. Here we used several vegetation models and an atmospheric transport model to connect the different scales for the period 2016-2018. The land-atmosphere carbon fluxes are from four different vegetation models (VPRM, LPJ-GUESS, ORCHIDEE and SiBCASA) and are used in the LUMIA/FLEXPART atmospheric transport model (Lund University Modular Inversion Algorithm) to generate estimates of atmospheric CO2 concentration. We found that the northern Sweden region remained as a C sink for the study period with models differed in sink strength. It was also noticed that the site SVB can be taken as a representative for the northern Sweden region. All models indicate similar but small reductions in the net CO2 uptake for the drought year 2018 in northern Sweden except LPJ-GUESS that reveal limitations which call for further model improvement. Our work highlights the interest of using combined ecosystem,-atmosphere ICOS sites such as SVB in the Scandinavian region and shows that it is a promising way forward to monitor CO2 fluxes at the regional scale.

How to cite: Sathyanadh, A., Monteil, G., Scholze, M., Klosterhalfen, A., Laudon, H., Wu, Z., Gerbig, C., Schaik, E. V., Bastrikov, V., Nilsson, M. B., and Peichl, M.: Reconciling the carbon balance of northern Scandinavia through the integration of observations and modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1816, https://doi.org/10.5194/egusphere-egu21-1816, 2021.

EGU21-12919 | vPICO presentations | BG3.18

Elucidating climatic controls of polynomial trends in interannual variations of northern ecosystem productivities

Wenxin Zhang, Hongxiao Jin, Sadegh Jamali, Zheng Duan, Mousong Wu, Huaiwei Sun, and Youhua Ran

Rapid warming in northern high latitudes during the past two decades may have profound impacts on the structures and functioning of ecosystems. Understanding how ecosystems respond to climatic change is crucial for the prediction of climate-induced changes in plant phenology and productivity. Here we investigate spatial patterns of polynomial trends in ecosystem productivity for northern (> 30 °N) biomes and their relationships with climatic drivers during 2000–2018. Based on a moderate resolution (0.05°) of satellite data and climate observations, we quantify polynomial trend types and change rates of ecosystem productivities using plant phenology index (PPI), a proxy of gross primary productivity (GPP), and a polynomial trend identification scheme (Polytrend). We find the yearly-integrated PPI (PPIINT) shows a high degree of agreement with an OCO-2-based solar‐induced chlorophyll fluorescence GPP product (GOSIF-GPP) for distinct spatial patterns of trend types of ecosystem productivities. The averaged slope for linear trends of GPP is found positive across all the biomes, among which deciduous broadleaved and evergreen needle-leaved forests show the highest and lowest rates respectively. The evergreen needle-leaved forests, low shrub, and permanent wetland show linear trends in PPIINT over more than 50% of the covered area and permanent wetland also shows a large fraction of the area with the quadratic and cubic trends. Spatial patterns of linear trends for growing season sum of temperature, precipitation, and photosynthetic active radiation have been quantified. Based on the partial correlations between PPIINT and climate drivers, we found that there is a consistent shift of dominant drivers from temperature or radiation to precipitation across all the biomes except the permeant wetland when the trend type of ecosystem productivity changes from linear to non-linear. This may imply precipitation changes in recent years may determine the linear or non-linear responses of ecosystem productivity to climate change. Our results highlight the importance of understanding how changes in climatic drivers may affect the overall responses of ecosystems productivity. Our findings will facilitate the sustainable management of ecosystems accounting for the resilience of ecosystem productivity and phenology to future climate change.

How to cite: Zhang, W., Jin, H., Jamali, S., Duan, Z., Wu, M., Sun, H., and Ran, Y.: Elucidating climatic controls of polynomial trends in interannual variations of northern ecosystem productivities, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12919, https://doi.org/10.5194/egusphere-egu21-12919, 2021.

EGU21-16202 | vPICO presentations | BG3.18

Dycrypting tropical forest phenology with coupled remote sensing and field observation

James Ball, Gregoire Vincent, Nicolas Barbier, and Ilona Clocher

EGU21-10688 | vPICO presentations | BG3.18

An efficient and accurate method for obtaining regional scale rice growth conditions based on WOFOST model and satellite images

Bingyu Zhao, Meiling Liu, Jiianjun Wu, Xiangnan Liu, Mengxue Liu, and Ling Wu

It is very important to obtain regional crop growth conditions efficiently and accurately in the agricultural field. The data assimilation between crop growth model and remote sensing data is a widely used method for obtaining vegetation growth information. This study aims to present a parallel method based on graphic processing unit (GPU) to improve the efficiency of the assimilation between RS data and crop growth model to estimate rice growth parameters. Remote sensing data, Landsat and HJ-1 images were collected and the World Food Studies (WOFOST) crop growth model which has a strong flexibility was employed. To acquire continuous regional crop parameters in temporal-spatial scale, particle swarm optimization (PSO) data assimilation method was used to combine remote sensing images and WOFOST and this process is accompanied by a parallel method based on the Compute Unified Device Architecture (CUDA) platform of NVIDIA GPU. With these methods, we obtained daily rice growth parameters of Zhuzhou City, Hunan, China and compared the efficiency and precision of parallel method and non-parallel method. Results showed that the parallel program has a remarkable speedup (reaching 240 times) compared with the non-parallel program with a similar accuracy. This study indicated that the parallel implementation based on GPU was successful in improving the efficiency of the assimilation between RS data and the WOFOST model and was conducive to obtaining regional crop growth conditions efficiently and accurately.

How to cite: Zhao, B., Liu, M., Wu, J., Liu, X., Liu, M., and Wu, L.: An efficient and accurate method for obtaining regional scale rice growth conditions based on WOFOST model and satellite images, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10688, https://doi.org/10.5194/egusphere-egu21-10688, 2021.

EGU21-15196 | vPICO presentations | BG3.18

Epistemic and aleatoric uncertainty maps in high resolution biophysical parameter retrieval 

Laura Martínez-Ferrer, Álvaro Moreno-Martínez, Jordi Muñoz-Marí, Emma Izquierdo-Verdiguier, Manuel Campos-Taberner, Javier García-Haro, Marco Maneta, Nathaniel Robinson, Nicholas Clinton, John Kimball, Steven W. Running, and Gustau Camps-Valls

Biophysical parameters such as the Leaf Area Index (LAI), Fraction Absorbed Photosynthetically Active Radiation (FAPAR) and Canopy Water Content (CWC) are key inputs for ecological, meteorological and agricultural applications and models. Moreover, LAI and FAPAR are considered Essential Climate Variables (ECVs) which are feasible for global climate observation. Within this context, there are two main issues to achieve a reliable biophysical variable retrieval: cloud contamination and oversimplified uncertainties from the operational products. We propose a methodology based on a hybrid method which inverts a radiative transfer model (PROSAIL) with artificial neural networks (ANN) to produce 30m resolution continuous time series of biophysical variables (FAPAR, LAI, FVC, CWC, CCC) over large areas. To obtain gap free input reflectance data, we used a cloud optimized fusion algorithm (HISTARFM) combining MODIS and Landsat information. In addition, HISTARFM provides realistic uncertainty estimates along with the fused reflectances. This valuable information allows us to carry out an exhaustive uncertainty analysis considering the aleatoric uncertainty (data error) that needs to be propagated through the ANN, and the epistemic uncertainty (model error). We validate our biophysical retrieval with operational MODIS and Copernicus products. This study is performed over the contiguous US (CONUS) area with Google Earth Engine (GEE). The proposed retrieval methodology combined with the unprecedented GEE computational power allows to obtain high spatial resolution biophysical products and realistic uncertainty estimates to capture the needed spatial detail and adequately monitor croplands and heterogeneous vegetated landscapes at very broad scales.

How to cite: Martínez-Ferrer, L., Moreno-Martínez, Á., Muñoz-Marí, J., Izquierdo-Verdiguier, E., Campos-Taberner, M., García-Haro, J., Maneta, M., Robinson, N., Clinton, N., Kimball, J., Running, S. W., and Camps-Valls, G.: Epistemic and aleatoric uncertainty maps in high resolution biophysical parameter retrieval , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15196, https://doi.org/10.5194/egusphere-egu21-15196, 2021.

EGU21-15211 | vPICO presentations | BG3.18

Using machine learning to model the distribution of Vegetation Types across Norway

Lasse Torben Keetz, Anders Bryn, Peter Horvath, Olav Skarpaas, Lena Merete Tallaksen, and Indrė Žliobaitė

Machine learning (ML) provides a powerful set of tools that can improve the accuracy of distribution models by automatically representing underlying ecological relationships empirically captured from large sets of data. However, more recent methodological advances in ML that have been less frequently applied, e.g. in the field of deep learning, may yield additional potential for Distribution Modeling. In this project, we use two ML algorithms, Random Forest (RF) and multi-layer feed-forward artificial neural networks (ANN), to predict the occurrences of Vegetation Types (VT) across Norway. Accurate predictions may support environmental management or the validation of earth system models. The VT data (derived from the AR18x18 data set; n=31 classes) covers the entire spatial scope in 0.9 ha plots on a systematically sampled 18 km grid (n = 1,081 plots, n = 22,154 observations). It was obtained through a field-based survey by a group of trained experts between 2004 and 2014. We use the cloud-based platform "Google Earth Engine" to generate a set of remotely sensed predictor variables based on SENTINEL-2 satellite imagery (i.e. surface reflectance from 12 spectral bands and six vegetation indices). These are then combined with ancillary environmental rasters used previously to model Norwegian VT distribution, e.g. representing climate, land cover, or geological properties (n=55, before one-hot encoding). Preliminary results suggest that in both modeling approaches, the generated SENTINEL-2 variables, particularly the Normalized Difference Vegetation Index (NDVI), have the highest predictive power as measured by permutation importance. The mean overall accuracy using 5-fold cross-validation shows only minor differences between the two methods (approx. 0.45 for ANN vs. 0.44 for RF; the respective F1-scores are 0.35 for ANN and 0.34 for RF; most frequent class baseline accuracy = 0.136). The modeling challenges we currently face include a class imbalance in the VT data set, reconciling the different spatial resolutions of the environmental predictors, and discrepancies in the timing of data acquisition. The next steps in the project will be to incorporate spatial cross-validation into the workflow and to analyze the differences between the ML methods in detail (e.g. regarding the ability to model rare VTs or differences in variable importance). Moreover, we will evaluate the possibility to include additional satellite data sources. This work is a contribution to the Strategic Research Initiative ‘Land Atmosphere Interaction in Cold Environments’ (LATICE) of the University of Oslo.

How to cite: Keetz, L. T., Bryn, A., Horvath, P., Skarpaas, O., Tallaksen, L. M., and Žliobaitė, I.: Using machine learning to model the distribution of Vegetation Types across Norway, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15211, https://doi.org/10.5194/egusphere-egu21-15211, 2021.

EGU21-12180 | vPICO presentations | BG3.18

Recent Results from the ALBIOM Project on Biomass Estimates from Sentinel-3 Altimetry Data

Maria Paola Clarizia, Daniel Pascual, Leila Guerriero, Giuseppina De Felice-Proia, Cristina Vittucci, Davide Comite, Nazzareno Pierdicca, Marco Restano, and Jérôme Benveniste

The ALtimetry for BIOMass (ALBIOM) project is an ESA-funded Permanent Open Call Project that aims to retrieve forest biomass using Copernicus Sentinel-3 (S3) altimeter data. The overall goal of ALBIOM is to estimate biomass with sufficient accuracy to be able to increase existing satellite data for biomass retrieval, as well as to improve the global mapping and monitoring of this fundamental variable.  

The project core tasks consist of 1) an analysis of the sensitivity of altimetry backscatter data on land parameters; 2) the development and validation of a Sentinel-3 altimeter backscatter simulator, including the effect of both topography and vegetation  and 3) the development and validation of a machine-learning biomass estimation algorithm.

Here we present a summary of the results obtained from the project. The sensitivity analysis reveals that both the altimetric waveforms and the corresponding Normalised Radar Cross Sections (NRCSs) can be sensitive to the presence of biomass in the order of 100-400 tons/ha, but they are also influenced by topography and water bodies. Different sensitivities with respect to the different frequencies and resolution modes are observed, highlighting non-linear behaviours of the NRCSs. The use of differential NRCSs, defined as the difference among those calculated over two different bandwidths, was demonstrated to be not necessarily more sensitive to vegetation, as it was instead highlighted by previous studies like [Papa et al., 2003].

The tracking window often appears partly or completely misplaced, when the tracking mode is in open-loop mode prescribing a predetermined range, and its size is often not long enough when collecting data over land, especially over regions with complex topography. The length and correct positioning of the tracking window over land represent therefore critical aspects for a study like ALBIOM.

The modelling work has been focused on the development of a merged model approach to simulate altimeter waveforms over vegetated areas. The merging is obtained via the simultaneous use of the modifiedTor Vergata Scattering Model (TOVSM) [Ferrazzoli and Guerriero, 1995, 1996] to simulate the waveform of a flat surface covered by forest vegetation, and the use of the Soil And Vegetation Reflection Simulator (SAVERS) [Pierdicca et al., 2014], originally conceived for GNSS-Reflectometry, and here adapted to the Altimetry system. The simulator developed within ALBIOM shows promising ability to reproduce the general characteristics of the S3 waveforms. The simulations related to forested surfaces present at least two peaks, due to the top of canopy and to the ground, but the presence of topography may introduce other peaks in the waveforms, making the identification of vegetation and topographic effects challenging.

Initial results on the algorithm development using Artificial Neural Networks (ANN) highlight some promising biomass estimates over specific areas (e.g. Central Africa) but also differences in algorithm performances among different regions. The corrected “ice” backscatter coefficient showed the highest sensitivity to biomass, but its values are often invalid over land, which limits the number of meaningful retrievals. The different altimeter tracking mode of Sentinel-3 over different areas of the globe (i.e., open loop and closed loop) could also be responsible for the differences in results.

 

 

 

How to cite: Clarizia, M. P., Pascual, D., Guerriero, L., De Felice-Proia, G., Vittucci, C., Comite, D., Pierdicca, N., Restano, M., and Benveniste, J.: Recent Results from the ALBIOM Project on Biomass Estimates from Sentinel-3 Altimetry Data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12180, https://doi.org/10.5194/egusphere-egu21-12180, 2021.

EGU21-3480 | vPICO presentations | BG3.18

Developing a climate-driven root zone water stress function for different climates and ecosystems

Rodolfo Nóbrega and Iain Colin Prentice

Plant roots have less water available when soils have low moisture content and, consequently, limit their root-to-leaf water potential gradient to protect their xylem, which reduces H2O and CO2 exchanges with the atmosphere. In vegetation, hydrological and land-surface models, plant responses to reduced available water in the soil have been implemented in various ways depending on data availability, type of ecosystem, and modelling assumptions. Most models use soil water stress functions – commonly known as beta functions – to reduce transpiration and carbon assimilation, by applying a factor that reflects the soil water availability for plants. These functions usually produce reasonably satisfactory results, but rely on the information on soil properties (e.g. wilting point and field capacity) that are not widely available. On a global level, soil information is mediocre, and data uncertainty is compensated by tuning parameters that rarely represent a physiological process. We propose instead the use of a beta function derived from a mass-balance approach focused on the root zone water capacity. This method quantifies the root zone water storage by calculating the accumulated water deficit based on the balance between water influxes and effluxes, and it does not require land-cover or soil information. We assessed how our approach performs compared to those other soil water stress functions. We used global datasets, including WDFE5 and PMLv2, to extract precipitation and evapotranspiration and compute water deficit. For most vegetation types and climates our approach yielded promising results. Worst results were found for some (semi-)arid sites due to the overestimation of the water deficit. We aim to deliver an approach that can be easily applied on global scales.

How to cite: Nóbrega, R. and Prentice, I. C.: Developing a climate-driven root zone water stress function for different climates and ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3480, https://doi.org/10.5194/egusphere-egu21-3480, 2021.

EGU21-14263 | vPICO presentations | BG3.18

Generalization of Vegetation Indices for Monitoring the Terrestrial Biosphere

Gustau Camps-Valls, Manuel Campos-Taberner, Alvaro Moreno-Martinez, Sophia Walther, Grégory Duveiller, Alessandro Cescatti, Miguel Mahecha, Jordi Muñoz-Marí, Francisco Javier Garcı́a-Haro, Luis Guanter, John Gamon, Martin Jung, Markus Reichstein, and Steven W. Running

Vegetation indices are the most widely used tool in remote sensing and multispectral imaging applications. This paper introduces a nonlinear generalization of the broad family of vegetation indices based on spectral band differences and ratios. The presented indices exploit all higher-order relations of the involved spectral channels, are easy to derive and use, and give some insight on problem complexity. The framework is illustrated to generalize the widely adopted Normalized Difference Vegetation Index (NDVI). Its nonlinear generalization named, kernel NDVI (kNDVI), largely improves performance over NDVI and the recent NIRv in monitoring key vegetation parameters, showing much higher correlation with independent products, such as the MODIS leaf area index (LAI), flux tower gross primary productivity (GPP), and GOME-2 sun-induced fluorescence. The family of indices constitutes a valuable choice for many applications that require spatially explicit and time-resolved analysis of Earth observation data.

Reference: "A Unified Vegetation Index for Quantifying the Terrestrial Biosphere", Gustau Camps-Valls, Manuel Campos-Taberner, Álvaro Moreno-Martı́nez, Sophia Walther, Grégory Duveiller, Alessandro Cescatti, Miguel Mahecha, Jordi Muñoz-Marı́, Francisco Javier Garcı́a-Haro, Luis Guanter, John Gamon, Martin Jung, Markus Reichstein, Steven W. Running. Science Advances, in press, 2021

How to cite: Camps-Valls, G., Campos-Taberner, M., Moreno-Martinez, A., Walther, S., Duveiller, G., Cescatti, A., Mahecha, M., Muñoz-Marí, J., Garcı́a-Haro, F. J., Guanter, L., Gamon, J., Jung, M., Reichstein, M., and Running, S. W.: Generalization of Vegetation Indices for Monitoring the Terrestrial Biosphere, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14263, https://doi.org/10.5194/egusphere-egu21-14263, 2021.

BG3.19 – Exchange of GHG and reactive gases in agricultural ecosystems

EGU21-15229 | vPICO presentations | BG3.19

Bi-directional exchange of ammonia above a corn crop canopy: from flux measurements to model parameterizations

Alexander Moravek, Saumya Singh, Elizabeth Pattey, Amy Hdrina, Theodora Li, Luc Pelletier, Stuart Admiral, and Jennifer Murphy

Emissions of ammonia (NH3) from agriculture have a significant impact on the environment. Its atmospheric transport and subsequent deposition has been shown to alter nutrient-poor ecosystems thereby reducing biodiversity. As the most abundant base in the atmosphere, NH3 plays a key role in secondary aerosol formation impacting air quality and climate. Due to the lack of long term observations and challenges in performing NH3 flux measurements, large uncertainties exist in both emission quantification from fertilized crop fields and in the bi-directional exchange of NH3 with agroecosystems. We measured NH3 fluxes above a corn field using the eddy covariance technique together with a quantum cascade laser spectroscopy analyzer over two consecutive growing seasons in 2017 and 2018. We found that after initial NH3 emissions following fertilizer application, periods of both NH3 emission and deposition with similar flux magnitudes prevailed throughout the growing seasons (ranging approximately between ±300 ng m-2 s-1), highlighting the importance of the corn crop canopy for regulating the net NH3 exchange. To evaluate the underlying processes of the NH3 bi-directional exchange, a two-layer compensation point model was used. Based on the large range of environmental conditions encountered during the extensive flux measurements periods, the validity of different parameterizations could be assessed. In particular, processes regulating stomatal and non-stomatal flux pathways will be discussed.

How to cite: Moravek, A., Singh, S., Pattey, E., Hdrina, A., Li, T., Pelletier, L., Admiral, S., and Murphy, J.: Bi-directional exchange of ammonia above a corn crop canopy: from flux measurements to model parameterizations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15229, https://doi.org/10.5194/egusphere-egu21-15229, 2021.

EGU21-12347 | vPICO presentations | BG3.19

Flux measurements of NHx and NOy with a dual-channel converter above an intensively managed grassland on peat

Pascal Wintjen, Jeremy Rüffer, Liv Sokolowsky, Christof Ammann, and Christian Brümmer

We designed a fast-response two-channel converter called NOy-TRANC for eddy covariance measurements of reduced and oxidized reactive nitrogen compounds (Nr). It is a combination of the Total Reactive Atmospheric Nitrogen Converter (TRANC), which converts all reactive forms of nitrogen (ΣNr), except for nitrous oxide (N2O) and molecular nitrogen (N2), to nitrogen monoxide (NO), and a heated gold catalyst, which converts NOy to NO. NOx, which is the sum of NO and nitrogen dioxide (NO2), and higher oxidized nitrogen compounds are described by the term NOy. The NOy-TRANC is coupled to a two-channel chemiluminescence detector (CLD) for measuring NO. Due to a high sampling frequency and a fast response time, the system meets the requirements for flux calculation based on the eddy-covariance method. With this setup, a separation of ΣNr fluxes in reduced and oxidized nitrogen can be done.

We conducted flux measurements at a typically deeply drained, intensively managed grassland site on peat in an intensive dairy region in Northwest Germany for one year. ΣNr concentration was 12.4 ppb and NOy concentration was 6.3 ppb on average. We observed mostly emission fluxes at the site after the first fertilization in early spring. The winter month were characterized by slight nitrogen dry deposition. Monthly median of ΣNr fluxes ranged from -8 to 57 ng N m-2s-1 with the exchange being enhanced during summer. We found that ΣNr and NOy dry emission were comparatively higher under dry conditions, i.e., low air humidity and soil moisture. The emission factors of applied nitrogen after the respective fertilization released as NHx can reach up to 2.0%.

Site management included five fertilization events and five grass cuts. The first fertilization event was at the end of March starting with mineral fertilizer followed by organic fertilizer a week later.  The fertilization scheme was the same for second and third event, but approximately two days were between the application of the fertilizer types. The second fertilization was at the end of May, subsequent fertilizations were done in intervals of 4-5 weeks. Only for the fourth and fifth event, organic fertilizer was used. Organic fertilizer was injected in slits made by v-shaped discs, mineral fertilizer was spread on the soil surface. The emission factor was lower after the first fertilization event compared to events in summer probably indicating a beginning nitrogen saturation after the first fertilization.

Our study demonstrates the application of a novel measurement technique for the determination reactive nitrogen compounds and gives insight into the exchange characteristics of reactive nitrogen under a common agricultural management.

How to cite: Wintjen, P., Rüffer, J., Sokolowsky, L., Ammann, C., and Brümmer, C.: Flux measurements of NHx and NOy with a dual-channel converter above an intensively managed grassland on peat, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12347, https://doi.org/10.5194/egusphere-egu21-12347, 2021.

EGU21-15587 | vPICO presentations | BG3.19

Ammonia emissions from cattle slurry and digestates

Norah Efosa, Hans-Martin Krause, Christoph Häni, Johan Six, and Else Bünemann

The recycling of organic waste in biogas plants is proposed as a measure to close nutrient cycles and possibly reduce nitrogen losses such as nitrous oxide emissions and nitrate leaching. Ammonia volatilization after fertilizer spreading is yet another nitrogen loss pathway which is often understudied and not yet fully understood but the knowledge is needed in order to optimize fertilizer management. We therefore aimed to quantify the volatilization of ammonia after the trail-hose application of digestates compared to cattle slurry. We hypothesize that digestates have larger and longer lasting nitrogen losses via ammonia volatilization due to higher NH4+ contents and pH values compared to fresh manure. In this project, digested and un-digested organic fertilizers were applied twice per year in a 2.5-years field experiment with three consecutive arable crops (maize, winter wheat and winter barley) under organic farming. We used Automated Low Cost Impinger Systems to measure ammonia emissions after fertilizer application. The emissions were then modeled using the backwards Langrangian stochastic dispersal model with respect to wind conditions. A preliminary presentation of the data indicates that ammonia emissions from the cattle slurry, slurry-based digestate, and industrial digestate are alternately higher or lower. In 2018, emissions from cattle slurry tended to be lower than those from slurry-based digestate and industrial digestate, while in 2019 and 2020 all three liquid organic fertilizers had similar emissions. In the measurement period after the second fertilizer application in 2018, which took place at the end of May, conspicuously high emissions were measured. This can be explained by the high temperatures during this period. Adaptive strategies in fertilizer management should thus consider reduced inputs of organic fertilizers  during warm periods.

How to cite: Efosa, N., Krause, H.-M., Häni, C., Six, J., and Bünemann, E.: Ammonia emissions from cattle slurry and digestates, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15587, https://doi.org/10.5194/egusphere-egu21-15587, 2021.

EGU21-13245 | vPICO presentations | BG3.19

Amine Emissions from Agricultural Sources

Alexander Håland, Tomas Mikoviny, Elisabeth Emilie Syse, Irma Caroline Oskam, and Armin Wisthaler

In recent years there has been growing scientific interest in agricultural emissions of volatile organic compounds (VOCs) and their potential effects on air quality and the biogeochemical cycling of carbon and nitrogen. Among the many VOCs emitted, amines are particularly challenging to measure with currently available instruments.

In light of these analytical challenges, the Atmospheric Chemistry Group at the Department of Chemistry of the University of Oslo has developed a novel analytical instrument for the detection of atmospheric amines. The instrument is a modified version of a commercial Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). After modification, this instrument has proven able to detect atmospheric amines down to single-digit-ppt levels. This instrument also benefits from a very short response time, which makes it possible to monitor rapid dynamic changes of amine concentrations in the atmosphere.

The novel instrument was deployed at the Livestock Production Research Centre (SHF) of the Norwegian University of Life Sciences (NMBU) in Ås (Norway) for characterizing agricultural emissions of VOCs in general, and of amines in particular.

Data analysis has so far revealed a very complex VOC emission pattern. Methylamine, trimethylamine and skatole were among the atmospheric amines detected in the ambient air in proximity of the facility. In addition to the field measurements, we also carried out laboratory experiments for analyzing VOCs in the dynamic headspace of different source materials (manure, animal feed, straw litter, etc.).

We will present the new instrument and preliminary data collected from this measurement campaign.   

How to cite: Håland, A., Mikoviny, T., Syse, E. E., Oskam, I. C., and Wisthaler, A.: Amine Emissions from Agricultural Sources, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13245, https://doi.org/10.5194/egusphere-egu21-13245, 2021.

EGU21-13117 | vPICO presentations | BG3.19

The role of cows on OVOC exchanges of a pasture

Bernard Heinesch, Colin Michel, Crist Amelynck, Niels Schoon, Ahsan Mozaffar, Marc Aubinet, Aurélie Bachy, and Pierre Dumortier

The presence of cows on a pasture considerably modifies exchanges of biogenic volatile organic compounds (BVOCs). By regulating the biomass present, they can have an impact on the constitutive flux (exchanges from soil and grass that are not induced by leaf wounding or trampling by cows) but they can also cause direct emissions from exhalation and indirect emissions by leaf injury (grazing), trampling and wastes. In this study conducted on the ICOS pasture site of Dorinne (Belgium), we disentangled these different sources/sinks for three oxygenated BVOCs commonly exchanged on grasslands (methanol, acetaldehyde and acetone), using a combination of turbulent flux measurements, enclosure flux measurements, tools to detect the presence and activity of cows in the footprint of the turbulent flux measurements and a flux footprint model. Direct exhalation emissions were low, representing only 2.3% and 10% of the spring total flux of methanol and acetone respectively. Comparison of grazed and non-grazed enclosures pointed out that emissions following leaf wounding were significant for all studied BVOCs, decreased exponentially with time to become negligible after maximum five days. Cow indirect emissions at the pasture scale (turbulent flux measurements) where likely dominated by grazing and were shown to be a major component of the total diurnal flux for each of the three studied BVOCs. Comparison with a hay meadow also showed that the temporal dynamics of those BVOC emissions were very different according to the grass management type, calling for specific parametrization in up-scaling emission models.

How to cite: Heinesch, B., Michel, C., Amelynck, C., Schoon, N., Mozaffar, A., Aubinet, M., Bachy, A., and Dumortier, P.: The role of cows on OVOC exchanges of a pasture, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13117, https://doi.org/10.5194/egusphere-egu21-13117, 2021.

EGU21-14981 | vPICO presentations | BG3.19

Biogenic VOC profiles emissions of Rapeseed leaf litter and their SOA formation potential

Letizia Abis, Carmen Kalalian, Tao Wang, Bastien Lunardelli, Sebastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George

The annual global leaf litter production has been estimated between 75 and 135 Pg DM yr-1 contributing to the 10% of the global annual emission of acetone and methanol. Besides their impact on atmospheric chemistry, little attention has been drawn to leaves litter and their contribution to the bVOC emissions and their SOA formation potential.

The purpose of this study is to analyze the bVOC (biogenic volatile organic compounds) emissions from rapeseed leaves litter and their contribution to SOA (secondary organic aerosol) formation under three different conditions: (I) the presence of a UV light irradiation (II) the presence of ozone, and (III) a combination of the previous two. To reach this goal, bVOC and aerosol numbers have been measured for 6 days in a controlled atmospheric chamber containing leaf litter samples.

Results showed that VOC emission profiles were affected by the UV light irradiation, which increased the summed VOC emissions compared to the experiment with O3. Furthermore, the diversity of the VOC emitted from the rapeseed litter increased with the UV light irradiation. The highlight of this study is that the SOA formation rate observed when leaf litter was exposed to both UV light and O3 indicates a potentially large source of atmospheric pollution at the local scale. To our knowledge, this study investigates for the first time the effect of UV irradiation and O3 exposure on both VOC emissions and SOA formation for leaf litter samples. A detailed discussion about the processes behind the biological production of the most important VOC is proposed.

How to cite: Abis, L., Kalalian, C., Wang, T., Lunardelli, B., Perrier, S., Loubet, B., Ciuraru, R., and George, C.: Biogenic VOC profiles emissions of Rapeseed leaf litter and their SOA formation potential, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14981, https://doi.org/10.5194/egusphere-egu21-14981, 2021.

EGU21-15430 | vPICO presentations | BG3.19

Sources and Sinks of BVOCs in a Managed Boreal Forest

Ross C. Petersen, Janne Rinne, Thomas Holst, and Meelis Mölder

The ecosystem-atmosphere flux of biogenic volatile organic compounds (BVOCs) has important impacts on tropospheric oxidative capacity and the formation of secondary organic aerosols, influencing air quality and climate. In particular, this is true in managed boreal forests in the Northern Hemisphere, where BVOC emissions often dominate over anthropogenic sources of VOC.

Here we present measurements of BVOCs in a managed boreal forest located at the ICOS station Norunda in Sweden, collected using proton transfer reaction mass spectrometry (PTR-MS). This managed forest consists of a mix of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). These long-term PTR-MS measurements were collected at six heights (4m, 8.5m, 13.5m, 19m, 24.5m, and 33.5m) in the forest canopy over several periods during 2014 to 2016. Ozone concentrations were simultaneously measured in conjunction with these PTR-MS measurements. The main BVOCs investigated with the PTR-MS were isoprene, monoterpenes, methanol, acetaldehyde, and acetone. The distribution of BVOC sources and sinks in the forest canopy was explored using several Lagrangian dispersion matrix methods, including localized and continuous near-field theory. The canopy resistance and deposition velocities for ozone and the BVOCs were investigated, and the results for isoprene and monoterpene emissions were found to agree well with several standard BVOC emission algorithms. These results will have importance for constraining BVOC emission estimates from managed boreal forests in the future.

How to cite: Petersen, R. C., Rinne, J., Holst, T., and Mölder, M.: Sources and Sinks of BVOCs in a Managed Boreal Forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15430, https://doi.org/10.5194/egusphere-egu21-15430, 2021.

EGU21-14189 | vPICO presentations | BG3.19

Accounting for carbon exchanges in a semiarid oak savanna (dehesa).

Ana Andreu, Elisabet Carpintero, Pedro Gómez-Giraldez, and Maria P. González-Dugo

Semiarid oak savannas (grasslands with scattered trees), partially covered, subject to regular droughts, grazing, and high levels of solar radiation, are nonetheless, typically carbon sinks regarding CO2. However, dehesas are a productive system, a trait shared with other savannas, and they are shaped by their uses for economic production. One of its multiple uses, livestock extensive farming, key to its economic profitability and to the preservation of the agrosilvopastoral system structure, modifies the Greenhouse gas (GHG) balance by adding a significant amount of CH4 and N2O into the cycle. Recent reports and publications have evaluated and compared different types of livestock management within the context of climate change. GHG emissions, extensive use of the soil resource, or the introduction of nitrogen into the system, are some of the generated effects that cause a negative evaluation of extensive farming. Nevertheless, the importance of this sector, given its extension and impact on production and rural development, demands a more rigorous evaluation. It is necessary to precisely account for the fluxes in their totality (including the CO2 sink effect) and the relationships between them. Currently, there are few studies that determine the GHG balance of dehesas, and they are mainly centred on CO2 fluxes without integrating the influence of livestock, or in meadows without a tree layer (which changes the CO2 balance). The net global warming potential of dehesas is unknown, given that very few direct and long-term flux measurements have been taken on them. In this work, CO2 and H2O fluxes from an eddy covariance tower located in an Andalusian dehesa were processed (standard corrections), filtered and homogenized, including filling gaps using artificial neural networks. We calculated the annual CO2 budget since 2015, to assess the sink/source nature of the area. In a modeling exercise to be able to close the carbon cycle, we estimated CH4 and N2O depending on the number of livestock present in the area by season/year, evaluating the tipping point.

How to cite: Andreu, A., Carpintero, E., Gómez-Giraldez, P., and González-Dugo, M. P.: Accounting for carbon exchanges in a semiarid oak savanna (dehesa)., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14189, https://doi.org/10.5194/egusphere-egu21-14189, 2021.

EGU21-2433 | vPICO presentations | BG3.19

Soil trace gas fluxes from secondary forest converted to small-scale vegetable farms on an Andosol soil

Cecille Marie O. Quiñones, Edzo Veldkamp, Suzette B. Lina, Marlito Jose M. Bande, Arwin O. Arribado, and Marife D. Corre

The Philippines' agriculture sector continues contributing to country-wide soil trace gas emissions; however, field-based estimation of emissions from this sector remains inadequate.  While there’s a need to increase crop production to provide for a fast-increasing population, it is equally essential to reduce greenhouse gases (GHG) from agricultural production to protect the environment. A reliable assessment of soil GHG is a requisite to attain these, thus the present study. We conducted spatially replicated quantification of soil greenhouse gas fluxes, i. e. N2O, CH4, and CO2, with monthly measurements from May 2018 to May 2019, as well astheirsoil controlling factors in nine plots of secondary forest and ten farms, all on comparable Andosol soil in Leyte Island, the Philippines. The management practices of these vegetable farms were those implemented by the farmers, and our measurements were carried out on these actual farm practices, reflecting their commonly varied fertilization rates (200 – 610 kg N ha-1 cropping period-1 with 2 – 3 cropping periods each year). Soil N2O emissions from vegetable farms were larger than the forest (P ≤0.01) and were stimulated during the dry than the wet season (P ≤0.01). Its temporal variation was mainly driven by soil NO3 (r = 0.52, P ≤0.01).  Large stocks of soil extractable NO3 in the top 50 cm (9250 ± 2830 mg N m–2, mean ± SE) and 50 – 100 cm soil depth (11255 ± 5980 mg N m–2) supported the substantial soil N2O emissions from these vegetable farms, which were larger than those from other agricultural areas in South East Asia on similar soil and climate. These small-scale vegetable farms had annual fluxes of 12.7 ± 2.6 kg N2O–N, –1.1 ± 0.1 kg CH4–C and 11.6 ± 0.7 Mg CO2–C ha-1 yr-1, whereas the secondary forest as reference land use had 0.10 ± 0.02 kg N2O–N, –2.0 ± 0.2 kg CH4–C, and 8.2 ± 0.7 Mg CO2–C ha-1 yr-1. The forest had larger soil CH4 uptake than the vegetable farms (P ≤0.01). For the forest, CH4 uptake was positively correlated with soil moisture (r = 0.60, P ≤0.01), suggesting diffusion limitation of atmospheric CH4 into the soil and/or soil CH4 production during high rainfall months. For the vegetable farms, CH4 uptake was negatively correlated with both soil NO3 and NH4+ (r = –0.46, P ≤0.01), suggesting CH4 consumption enhanced by mineral N. Soil CO2 emissions were higher in vegetable farms relative to the forest (P ≤0.01), reflecting the former’s reduced soil organic carbon stocks in the top 1 m (P ≤0.01) but compensated with regular application of chicken manure (460 – 1940 kg C ha-1 cropping period-1) as organic fertilizer. Our study expounded understanding on the extent of changes in soil GHG from an Andosol soil that underwent land-use conversion. Such data will be beneficial in developing sound management and policy strategies for reducing soil GHG fluxes from this economically vulnerable agricultural sector.

How to cite: Quiñones, C. M. O., Veldkamp, E., Lina, S. B., Bande, M. J. M., Arribado, A. O., and Corre, M. D.: Soil trace gas fluxes from secondary forest converted to small-scale vegetable farms on an Andosol soil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2433, https://doi.org/10.5194/egusphere-egu21-2433, 2021.

EGU21-14675 | vPICO presentations | BG3.19

Comparison of soil CO2 emissions from three different tillage methods on chernozem soil

Márton Dencső, Ágota Horel, Zsófia Bakacsi, and Eszter Tóth

Tillage practices influence soil CO2 emissions, hence many research investigate the long-term effects of conservation and conventional tillage methods e.g. ploughing and no-tillage on soil greenhouse gas emission.

The experiment site is an 18-years-old long-term tillage trial established on chernozem soil. During 2020, we took weekly CO2 emission measurements in the mouldboard ploughing (MP), no-tillage (NT), and shallow cultivation (SC) treatments Tillage depth was 26-30 cm, 12-16 cm and 0 cm in the cases of MP, SC and NT respectively. The experiment was under wither oat cultivation.

We investigated the similarity in the CO2 emission trends of SC to MP or NT treatments. Besides CO2 emission measurements, we also monitored environmental parameters such as soil temperature (Ts) and soil water content (SWC) in each treatment.

During the investigated year (2020 January - December) SC had higher annual mean CO2 emission (0.115±0.083 mg m-2 s-1) compared to MP (0.099±0.089 mg m-2 s-1) and lower compared to NT (0.119±0.100 mg m-2 s-1). The difference of the CO2 emissions was significant between SC and MP (p<0.05); however, it was not significant between SC and NT (p>0.05) treatments. The Ts dependency of CO2 emission was moderate in all treatments. CO2 emissions were moderately depended on SWC in MP and SC, and there was no correlation between these parameters in NT.

The annual mean CO2 emission of the SC treatment was more similar to the NT, than to the MP treatment.

How to cite: Dencső, M., Horel, Á., Bakacsi, Z., and Tóth, E.: Comparison of soil CO2 emissions from three different tillage methods on chernozem soil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14675, https://doi.org/10.5194/egusphere-egu21-14675, 2021.

The agriculture sector is one of the largest users of water and a significant source of greenhouse gas (GHG) emissions. The development of low-GHG-emission and water-conserving agriculture will inevitably be the trend in the future. Because of the physiological differences among crops and their response efficiency to external changes, changes in planting structure, climate and input of production factors will have an impact on regional agricultural water use and GHG emissions. This paper systematically analyzed the spatial-temporal evolution characteristics of crop planting structure, climate, and production factor inputs in Heilongjiang Province, the main grain-producing region of China, from 2000 to 2015, and quantified the regional agricultural water use and GHG emissions characteristics under different scenarios by using the Penman-Monteith formula and the Denitrification-Decomposition (DNDC) model. The results showed that the global warming potential (GWP) increased by 15% due to the change in planting structure. A large increase in the proportion of rice and corn sown was the main reason. During the study period, regional climate change had a positive impact on the water- saving and emission reduction of the agricultural industry. The annual water demand per unit area decreased by 19%, and the GWP decreased by 12% compared with that in 2000. The input of fertilizer and other means of production will have a significant impact on GHG emissions from farmlands. The increase in N fertilizer input significantly increased N2O emissions, with a 5% increase in GWP. Agricultural water consumption and carbon emissions are affected by changes in climate, input of means of production, and planting structure. Therefore, multiple regulatory measures should be taken in combination with regional characteristics to realize a new layout of planting structure with low emissions, water conservation, and sustainability.

How to cite: Sun, S. and Tang, Y.: Impact assessment of climate change and human activities on GHG emissions and agricultural water use, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-57, https://doi.org/10.5194/egusphere-egu21-57, 2021.

EGU21-13415 | vPICO presentations | BG3.19

Plantain as a GHG mitigation option: N2O, C and GHG balances from an intensively grazed New Zealand dairy pasture

Aaron Wall, Jordan Goodrich, Anne Wecking, Jack Pronger, David Campbell, and Louis Schipper

Agricultural greenhouse gas (GHG) emissions account for almost half of New Zealand’s total emissions, and therefore considerable attention has been given to identifying and testing mitigation options. At plot scale, plantain (Plantago lanceolate L.) in the pasture sward has been demonstrated to reduce nitrous oxide (N2O) emissions but has not been tested at paddock scale on an operating farm. Our aim was to test the efficacy of a pasture sward containing >30% plantain as a GHG mitigation option at paddock scale (2.5-3 ha) on a year-round rotationally grazed commercial dairy farm in the Waikato region of New Zealand. Utilising eddy covariance measurements of CO2, N2O and CH4 coupled to farm management records, N2O, carbon (C) and GHG balances (sign convention: positive value = emission to the atmosphere) were calculated for two adjacent paddocks – a control paddock containing an existing ryegrass/clover sward (RC), and a paddock that underwent renovation with the establishment of a ryegrass/clover/plantain sward (RCP). Establishment of RCP was via spraying and direct drilling and occurred in March 2018 (autumn). For the establishment period between initial herbicide application and the first grazing of the new RCP sward 66 days later, N2O emissions were 2.58 kg N ha-1 compared with 1.69 kg N ha-1 for the RC paddock. During the same period, C losses from the RCP paddock were greater than from the RC paddock (2.40 t C ha-1 for RCP and 1.29 t C ha-1 for RC) primarily due to reduced photosynthetic inputs associated with the herbicide application. The GHG budget (including enteric methane emissions from feed grown and eaten in the paddock) during the 66 day establishment period was an emission of 6.56 t CO2-eq ha-1 for RC and 9.85 t CO2-eq ha-1 for RCP. Unfortunately, the RCP sward establishment was poor, and after one year, total pasture production was unexpectedly lower than RC. Additionally, plantain accounted for <7% of the total RCP dry matter production. N2O, C and GHG balances for RCP in the first year following (and including) establishment were 6.61 kg N ha-1 y-1, 3.25 t C ha-1 y-1 and 21.40 t CO2-eq ha-1 y-1 respectively, while for RC they were 7.21 kg N ha-1 y-1, 0.95 t C ha-1 y-1 and 13.29 t CO2-eq ha-1 y-1. Due to the poor establishment of plantain, any N2O and GHG benefits of this species were unable to be initially concluded, but additional plantain was sown and measurements are ongoing. However, we did identify several relevant findings: any N2O/GHG benefits of plantain must firstly offset emissions (including C losses) associated with the establishment of the sward (>3 t CO2-eq ha-1 in this study), and furthermore, there is a risk that should the establishment be poor, GHG emissions can be considerably greater (and pasture production lower) than an existing pasture.

How to cite: Wall, A., Goodrich, J., Wecking, A., Pronger, J., Campbell, D., and Schipper, L.: Plantain as a GHG mitigation option: N2O, C and GHG balances from an intensively grazed New Zealand dairy pasture, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13415, https://doi.org/10.5194/egusphere-egu21-13415, 2021.

EGU21-15668 | vPICO presentations | BG3.19

Carbon and nitrogen budgets of a winter rapeseed field in Estonia: a methodology for the quantification of all relevant pools and fluxes

Jordi Escuer-Gatius, Krista Lõhmus, Merrit Shanskiy, Karin Kauer, Hanna Vahter, Ülo Mander, Alar Astover, and Kaido Soosaar

Agricultural activities can have several adverse impacts on the environment; such as important greenhouse gas (GHG) emissions. To implement effective mitigation measures and create effective policies, it is necessary to know the full carbon and nitrogen budgets of agro-ecosystems. However, very often, information regarding the pools or fluxes involved in the carbon and nitrogen cycles is limited, and essential complementary data needed for a proper interpretation is lacking.

This study aimed to quantify all the relevant pools and fluxes of a winter rapeseed, a widely spread crop in the Europe and Baltic regions. The N2O and CH4 fluxes were measured weekly using the closed static chamber method from August 2016 to August 2017 in a winter rapeseed field in Central Estonia. Additionally, nutrient leaching and soil chemical parameters, as well as environmental parameters like soil moisture, electrical conductivity and temperature were monitored. At the end of the season, the rapeseed and weed biomasses were collected, weighed and analyzed. The remaining relevant fluxes in the N cycle were calculated using various non-empirical methods: NH3 volatilization was estimated from slurry and environmental parameters, N deposition and NOx emissions were obtained from national reports, and N2 emissions were calculated with the mass balance method. Regarding the C cycle, gross primary production (GPP) of the rapeseed field was also calculated by the mass balance method. Simultaneously, for comparison and validation purposes, GPP was estimated from the data provided by MOD17A2H v006 series from NASA, and N2 was estimated from the measured emissions of N2O using the N2:N2O ratio calculated from the DAYCENT model equations.

N2 emissions and GPP were the biggest fluxes in the N and C cycles, respectively. N2 emissions were followed by N extracted with plant biomass in the N cycle, while in the carbon cycle soil and plant respiration and NPP were the highest fluxes after GPP. The carbon balance was positive at the soil level, with a net increase in soil carbon during the period, mainly due to GPP carbon capture. Contrarily, the nitrogen balance resulted in a net loss of N due to the losses related to gaseous emissions (N2 and N2O) and leaching.

To conclude, it was possible to close the C and N budgets, despite the inherent difficulties of estimating the different C and N environmental pools and fluxes, and the uncertainties deriving from some of the fluxes estimations.

How to cite: Escuer-Gatius, J., Lõhmus, K., Shanskiy, M., Kauer, K., Vahter, H., Mander, Ü., Astover, A., and Soosaar, K.: Carbon and nitrogen budgets of a winter rapeseed field in Estonia: a methodology for the quantification of all relevant pools and fluxes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15668, https://doi.org/10.5194/egusphere-egu21-15668, 2021.

EGU21-8605 | vPICO presentations | BG3.19

Effect of wheat varieties and growth regulators on soil greenhouse gas emissions

Elsbe von der Lancken, Victoria Nasser, Katharina Hey, Stefan Siebert, and Ana Meijide

The need to sustain global food demand while mitigating greenhouse gases (GHG) emissions is a challenge for agricultural production systems. Since the reduction of GHGs has never been a breeding target, it is still unclear to which extend different crop varieties will affect GHG emissions. The objective of this study was to evaluate the impact of N-fertilization and of the use of growth regulators applied to three historical and three modern varieties of winter wheat on the emissions of the three most important anthropogenic GHGs, i.e. carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Furthermore, we aimed at identifying which combination of cultivars and management practises could mitigate GHG emissions in agricultural systems without compromising the yield. GHG measurements were performed using the closed chamber method in a field experiment located in Göttingen (Germany) evaluating three historical and three modern winter wheat varieties, with or without growth regulators under two fertilization levels (120 and 240 kg nitrogen ha-1). GHG measurements were carried out for 2 weeks following the third nitrogen fertilizer application (where one third of the total nitrogen was applied), together with studies on the evolution of mineral nitrogen and dissolved organic carbon in the soil. Modern varieties showed significantly higher CO2 emissions (i.e. soil and plant respiration; +23 %) than historical varieties. The soils were found to be a sink for CH4, but CH4 fluxes were not affected by the different treatments. N2O emissions were not significantly influenced by the variety age or by the growth regulators, and emissions increased with increasing fertilization level. The global warming potential (GWP) for the modern varieties was 7284.0 ± 266.9 kg CO2-eq ha-1. Even though the GWP was lower for the historic varieties (5939.5 ± 238.2 kg CO2-eq ha-1), their greenhouse gas intensity (GHGI), which relates GHG and crop yield, was larger (1.5 ± 0.3 g CO2-eq g-1 grain), compared to the GHGI of modern varieties (0.9 ± 0.0 g CO2-eq g-1 grain), due to the much lower grain yield in the historic varieties. Our results suggest that in order to mitigate GHG emissions without compromising the grain yield, the best management practise is to use modern high yielding varieties with growth regulators and a fertilization scheme according to the demand of the crop.

How to cite: von der Lancken, E., Nasser, V., Hey, K., Siebert, S., and Meijide, A.: Effect of wheat varieties and growth regulators on soil greenhouse gas emissions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8605, https://doi.org/10.5194/egusphere-egu21-8605, 2021.

EGU21-14400 | vPICO presentations | BG3.19

Nocturnal surface fluxes of N2O and CH4 determined from atmospheric measurements at the Cabauw tall tower

Xin Tong, Fred Bosveld, Arjan Hensen, Bert Scheeren, Arnoud Frumau, and Huilin Chen

The agricultural emissions are the dominant sources of N2O and CH4 in the Netherlands. In this study, we have estimated nocturnal surface fluxes of both N2O and CH4 using atmospheric measurements at the Cabauw tall tower (4.927◦ E, 51.971◦ N, - 0.7 m a.s.l.). The nocturnal N2O and CH4 surface fluxes were derived using two different methods, the vertical gradient method (VGM), i.e. the sum of the storage flux and the turbulent flux, and the radon-tracer method (RTM), for the period of March 2017-December 2018 and 2016-2018, respectively. For N2O, we show that a few events occurring between May 30 and June 4 in 2018 dominated the monthly means. Using the VGM, we have estimated the annual mean nocturnal surface flux to be 0.59 ± 0.38 g/m2/yr (1 σ, the same as below) and 0.53 ± 0.19 g/m2/yr with and without events, respectively. The fluxes are high in the summer and low in the winter, with a seasonal amplitude of around 1.0 g/m2/yr and 0.5 g/m2/yr, with and without events, respectively, which is likely caused by the seasonality of agricultural activities. For CH4, the annual mean nocturnal surface flux is 12.1 ± 3.3 g/m2/yr and the amplitude is around 9.9 g/m2/yr. Using the RTM, the mean fluxes of the whole period for N2O and CH4 are estimated to be 1.18 ± 2.25 (1.08 ± 1.29, without the events) g/m2/yr and 26.9 ± 24.8 g/m2/yr, respectively; in contrast to the VGM, no apparent seasonal pattern has been found. However, there is a good linear correlation between the estimated N2O fluxes from the two methods and the monthly means show a similar pattern when the same nights are considered; the R-squared value is around 0.9 with events and 0.6 without events, and the slope varies from 1.9 to 0.8 when different estimates of radon fluxes are used. Furthermore, we found that large N2O fluxes are related to the amount of rainfall occurring days before, with the correlation coefficient of around 0.6 (p value<0.01). For CH4, there is no correlation between the estimated CH4 fluxes from the two methods. Our findings demonstrate that nocturnal N2O and CH4 fluxes in the Cabauw area are highly variable and vary over different seasons, and that both VGM and RTM are useful to quantify regional N2O and CH4 fluxes.

How to cite: Tong, X., Bosveld, F., Hensen, A., Scheeren, B., Frumau, A., and Chen, H.: Nocturnal surface fluxes of N2O and CH4 determined from atmospheric measurements at the Cabauw tall tower, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14400, https://doi.org/10.5194/egusphere-egu21-14400, 2021.

EGU21-12249 | vPICO presentations | BG3.19

Modelling of greenhouse gas emissions from European croplands with the biogeochemical model ECOSSE

Matthias Kuhnert, Michael Martin, Matthew Mcgrath, and Pete Smith

Greenhouse gas (GHG) emissions contribute to climate change. Agricultural production contributes 10 – 14 % of the global anthropogenic GHG emission, including 37 % from soils (Paustian et al., 2016). Monitoring and analysis of emissions from agriculture is the basis for reducing GHG emissions and applying mitigation options. Measuring and estimating emissions from the agricultural sector are challenging and modelling is a useful tool to capture the heterogeneity of the dynamics. Agricultural management is the main driver for the carbon and nitrogen dynamics in croplands, which makes model approaches difficult, as potentially there is great heterogeneity in the influencing factors, but also a lack of robust data for management data for larger scales. Additionally, measurements of GHG emissions are scarce, on small (spatial and temporal) scales, or do not reflect the entire range of system variable combinations. This hinders the evaluation of large scale simulation results. The objective of the study was to simulate the GHG emissions (CO2 and N2O) for European croplands and use national inventory data for the evaluation of the results. We used the model ECOSSE which is based on the carbon model RothC and the nitrogen model SUNDIAL. For yield production, the primary production model MIAMI is coupled with ECOSSE. The model structure allows small scale differences (resolution for simulation is 0.1°) to be captured, while simulating monthly time steps. This balances the uncertainty of the available input data with the accuracy of the simulated results. The model shows reasonable results for the CO2 emissions, but underestimates heterotrophic respiration, which leads to an overestimation of carbon fluxes to the soil. Nitrogen emissions are underestimated due to underestimation of fertilizer applications in some hot spots. The comparison with national inventories that depend mainly on statistics using simpler approaches shows differences to the simulation approach, which indicates the strong dependency of the emissions on the management data. The model approach provides the spatial distribution of the emissions as well as inter-annual dynamics. The changes on the model showed already the improved performances by the model and the extension to include more target variables. More sub-national and sub-annual data sets for evaluation will allow a further improvement of the model performance. 

How to cite: Kuhnert, M., Martin, M., Mcgrath, M., and Smith, P.: Modelling of greenhouse gas emissions from European croplands with the biogeochemical model ECOSSE, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12249, https://doi.org/10.5194/egusphere-egu21-12249, 2021.

EGU21-5567 | vPICO presentations | BG3.19

GHG mitigation potential of agricultural management practises on mineral and organic soils

Saara Lind, Marja Maljanen, Merja Myllys, Mari Räty, Sanna Kykkänen, Panu Korhonen, Maarit Termonen, Narasinha Shurpali, and Perttu Virkajärvi

Agricultural soils are a significant source of greenhouse gas (GHG) emissions. To study these emissions, we are currently building three research platforms that consist of full eddy covariance instrumentation for determination of net ecosystem carbon dioxide exchange and fluxes of methane and nitrous oxide. These platforms will be completed with supporting weather, plant and soil data collection. Two of our platforms are sites on organic soils with a thick peat layer (>60 cm) and the third one is on a mineral soil (silt loam). To study the role of the grassland management practises at these sites, we have initiated ORMINURMI-project. Here, we will characterise the effects of ground water table (high vs. low), crop renewal methods (autumn vs. summer) and plant species (tall fescue vs. red glover grass) on greenhouse gas budgets of grass production. Also effect on yield amount and nutrient quality will be determined. In this presentation, we will present the preliminary data collected at these research platforms and our plans for the use of these data in the coming years.

How to cite: Lind, S., Maljanen, M., Myllys, M., Räty, M., Kykkänen, S., Korhonen, P., Termonen, M., Shurpali, N., and Virkajärvi, P.: GHG mitigation potential of agricultural management practises on mineral and organic soils, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5567, https://doi.org/10.5194/egusphere-egu21-5567, 2021.

EGU21-886 | vPICO presentations | BG3.19

Gross rates of soil N2O emission and uptake and denitrification gene abundance in temperate cropland agroforestry and monoculture systems

Jie Luo, Lukas Beule, Guodong Shao, Edzo Veldkamp, and Marife D. Corre

Monoculture croplands are considered as major sources of the greenhouse gas, nitrous oxide (N2O). The conversion of monoculture croplands to agroforestry systems, e.g., integrating trees within croplands, is an essential climate-smart management system through extra C sequestration and can potentially mitigate N2O emissions. So far, no study has systematically compared gross rates of N2O emission and uptake between cropland agroforestry and monoculture. In this study, we used an in-situ 15N2O pool dilution technique to simultaneously measure gross N2O emission and uptake over two consecutive growing seasons (2018 - 2019) at three sites in Germany: two sites were on Phaeozem and Cambisol soils with each site having a pair of cropland agroforestry and monoculture systems, and an additional site with only monoculture on an Arenosol soil prone to high nitrate leaching. Our results showed that cropland agroforestry had lower gross N2O emissions and higher gross N2O uptake than in monoculture at the site with Phaeozem soil (P ≤ 0.018 – 0.025) and did not differ in gross N2O emissions and uptake with cropland monoculture at the site with Cambisol soil (P ≥ 0.36). Gross N2O emissions were positively correlated with soil mineral N and heterotrophic respiration which, in turn, were correlated with soil temperature, and with water-filled pore space (WFPS) (r = 0.24 ‒ 0.54, P < 0.01). Gross N2O emissions were also negatively correlated with nosZ clade I gene abundance (involved in N2O-to-N2 reduction, r = -0.20, P < 0.05). These findings showed that across sites and management systems changes in gross N2O emissions were driven by changes in substrate availability and aeration condition (i.e., soil mineral N, C availability, and WFPS), which also influenced denitrification gene abundance. The strong regression values between gross N2O emissions and net N2O emissions (R2 ≥ 0.96, P < 0.001) indicated that gross N2O emissions largely drove net soil N2O emissions. Across sites and management systems, annual soil gross N2O emissions and uptake were controlled by clay contents which, in turn, correlated with indices of soil fertility (i.e., effective cation exchange capacity, total N, and C/N ratio) (Spearman rank’s rho = -0.76 – 0.86, P ≤ 0.05). The lower gross N2O emissions from the agroforestry tree rows at two sites indicated the potential of agroforestry in reducing soil N2O emissions, supporting the need for temperate cropland agroforestry to be considered in greenhouse gas mitigation policies.

How to cite: Luo, J., Beule, L., Shao, G., Veldkamp, E., and Corre, M. D.: Gross rates of soil N2O emission and uptake and denitrification gene abundance in temperate cropland agroforestry and monoculture systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-886, https://doi.org/10.5194/egusphere-egu21-886, 2021.

EGU21-1063 | vPICO presentations | BG3.19

Agricultural N2O emission is influenced by N-fertilization form rather than landscape position

Shrijana Vaidya, Reena Macagga, Mogens Thalmann, Nicole Jurisch, Natalia Pehle, Gernot Verch, Michael Sommer, Jürgen Augustin, and Mathias Hoffmann

Agricultural soils are an important source of nitrous oxide (N2O) emission and are mainly affected by the application of N fertilization. In addition to the effect of fertilizer form (mineral/organic), N2O production and consumption processes in agricultural systems are influenced by the soil characteristics. However, knowledge of this is still very limited for erosion-affected arable soils. Therefore, the aim of our investigations was to find the impact of soil erosion state associated with the landscape position and N fertilization form have on N2O emission. This information is needed to evaluate the effects/benefits of new agricultural practices in future mitigation strategies aiming towards lower N2O emissions.

We present 3 years of N2O flux measurements in a two-factorial experiment by using a non-flow-through non-steady-state (NFT-NSS) manual chambers. Three sites were established on the summit position having similar soil type (Albic Luvisols; non-eroded soil) and were treated with organic fertilizer (100% organic biogas fermented residues (BFR)), mineral fertilizer (100% mineral calcium ammonium nitrate (CAN)), and a mixture of both fertilizers (50% CAN + 50% BFR). Two additional sites were established on the extremely eroded soil (Calcaric Regosols; on a steep slope with very dense parent material) and at a colluvial site in a depression (Endogleyic Colluvic Regosols) and treated with 100% CAN. The crop rotation was identical for all sites during the study period which includes: Maize (Zea mays L.) – Maize (Zea mays L.) – ­Winter rye (Secale cereale L.) – Sorghum (Sorghum bicolor) – Triticale (Triticosecale).

Our results show that the N2O emission exhibited temporal and spatial variability and is mainly influenced by fertilization form and soil type. Among the three fertilization treatments within the same soil type (non-eroded soil), the site with the application of organic fertilization shows the highest cumulated N2O emission which is accumulated to 13.5 kg N2O-N ha-1 compared to the site with mixed fertilization (11.4 kg N2O-N ha-1) and mineral fertilization (4.5 kg N2O-N ha-1). Among the three distinct soil types with an identical application of mineral fertilizer, the cumulated N2O emission is higher at the depression (7.3 kg N2O-N ha-1) compared to the non-eroded (4.5 kg N2O-N ha-1) and extremely eroded soil (1.6 kg N2O-N ha-1). In general, our results suggest a stronger influence of N fertilization form than erosion affected soil on N2O emission.

Keywords: NFT-NSS manual chamber; soil erosion; N fertilization form, nitrous oxide, soil type

How to cite: Vaidya, S., Macagga, R., Thalmann, M., Jurisch, N., Pehle, N., Verch, G., Sommer, M., Augustin, J., and Hoffmann, M.: Agricultural N2O emission is influenced by N-fertilization form rather than landscape position, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1063, https://doi.org/10.5194/egusphere-egu21-1063, 2021.

EGU21-2553 | vPICO presentations | BG3.19

Soil N2O emissions from temperate cropland agroforestry and monoculture systems

Guodong Shao, Guntars Martinson, Jie Luo, Xenia Bischel, Dan Niu, Marife D. Corre, and Edzo Veldkamp

Monoculture cropland is a major contributor to agriculture-related sources of N2O emission, a potent greenhouse gas and an agent of ozone depletion. Cropland agroforestry has the potential to minimize deleterious environmental impacts. Presently, there is no systematic comparison of soil N2O emission between cropland agroforestry (CAF) and monoculture systems (MC) in Western Europe. Our study aimed to (1) quantify the spatial-temporal dynamics of soil N2O fluxes, and (2) determine their soil controlling factors in CAF and MC. We selected three sites with different soil types (Phaeozem, Cambisol, and Arenosol) in Germany. Each site has paired CAF and MC (agroforestry sites consisted of 12-m wide tree row and 48-m wide crop row and were established in 2007, 2008 and 2019 in these soil types, respectively). In each management system at each site, we had four replicate plots. In the CAF, we conducted measurements in the tree row and within the crop row at 1 m, 7 m, and 24 m from the tree row. We measured soil N2O fluxes monthly over 2 years (March 2018‒February 2020) using static vented chambers method. Following gas sampling, we also measured soil temperature, water-filled pore space (WFPS), and mineral N (NH4+ and NO3-) within the same day. Across all sites, soil moisture and N availability were major drivers of soil N2O fluxes. Both CAF and MC were net sources of soil N2O at all sites. At the site with Phaeozem soil, annual soil N2O emissions from CAF in both years (1.84 ± 0.35 and 1.17 ± 0.30 kg N ha1 yr1) were greater than MC (0.89 ± 0.09 and 0.34 ± 0.05 kg N ha1 yr1) (P = 0.03). At the site with Cambisol soil, annual soil N2O emission did not differ between MC (0.49 ± 0.07 kg N ha1 yr1) and CAF (0.73 ± 0.13 kg N ha1 yr1) in 2018/2019 (P = 0.20) whereas in 2019/2020 MC was 134% greater than CAF (2.92 ± 0.45 and 1.25 ± 0.08 kg N ha1 yr1, respectively; P = 0.03). The inter-annual differences were largely related to crop types and to climate conditions. At the site with Arenosol soil, there was no difference between CAF and MC. Our results indicated that CAF may decrease, maintain and/or increase soil N2O emissions compared to MC depending on tree age, soil characteristics, management and precipitation.

How to cite: Shao, G., Martinson, G., Luo, J., Bischel, X., Niu, D., D. Corre, M., and Veldkamp, E.: Soil N2O emissions from temperate cropland agroforestry and monoculture systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2553, https://doi.org/10.5194/egusphere-egu21-2553, 2021.

EGU21-5632 | vPICO presentations | BG3.19

Full year of continuous N2O flux measurements in a drained agricultural peatland in northern Finland

Stephanie Gerin, Tuomas Laurila, Liisa Kulmala, Juha-Pekka Tuovinen, Henriikka Vekuri, and Annalea Lohila

Pristine boreal peatlands are often considered neutral or even small sinks for nitrous oxide (N2O). However, drained peatlands are a significant source of N2O. In these managed sites, oxygen becomes more available, increasing denitrification and therefore N2O release into the atmosphere. N2O emissions do not typically follow a strong seasonal pattern like carbon dioxide but instead, have high spatial and temporal variability. Short-term N2O peak emissions can be observed after various meteorological or soil management events throughout the year, for example after soil freezing or thawing, or fertilization. However, it is not well known how exactly those events trigger the N2O emission peaks. Therefore, N2O annual budget based on punctual chamber measurement can introduce large uncertainties. That is why it is important to measure N2O emissions with a continuous method to better understand the controlling factors and to estimate the annual budgets more accurately.

For the first time in the boreal region of Europe, N2O emissions were continuously observed during a full year in a drained agricultural peatland with the eddy covariance (EC) technique. The study site is a managed peatland in northern Finland, in Ruukki (Latitude: 64.684010; Longitude: 25.106473), with a peat depth between 10 and 90 cm. It is currently managed as a grass field, composed of a mixture of timothy and meadow fescue. We will show a first overview of the N2O fluxes measured since November 2019 with the EC technique. We will present how various meteorological and management events can explain some short-term variations. Then, we will compare the N2O annual budget estimated from the EC measurements to the IPCC emission factor and to different estimates achieved using several sets of non-continuous data points, representing manual chamber measurements with varying frequency.

How to cite: Gerin, S., Laurila, T., Kulmala, L., Tuovinen, J.-P., Vekuri, H., and Lohila, A.: Full year of continuous N2O flux measurements in a drained agricultural peatland in northern Finland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5632, https://doi.org/10.5194/egusphere-egu21-5632, 2021.

EGU21-8135 | vPICO presentations | BG3.19

Nitrous oxide emission from agricultural soils in response to nitrification inhibitor and N-fertilizer amount

Azeem Tariq, Klaus Steenberg Larsen, Line Vinther Hansen, Lars Stoumann Jensen, and Sander Bruun

Nitrogen (N) fertilization in agricultural soils significantly contributes to the atmospheric increase of nitrous oxide (N2O). Application of nitrification inhibitors (NIs) is a promising strategy to mitigate N2O emissions and improve N use efficiency in agricultural systems. We studied the effect of 3,4-dimethylpyrazol phosphate (DMPP) as an NI on N2O mitigation from soils with spring barley and spring rape. We used both manual and automatic chamber technologies to capture the spatial and temporal dynamics of N2O emissions. Intensive manual chamber measurements were conducted two months after fertilization and fortnightly afterwards. A mini-plot experiment with different levels (0 %, 50 %, 100 %, 150 %, and 200 %) of standard N fertilizer application and 100% N with NI was also conducted for two months in soil planted with spring barley. N2O emissions were affected by the N amount and by the use of NI. Higher emissions were observed in treatments with high N levels and without NI. The effect of NI in reducing N2O emissions from spring barley plots was significant in the small chamber experiments, where NI reduced N2O emissions by 47 % in the first two months after fertilization. However, the effect of NI on N2O reduction was non-significant in the full-plot chamber experiment for the whole season. In contrast, NI significantly reduced (56 %) the seasonal N2O emissions from the soils planted with spring rape. After the initial peaks following the fertilizer application, high N2O fluxes were observed following substantial rain events. The continuous flux measurements in automated chambers showed the dynamic of N2O changes during the whole season, including some peaks that were unobservable with manual chambers because of the low temporal resolution. The concentration of nitrate was higher in the soils treated with mineral N without NI compared to soils treated with NI, which clearly showed the inhibition of the nitrification process with the application of NI. The grain and biomass yield were not affected by the use of NI. In conclusion, application of NI is an efficient mitigation technology for N2O emissions in the period following the fertilizer application, but had little effect on subsequent emissions following rain events.

Keywords: nitrification inhibitors, DMPP, nitrous oxide, mitigation, agricultural soils

How to cite: Tariq, A., Larsen, K. S., Hansen, L. V., Jensen, L. S., and Bruun, S.: Nitrous oxide emission from agricultural soils in response to nitrification inhibitor and N-fertilizer amount, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8135, https://doi.org/10.5194/egusphere-egu21-8135, 2021.

EGU21-14398 | vPICO presentations | BG3.19

Quantification of N2O fluxes and EF values in a pasture using chamber and eddy-covariance technique

Lena Barczyk, Kate Kuntu-Blankson, Pierluigi Calanca, Johan Six, and Christof Ammann

In grassland ecosystems nitrogen (N) inputs are mainly attributed to fertilizer applications for increasing  herbage productivity and to excreta of grazing animals. Cattle, for instance, excrete 75-95 % of the N intake. Accordingly, dung and urine patches of grazing animals form hotspots of nitrate leaching and gaseous N emissions as ammonia (NH3) or the important greenhouse gas nitrous oxide (N2O). Global default emission factor (EF) values for N2O, 2.0 % for grazing based nitrogen inputs (EF3) and 1.0 % for nitrogen inputs via fertilizer applications (EF1) have been suggested by IPCC. However, some countries like New Zealand, Canada or the Netherlands have established country-specific EFs showing considerable regional differences.

In the present research study, we examine N2O emissions of a pasture field in Switzerland in relation to possible drivers. Field scale emissions by eddy covariance are measured in parallel to patch-scale N2O fluxes from controlled applications of urine, dung and fertilizer. The patch-scale fluxes are measured by a manually operated chamber ('fast-box') connected to an online gas analyzer. Besides estimating EF values on annual and seasonal basis, relevant factors that might control N2O fluxes like environmental conditions (weather parameters, soil moisture, soil temperature), vegetation characteristics (height, composition, nitrogen and carbon content) and pasture management (patch age, grazing, fertilization, cut events, interactive effects) are analyzed. 

We present and discuss results of the first measurement year 2020. Three artificial urine applications during summer and autumn were performed. They show peak N2O fluxes of 279-1718 μg m-2 h-1 directly after application that decrease to near-background fluxes within 19-43 days. Using a simple linear interpolation of measured N2O fluxes, EF values of artificial urine patches vary between 0.57 and 2.44 % indicating a seasonal variability of N2O fluxes.

How to cite: Barczyk, L., Kuntu-Blankson, K., Calanca, P., Six, J., and Ammann, C.: Quantification of N2O fluxes and EF values in a pasture using chamber and eddy-covariance technique, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14398, https://doi.org/10.5194/egusphere-egu21-14398, 2021.

EGU21-14676 | vPICO presentations | BG3.19

Towards improved N2O budgets estimation from 10 site-years measurement and analysis of key drivers

Laurent Bigaignon, Valérie Le Dantec, Bartosz Zawilski, Franck Granouillac, Rémy Fieuzal, Nicole Claverie, Baptiste Lemaire, Aurore Brut, Eric Ceschia, Patrick Mordelet, Claire Delon, and Tiphaine Tallec

Agriculture represents 14% of global anthropogenic greenhous gases (GHG) emissions, 46% of this amount being due to N2O emissions from soils (UNEP, 2012). N2O is a powerful GHG (IPCC, 2013) and its emissions from agricultural soils are related to physical-chemical parameters which depend on climate (temperature, rain…), soil properties (Robertson et al., 1989) and farming practices (irrigation, tillage, fertilization…) (Tellez-Rio et al., 2015). The IPCC Tier 1 emission factor remains widely used to estimate annual N2O budgets from agricultural soils by taking into account the annual amount of N input only. However, not taking into account the environmental controlling factors may introduce high uncertainty in N2O budget estimation. Our study aims at highlighting the key drivers of N2O emissions from two agricultural sites in the South West of France and at proposing an improved, simple and accessible methodology to estimate N2O budget at crop plot and seasonal scale. For this purpose, we benefited from a unique long time series of daily N2O fluxes (from 2011 to 2016) measured with 6 closed automated chambers on two ICOS sites with contrasted agricultural management (FR-Lam and FR-Aur).

N2O annual budget vary from 1.04 to 7.96 kgN ha-1 yr-1 for winter wheat and maize crop, respectively. The effects of fertilization, rain and irrigation, plant development, spring mineralization and deep tillage on N2O emissions were investigated. Significant correlations between rain combined with fertilization and plant development, deep tillage or spring mineralisation was found with R² of 0.91, 0.99 and 0.85, respectively.  We took advantage of these results to develop an empirical model, including N input quantity, residual N, leaf area index and water input in order to estimate seasonal and annual N2O budget. At the seasonal scale, the model output matched well with the observed budget, with a R² and a RMSE of 0.87 and 0.33 kgN ha-1 at FR-Lam and of 0.92 and 0.12 kgN ha-1 at FR-Aur, respectively.  It also gave good statistical scores at the crop year scale with a R² of 0.96 and a low RMSE of 0.43 kgN ha-1 when binding data from both sites. Using the IPCC Tiers 1 methodology gave lower and more scattered results with a R² of 0.46 and a RMSE of 1.46 kgN ha-1. For sites where N2O fluxes are not monitored,  that new methodology may be an alternative and a more precise methodology than the IPCC Tiers 1 approach. It has also the advantage to require only few and accessible input variables.

 

REFERENCES

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge.

Robertson et al., 1989. Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhock., 56, 289-299.

Tellez-Rio et al., 2015. N2O and CH4 Emissions from a Fallow–wheat Rotation with Low N Input in Conservation and Conventional Tillage under a Mediterranean Agroecosystem. Sci. Total Environ., 508, 85–94.

UNEP, 2012. Growing greenhouse gas emissions due to meat production.

How to cite: Bigaignon, L., Le Dantec, V., Zawilski, B., Granouillac, F., Fieuzal, R., Claverie, N., Lemaire, B., Brut, A., Ceschia, E., Mordelet, P., Delon, C., and Tallec, T.: Towards improved N2O budgets estimation from 10 site-years measurement and analysis of key drivers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14676, https://doi.org/10.5194/egusphere-egu21-14676, 2021.

EGU21-515 | vPICO presentations | BG3.19

Quantifying nitrous oxide emissions in space and time using static chambers and eddy covariance from a temperate grassland

Rachael Murphy, Karl Richards, Dominika Krol, Amanuel Gebremichael, Luis Lopez-Sangil, James Rambaud, Nicholas Cowan, Gary Lanigan, and Matt Saunders

Nitrous oxide (N2O) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 265 relative to carbon dioxide (CO2) and a lifespan of over 100 years. Where N input from fertilizers exceeds plant demands, hotspots of N2O can be produced releasing short-lived pulses of N2O from the soil that exhibit disproportionately high rates of emissions relative to longer periods of time, known as hot moments. Hotspots and hot moments of N2O are sensitive to changes in agricultural management and the environment making it difficult to accurately quantify N2O emissions with low uncertainties. This study investigates the methods used to quantify N2O emissions in time and space, using both static chambers (SC) and eddy covariance (EC) techniques.N2O fluxes were measured from both techniques from an intensively managed grassland site under four fertilizer applications of calcium ammonium nitrate (CAN) in 2019. EC measurements of N2O were gap-filled by using a simple linear empirical model that incorporated environmental and management data. SC N2O fluxes were calculated using the arithmetic method and Bayesian statistics via Markov Chain Monte-Carlo (MCMC) simulations to account for the log-normal distribution of fluxes measured. N2O emissions were weakest in winter for both techniques (-3.27 µg N2O-N m-2 hr-1 for SC and -3.9 µg N2O-N m-2 hr-1 for EC). Following fertilizer application, daily averaged N2O emissions peaked in March (538.89 µg m-2 hr-1 for SC, 491.18 µg m-2 hr-1 for EC) and April (117.91 µg m-2 hr-1for SC and 306.90 µg m-2 hr-1 for EC). Delayed peaks in N2O emissions following fertilizer application occurred in June (101.03 µg m-2 hr-1 for SC and 814.76 µg m-2 hr-1 for EC) and October (417.14 µg m-2 hr-1 for SC and 313.22 µg m-2 hr-1 for EC) and these high emissions events coincided with dry periods followed by rainfall events. EC and SC measurements were most comparable when emissions were > 115 µg m-2 hr-1, when the flux footprint of half-hourly EC flux measurements overlapped with the position and time of SC measurements and when the number of chamber replicates were ≥ 15 on a given sampling day. Where the chamber sample size was small (n ≤ 5), the Bayesian method produced large uncertainties (> 25,000 µg m-2 hr-1) due to the inability to constrain an arithmetic mean from a log-normally distributed data set. Annual cumulative N2O fluxes from EC and SC by the arithmetic and Bayesian method, were 3.35(± 0.5) kg N ha-1, 2.98 (± 0.17) kg N ha-1and 3.13 (± 0.24) kg N ha-1 respectively. Emission factors from EC and SC by the arithmetic and Bayesian method were higher than the Intergovernmental Panel on Climate Change (IPCC) default value of 1%, at 1.46%, 1.30% and 1.36%, respectively. Our study highlights that disparities exist between SC and EC in quantifying N2O fluxes from a managed grassland and we recommend constraining disparities by utilizing a SC sample size > 5 and by accounting for the log-normal distribution of N2O flux data to accurately estimate N2O flux uncertainty.

How to cite: Murphy, R., Richards, K., Krol, D., Gebremichael, A., Lopez-Sangil, L., Rambaud, J., Cowan, N., Lanigan, G., and Saunders, M.: Quantifying nitrous oxide emissions in space and time using static chambers and eddy covariance from a temperate grassland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-515, https://doi.org/10.5194/egusphere-egu21-515, 2021.

BG3.20 – Plant traits, adaptation, and biogeochemical cycles – from measurements to models

EGU21-8267 | vPICO presentations | BG3.20

Deciphering climate, soil, and phylogenetic controls on leaf nitrogen and phosphorus stoichiometry of terrestrial plants

Di Tian, Benjamin D. Stocker, Zhengbing Yan, and Jingyun Fang

Leaf nitrogen (N) and phosphorus (P) are essential nutrients constraining plant growth and ecosystem productivity. Stoichiometric relationships between N and P concentration have been explored at both regional and global levels in recent decades, especially for leaves, resulting in the increasing number of available data. For example, threshold values of leaf N:P ratios and a 2/3 power law of leaf N-P scaling relationship have been proposed, and are widely used to detect nutrient limitation in terrestrial ecosystems. However, our recent work has revealed that significant variation in the scaling exponent of leaf N against P concentration appeared not only across plant functional and taxonomic groups, but also along climatic and soil fertility gradients. This suggests the N vs. P scaling exponent to be a relatively plastic “trait” that is shaped by local climate environments, soil nutrient conditions, and phylogeny in conjunction, with important feedbacks to ecosystem function and crucial insights into traditional mechanistic ecosystem models, which have mostly modelled the controls on leaf N and P stoichiometric characteristics through the relationships of foliar nutrient concentrations with soil nutrient availability across plant functional types (PFT), ignoring the important differences within PFTs and species along climatic gradients.

To further identify relationships of leaf N against P concentrations with multiple controls across the globe, we compiled a comprehensive leaf N and P dataset. Totally, this dataset contains 12,453 individual records spanning 2,158 sites worldwide, including 203 families, 1,291 genera and 3,361 species. The climatic, soil variables and phylogenetic information provided for each individual record included: (1) geographical location information; (2) topography indices; (3) sampling period during the field campaigns and experiments; (4) taxonomic information; (5) life form (i.e. angiosperm vs. gymnosperm, monocotyledonous vs. dicotyledonous, woody (including coniferous, deciduous broad-leaved and evergreen broad-leaved woody) vs. herbaceous plants; (6) climate indices, including mean annual temperature, mean annual precipitation, aridity index, maximum cumulative water deficit; (7) pairwise soil N and P concentrations for part of the whole records; (8) corresponding soil class information from the Harmonized World Soil Database; (9) corresponding atmospheric CO2 concentration and bulk atmospheric N deposition during the sampling period; and (10) specific leaf area (TRY Plant Trait Database).

Moreover, we built empirical models of varying complexity, which provides critical insight into the relative importance of plant phylogeny, soil properties and climatic variables in shaping global-scale leaf N and P stoichiometry of terrestrial plants. Then, we assessed the power of the modelled optimal maximum Rubisco carboxylation rate standardized to 25 ℃ (Vcmax25), based on leaf N concentrations, as an independent predictor to investigate the power of the state-of-the-art optimality model driven by climate variables alone for photosynthetic traits. We further explored the use of the N~P scaling relationship for each specific species, life form and PFT in parameterizing current ecosystem models. Collectively, our work may provide an important benchmark for connecting plant elemental stoichiometry with next-generation earth system models, which can enhance our predictions of ecosystem functioning and vegetation dynamics, especially in the context of rapidly environmental changes with increasing CO2 and N deposition.

How to cite: Tian, D., Stocker, B. D., Yan, Z., and Fang, J.: Deciphering climate, soil, and phylogenetic controls on leaf nitrogen and phosphorus stoichiometry of terrestrial plants, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8267, https://doi.org/10.5194/egusphere-egu21-8267, 2021.

EGU21-5090 | vPICO presentations | BG3.20

Rising CO2 concentrations reduce nitrogen availability in alpine grasslands

Sergey Rosbakh, Karl Auerswald, and Peter Poschlod

EGU21-7397 | vPICO presentations | BG3.20

Plant nutrient acquisition strategies along an N:P gradient: implications for vegetation models

Daniil Scheifes and Martin Wassen

Since modern days, anthropogenic activity significantly alters the nitrogen and phosphorus cycle, and these changes are substantially affecting terrestrial plant communities. Along with potassium (K), nitrogen (N) and phosphorus (P) are key nutrients limiting plant growth. Plants occupy distinct niches along N:P ratio gradients, and their physiological adaptation to these environments could potentially help us understand current and future species composition within N- and P-limited soils. Bergmann et al. (2020), provided an improved two-dimensional conceptual framework to understand resource acquisition through belowground rooting behaviour. They discerned two largely independent gradients: a conservation and a collaboration gradient. The conservation gradient differentiates between species with a slow strategy, which have a high root tissue density implying slow resource uptake and investment in long-living roots, and species with a fast strategy, that show high root N concentration implying high resource uptake but a short lifespan. The collaboration gradient goes from an outsourcing strategy with a high root diameter allowing carbon investment in fungal partners versus a do-it-yourself soil exploration strategy which requires a high specific root length. This framework, however, has not been assessed from a nutrient stoichiometric perspective. For this, we retrieved 12 belowground traits from trait databases and linked them to a European-wide field dataset of 990 vegetation recordings with species composition, site-productivity and nutrient contents of herbaceous ecosystems (extended dataset building on Wassen et al. (2021)). Using the framework of Bergmann et al. (2020), we show that plant communities in P-limited sites have adopted a slow and collaborative belowground strategy, whereas N-limited plant communities show a fast and do-it-yourself belowground strategy. Our result implies that, in addition to the benefit for fast-growing species in a nutrient-enriching world, anthropogenic alterations in the nutrient balance may also heavily affect species fitness and survival due to their nutrient-specific rooting strategies. The biggest remaining question is, however, if species will be able to adapt to changes in nutrient stoichiometry and if they can, how fast this adaptation process will be. Our results provide a new insight into belowground strategies under N or P limitation and may have consequences for the representation of plant traits in vegetation models. Finally, we strongly urge to analyse rooting traits of a larger number of species along a N:P gradient to increase the reliability of community trait estimates.

 

References:

Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D. C., Kuyper, T. W., Guerrero-Ramirez, N., Valverde-Barrantes, O. J., Bruelheide, H., Freschet, G. T., Iversen, C. M., Kattge, J., McCormack, M. L., Meier, I. C., Rillig, M. C., Roumet, C., Semchenko, M., Sweeney, C. J., van Ruijven, J., York, L. M., & Mommer, L. (2020). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6(27), eaba3756. https://doi.org/10.1126/sciadv.aba3756

Wassen, M. J., Schrader, J., van Dijk, J., & Eppinga, M. B. (2021). Phosphorus fertilization is eradicating the niche of northern Eurasia’s threatened plant species. Nature Ecology & Evolution, 5(1), 67-73. https://doi.org/10.1038/s41559-020-01323-w

How to cite: Scheifes, D. and Wassen, M.: Plant nutrient acquisition strategies along an N:P gradient: implications for vegetation models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7397, https://doi.org/10.5194/egusphere-egu21-7397, 2021.

Andean ecosystems exhibit a natural limitation in nutrients such as Phosphorus that, potentially, affect the entire ecosystem´s metabolism, function and resilience to environmental perturbation. Due to this limitation in the soil, atmospheric inputs via wet or dry deposition become a determinant source of nutrients to the ecosystems. In highly disturbed Andean forests, scattered trees that remain in the landscape after forest conversion into other land uses, have been designated as key structures due to the ecological functions they have relative to the area they occupy, allowing to improve the biophysical and biogeochemical conditions of the place. On a Landscape-scale, they modify spatial heterogeneity, and contribute ecological connectivity that helps plant species dispersal. Previous studies have demonstrated the importance of precipitation for nutrient inputs into forests where various tree species differ in their responses because of their specificity, trait configuration, and changes in plant community competitive hierarchies. However, few studies have quantified the response of functional traits for different species of trees, evaluating their ability to intercept and move phosphorus through the relationship with hydrological processes. We determined the interception and input of phosphorus into the ecosystem through the study of twenty individuals from five scattered tree species in a modified Andean landscape: Croton magdalenensis, Tibouchina lepidota, Vismia Baccifera, and Quercus humboldtii, which are dominant and native to the Northern Andes, as well as a common exotic species in the area Eucaliptus globulus, generally planted for timber. In all individuals, we measured functional traits that relate, and potentially explain rainfall interception, and quantified concentrations of phosphate PO4 in precipitation, throughfall, and stemflow in all individual trees for a group of 16 individual rain events that varied in their hydrological characteristics. In general, PO4 concentrations in precipitation were low, although variation associated with hydrological characteristics of precipitation (intensity, duration, magnitude and cumulative precipitation in the previous days) was generally observed. In most cases were concentrations of PO4 were observed in precipitation, throughfall and stemflow had similar concentrations in most trees, highlighting the potential role of these hydrological processes in redistributing nutrients into the root zone.  Notably, one particular species, Croton magdalenensis, a pioneer species that generally dominates early forest recovery in disturbed areas, had significantly higher values of PO4 concentration in throughflow and stemflow compared to concentration in oncoming precipitation, as well as in the same fluxes on the other species. This condition potentially results from a particularly higher epiphyte load in these trees, which potentially facilitate biogeochemical exchange and enhances ecological functions associated with early stages of forest recovery.  Overall, our results highlight the complex biogeochemical interactions that occur in these highly biodiverse ecosystems where plant functional traits can be useful to describe ecosystem function at the landscape scale.  More generally, our results can be useful for restoration processes where ecosystem function, and particularly biogeochemical processes related to limiting nutrients (such as Phosphorous), need to be prioritized.

Keywords: precipitation, phosphorus interception, nutrients limitation, scattered tree, functional traits.

How to cite: Vásquez, S. and Villegas, J. C.: Redistribution of Phosphate into the soil via hydrological processes explained by functional traits in scattered trees of different species in the tropical Andes., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7714, https://doi.org/10.5194/egusphere-egu21-7714, 2021.

EGU21-13723 | vPICO presentations | BG3.20

Forest fine root biomass and soil CNP stoichiometry across three different biogeographical regions in Croatia

Maša Zorana Ostrogović Sever, Doroteja Dimoski, Mislav Anić, and Hrvoje Marjanović

Fine root biomass (FRB) is a small but important forest ecosystem pool due to its direct role in ecosystem functioning through belowground carbon and soil nutrient cycling. At the global scale there is evidence that FRB correlates with meteorological parameters, e.g. precipitation and air temperature. Moving from global to regional and local scales other environmental parameters, primarily related to site soil characteristics, become more important.
In this research, we investigated which soil parameters are important as drivers of fine root biomass in three different biogeographical regions in Croatia, namely the Continental, the Alpine and the Mediterranean.  We collected data on soil and site characteristics at 242 locations. Soil parameters include bulk density, texture, pH and C, N and P content, while site parameters were latitude, longitude, elevation, precipitation, air temperature and forest type (Coniferous, Broadleaves, and Maquis/Garigues). Fine root biomass was estimated from soil samples collected at 2-8 positions at each location. Soil was sampled down to 30 cm depth in the mineral layer with a split-tube sampler, and analysed for three depths, i.e. 0-10 cm, 10-20 cm, and 20-30 cm depth.
Across entire dataset, FRB was affected by precipitation, elevation, forest type, soil depth, and soil C/P and N/P relations. Moving down to each biogeographical region separately, a stronger effect of soil phosphorus was observed for the Mediterranean region.

How to cite: Ostrogović Sever, M. Z., Dimoski, D., Anić, M., and Marjanović, H.: Forest fine root biomass and soil CNP stoichiometry across three different biogeographical regions in Croatia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13723, https://doi.org/10.5194/egusphere-egu21-13723, 2021.

EGU21-2912 | vPICO presentations | BG3.20

Changes in leaf nitrogen and phosphorus content from observations and a land surface model: evidence for increasing nutrient imbalance in Europe

Silvia Caldararu, Katrin Fleischer, Lin Yu, and Sönke Zaehle

Increasing atmospheric CO2 concentrations can be a driver for higher ecosystem productivity across the globe but nutrient availability may limit subsequent biomass growth. Concurrently, increased anthropogenic nitrogen (N) deposition introduces a relatively large amount of N into the system, thus potentially alleviating N limitation. However, this new N input could push ecosystems into being limited by other resources, most importantly phosphorus (P) in mid- and high-latitude systems, leading to what has been termed an NP imbalance. While the ecological theory behind the processes described above has been discussed on many occasions, it is yet unclear what the actual spatial and temporal patterns of such an imbalance are, as well as the ecpological processes and drivers behind such observed patterns.

Here, we use leaf N and P data from a large European monitoring network, ICP forests, in conjunction with a land surface model, QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system), to explore the patterns and drivers behind nutrient limitation at European forest sites. The overall trend in observed leaf N and P content as well as N:P ratio show an increasing nutrient limitation from 1990 to 2015, as well as a shift towards P limitation. However, the observed spatial patterns of change in leaf nutrient content vary strongly with soil nutrient availability, N deposition and leaf habit. The effect of leaf habit suggests that leaf growth strategies  play an important role in dealing with nutrient availability and controlling observed ecosystem responses. 

We use the QUINCY model to explore the drivers behind the observed leaf nutrient trends. We perform simulations with fixed levels of atmospheric CO2 as well as in the absence of anthropogenic nitrogen deposition. We show that the decrease in leaf N and P content is attributable to increased atmospheric CO2, while the changes in N:P stoichiometry are reproducible with increased N deposition. Additionally, the model can only predict observed trends when representing physiologically-realistic responses of leaf stoichiometry to nutrient availability. The use of a process-based model allows us to attribute drivers to the observed changes in leaf nutrient content. This research helps the development of data-constrained, process-based models which can potentially be used to predict changes in ecosystem nutrient limitation, and implicitly growth and carbon storage, under future scenarios

How to cite: Caldararu, S., Fleischer, K., Yu, L., and Zaehle, S.: Changes in leaf nitrogen and phosphorus content from observations and a land surface model: evidence for increasing nutrient imbalance in Europe, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2912, https://doi.org/10.5194/egusphere-egu21-2912, 2021.

EGU21-1064 | vPICO presentations | BG3.20

Seasonal variation in foliar properties in Mediterranean Pine forests of different post-fire age

Christodoulos I Sazeides, Nikolaos M Fyllas, and Anastasia Christopoulou

Foliar properties play a crucial role in local and global biochemical cycles. Systematic variation in key leaf traits has been reported both between and within species. Intraspecific variation in leaf traits is controlled by micro-environmental conditions and follows seasonal patterns. In this study we examine the seasonal patterns of six foliar traits including leaf area (LA), leaf thickness (Lth), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf area to sapwood area ratio (LA/SA) and branch wood density (WD) in addition to the associated parameters of the Michaelis-Menten light response curve (i.e. light saturated net photosynthetic rate (Asat), half saturation coefficient (Km) and dark respiration rate (Rd)). We measured on a monthly basis the foliar traits and developed light response curves in four Pinus brutia dominated stands along a post-fire chronosequence (15, 40, 70 and 90 years) from sunlit branches. Significant differences in the interannual trait variability were found between stands for LDMC, WD and Asat, with the highest variability identified in the younger plot. LA/SA, Rd and Km also showed strong interannual variability although not statistically different between plots. A mixed effect model analysis revealed high intraclass correlation coefficients for Km and Asat suggesting that net photosynthesis is following systematic seasonal patterns. Overall LA was higher and LDMC was lower in the oldest plot and WD was higher in the denser (40 years) plot. Interestingly gas exchange parameters did not show differences in their overall mean values. Across plots, Asat was strongly positively related to Km, and LMA was positively related to LDMC and Lth. LDMC was also positively related with Asat and negatively with Lth. A principal component analysis (PCA) revealed two major dimensions of intraspecific trait variability within our plots. The first PCA axis was positively related to Asat, Km, LDMC and LMA suggesting that regardless of the stand age needles are placed along a fast-slow carbon gain dimension with denser needles illustrating faster area-based photosynthesis. The second PCA axis was positively related to LA and Lth suggesting that bigger needles are also thicker. A subsequent permutational multivariate analysis of variance revealed that the centroids and the dispersion of the trait syndromes differed between stands, with the youngest plot illustrating higher trait dispersion and the oldest plot characterized by bigger and thicker needles. Thus, in older stands were competition for light is higher, needles are deployed to be bigger and thicker to optimize light capture, while in younger stands they are optimized along a leaf density - photosynthetic capacity spectrum depending on (more heterogeneous) microenvironmental conditions. Our findings illustrate that intraspecific variation can be attributed to either seasonal (abiotic) light availability or to (biotic) heterogeneity related to stand structure, and have important implications for local scale forest dynamics models.

«This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Carbon fluxes across a post-fire chronosequence in Pinus brutia Ten forests.” (MIS 5049513)».

How to cite: Sazeides, C. I., Fyllas, N. M., and Christopoulou, A.: Seasonal variation in foliar properties in Mediterranean Pine forests of different post-fire age, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1064, https://doi.org/10.5194/egusphere-egu21-1064, 2021.

EGU21-9410 | vPICO presentations | BG3.20

The effects of elevated CO2 and canopy position on chlorophyll concentration in mature Quercus robur.

Anna Gardner, David Ellsworth, Jeremy Pritchard, and Rob Mackenzie

The timings of phenological events play an important role in determining the annual carbon uptake in key terrestrial carbon sinks, such as mature forests. With increases in atmospheric CO2 expected to change physiological processes in plants, it is becoming increasingly important to monitor the changes in plant traits and subsequent phenological changes that may occur. Changes in photosynthetic pigments, such as chlorophyll, can be used as a proxy for physiological changes in leaves and can therefore be useful to monitor potential phenological change, such as autumnal leaf senescence. Non-destructive techniques allow for measurements of photosynthetic pigments without destructive sampling that would disturb the canopy. These methods are particularly useful in logistically difficult environments, such as high forest, or remote environments where traditional chlorophyll extractions are problematic and serve as ground-truthing for remote sensing of greenness. In the present study, we aimed to assess the effects of elevated CO2 (150 mmol mol-1 above ambient) and canopy position on chlorophyll concentrations of a common canopy-dominant species to identify potential implications on phenology. The study was conducted in a mature temperate forest situated at a Free Air Carbon Enrichment (FACE) experiment in the UK. Over 5,000 in-situ chlorophyll measurements were collected, across the 3rd and 4th season of CO2 fumigation, in the canopy-dominant species Quercus robur (Q. robur). Additionally, 100 leaves were destructively sampled to verify chlorophyll concentrations using traditional chlorophyll extraction techniques. The established relationship between chlorophyll absorptance readings and leaf chlorophyll content allowed robust species-specific calibration equations to be calculated. Consistent with previous work, this study observed significantly higher chlorophyll concentrations at lower positions in the canopy in both sampling years (P < 0.001). Additionally, a reduction in foliar chlorophyll concentrations (-2 to -9%) when exposed to eCO2 in both sampling years was observed, but this was only significant for the upper canopy (-7 to -9%, P < 0.05). This study found a marginally significant effect of CO2 treatment on reducing the effective season length, with larger eCO2-induced reductions in chlorophyll occurred through autumn. Overall, the research highlights a simple non-invasive method for monitoring changes in leaf traits of mature trees under eCO2. The results suggest that leaves may be able to reallocate their resources away from light-harvesting apparatus in response to eCO2, particularly in the upper canopy. Furthermore, the findings suggest direct consequences of rising atmospheric CO2 to potential alterations of phenological events, such as leaf senescence, that may have implications for forest productivity and adaptation in a future high CO2 world. Additionally, the research has shown the need to monitor potential changes in resource allocation to photosynthetic apparatus across the season as atmospheric CO2 continues to rise. The information obtained in this study can be used to increase accuracy in the modelling of climate-carbon scenarios.

How to cite: Gardner, A., Ellsworth, D., Pritchard, J., and Mackenzie, R.: The effects of elevated CO2 and canopy position on chlorophyll concentration in mature Quercus robur., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9410, https://doi.org/10.5194/egusphere-egu21-9410, 2021.

EGU21-15835 | vPICO presentations | BG3.20

Upscaling plant traits to ecosystem level: blending local biodiversity,  global traits databases, and remote sensing data.

Álvaro Moreno-Martínez, Jose E. Adsuara, Jordi Muñoz-Marí, Emma Izquierdo-Verdiguier, Jens Katge, Nuno Carvalhais, Markus Reichstein, Steven W. Running, and Gustau Camps-Valls

Plant functional traits have great influence in how terrestrial ecosystems function. This key information is however generally oversimplified in most Earth system models (ESMs) and is typically represented by a number of static, empirically fixed values assigned to a selection of plant functional types (PFTs). This leads to reducing the diversity of plant communities into a relatively low number of categories and key variability within individual PFTs is lost. Subgrid processes are thus underrepresented and accuracy compromised.

The TRY global traits database contains the largest set of in-situ trait observations for numerous species around the globe. Despite the large number of species and samples included in trait databases, such as TRY, they are sparse compared to the overall richness and diversity of species globally. We propose the use of the massive geolocated plant occurrence data from the Global Biodiversity Information Facility (GBIF) as ancillary source of information to better capture species distributions, especially in locations where TRY data are missing. 

As a first order approach, GBIF was used to estimate species abundances for a given study area (contiguous United States), and they were further corrected with high resolution, subpixel maps of PFT derived via remote sensing and machine learning upscaling.  This information was used to provide ecosystem level trait estimates for a selection of plant traits (specific leaf area and leaf nitrogen concentration). The proposed approach allows us to link local biodiversity composition from GBIF with a more precise and realistic representation of plant community composition coming from remote sensing information for ecosystem-level trait estimation. Among many possible applications of these data, the addition of the produced trait estimates to improve ESMs estimations could be very valuable to improve the understanding and monitoring of the biosphere.

How to cite: Moreno-Martínez, Á., Adsuara, J. E., Muñoz-Marí, J., Izquierdo-Verdiguier, E., Katge, J., Carvalhais, N., Reichstein, M., Running, S. W., and Camps-Valls, G.: Upscaling plant traits to ecosystem level: blending local biodiversity,  global traits databases, and remote sensing data., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15835, https://doi.org/10.5194/egusphere-egu21-15835, 2021.

EGU21-2801 | vPICO presentations | BG3.20

Application of an optimality-based model to operate at half-hourly timestep to implement plant acclimation within a land-surface modelling framework

Giulia Mengoli, Anna Agustí-Panareda, Souhail Boussetta, Sandy P. Harrison, Carlo Trotta, and Iain Colin Prentice

Vegetation and atmosphere are linked through the perpetual exchange of water, carbon and energy. An accurate representation of the processes involved in these exchanges is crucial in forecasting Earth system states. Although vegetation has become an undisputed key component in land-surface modelling (LSMs), the current generation of models differ in terms of how key processes are formulated. Plant processes react to environmental changes on multiple time scales. Here we differentiate a fast (minutes) and a slower (acclimated – weeks to months) response. Some current LSMs include plant acclimation, even though they require additional parameters to represent this response, but the majority of them represent only the fast response and assume that this also applies at longer time scales. Ignoring acclimation in this way could be the cause of inconsistent future projections. Our proposition is to include plant acclimation in a LSM schema, without having to include new plant-functional-type-dependent parameters. This is possible by using an alternative model development strategy based on eco-evolutionary theory, which explicitly predicts the acclimation of photosynthetic capacities and stomatal behaviour to environmental variations. So far, this theory has been tested only at weekly to monthly timescales. Here we develop and test an approach to apply an existing optimality-based model of gross primary production (GPP), the P model, at the sub-daily timestep necessary for use in an LSM, making an explicit differentiation between the fast and slow responses of photosynthesis and stomatal conductance. We test model performance in reproducing the diurnal cycle of GPP as recorded by flux tower measurements across different biomes, including boreal and tropical forests. The extended model requires only a few meteorological inputs, and a satellite-derived product for leaf area index or green vegetation cover. It is able to manage both timescales of acclimation without PFT-dependent photosynthetic parameters and has shown to operate with very good performance at all sites so far investigated. The model structure avoids the need to store past climate and vegetation states. These findings therefore suggest a simple way to include both instantaneous and acclimated responses within a LSM framework, and to do so in a robust way that does not require the specification of multiple parameters for different plant functional types.

How to cite: Mengoli, G., Agustí-Panareda, A., Boussetta, S., Harrison, S. P., Trotta, C., and Prentice, I. C.: Application of an optimality-based model to operate at half-hourly timestep to implement plant acclimation within a land-surface modelling framework, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2801, https://doi.org/10.5194/egusphere-egu21-2801, 2021.

EGU21-2899 | vPICO presentations | BG3.20 | Highlight

Exploring the influence of plant trait diversity on climate using the plant trait diversity model JeDi-BACH in an Earth system model

Pin-hsin Hu, Christian H. Reick, Axel Kleidon, and Martin Claussen

To understand the interaction between vegetation and the climate, Dynamic Global Vegetation Models (DGVMs) have been coupled with Earth system models (ESMs). In DGVMs, global vegetation is commonly empirically categorized into a few discrete plant functional types (PFTs) by differentiating their phenological, morphophysiological, and bioclimatic properties. Although the PFT-approach is useful to capture the large-scale general features of plants, growing evidence from the ecology community has challenged the use of the plant-type specific parametrization in models and the omission of the intra-variation of PFTs. Modelling studies have also shown that the local climate is highly sensitive to the selection and combination of PFTs. Therefore, a less parameter-dependent approach, of which the results should be robust to the empirical selection of parameters, is critical to address vegetation-climate interaction in climate models.

Based on a process-based plant functioning trade-off scheme developed by Kleidon and Mooney (2000), we have set up a new vegetation model JeDi-BACH and have implemented the new model into the land component of the ICON-Earth System Model (ICON-ESM). The advantage of this new model is to obtain plant distribution as a result of environmental filtering. Plants are represented based on several well-known fundamental functional trade-offs that link the plant functions to abiotic and biotic attributes. For example, plants which partition more biomass to roots could improve their soil-water uptake and thereby reduce the stress from water shortage. Each plant functional aspect is defined by a set of plant-trait parameters that is randomly generated for each plant species. Hence, every parameter set realizes a plant growth strategy with different functional capabilities. Using a large number of randomly generated plant growth strategies, plants are allowed to ‘grow’ everywhere; but the environment will select the survivors. In such a way, plants dynamically adjust to the changing environment and meanwhile influence climate. We have done several simulations of present-day climate with JeDi-BACH and coupled to the atmosphere component of the ICON-ESM to investigate how such an adaptive ecosystem interacts with regional and global climate. Future investigations will focus on non-analogue climates (eg. Eocene with tropical vegetation at high latitudes) where in contrast to PFT-based DGVMs the new model allows vegetation to adjust consistently with climate because of its dynamic selection of plant traits by environmental filtering.

Kleidon, A. and Mooney, H. A.: A global distribution of biodiversity inferred from climatic constraints: Results from a process-based modelling study, Glob. Chang. Biol., 6(5), 507–523, doi:10.1046/j.1365-2486.2000.00332.x, 2000.

 

How to cite: Hu, P., Reick, C. H., Kleidon, A., and Claussen, M.: Exploring the influence of plant trait diversity on climate using the plant trait diversity model JeDi-BACH in an Earth system model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2899, https://doi.org/10.5194/egusphere-egu21-2899, 2021.

EGU21-15118 | vPICO presentations | BG3.20

Roles of photosynthetic, respiratory, stomatal and phenological acclimation in controlling carbon and water fluxes of mature Norway spruce in a changing climate  

Shubhangi Lamba, Remko A. Duursma, Thomas B. Hasper, Bjarni D. Sigurdsson, Belinda E. Medlyn, Lasse Tarvainen, Marianne Hall, Sune Linder, Göran Wallin, and Johan Uddling

Boreal regions are undergoing rapid climate change but our understanding of the long-term consequences for forest processes is hampered by limited knowledge of how trees acclimate to rising atmospheric CO2 concentrations and temperature. This study used the detailed canopy flux model MAESTRA to simulate the effects of elevated CO2 (eCO2) and warming on net photosynthesis (An) and transpiration (E) of mature boreal Norway spruce, investigating how these effects are influenced by the observed acclimation of photosynthetic capacity, respiration, stomatal behavior, and phenology. Without any type of acclimation, eCO2 increased shoot and crown An during the non-frost growing season by 23-44%, while warming only had a minor effect (±2%). Photosynthetic downregulation greatly decreased the positive effect under eCO2. Under warming, both stomatal and phenological acclimation had substantial effects on An but in opposite directions. Transpiration at shoot and crown level was greatly decreased (23-50%) by eCO2 and increased by warming (27-42%) in the absence of acclimation. However, both these effects were largely cancelled by stomatal acclimation. Effects of eCO2 on An were generally smaller at entire crown compared to shoot level, as a result of photosynthetic stimulation being smaller in shaded canopy positions. In addition, upregulation of respiration in eCO2 had a considerably larger negative effect on An at crown compared to shoot level. Overall, tree physiological acclimation generally acted to dampen non-acclimated responses. We conclude that photosynthetic and respiratory acclimation greatly reduce the positive effect of eCO2 on tree CO2 assimilation, while stomatal and phenological acclimation are crucial for annual water consumption under warming. These results highlight the critical need to account for acclimation in models.

 

How to cite: Lamba, S., Duursma, R. A., Hasper, T. B., Sigurdsson, B. D., Medlyn, B. E., Tarvainen, L., Hall, M., Linder, S., Wallin, G., and Uddling, J.: Roles of photosynthetic, respiratory, stomatal and phenological acclimation in controlling carbon and water fluxes of mature Norway spruce in a changing climate  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15118, https://doi.org/10.5194/egusphere-egu21-15118, 2021.

Coastal dunes are characterised by strong interactions between biotic and abiotic factors along a short gradient from the shoreline to the inland region. We carried out an ecological analysis of the vegetation in a protected area of the Italian coast to evaluate the relationships among species abundance; the occurrence of morphoanatomical traits related to leaves, stems and roots; and soil variables. Three transects were established perpendicular to the shoreline with 27 plots distributed in the frontal dunes, back dunes, and temporarily wet dune slacks.

The analysis based on community weighted mean values is consistent with the ecological constraints along the shoreline-inland gradient. The front-plots were characterised by the presence of pioneer communities (with succulent leaves as evidenced by the high limb thickness values and the low LDMC values) that are well adapted to the harsh environmental conditions of these habitats. Farther from the sea, the back-plot vegetation was characterised by functional traits (especially high LDMC values) that are consistent with the less-extreme ecological conditions. Last, the slack-plots seemed to be very interesting from a functional point of view. They were dominated by geophytes that had adopted C4 photosynthesis and had amphistomatic leaves and abundant aerenchyma in the roots.

The native vs. invasive status, C4 photosynthesis, leaf trichomes and aerenchyma in the roots were significantly correlated with soil moisture, organic matter content and pH. These results demonstrate the usefulness of anatomical traits (especially those of the root system) in understanding the functional strategies adopted by plants.

Last, invasive species tended to occupy plots with high levels of soil moisture, and they were not abundant in the habitats with more arid conditions. These data confirmed that alien species are less adapted to the harsh environmental conditions of coastal sand dunes. Increasing the spatial extent of the study area and integrating other functional traits, such as ecophysiological or regenerative characteristics, into the study may allow the development of a more comprehensive functional framework of the invasion process. All this information can be used to develop appropriate management strategies for coastal dune ecosystems.

How to cite: Ciccarelli, D. and Bona, C.: Exploring the functional strategies adopted by coastal plants along an ecological gradient by means of morpho-functional traits, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4689, https://doi.org/10.5194/egusphere-egu21-4689, 2021.

EGU21-676 | vPICO presentations | BG3.20

Biomass allocation strategies shaping woody species adaptations to shade and drought

Giacomo Puglielli, Lauri Laanisto, Hendrik Poorter, and Ülo Niinemets

Optimal partitioning theory predicts that plants allocate a greater proportion of biomass to the organs acquiring the most limiting resource when different environments challenge a given species (acclimation). Results are disputed when testing how biomass allocation patterns among species with contrasting tolerance of abiotic stress factors (adaptation) conform to optimal partitioning theory.

We tested the optimal partitioning theory by analyzing the relationships of proportional biomass allocation to leaves, stems and roots with species tolerance of shade and drought at a global scale including ~7000 observations for 604 woody species. The dataset spanned three plant functional types. In order to correct for ontogeny, differences among plant functional types at different levels of shade and drought tolerance were evaluated at three ontogenetic stages: seedlings, small trees and big trees. Adaptation and acclimation responses were also compared.

We did not find overarching biomass allocation patterns at different tolerance values across species even if tolerant and intolerant species rarely overlapped in the trait space. Biomass allocation mainly varied among plant functional types due to phenological (deciduous vs. evergreen broad-leaved species) and broad phylogenetical (angiosperms vs. gymnosperms) differences. Furthermore, the direction of biomass allocation responses between tolerant and intolerant species was often opposite compared to that predicted by the optimal partitioning theory.

Plant functional type is the major determinant of biomass allocation patterns in woody species at the global scale. Finally, interactions between ontogeny, plant functional type, species-specific stress tolerance adaptations (i.e. changes in organs surface area per unit dry mass), phenotypic plasticity or convergence in plant architecture can alter biomass allocation differences. All these factors permit woody species with different shade and drought tolerances to display multiple biomass partitioning strategies.

How to cite: Puglielli, G., Laanisto, L., Poorter, H., and Niinemets, Ü.: Biomass allocation strategies shaping woody species adaptations to shade and drought, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-676, https://doi.org/10.5194/egusphere-egu21-676, 2021.

EGU21-3966 | vPICO presentations | BG3.20

Parsimonious representation of plant water use strategies via non-dimensional parameter groups

Maoya Bassiouni, Stefano Manzoni, and Giulia Vico

Process-based models are needed to improve estimates of water and carbon cycles in variable climatic conditions. Yet, their utility is often limited by our inability to directly measure plant stomatal and hydraulic traits at scales suitable to quantify characteristics of whole ecosystems. Inferring such parameters from ecosystem-scale data with parsimonious models offers an avenue to address this limitation. To this aim, we use a simple representation of the water flux through the soil-plant-atmosphere continuum (SPAC) and derive a parameterization of Feddes-type soil water-limitation constraints on transpiration (expressed via a soil moisture dependent function β). This parameterization explicitly accounts for community-effective plant eco-physiological traits as encoded in the SPAC model parameters. We express analytically the fractional loss of conductivity in well-watered conditions and the soil saturation thresholds at which transpiration is down-regulated from its well-watered rate and at which transpiration ceases, as a function of non-dimensional parameter groups. These non-dimensional groups combine plant stomatal and hydraulic traits, soil texture and climate. We implement the theoretical β function into a soil water balance and infer distributions of plant traits which best-match FLUXNET observations in a range of biomes. Finally, we analyze the resulting non-dimensional groups to explore patterns in plant water use strategies. Our results indicate that non-dimensional groups reflect combinations of plant traits which are adapted to growing season environmental conditions and these groups may be more meaningful model parameters than individual traits at ecosystem scales. Additionally, using non-dimensional groups instead of focusing on individual parameters reduces risks of equifinality and provides future opportunities to exploit satellite data to quantify robust ecosystem-scale parameters. This analysis provides a parsimonious and functionally accurate alternative to account for ecosystem hydraulic controls and feedbacks and can help overcome limitations of commonly used empirical water-limitation constraints.

How to cite: Bassiouni, M., Manzoni, S., and Vico, G.: Parsimonious representation of plant water use strategies via non-dimensional parameter groups, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3966, https://doi.org/10.5194/egusphere-egu21-3966, 2021.

EGU21-2887 | vPICO presentations | BG3.20

Measuring plant hydraulic conductivity: Should we push or should we pull?

Louis Krieger, Stan Schymanski, and Steven Jansen

Usually hydraulic conductance and vulnerability are measured under extreme conditions never experienced by living plants (e. g. centrifugation, bench dehydration, and large pressure gradients). A common factor that is known to inhibit the water transport in plants is embolism, which is believed to occur either by air entry through the pit valves on the walls of the xylem, or by ex-solution of dissolved gases, or vaporization of water at very low pressures.

Here we explore possibilities to measure hydraulic conductance and induce embolism under close to natural conditions. The setup consists of a syringe pump to control water flow, where a twig is inserted in the flow path to measure its hydraulic conductivity using pressure and flow meters. This setup has enabled us to imitate natural conditions where transpiration rate induces a pressure difference between the sink (leaf) and source (root) along the flow path. It has also allowed us to induce flow in both directions through the twig without having to rotate or change out the sample. Using our setup, we found that the conductivity of the same twig was 50% lower when pulling compared to pushing. This can be explained by the emptying and filling of cut end vessels and the pressure gradient along the twig, which is induced by the flow rate and flow direction. Our findings are discussed in the context that currently employed methods for measuring wood hydraulic conductance employ either centrifugation, where water is pulled on both ends, or pushing of water by applying positive pressure on one end.

How to cite: Krieger, L., Schymanski, S., and Jansen, S.: Measuring plant hydraulic conductivity: Should we push or should we pull?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2887, https://doi.org/10.5194/egusphere-egu21-2887, 2021.

EGU21-3614 | vPICO presentations | BG3.20

Tree species from Andean forest are complementary in their effect on ecohydrological processes

Laura V. Cano-Arboleda, Juan Camilo Villegas, Aura Cristina Restrepo, Elizabeth Ocampo-Montoya, and Estela Quintero-Vallejo

Vegetation affects water balance partitioning via effects on incoming precipitation, local radiation balance and hydrological dynamics of soil. The extent of these effects is determined by plant functional traits. Commonly, the role of plant species on hydrological regulation has been assessed considering vegetation as homogeneous cover, even more, that approach underestimates the importance of species in this process. Nevertheless, in recent years, new focus has been placed on species study based on their functional traits and their roles in ecosystem functions as hydrological regulation. Still new tendencies are considering vegetation cover consisting of different species, each of them having different effects on hydrological regulation because they have different functional traits. In an 8-year old ecosystem restoration project established in Medellín (Colombia), we explored the relations between plant functional traits of 10 dominant species and ecohydrological processes that determine precipitation partitioning in the canopy via stemflow and throughfall. Here we show that functional traits describing tree crowns are significantly related with stemflow and throughfall. Our species exhibit differences in their functional traits and ecohydrological processes, forming a gradient of variation of ecohydrological processes and crown functional traits: from wide and less dense crowns in Alnus acuminata to smaller but more dense crowns in Quercus humboldtii, related with less throughfall temporal variability, and less stemflow temporal variability, respectively; the other species are placed along this gradient. This result suggests a complementary effect of species on the hydrological processes and consequently on the hydrological function, highlighting the importance of considering species diversity on hydrological regulation assessment. More specifically, our results emphasize the need to include information about the effects of species planted in ecological restoration projects over ecohydrological processes, via ecological criteria such as plant functional traits. This approach permits a more objective and complete study of hydrological regulation that brings key information for an adequate ecosystem management and restoration based on ecological roles of species that, through biological diversity, optimize ecosystem functions and services.

How to cite: Cano-Arboleda, L. V., Villegas, J. C., Restrepo, A. C., Ocampo-Montoya, E., and Quintero-Vallejo, E.: Tree species from Andean forest are complementary in their effect on ecohydrological processes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3614, https://doi.org/10.5194/egusphere-egu21-3614, 2021.

EGU21-7176 | vPICO presentations | BG3.20

Soil plays a pivotal role in the distribution of plants, their traits and ecosystem functions in the French Alps

Camille Martinez Almoyna, Wilfried Thuiller, Arnaud Foulquier, Sarah-Sophie Weil, and Tamara Münkemüller

Experiments and observations have shown that plants and soil biotic and abiotic properties are linked by feedback loops at local scale, in particular because plant functional traits determine the decomposability of the organic matter, which in turn influences the availability of nutrients essential for plant growth. However, the influence of plant-soil linkages on plant distributions and ecosystem functions is understudied at large biogeographic scales.

Here, I present results of studies along 18 elevational gradients in the French Alps. In a first study, I show how the distributions of 44 plant species does not only depend on climate but also on soil physico-chemical properties and microbial decomposition activity and that plant functional traits play an important role in these distributions. Using hierarchical effects and multi-species distribution models, we found that, in addition to climate, the combination of soil C/N, as a measure of organic matter quality, and exoenzymatic activity, as a measure of microbial decomposition activity, strongly improved predictions of plant distributions. In accordance with the ‘fast-slow’ plant economics spectrum, species with conservative traits performed better under limiting nutrient conditions but were outcompeted by exploitative plants in more favorable environments, resulting in a spatial segregation of plants with different ecological strategies. In a second study, we moved from species to community level to estimate the impact of these plant-soil linkages on ecosystem functions. Using an undirect partial correlation network revealed that the influence of plant traits on the quality of organic matter links aboveground and belowground ecosystem functions. Finally, I show how specific soil trophic groups, notably saprophytic fungi, play key roles in these linkages. This result highlights that decomposition and the organisms involved in this process are the corner stone of ecosystem multifunctionality in nutrient depleted ecosystems such as mountains. Together these results highlight the importance of considering plants and soil biodiversity along with abiotic predictors for better understanding and modelling ecosystem processes and functions in a world where both climatic and soil systems are undergoing profound and rapid transformations.

How to cite: Martinez Almoyna, C., Thuiller, W., Foulquier, A., Weil, S.-S., and Münkemüller, T.: Soil plays a pivotal role in the distribution of plants, their traits and ecosystem functions in the French Alps, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7176, https://doi.org/10.5194/egusphere-egu21-7176, 2021.

EGU21-8177 | vPICO presentations | BG3.20

Interspecific soil water partitioning as a driver of increased productivity in a diverse mixed Mediterranean forest

Ido Rog, Christina Tague, Gilad Jakoby, Shacham Megidish, Assaf Yaakobi, Yael Wagner, and Tamir Klein

It has been assumed that mixing of species with high physiological diversity reduces competition over water and light resources, compared to single-species forests. Although several mechanisms to explain this observation have been proposed, empiric evidence is lacking. Here we studied water-use dynamics at a monthly resolution for two years in five key tree species in a mature, mixed, evergreen, Mediterranean forest. Root distribution was measured with DNA barcoding and soil cores. Measurements at the tree-scale were up-scaled using an ecosystem model of coupled water, carbon and energy fluxes (Regional Hydro Ecologic Simulation System, RHESSys). Tree species showed contrasting water-use patterns, with year-round activity in angiosperms, and mostly wet season-activity in gymnosperms. Water-use patterns matched the rooting patterns, with the deep- and shallow-rooted Ceratonia and Cupressus, showing year-round and seasonal behaviors, respectively. RHESSys simulations captured well the species-specific behaviors in the mixed forest, and were further applied to simulate monocultures of each of the species, which proved less productive than the mixed forest. Our results provide evidence for niche partitioning of the soil water resource among co-habiting tree species. This partitioning is driven by spatiotemporal species differences in rooting depth and eco-physiology, and facilitates the higher productivity of the mixed forest.

How to cite: Rog, I., Tague, C., Jakoby, G., Megidish, S., Yaakobi, A., Wagner, Y., and Klein, T.: Interspecific soil water partitioning as a driver of increased productivity in a diverse mixed Mediterranean forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8177, https://doi.org/10.5194/egusphere-egu21-8177, 2021.

EGU21-15986 | vPICO presentations | BG3.20

Plant communities on fertile soils of drained thermokarst lakes in Western Siberia

Darya Kuzmina, Sergey Loiko, Artem Lim, Tatyana Raudina, and Nina Klimova

Climate warming and increased precipitation and permafrost thaw in the Arctic are accompanied by an increase in the frequency of a full or partial drainage of thermokarst (thaw) lakes. After lake drainage, abundant plant communities on nutrient-rich sediments may develop, but the specific features of this process remain extremely poorly known across the Arctic. Here, we examine case studies of lake basins located in the continuous permafrost zone of the largest peatland in the world, the Western Siberia Lowland (WSL). We characterize the vegetation and biological productivity of the drained thermokarst lake basins (khasyreys) located in the southern tundra of the WSL. The biological productivity of the khasyrey vegetation is a factor of two to nine higher than that in the surrounding tundra and the khasyreys may provide substantial contribution to observed greening of the northern part of the WSL (65 to 70°N). In the early successional stage, during the first years after the drainage, the seasonally thawed layer has maximal thickness. These wet mesotrophic ecotopes are rich in nutrients. The plant communities are represented by a dense herb layer of a hydrophilic species of sedges, grasses, and cotton grasses, covering 60–70% of the area, whereas mosses cover < 1%. In the mid successional stage, from 50 years after drainage, as plant litter is accumulated, and the nutrients are leached from the soil, the abundance of herbs decreases to 25–40%, the abundance of mosses increases to 40–60%, and the overall productivity of the plant communities decreases. The late stage of the succession khasyreys lasts several hundred years. The ecotopes are characterized by an accumulation of peat, which reaches a thickness of up to 40 cm on the soil surface. Among the vascular plants, which cover between 10% and 60% of the area, the abundance of herbaceous species is minimal, and dwarf shrubs prevail. The moss and lichen have continuous coverage. At this stage, the plant communities consist of mesotrophs and mesooligotrophs of a very low productivity, and the phytocoenoses are similar to the surrounding polygonal bogs. Overall, the main driving factor of the vegetation succession in the khasyreys is the accumulation of peat on the soil surface and microtopography of the lake bottom. The soil nutrient depletion occurs simultaneously with a decrease in the thickness of the active layer and an increase in the thickness of peat. The succession rate in different parts of the lake bottom varies, depending on the nutrient reserves in the initial sediment, the microlandscape, permafrost aggradation, and the content of redeposited peat.

This research was funded by the Russian Science Foundation (RSF) (project № 18-77-10045).

How to cite: Kuzmina, D., Loiko, S., Lim, A., Raudina, T., and Klimova, N.: Plant communities on fertile soils of drained thermokarst lakes in Western Siberia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15986, https://doi.org/10.5194/egusphere-egu21-15986, 2021.

EGU21-11928 | vPICO presentations | BG3.20

Trait spaces of non-native plants at community level in the Canary Islands

Anna Walentowitz and Carl Beierkuhnlein

Non-native plants, introduced through anthropogenic vectors, are causing changes at local up to global scales, altering species communities and entire ecosystems, modifying the structure of landscapes and even the functioning of biogeochemical cycles. Ultimately, however, changes induced by non-native plants occur locally at the level of species communities. With ongoing developments towards open-access information about species at increasingly fine spatial scales, the data and tools to better understand the consequences of vegetation changes caused by non-natives are available. Further, islands that commonly have less saturated ecosystems and unoccupied ecological niches with depauperate trophic cascades are particularly susceptible to the establishment of non-native plants and their potential impacts, respectively. Steep environmental gradients, unique plant communities with high percentages of endemism and a long history of human settlement alongside which hundreds of non-native species became established make the Canary Islands a suitable testing ground for invasion ecology. We aim at explaining divergence and overlap of native and non-native trait spaces within and between vegetation communities in this oceanic archipelago in order to assess the functional consequences of plant introductions for communities and ecosystems.

As a profound basis, we compiled a revised flora of the Canary Islands using local and global taxonomic databases combined with recent publications. Plant traits derived from comprehensive open-access sources and additional literature. At community level, we separated native and non-native species and their associated traits.

The analysis revealed strong differences in trait space divergence of non-native vs. native species within different vegetation communities. Surprisingly, certain traits such as woodiness of non-native species do not correlate with the role of this trait in plant communities previously dominated by native species. The inferences we can draw from our results differ from the conclusions made at the level of entire ecosystems, which underlines the relevance of investigating traits at community level.

We encourage implementing further studies at vegetation community level, to understand the direct changes caused by non-native species, build reliable explanatory models, enable targeted conservation measures and ultimately better understand patterns of biodiversity in the Anthropocene.

How to cite: Walentowitz, A. and Beierkuhnlein, C.: Trait spaces of non-native plants at community level in the Canary Islands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11928, https://doi.org/10.5194/egusphere-egu21-11928, 2021.

EGU21-7322 | vPICO presentations | BG3.20

Woody plants in the cycle of heavy metals: features  of regional conditions and species specificity

Lyudmila Kavelenova, Nataly Prokhorova, Yuly Makarova, and Alexander Pomogaybin

Woody plants as forests and urban greening systems frame are long-lived organisms capable of extracting chemical elements and absorbing from the atmosphere, fixing them in the phytomass and then returning them to the biogeochemical cycle active links. As for the general cycle schemes, their flow features reveal regional specificity. The space of the Middle Volga forest-steppe-steppe region, which is an ecotone, is based on sedimentary rocks, confined to temperate continental climate, and is characterized by significant technogenesis manifestation. Its natural biogeochemical features are: enrichment of natural environments by Ca, local manifestation of chloride-sulfate salinization in relief depressions. Technogenesis contributes to the introduction of additional heavy metals into natural environments.
The ecological space determines the specifics of woody plants development. Its natural dendroflora has a limited set of species adapted to periodic summer droudhts, extreme winter frosts. Some of them grow here on their natural areas borders. A significant number of introduced arboreal species and varieties are used in man-made plantations (protective forest belts, urban greening) and some turned to be bioinvaders. The accumulation of the inorganic elements sum (ash) in the woody plants leaves, totally from 5 to 14 % to dry mass, evaluated for a large group as integral indicator, does not allow us to speak about higher ash content in the leaf mass of local or introduced species.
The elemental analysis performed for 25 tree species showed that the most active accumulators of metals with relatively high clarkes in soils and a comparably low representation in technogenic pollution fluxes (Ti, Mn, Fe, Sr, Rb) are woody plants from  Aceraceae and Ulmaceae. The same role for technogenic elements (Cr, V, Co, Ni, Cu, Zn, Pb) is played by Salicaceae and Ulmaceae families. Plants from Pinaceae and Oleaceae families showed weak metal-accumulating ability. The active Cu accumulation from the soils of the corresponding habitats seems to be  inherent feature for all families  that form the region dendroflora, with the exception of conifers.
Some named onward species had the maximum metal storage capacity in relation to elements with high clarke content in soils: Padus avium (Mn, Fe, Sr), Sambucus racemosa (Mn, Fe, Rb), Acer platanoides (Ti, Mn), A. tataricum (Ti). , Fe), Corylus avellana (Fe, Sr), Tilia platyphyllos (Fe, Sr). The lesser amounts of Fe, Ti, Mn, Sr, Rb were accumulated  by Fraxinus lanceolata, Larix sibirica, Pinus sylvestris. The accumulators of technogenic elements are the species of the genus Ulmus: U. glabra (V, Ni, Cu), U. laevis (V, Ni, Cu), U. pumila (V, Zn, Cu); as well as Salix alba (V, Co, Ni, Cu, Zn) and Populus  nigra (especially Zn, at the middle level - Cu). Species of the Acer genus are characterized by an average level of technogenic elements accumulation. The least quantity of  technogenic elements were accumulated by Cerasus fruticosa, Larix sibirica, Pinus sylvestris. In general, the dendroflora of the region is actively involved in the circulation of heavy metals, which is associated not only with their metal-accumulating ability, but also with deciduous specifics.

How to cite: Kavelenova, L., Prokhorova, N., Makarova, Y., and Pomogaybin, A.: Woody plants in the cycle of heavy metals: features  of regional conditions and species specificity, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7322, https://doi.org/10.5194/egusphere-egu21-7322, 2021.

EGU21-5206 | vPICO presentations | BG3.20

Phylloplane of trees under stress in the city

Kristina Ivashchenko, Maria Korneykova, Andrey Novikov, Olesya Sazonova, Marina Slukovskaya, Anna Vetrova, Anastasia Ermakova, Viacheslav Vasenev, and Olga Gavrichkova

Phylloplane or the microbial habitat on leaf surfaces is an integrated part of green infrastructure, with the potential to stimulate plant community productivity, affect plant fitness, and release of ecosystem services. Anthropogenic pressure, among which urbanization and related stressors was shown to affect the phylloplane microbial community composition and diversity. However, taxonomic characterization of the phylloplane with the aim to link it to the ecosystem functioning is not sufficient because it considers the microbial pool as a whole, not distinguishing between active, potentially active, dormant, and dead units. Meanwhile, only active microorganisms drive biochemical processes and determine the microbial community functioning. Determination of ecologically relevant microorganisms is linked to characterization the active microbial states but little is known on the phylloplane activity and its variation with the quality of the environment.

In this study, we attempted to verify how a change in environmental quality affects the phylloplane composition and activity. For this purpose, leaves of Betula pendula were sampled in Moscow (Russian Federation) along the three transects established starting from the road with heavy traffic and increasing gradually the distance from this pollution source. For determination of phylloplane activity and functional diversity a MicrorespTM tool, used generally for characterization of the soil microbiome, was adopted. The diversity of phylloplane microbiome was determined by its cultivation on nutrient media. Additionally, total genomic DNA was extracted from the leaf surface. Environmental quality was assessed by collecting the dust deposited on the leaf surface and analyzing its chemical composition on ICP-OES.

Activity of the phylloplane close to the road was 1.6 higher than far from it. Functional diversity or the ability to metabolize different substrates was on the contrary lower here. The amount of DNA was used to quantify the metabolic quotient (activity per DNA unit) which substantially increased in trees adjacent to the road. It could serve as an indication of the stress conditions or inefficiency of microbial community functioning with increase of contaminants concentrations. Elements that affected microbial activity were Ca and Zn. The amount of DNA declined with increase of Cu in leaf dust. While the total DNA and microbial functional diversity declined closer to the road, the amount of cultivable microorganisms, especially saprotrophic and enterobacteria, as well as the fungi species richness, increased on the leaf surface. This study showed that the distribution patterns under stress for phylloplane activity and functional diversity don’t correspond to those for species richness of cultivable fungi. The activity of phylloplane could be considered as an additional tool for bioindication of environmental quality.

The current research was financially supported by RFBR No 19-05-50112

How to cite: Ivashchenko, K., Korneykova, M., Novikov, A., Sazonova, O., Slukovskaya, M., Vetrova, A., Ermakova, A., Vasenev, V., and Gavrichkova, O.: Phylloplane of trees under stress in the city, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5206, https://doi.org/10.5194/egusphere-egu21-5206, 2021.

EGU21-6724 | vPICO presentations | BG3.20

Foliar methane uptake capacity as a critical plant trait in the global carbon cycle

Sean Thomas, Adam Gorgolewski, Juliana Vantellingen, and John Caspersen

Until recently it has been assumed that the main site of methane exchange between the terrestrial biosphere and the atmosphere is soils. However, recent research has shown that tree stems can contribute substantial methane flux; moreover, the few studies that have examined foliar methane flux in situ have found non-negligible fluxes. Foliar methane uptake appears to be mediated by methanotrophic endophytes and is appreciable in upland forests where soils also show net methane oxidation. In contrast, foliar release of methane can occur in lowland forests in which soils show net methane release as a result of transport of dissolved methane through the xylem stream. There is evidence that both foliar methane uptake (and release) are mediated by stomatal conductance, suggesting that the capacity for foliar methane fluxes may be closely related to other gas-exchange-related functional traits of leaves that covary along the fast-slow leaf economics spectrum.  Here we compile data on reported rates of foliar methane uptake in upland forests to test this idea. Data from three northern forest sites in Canada and Sweden indicate that: (1) methane uptake capacity is generally higher in broadleaf angiosperms than in conifers; and (2) methane uptake capacity is positively correlated with leaf nitrogen content, but shows a saturating pattern with a maximum rate of ~0.6-0.7 nmol m-2 s-1. We contend that foliar methane uptake has been under-appreciated as an important process in the global carbon cycle, but that patterns suggest a close linkage to other plant traits that will permit integration of this process into existing carbon cycle models.

How to cite: Thomas, S., Gorgolewski, A., Vantellingen, J., and Caspersen, J.: Foliar methane uptake capacity as a critical plant trait in the global carbon cycle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6724, https://doi.org/10.5194/egusphere-egu21-6724, 2021.

EGU21-3999 | vPICO presentations | BG3.20

Allometric models for the estimation of leaf area and dry weight from sapwood and heartwood area in black locust (R. pseudacacia)

Stamatios Rafail Tziaferidis, Gavriil Spyroglou, Mariangela Fotelli, and Kalliopi Radoglou

Allometric equations relating a tree’s vascular system with its leaf area and dry weight are developed for numerous forest species, in order to link their hydraulic architecture to carbon and biomass allocation. In 1964, Shinozaki et al. published the Pipe Model Theory (PMT) according to which, a given amount of leaves is supported by and is directly proportional to the area of the conductive tissue of the trunk. The present study aimed at testing whether PMT applies for R. pseudacacia plantations established for restoration and carbon sequestration purposes. A total of 25 trees of black locust grown at the restored former open-cast mining areas of the lignite center of the Hellenic Public Power Corporation (HPPC) in Ptolemaida and Aminteo, NW Greece, were destructively sampled. For each tree we determined its leaf area, foliage dry weight, diameter at breast height, as well as the cross-sectional areas of the trunk, the sapwood and the current sapwood at the stump height (0.30m), the breast height (1.3m), in the middle of the stem, at the base of live crown, at 1/3 and 2/3 of the length of the crown. The relationships of leaf area and foliage dry weight with the different cross-sectional areas at the selected stem heights were tested with simple and multiple linear regression models at p<0.001.

Among all tested relationships, PMT was more strongly verified by the linear relationship estimating both leaf area and foliage dry weight by the total cross-sectional area at the middle of the stem (R2=0.81). Sapwood area was found to be a less strong estimator of leaf area and foliage dry weight. The best relationships between sapwood area and leaf area / foliage were established when measured at the 1/3 of the length of the crown (R2=0.70 and 0.77, for leaf area and dry weight, respectively). The widely used relationship of sapwood at breast height to both leaf area and weight was less strong in our study (R2=0.66 and 0.68, for leaf area and dry weight, respectively). Furthermore, our results were not consistent with the theory of Shinozaki et al. (1964) that the ratio of leaf area to sapwood area increases from the top of the tree to the base of crown, where it is stabilized until breast height. These deviations may be due to the age of the studied plantations which does not exceed 30 years and the properties of the growth substrate consisting mainly of depositions from the extraction of lignite. The strongest allometric models for the estimation of leaf area and weight by tree diameter were built at breast height (R2=0.72) and at the base of live crown (R2=0.73), respectively. In addition, the trees’ diameter at the base of live crown could be reliably estimated by their diameter at breast height (R2=0.78). Our results were only partly consistent with the PMT. However, the established relationships may be useful for modelling and assessment of carbon allocation, water balance and growth of black locust plantations in restoration sites.

How to cite: Tziaferidis, S. R., Spyroglou, G., Fotelli, M., and Radoglou, K.: Allometric models for the estimation of leaf area and dry weight from sapwood and heartwood area in black locust (R. pseudacacia), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3999, https://doi.org/10.5194/egusphere-egu21-3999, 2021.

EGU21-13954 | vPICO presentations | BG3.20

When does gap filling of trait data confound taxonomic and functional analyses? 

Julia Joswig, Jens Kattge, Guido Kraemer, Miguel Mahecha, Nadja Rüger, Michael Schaepman, Franziska Schrodt, Christian Wirth, and Meredith Schuman

Data on plant traits are increasingly used to understand relationships between biodiversity and ecosystem processes. Large trait databases are sparse because they are compiled from many smaller and usually more local databases. This sparsity severely limits the potential for both multivariate and global data analyses, and so "gap-filling" (imputation) approaches are commonly used to predict missing trait data prior to analysis. Data imputation can result in large biases and circularity; yet, no best practice has evolved for the appropriate use of gap-filled data. Here, we use the TRY database, the largest global database of plant traits, in combination with the commonly used gap-filling algorithm, BayesianHierarchical Probabilistic Matrix Factorization (BHPMF), to address opportunities and problems introduced by gap-filling. BHPMF is the gap-filling method of choice for both TRY, and the large and widely used database sPLOT. It predicts missing trait data using the taxonomic hierarchy and observed patterns of trait variance and trait-trait correlations. We use three metrics: root mean square error estimates, coefficient of variation to assess univariate deviation, and silhouette indices to assess multivariate deviation and clustering strength. We show that gap-filling results in deviation of these metrics calculated for groupings at lower taxonomic levels (intra-specific and intra-genera), but less so at higher taxonomic levels (family) and for functional groups. Trait-trait correlations are preserved at all levels. The strength of deviations depends both on the percentage of gaps, and on data characteristics, e.g. intra-taxa variability. Gap-filling with dataset-external trait data generally ameliorates prediction error, but the deviations of intra-taxonomic variation measures depend on the content of the added data. We conclude that BHPMF gap-filling introduces little bias if specifically used for analyses of traits within functional groups, including growth forms and plant functional types (PFTs), as well as trait-trait correlations. However, we generally discourage their use for analyses of taxonomic groupings at or below the family level. In summary, our study supports decisions on when and how to integrate BHPMF gap-filled trait data in future studies. We conclude with selected best practices when using sparse databases.

How to cite: Joswig, J., Kattge, J., Kraemer, G., Mahecha, M., Rüger, N., Schaepman, M., Schrodt, F., Wirth, C., and Schuman, M.: When does gap filling of trait data confound taxonomic and functional analyses? , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13954, https://doi.org/10.5194/egusphere-egu21-13954, 2021.

EGU21-1372 | vPICO presentations | BG3.20

EMPHASIS: European infrastructure for multi-scale plant phenotyping and simulation for food security in a changing climate

Roland Pieruschka, Sven Fahrner, and Ulrich Schurr

Quantitative analysis of structure and function of plants has become the major bottleneck in basic plant research and applied use of plants in breeding or agricultural management. This is particularly important for sustainable intensification of crop production to ensure the amount and quality of plant biomass for human nutrition and industry in times of climate change. In recent years, significant interdisciplinary approaches have been started to establish plant phenotyping infrastructure with non-invasive methods that allow to quickly and non-invasively assessing the condition and properties of plants in the laboratory, greenhouse or field, make these data accessible through data and computational services and allow data reuse for meta-analysis or modelling.

In this presentation, we will outline the recent developments to integrate plant phenotyping across scales from lab to field including common data management approaches. The ESFRI research infrastructure EMPHASIS is developing a pan European infrastructure based of the portfolio of existing national plant phenotyping centers. The goal is to: i) provide a instrumented facilities for user access for quantitative trait assessment, ii) link data acquisition with data management and modelling, iii) develop, evaluate and disseminate knowledge and novel technologies. We will showcase phenotyping of quantitative traits under controlled and specifically field conditions providing novel inside on plant environment interaction for example in dedicated free air CO2 enrichment facilities and illustrate the development of pan-European information system making these data reusable. Finally, we will introduce the latest activities of IPPN e.V. is a networking platform linking the plant phenotyping centers and enabling close interaction across the globe.

How to cite: Pieruschka, R., Fahrner, S., and Schurr, U.: EMPHASIS: European infrastructure for multi-scale plant phenotyping and simulation for food security in a changing climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1372, https://doi.org/10.5194/egusphere-egu21-1372, 2021.

BG3.21 – Modeling agricultural systems under global change

EGU21-11923 | vPICO presentations | BG3.21

One-third of global food production at risk for unprecedented climate conditions due to climate change

Matti Kummu, Matias Heino, Maija Taka, Olli Varis, and Daniel Viviroli

The majority of food production is based on agricultural practices developed for the stable Holocene climatic conditions, which now are under risk for rapid change due to climate change. Although various studies have assessed the potential changes in climatic conditions and their projected impacts on yields globally, there is no clear understanding on the climatic niche of the current food production. Nor, which areas are under risk of falling outside this niche.

In this study we aim first at defining the novel concept Safe Climatic Space (SCS) by using a combination of three key climatic parameters. SCS is defined here as the climate conditions to which current food production systems (here crop production and livestock production separately) are accustomed to, an analogue to Safe Operating Space (SOS) concepts such as Planetary Boundaries and human climate niche. We use a combination of selected key climatic factors to define the SCS through the Holdridge Life Zone (HLZ) concept. It allows us to first define the SCS based on three climatic factors (annual precipitation, biotemperature and aridity) and to identify which food production areas would stay within it under changed future climate conditions. 

We show that a rapid and unhalted growth of GHG emissions (SSP5-8.5) could force 31% (25-37% with 5th-95th percentile confidence interval) of global food crop production and 34% (26-43%) of livestock production beyond the SCS by 2081-2100. Our results underpin the importance of committing to a low emission scenario (SSP1-2.6), whereupon the extent of food production facing unprecedented conditions would be a fraction: 8% (4-10%) for crop production and 4% (2-8%) for livestock production. The most vulnerable areas are the ones at risk of leaving SCS with low resilience to cope with the change, particularly South and Southeast Asia and Africa’s Sudano-Sahelian Zone. 

Our findings reinforce the existing research in suggesting that climate change forces humanity into a new era of reduced validity of past experiences and dramatically increased uncertainties. Future solutions should be concentrated on actions that would both mitigate climate change as well as increase resilience in food systems and societies, increase the food production sustainability that respects key planetary boundaries, adapt to climate change by, for example, crop migration and foster local livelihoods especially in the most critical areas.

How to cite: Kummu, M., Heino, M., Taka, M., Varis, O., and Viviroli, D.: One-third of global food production at risk for unprecedented climate conditions due to climate change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11923, https://doi.org/10.5194/egusphere-egu21-11923, 2021.

EGU21-2888 | vPICO presentations | BG3.21

Potentials and limitations of climate change adaptation with crop calendar optimization in rice-based multiple cropping systems

Xiaobo Wang, Christian Folberth, Shaoqiang Wang, Rastislav Skalsky, and Balkovic Juraj

Climate change poses increasing risks to global food security with more severe heat stress, water scarcity, and flooding. As one of the major adaptation measures, adjusting crop calendars could be a feasible and effective solution to avoid adverse effects on crop yield potentials in a changing climate by allowing crops to grow in more favorable weather conditions. Previous single-crop and single-objective studies on the optimization of crop planting dates lack comprehensive consideration of multi-crop rotation systems, especially rice-based cropping systems with short growing season intervals in Asian tropical monsoon regions. This study seeks to better understand potentials and limitations of adjusting crop calendars for climate change adaptation of double-rice and rice-wheat rotation systems, with a particular focus on the following questions: (1) Is it possible to avoid yield loss of rice and wheat through adjusting crop calendars in the study area? (2) How will fallow period between crop growing seasons change in the future? (3) What are relationships between crop yield improvement, irrigation water requirement, and heat stress mitigation in the study area?

To address these questions, we calibrated a spatial implementation of the Environmental Policy Integrated Climate (EPIC) agronomic model to estimate annual potential yields, irrigation water requirement, and heat stress days of irrigated double-rice and rice-wheat cropping systems in Bangladesh, India, and Myanmar (the BIM countries), and adjusted crop calendars (a) by single-objective optimization with maximum yield and (b) multi-objective optimization with least irrigation water requirement, minimum heat stress days, and highest potential yield under climate change.

Our results indicate that most yield loss in rice and wheat could be avoided through shifting planting dates while considering effects of elevated atmospheric CO2 concentration on biomass assimilation and transpiration. The model indicates that fallow periods between kharif-rice harvest dates and rabi-rice planting dates in double-rice systems are likely to become longer due to shorter growing season duration meanwhile fallow periods between kharif-rice harvest dates and rabi-wheat planting dates in rice-wheat systems are likely to become shorter due to advanced planting dates of rabi wheat, which implies that double-rice systems in the BIM countries will have more flexibility to cope with smaller time windows for crop growth and development in the future. Moreover, nearly half of the study area has the potential to increase yield by more than 10% through changing crop calendars compared to the basic scenario with non-adjusted crop calendars under RCP8.5 in 2080s, but 59% of these areas would face contradictions in obtaining crop yield improvement, saving irrigation water, and mitigating heat stress in the future. We found those areas suitable for adopting shifting planting dates as one of adaptation strategies from the perspective of climate conditions, such as Punjab state in India and Rangpur in Bangladesh, are also the areas with shortened growing season intervals, which requires great efforts to achieve the adaptation objectives under climate change. Thus, the trade-off among climate change adaptation, ecological sustainability, and farmer decision making should be carefully considered for local governments when promoting adjustment of crop calendars in rice-based multiple cropping systems.

How to cite: Wang, X., Folberth, C., Wang, S., Skalsky, R., and Juraj, B.: Potentials and limitations of climate change adaptation with crop calendar optimization in rice-based multiple cropping systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2888, https://doi.org/10.5194/egusphere-egu21-2888, 2021.

EGU21-10042 | vPICO presentations | BG3.21

Cereal yield forecasting in Morocco using the CARAIB dynamic vegetation model driven by HadGEM2-AO projections

Iliass Loudiyi, Ingrid Jacqemin, Bernard Tychon, Louis François, Mouanis Lahlou, Joost Wellens, and Riad Balaghi

Food security, in Morocco as in many parts of the world, depends heavily on cereal production which fluctuates relying on weather conditions. In fact, Morocco has a production system for cereals which is dominated by rainfed. It is therefore necessary to further develop knowledge about climate change and strengthen forecasting systems for predicting the impacts of climate change.

Our research, funded by a bilateral project of Wallonie-Bruxelles International, aims to study the response of cereal production to climate change, using the dynamic vegetation model CARAIB (CARbon Assimilation In the Biosphere) developed within the Unit for Modelling of Climate and Biogeochemical Cycles (UMCCB) of the University of Liège. This spatial model includes crops and natural vegetation and may react dynamically to land use changes. Originally constructed to study vegetation dynamics and carbon cycle, it includes coupled hydrological, biogeochemical, biogeographical and fire modules. These modules respectively describe the exchange of water between the atmosphere, the soil and the vegetation, the photosynthetic production and the evolution of carbon stocks and fluxes in this vegetation-soil system. For crops, a specific module describes basic management parameters (sowing, harvest, rotation) and phenological phases.

The simulations are performed across all Morocco using different input data. The three main cereal crops simulated include soft wheat, durum wheat and barley, they are grown in all provinces and all agro-ecological zones. Regarding climatic inputs, we’re using two sets of data: the first one is interpolated and bias-corrected fields from the climate model HadGEM2-AO for the historical period (1990-2005), in addition to three different Representative Concentration Pathway scenarios (RCP2.6, RCP4.5 and RCP8.5) from 2005 to 2100. The second one is high resolution (30 arc sec) gridded climate data derived from WorldClim combined with interpolated anomalies from CRU (Climatic Research Unit) over the historical period 1990 to 2018.

After obtaining preliminary results for the past period, and in order to improve the prediction using the field data which are the observed yields, we performed a sensitivity analysis. We used the One-at-a-time (OAT) approach by moving one input variable, keeping others at their baseline (nominal) values, then, returning the variable to its nominal value, then repeating for each of the other inputs in the same way. Sensitivity may then be measured by monitoring changes in the output, using linear regression. The inputs studied are the initial value of carbon pool, leaf C/N ratio, water stress, sowing date, GDD harvest, stomatal conductance parameters, specific leaf area, and rooting depth.

How to cite: Loudiyi, I., Jacqemin, I., Tychon, B., François, L., Lahlou, M., Wellens, J., and Balaghi, R.: Cereal yield forecasting in Morocco using the CARAIB dynamic vegetation model driven by HadGEM2-AO projections, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10042, https://doi.org/10.5194/egusphere-egu21-10042, 2021.

EGU21-3343 | vPICO presentations | BG3.21

Can intercropping stabilize yields in the face of climatic changes?

Giulia Vico, Martin Weih, and Herman NC Berghuijs

Intercropping has been proposed as a way to reduce some of the negative consequences of intensive agriculture while maintaining or enhancing crop yields. Not only yields can be increased in intercrops, but they can also be more stable in the face of variable climatic conditions, offering an avenue of climate change adaptation. Nevertheless, exploiting the benefits of intercropping requires determining what the most appropriate members of the plant team are, and matching plant team and management to the local pedoclimatic conditions. Process-based mathematical models can complement field experiments to quantify via numerical simulations the performance of a variety of combinations of plant teams, management, and pedoclimatic conditions. These models are particularly useful when exploring the potential advantages of intercropping under climate change. Here we use the newly developed model M3 (Minimalist Mixture Model; Berghuijs et al, Plant and Soil, 2020) to simulate the biomass and grain yields of pure culture or intercropping systems, as a function of plant traits, management and environmental conditions. Focusing on wheat and faba bean grown in pure culture and intercrop in the Netherlands and Central Sweden, we quantified crop yields and their stability over the period 1951-2100, exploiting modelled climatic data series. We found large interannual variability in yields both on a per unit area and per plant basis, mostly due to the interannual variability in weather conditions. On a per unit area basis, yield differences between crops and cropping systems are consistent under historical and future climatic conditions. However, under future climatic conditions, the yields per plant were lower in faba bean, but not in wheat. Overall, pure cultures benefitted from future climatic conditions, while intercrops appeared to be negatively affected. Moreover, climate change increased yield variability in both crops and cropping systems. Therefore, against expectations, intercropping does not necessarily reduce yield variability with respect to pure culture

How to cite: Vico, G., Weih, M., and Berghuijs, H. N.: Can intercropping stabilize yields in the face of climatic changes?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3343, https://doi.org/10.5194/egusphere-egu21-3343, 2021.

EGU21-15313 | vPICO presentations | BG3.21

Same soil - different climate: crop model inter-comparison with lysimeter data of translocated monoliths

Jannis Groh and Horst H. Gerke and the crop-soil modelling initiative

Crop model inter-comparisons have mostly been carried out to test the predictive ability under the past range of climatic conditions and for soils of the same site. Unknown is, however, the ability of individual crop models to predict effects of changes in climatic conditions on soil ecosystems beyond the range of site-specific variability. The objective of this study was to test the predictive ability of agro ecosystem models using weighable lysimeter data for the same soil under changed climatic conditions and to compare the simulated crop growth and soil-ecosystem response to climate change between these models. To achieve the objective, data were analyzed from the network of TERENO SOILCan lysimeters for a soil-ecosystem at the original site (Dedelow) and data from the lysimeters containing Dedelow soil monoliths that were transferred to Bad Lauchstädt and Selhausen. For Bad Lauchstädt, this transfer was to a drier and a warmer and for Selhausen to a warmer and wetter site as compared to the original location of the soils at Dedelow. Data time series from the cropped arable soil lysimeters included drier and wetter years and a site-specific crop rotation under comparable management conditions. Identical soil properties and crop growth and boundary conditions were provided for all models after a calibration for the original site at Dedelow, predictions were made for sites Selhausen and Bad Lauchstädt using boundary conditions from those sites. The overall simulation performance of the models was separated in a crop-related part, ecosystem productivity (grain yield, biomass, leaf area index) and in an environmental part, ecosystem fluxes (evapotranspiration, net drainage, soil moisture). When moving soil to a drier region, the crop models’ agronomic and environmental part were well predicted, when moving to wetter regions, only the environmental part of the models seemed to be well predicted. The results suggest considering climate change scenarios, more attention to soil properties and testing of model performance for conditions beyond the calibrated range and site-specific variability will help improving the models.

How to cite: Groh, J. and Gerke, H. H. and the crop-soil modelling initiative: Same soil - different climate: crop model inter-comparison with lysimeter data of translocated monoliths, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15313, https://doi.org/10.5194/egusphere-egu21-15313, 2021.

EGU21-3083 | vPICO presentations | BG3.21

Potential soil carbon sequestration of agricultural land around the world

Sylvia Vetter, Michael Martin, and Pete Smith

Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).

Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.

Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.

How to cite: Vetter, S., Martin, M., and Smith, P.: Potential soil carbon sequestration of agricultural land around the world, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3083, https://doi.org/10.5194/egusphere-egu21-3083, 2021.

Anthropogenic greenhouse gases emissions are the main driving force of climate change. They need to be strongly reduced during the next Century until carbon neutrality in order to keep the international 2°C objective of the Paris Agreement on Climate. The “4per1000” initiative was launched in 2015 as a climate mitigation option, with an aspiration to increase global soil organic carbon (SOC) stocks by 4‰ per year to compensate for the anthropogenic emissions of carbon dioxide in the atmosphere. The “4per1000” is not applicable everywhere, hence a full compensation of anthropogenic emissions is unlikely. Nevertheless, where possible, it has been identified as an interesting approach to mitigate climate change and, at the same time, ensure food security through improved soil fertilization. To reach such an objective one must either reduce carbon outputs (e.g. erosion and respiration) or increase the inputs of biomass to the soil.

Here, we use a multi-modelling approach to study the challenges of SOC storage potential through increased organic inputs in agricultural sites. The aim is to respond to the following question: “What is the amount of carbon inputs that needs to be brought to soils as a means to increase SOC stocks by 4‰ per year?” This scientific question belongs to the family of inverse problems and is addressed by using a multi-modelling approach, to improve the predictions and associated uncertainties of model outputs.

The amount of required carbon inputs to reach the 4per1000 is estimated over 30 years of simulations with five different models (Century, RothC, ICBM, AMG and Millennial) and is compared to more than 15 long-term arable experiments of organic matter addition in Europe. This allows estimating the feasibility of a 4per1000 objective in temperate, north-temperate and Mediterranean regions with different treatments of organic matter inputs. As a final step, we evaluate the sensitivity of the predicted carbon inputs requirement to future projections of climate change.

The 4per1000 initiative is an interesting approach to contribute for the mitigation of climate change through agriculture. Here, we will present preliminary results of a multi-modelling analysis showing that the necessary inputs to reach the 4per1000 target are realistic for some experimental conditions, but might be too high to be implemented at a larger scale.

How to cite: Bruni, E.: How much should we increase carbon inputs to the soil to reach a 4per1000 objective of soil organic carbon storage in European agricultural sites: a multi-modelling approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1666, https://doi.org/10.5194/egusphere-egu21-1666, 2021.

Enhanced weathering through basalt application on agricultural land represents a proposed strategy for the removal of carbon dioxide from the atmosphere. Co-benefits related to soil health, resilience and crop yield make basalt excellently suited as a sustainably technology for GHG mitigation in agriculture. It has been shown that enhanced weathering is principally feasible on a global scale, but it remains unclear whether it can be implemented on a local level. With this in mind, we estimate the potential for CO2 removal through a case study for Austria. Scenarios are estimated for three different particle size distributions (< 100 µm, < 10 µm and < 1 µm). We find that transport related emissions may cancel out any drawdown if grain sizes (< 100 μm) are used. However, under optimal transport conditions the large-scale application of particles with a diameter < 10 μm may remove about 2% of Austria's annual Greenhouse gas emissions while at the same time supplying important plant nutrients. We discuss challenges towards this goal, including the enormous amounts of basalt needed and the energy requirement related to grinding, as well as uncertainties related to actual field weathering rates. Those uncertainties hinder the precise quantification of CO2 drawdown as of now. While enhanced weathering remains a promising path for climate change mitigation, further research at laboratory and field scale is required to put this technology to optimal use. 

How to cite: Rinder, T. and von Hagke, C.: The potential of carbon dioxide removal through enhanced weathering of basalt on agricultural land in Austria, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2277, https://doi.org/10.5194/egusphere-egu21-2277, 2021.

EGU21-15272 | vPICO presentations | BG3.21

Assessing the impact of cover crop as a GHG mitigation solution at intra-field scale using the AgriCarbon-EO tool

Taeken Wijmer, Ahmad Al Bitar, Remy Fieuzal, Ludovic Arnaud, Gaetan Pique, and Eric Ceschia

Increasing soil carbon stocks has been identified as a major climate change mitigation solution. As a consequence, an objective of 4/1000 yearly increment in soil carbon stocks has been proposed at the COP21.  Sustainable agriculture provides several solutions to meet this objective and among those solutions, the implementation of cover crops has been identified as most efficient. Currently, a comprehensive modeling tool that takes into account the major bio-geophysical processes with associated uncertainties, while assimilating frequent high-resolution observations at large scale could allow accounting for the effect of cover crops on the carbon budget in a realistic way. In this study, we quantify the components of the carbon budget at high resolution and we analyse the effect of cover crops. Computations are based on the newly developed AgriCarbon-EO tool which assimilates full resolution (10-20m) Sentinel-2 optical data into a radiative transfer model (PROSAIL), and a crop model (SAFYE-CO2). The assimilation scheme is based on a Bayesian approach which provides the retrieved biogeophysical variables with their associated uncertainties. Uncertainties are essential when determining the carbon stocks. For instance, the future European Common Agricultural Practice (CAP) may take into consideration the uncertainty of the determination of the soil carbon stocks changes in the evaluation of the subsidies. The main inputs of the computations are weather data, soil texture maps, crop maps and surface reflectances. The Sentinel-2 Leaf Area Index (LAI) are obtained from those Sentinel-2 surface reflectance by inverting the PROSAIL model. These are then assimilated into the SAFY_CO2 model to determine the carbon budget components. To validate our approach, we implemented the AgriCarbon-EO tool over a set of plots in south-western France over which we dispose of biomass measurements for cover crops in wheat/cover crop/maize rotations for 2017-2018 and 2019-2020 agricultural seasons. Also, the CO2 fluxes are validated against eddy covariance flux measurements in the same context. Our study shows that the cover crops allow on average 250gC/m² of organic carbon with a high spatial heterogeneity. This has important implications regarding the dynamic of carbon storage in agronomic soils and demonstrates the importance of high-resolution agronomic modeling.

How to cite: Wijmer, T., Al Bitar, A., Fieuzal, R., Arnaud, L., Pique, G., and Ceschia, E.: Assessing the impact of cover crop as a GHG mitigation solution at intra-field scale using the AgriCarbon-EO tool, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15272, https://doi.org/10.5194/egusphere-egu21-15272, 2021.

EGU21-15043 | vPICO presentations | BG3.21

Constraints and options to sustainably intensifying smallholder maize farming systems in southern Africa

William Nelson, Munir Hoffmann, Carlotta May, Frederick Mashao, Kingsley Ayisi, and Reimund Rötter

In southern Africa, sustainable intensification (SI) of low input farming is promoted as a key strategy to improve the livelihoods and food security of smallholder farmers. It has been argued, however, that due to the severity and frequency of droughts, irrigation is a prerequisite for sustainable yield improvement and stability, and less crop failures. Restricted access to water for such farmers in the study region necessitates the investigation of alternative adaptive management options suited to smallholder systems. Using the Limpopo province South Africa as a case study, we use a combination of survey data (140 households) and detailed quantitative agronomic measurements and observations (116 georeferenced on-farm plots) to understand yield limitations in maize-based smallholder systems. Data was collected from five villages in the Mopani district representing a distinct climate gradient. Agronomic measurements included soil characteristics such as CN ratio, texture, rooting depth and management aspects such as weed type and soil cover, as well as maize planting density, biomass and yield. Combined insights from the interviews and detailed on-farm observations were used to benchmark the agro-ecosystem model APSIM, which was then setup for different technology levels. These were defined through combinations of advanced crop and soil management practices plus the status quo as observed through the ground-truthing campaign with no irrigation, zero to low fertilisation, little weeding, no pest management, and low planting density. Advanced practices involved higher input levels including irrigation and fertiliser, as well as management aspects such as increased planting density and intense weeding.

Survey results showed that farmers adjusted sowing time and planting density according to rainfall availability and perceived risk. Overall, input intensity levels were low (fertiliser and density) and all villages expressed similar challenges to adapt to climate variability. It appeared most farmers lacked knowledge about drought avoidance measures, and only very few had access to water for crop irrigation.

Our simulation results showed that irrigation could increase maize grain yields by around two tons ha-1 over a three-year average for a moderately wet site under current management practices. For the driest site, this led to an increase of just over one ton ha-1. If irrigation is applied it necessitates an increase in biotic stress management, as failing to do so can compromise potential yield gains. Higher labour input, increased input costs and possibly associated increased economic risks make such intensification strategies unattractive for some farmers depending on their age and household economic security.

For this case study, we outlined and implemented a novel method of linking survey and agro-ecosystem modelling data to assess ex-ante potential impacts of SI in smallholder cropping systems vulnerable to climate-induced risk.

How to cite: Nelson, W., Hoffmann, M., May, C., Mashao, F., Ayisi, K., and Rötter, R.: Constraints and options to sustainably intensifying smallholder maize farming systems in southern Africa, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15043, https://doi.org/10.5194/egusphere-egu21-15043, 2021.

EGU21-8155 | vPICO presentations | BG3.21

Analyzing competing land use policy objectives under climate change – a regional case study from Austria

Katrin Karner, Hermine Mitter, and Erwin Schmid

In the semi-arid Seewinkel region in Austria, competing demands exist for land and water such as from agriculture, nature protection, tourism and settlements. In addition, water quality problems are prevalent due to nitrate leaching in groundwater in the region. Climate change likely will amplify existing resource demands and environmental impacts, imposing considerable challenges for adapting and regulating agriculture in the Seewinkel. Hence, compromises between competing policy objectives are needed.
The aim of this presentation is to assess efficient land and water management strategies considering several economic and agro-ecological policy objectives in the Seewinkel region in context of climate scenarios. A multi-objective optimization experiment was performed with an integrated modelling framework to compute agro-economic-ecological Pareto frontiers. The frontiers combine levels of (i) net benefits from agricultural production, (ii) groundwater extraction for agricultural irrigation, (iii) nitrate leaching from agricultural production, and (iv) topsoil organic carbon stocks. 30 stochastic realizations of three climate scenarios are considered for a future period of 31 years: WET, SIMILAR and DRY, which mainly differ regarding annual precipitation volumes.
Model results show that a 1% (20%) reduction of agricultural net benefits can lower groundwater extraction by 11-83% (61-100%) and nitrate leaching by 18-19% (49-53%) as well as increase topsoil organic carbon sequestration by 1% (5%) depending on the climate scenario. However, substantial changes in land use and management would be required. For instance, less groundwater extraction by 11-83% requires a 6-21% reduction of irrigated cropland, a 21-33% reduction of highly fertilized cropland, a 10-24% increase of grassland, and a 23-52% increase of abandoned land depending on the climate scenario. Less nitrate leaching by 18-19% (or higher topsoil organic carbon stocks by 1%) require that highly fertilized cropland decreases by 9-13% (4-7%), abandoned land increases by 5-9% (19-49%) and grassland either declines by 3% (14%) or increases by up to 5% (32%) depending on the climate scenario. In general, the share of grassland increases in the wetter climate scenario.
Overall, the analysis reveals that especially groundwater extraction and nitrate leaching can be reduced substantially for fairly small reduction in agricultural net benefits in all climate scenarios. 50% of maximum modelled improvements of agro-ecological objectives can be already achieved at 1-15% reductions of agricultural net benefit depending on climate scenarios. Thus, respective land use policies would allow considerable improvements of the agro-ecological performance at relatively low costs. However, improving the agro-ecological performance beyond a particular level can quickly lead to high reductions of agricultural net benefits, as depicted by the non-linear form of the Pareto frontiers. This is mainly related to large declines of cropland and increases in grassland or abandoned land. Furthermore, the results indicate that water management policies are less costly than climate change mitigation policies, at least in the Seewinkel region.

How to cite: Karner, K., Mitter, H., and Schmid, E.: Analyzing competing land use policy objectives under climate change – a regional case study from Austria, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8155, https://doi.org/10.5194/egusphere-egu21-8155, 2021.

EGU21-437 | vPICO presentations | BG3.21

Options for increased soil carbon storage and water holding capacity through sustainable agriculture and forestry: modelling results from showcase regions in Austria

Dagmar Nadja Henner, Gottfried Kirchengast, Melannie D. Hartman, and Clara Hohmann

Sustainable agriculture and forestry are essential topics under climate change and a potential route for increasing long-term soil and biomass carbon storage, soil water retention capacity, and reducing water and wind erosion risks. This study uses two, geographically and climatologically diverse, showcase regions in Southeastern Austria (the Raab and lower Enns catchment regions) for exploring sustainable whole-system options for climate change adaptation and mitigation under increased hot-dry conditions in agriculture and forestry. We consider options as “sustainable whole-system” that jointly achieve accumulation of soil carbon and robustness of soil water retention capacity, an increase of soil quality, reduction of soil erosion and degradation, reduced compaction, stabilisation of slopes, sustainability and resilience in the soil as well as the agricultural and forest production systems. These options are evaluated using site-level data in the regions together with a carefully combined set of hydrologic, biomass, biogeochemical and ecosystem models. This model setup includes the hydrological model WaSiM, the biogeochemical and ecosystem model DayCent, and the biomass models MiscanFor, SalixFor, and PopFor. Based on dense data of the WegenerNet observing network and further hydrometeorological data, combined with hydrological modelling (WaSiM), the current hydrological disturbance potential in the focus regions is assessed. Furthermore, downscaled IPCC climate change scenarios are used for future projections and combined with WaSiM results. These data are evaluated for increasing heat and drought risks for soils and agricultural and forest production. This work provides the hydrological context for modelling the soil water and carbon storage enhancement options that farming, forestry and land-use practices might apply. A first key study aspect is then the sustainable potential of bioenergy crops. Using the local-scale WegenerNet data combined with site-specific land management data obtained from farmer and forest manager communities and where necessary with soil data from the Harmonized World Soil Database (HWSD), potential yields for bioenergy from lignocellulosic biomass (forest and Miscanthus, willow, and poplar) are modelled using DayCent, MiscanFor, Salix For, and PopFor for representative local areas in the showcase regions. For the second key aspect of this research, DayCent is used at selected data-rich locations, to develop sustainable system options under future climate change scenarios with a focus on different agricultural, forest management, and land-use practices. For comparison, a set of sample agricultural rotations is modelled with DayCent to place the suggested sustainable whole-system options potential of bioenergy crops in context. Furthermore, various agrarian rotation runs are used to determine the potential of changes in the rotation to increase soil carbon storage and enhance water holding capacity in agricultural soils under climate change. Forest management practice runs are used to investigate the possible changes needed for stable forest soils under increasing heat and drought conditions. Sustainable whole-system options for farmers and forest managers are discussed as the primary results from this study part, together with the next steps towards upscaling the results to the country level.

How to cite: Henner, D. N., Kirchengast, G., Hartman, M. D., and Hohmann, C.: Options for increased soil carbon storage and water holding capacity through sustainable agriculture and forestry: modelling results from showcase regions in Austria, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-437, https://doi.org/10.5194/egusphere-egu21-437, 2021.

EGU21-2178 | vPICO presentations | BG3.21

Monitoring Bee Diversity in Natural Systems – Novel Aerial and Classical Ground Methods to Evaluate Biotic and Abiotic Indicators

Vincenzo Di Pietra, Paolo Dabove, Yael Mandelik, Yael Mishael, Karmit Levy, and Maoz Dor

Bees provide essential pollination services to natural ecosystems and agricultural crops. However, managed and wild (unmanaged) bee populations are in decline worldwide. In order to better manage and restore bee populations, long-term monitoring programs are required. Direct bee monitoring is costly, labor intensive, and requires high expertise. Therefore, cost-effective indicators for bee diversity and community composition are essential.
Here we propose to test the cost-efficacy of novel aerial techniques along with classical ground methods to collect biotic and a-biotic indicators of bee diversity and community composition. We will couple classical ecological monitoring approach with advanced photogrammetric tools, in order to develop a multi-scale and multi-temporal platform for monitoring bees. To this end, we formed a complementary, interdisciplinary research group of a pollination ecologist, soil chemists, environmental engineer, geomatics engineer, and topography surveyot. The study will include field work in two complimentary study systems in central Israel, light sandy vs heavy vertisol soils. In each study system we will concurrently conduct bee, flower, bee nesting substrates and soil surveys using classical tools/approaches, as well as apply advanced photogrammetric tools, based on RGB images, with thermal, multispectral data. The indicative ability for bee diversity and community composition of the different biotic and a-biotic measures collected, will be tested using advances statistical tools. Our findings may be instructive to other insects and plant groups, thus provide a novel generic approach towards the ecological monitoring of terrestrial systems.

How to cite: Di Pietra, V., Dabove, P., Mandelik, Y., Mishael, Y., Levy, K., and Dor, M.: Monitoring Bee Diversity in Natural Systems – Novel Aerial and Classical Ground Methods to Evaluate Biotic and Abiotic Indicators, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2178, https://doi.org/10.5194/egusphere-egu21-2178, 2021.

EGU21-14299 | vPICO presentations | BG3.21

The Global Gridded Crop Model Intercomparison – an AgMIP activity

Christoph Müller, Jonas Jägermeyr, and the GGCMI team

The Global Gridded Crop Model Intercomparison was founded in 2012 as a joint activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP) and the InterSectoral Model Intercomparison Project (ISIMIP). Over these 10 years, GGCMI has attracted contributions from many international crop modeling groups and has generated large global agricultural data sets in different model simulation phases. Input data comprise gridded management data for agricultural systems that can be used in combination with climate data that are provided by ISIMIP. Annual output data include crop yields and other variables of plants and soil status for irrigated and purely rainfed production systems for different field crops at 0.5 degree spatial resolution, covering the whole land surface, where crop production is feasible. All data are made publicly available. While Phase 1 of GGCMI was focused on the historical period[1,2], aiming at model evaluation[3], Phase 2 generated an unprecedented large data set of systematic disturbances along the CO2 (C), Temperature (T), Water (W) and Nitrogen (N) dimension[4]. A major outcome of Phase 2 is a very large set of emulators[5] that allows for lightweight, flexible and comprehensive crop yield projections and analyses. With analyses of Phase 2 still forming, Phase 3 was started in collaboration with ISIMIP’s Phase 3, providing new future projections for a range of CMIP6 climate change projections and different management scenarios. Crop models do not only provide outputs on crop yields but also on various processes, such as evapotranspiration, leaf area index, phenology and soil dynamics that allow for broader analyses. GGCMI is a collaborative effort and always open to new contributors. Given the amount and complexity of in- and output data, we welcome proposals for new studies and data analyses. In this presentation we’re providing an overview of the GGCMI activities and exemplify possible entry points for collaboration.

[1] http://dx.doi.org/10.5194/gmd-8-261-2015

[2] http://dx.doi.org/10.1038/s41597-019-0023-8

[3] http://dx.doi.org/10.5194/gmd-10-1403-2017

[4] http://dx.doi.org/10.5194/gmd-13-2315-2020

[5] http://dx.doi.org/10.5194/gmd-13-3995-2020

How to cite: Müller, C., Jägermeyr, J., and GGCMI team, T.: The Global Gridded Crop Model Intercomparison – an AgMIP activity, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14299, https://doi.org/10.5194/egusphere-egu21-14299, 2021.

BG3.22 – Vegetation function responses to global change: across observations, experiments, and models

EGU21-6662 | vPICO presentations | BG3.22

Temperate-zone reforestation as a tool for local climate adaptation? 

Kimberly Novick

In addition to dramatic reductions to anthropogenic greenhouse gas emissions, most pathways for limiting global warming to less than 2 degrees C rely on managed alterations to the land surface designed to increase land carbon uptake and storage (so-called “natural climate solutions”, or NCS). Reforestation is the NCS with the largest estimated climate mitigation potential, and at least in energy-limited temperate climates, evidence is mounting that transitions from short-stature ecosystems (croplands, grasslands) to forests substantially reduce surface temperature. In this way, reforestation, at least in some places, may also represent a useful tool for local climate adaptation. However, existing work on the topic has tended to focus on how reforestation affects mean annual and seasonal surface temperature, with comparatively less attention paid to the biophysical impacts of reforestation when local cooling would be most beneficial (i.e. at mid-day, and especially droughts and heat waves). Moreover, while surface temperature is a critical driver of ecosystem processes, arguably the near-surface air temperature is the more relevant target for climate adaptation. The duality between reforestation impacts on surface and air temperature has historically been challenging to deconvolve, and thus we do not yet understand the extent to which forest surface cooling extends to the air. In this talk, new strategies are discussed for blending flux tower data and remote sensing observations to uncover the links between reforestation, surface energy balance, and near-surface air temperature dynamics, with a particular emphasis on how plant water use strategies mediate these relationships during summer days and periods of hydrologic stress.  

How to cite: Novick, K.: Temperate-zone reforestation as a tool for local climate adaptation? , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6662, https://doi.org/10.5194/egusphere-egu21-6662, 2021.

EGU21-8333 | vPICO presentations | BG3.22

Functional thresholds of plant resistance and recovery to drought

Johannes Ingrisch, Nikolaus Umlauf, and Michael Bahn

With ongoing climate change, the predicted increase in climate variability is likely to increase the intensity of extreme drought events. This could significantly amplify the consequences of drought, because ecological responses are often non-linear. The importance of functional thresholds has been widely recognized, where comparably small changes in the stressor can have disproportional large consequences for ecosystem functioning. However, very few studies have actually tested for the functional thresholds of drought responses, which creates large uncertainties in our understanding of drought effects. Here, we aimed to determine the effects of drought intensity on plant productivity and to identify potential thresholds underpinning these responses.

We studied the effects of drought intensity on different measures of plant productivity using a gradient design. In a common garden experiment, we performed an experimental pulse drought of 3.5 weeks on planted monospecific mesocosms composed of the common grass Dactylis glomerata and the common forb Plantago lanceolata, respectively. We imposed a drought intensity gradient, which ranged from well-watered to extremely dry soil conditions. During drought and post-drought recovery we repeatedly measured productivity-related parameters, including gross primary productivity (GPP), Normalized Difference Vegetation Index (NDVI) and vegetative height, and assessed aboveground net primary production (ANPP) at peak drought and after recovery.

Drought intensity had non-linear effects on all studied parameters both during the resistance and the recovery phase. At peak drought we observed threshold responses at two stages of drought intensity. The first threshold occurred at moderate drought intensity and was related to a distinct downregulation of GPP and plant height. The second threshold was reflected in a steep decline of NDVI and leaf water content. During the recovery phase, high drought intensity stimulated productivity and regrowth rates. This resulted in an overshooting of biomass production by up to 100% in mesocosms previously exposed to severe drought, the effect being related to the first drought intensity threshold, which had led to a downregulation of GPP during drought. The overcompensation following exposure to high drought intensities was more pronounced for Plantago than for Dactylis. However, highest drought intensities clearly suppressed the recovery capacity of Plantago but not of Dactylis, which demonstrates species-specific differences in the effects of drought intensity on plant resilience.

We conclude that functional thresholds in drought and recovery responses of productivity are related and that with increasing drought intensity plants compensate decreased resistance with increased recovery to optimize overall resilience of productivity to drought.

How to cite: Ingrisch, J., Umlauf, N., and Bahn, M.: Functional thresholds of plant resistance and recovery to drought, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8333, https://doi.org/10.5194/egusphere-egu21-8333, 2021.

EGU21-5063 | vPICO presentations | BG3.22

Delayed and altered post-fire recovery pathways of Mediterranean shrubland under 20-year drought manipulation

Daijun Liu, Chao Zhang, Thomas Pugh, and Josep Penuelas

Increasing anthropogenic and natural disturbances have disturbed 75% of global land area, indicating many plant communities are unstable or in recovery process. Increasing water deficits by rainfall reduction may decrease resilience (rate of recovery) and trigger different succession pathways (e.g. delayed, altered mature status and advanced degradation). Knowledge on the effects of future drought on community structure and demographic dynamics is key to project the fate of vegetation and yet it is limited. 

Here we assessed the impacts of long-term (20 years) experimental drought (-30% rainfall) on the successional pathways of species diversity, community composition and demographic changes for an early-successional Mediterranean shrubland (4 years after a wildfire). The results indicated that experimental drought significantly decreased species richness and shifted community composition compared to control plots. Significant decreases in abundance and increases in death ratios at both community (all species) and shrub (shrub species) levels were found in experimental drought. However, the abundance of Globularia Alypum was significantly increased by drought while Erica multiflora was not affected; the death ratios for the two species were significantly lower in drought than control plots. Species richness, community composition and abundance followed pathway 2 (altered mature state) while shrubland abundance followed pathway 3 (advanced degradation). Principal Component Analysis (PCA) indicated that the variance in vegetation metrics was notably explained by the first two dimensions (49.4%), mainly related to the death ratio of G. alypum and E. multiflora (27.3% for PC1) and abundance of community and shrub levels (22.1% for PC2). The space variation in PC1 significantly increased over time, which was orthogonal with PC2. Within two dimensions of PC1 and PC2, the scores in control were significantly higher than drought. 

Our findings suggest that drier condition simulated by long-term drought could delay and alter the succession pathways of species diversity, community composition and abundance of the plant communities in Mediterranean ecosystems. The results also imply the importance to analyse long-term drought and extreme events on ecosystem functions (the strength of carbon storage in vegetation and soil) for such recovering communities.

How to cite: Liu, D., Zhang, C., Pugh, T., and Penuelas, J.: Delayed and altered post-fire recovery pathways of Mediterranean shrubland under 20-year drought manipulation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5063, https://doi.org/10.5194/egusphere-egu21-5063, 2021.

EGU21-15395 | vPICO presentations | BG3.22

Tropical rainforests under severe drought stress: distinct water use strategies among and within species

Angelika Kübert, Kathrin Kühnhammer, Ines Bamberger, Erik Daber, Jason De Leeuw, Kinzie Bailey, Jia Hu, S. Nemiah Ladd, Laura Meredith, Joost van Haren, Matthias Beyer, Maren Dubbert, and Christiane Werner

Increasing drought in the tropics is a major threat to rainforests and can strongly harm plant communities. Understanding species-specific water use strategies to drought and the subsequent recovery is therefore important for estimating the risk to tropical rainforest ecosystems of drought. Conducting a large-scale long-term drought experiment in a model rainforest ecosystem (Biosphere 2 WALD project), we evaluated the role of plant physiological responses, above and below ground, in response to drought and subsequent recovery in five species (3 canopy species, 2 understory species). The model rainforest was exposed to a 9.5-week lasting drought. Severe drought was ended with a deep water pulse strongly enriched in 2H, which allowed us to distinguish between deep and shallow rooting plants, and subsequent rain (natural abundance range of 2H). We assessed plant physiological responses by leaf water potential, sap flow and high resolution monitoring of leaf gas exchange (concentrations and stable isotopes of H2O and CO2). Thereby, we could derive plant water uptake and leaf water use efficiency (WUEleaf) in high temporal resolution, revealing short-term and long-term responses of plant individuals to drought and rewetting. The observed water use strategies of species and plants differed widely. No uniform response in assimilation (A) and transpiration (T) to drought was found for species, resulting in decreasing, relatively constant, or increasing WUEleaf across plant individuals. While WUEleaf of some plant individuals strongly decreased due to a breakdown in A, others maintained relatively high T and A and thus constant WUEleaf, or increased WUEleaf by decreasing T while keeping A relatively high. We expect that the observed plant-specific responses in A, T and WUEleaf were strongly related to the plant individuals' access to soil water. We assume that plant individuals with constant WUEleaf could maintain their leaf gas exchange due to access to water of deeper soil layers, while plants with increasing/decreasing WUEleaf mainly depended on shallow soil water and only had limited or no access to deep soil water. We conclude that the observed physiological responses to drought were not only determined by species-specific water use strategies but also by the diverse strategies within species, mainly depending on the plant individuals' size and place of location. Our results highlight the plasticity of water use strategies beyond species-specific strategies and emphasize its importance for species’ survival in face of climate change and increasing drought.

How to cite: Kübert, A., Kühnhammer, K., Bamberger, I., Daber, E., De Leeuw, J., Bailey, K., Hu, J., Ladd, S. N., Meredith, L., van Haren, J., Beyer, M., Dubbert, M., and Werner, C.: Tropical rainforests under severe drought stress: distinct water use strategies among and within species, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15395, https://doi.org/10.5194/egusphere-egu21-15395, 2021.

EGU21-14908 | vPICO presentations | BG3.22

On which timescale(s) do optimal adjustments to vegetation function confer resilience? A case study in South-Eastern Australia

Manon Sabot, Martin De Kauwe, Andy Pitman, Belinda Medlyn, Silvia Caldararu, Sönke Zaehle, and David Ellsworth

Droughts have been implicated as the driver behind recent vegetation die-off across a variety of hydroclimates and are projected to drive greater mortality under future climate change. Predicting ecosystem resilience to future drought requires a predictive capacity, which is currently lacking in state-of-the-art land surface models (LSMs) that rely on simplified empirical relationships to represent the impacts of water stress on vegetation. Novel approaches that optimise stomatal conductance with respect to plant photosynthetic and hydraulic functions have been shown to reduce the biases of LSM gas exchange predictions during drought. These approaches also offer a pathway to further develop mechanistic optimality theory, e.g. pertaining to leaf drought deciduousness. But on what timescale(s) does vegetation function adjust to maximise resource investment? We explore the following timescales of optimality within a simple LSM: (i) instantaneous (regulating canopy gas exchange); (ii) monthly (regulating the investment of nitrogen in photosynthetic capacity); and (iii) seasonal to annual (water stress legacies on plant hydraulics). We use observations from a temperate woodland in South-Eastern Australia to test which optimisation timescales and processes are best supported and whether competing timescales can operate together, both under well-watered conditions and during a severe multi-year drought, and from the leaf-scale to the ecosystem-scale. The insights gained help us characterize how adjoined allocation processes, like leaf biomass adjustment, relate to leaf carbon uptake and plant water status through time (e.g. leaves can be shed to mitigate drought stress or built from structural storage pools when water is not limiting), therefore conferring additional resilience.

How to cite: Sabot, M., De Kauwe, M., Pitman, A., Medlyn, B., Caldararu, S., Zaehle, S., and Ellsworth, D.: On which timescale(s) do optimal adjustments to vegetation function confer resilience? A case study in South-Eastern Australia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14908, https://doi.org/10.5194/egusphere-egu21-14908, 2021.

EGU21-15784 | vPICO presentations | BG3.22

New plant hydraulic architecture reproduces impacts of droughts in the Amazon rainforest

Phillip Papastefanou, Christian Zang, Thomas Pugh, Daijun Liu, David Lapola, Katrin Fleischer, Thorsten Grams, Thomas Hickler, and Anja Rammig

The Amazon rainforest has been hit by extreme drought events in recent decades. Thereby, plant hydraulics are essential to better understand the impacts of droughts on single plants and whole forest ecosystems. Plant hydraulic mechanisms such as stomatal closure and leaf water potential are very complex, still posing challenges for current vegetation model development and parameterization. Here, we present the new hydraulic architecture of the Dynamic Global Vegetation Model LPJ-GUESS, accounting for leaf stomatal responses to plant water status and subsequent drought-induced mortality. We show that when applying the model to the Amazon rainforest we can reproduce the observed increasing trend in carbon losses and the decreasing trend in net carbon sink from plot observations over the past two decades. Our model simulations suggest that the increasing historical trend in carbon losses from mortality can be explained by hydraulic failure and associated mortality.

The high biodiversity of the Amazon tropical rainforest poses further challenges for process-based models. Here we present an approach to include the diversity of plant responses to drought by simulating 37 individual Plant Functional Types (PFTs) differing in their leaf water potential regulation- and resistance to soil water stress, and provide a simple solution how to cover a wide range of species and species-specific parameters. Future modelling studies should also take species interaction and competition of different hydraulic strategies into account.

How to cite: Papastefanou, P., Zang, C., Pugh, T., Liu, D., Lapola, D., Fleischer, K., Grams, T., Hickler, T., and Rammig, A.: New plant hydraulic architecture reproduces impacts of droughts in the Amazon rainforest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15784, https://doi.org/10.5194/egusphere-egu21-15784, 2021.

EGU21-12245 | vPICO presentations | BG3.22

Strong effect of relative humidity on dryland lichens under climate change

Philipp Porada, Selina Baldauf, Jose Raggio, Fernando Maestre, and Britta Tietjen

Manipulative experiments typically show a decrease in dryland biocrust cover and altered species composition under climate change. Biocrust-forming lichens, such as the globally distributed Diploschistes diacapsis, are particularly affected and show a decrease in cover with simulated climate change. However, the underlying mechanisms are not fully understood, and long-term interacting effects of different drivers are largely unknown due to the short-term nature of the experimental studies conducted so far. We addressed this gap and successfully parameterised a process-based model for D. diacapsis to quantify how changing atmospheric CO2 , temperature, rainfall amount and relative humidity affect its photosynthetic activity and cover. We also mimicked a long-term manipulative climate change experiment to understand the mechanisms underlying observed patterns in the field. The model reproduced observed experimental findings: warming reduced lichen cover, whereas less rainfall had no effect on lichen performance. This warming effect was caused by the associated decrease in relative humidity and non-rainfall water inputs, which are major water sources for biocrust-forming lichens. Warming alone, however, increased cover because higher temperatures promoted photosynthesis during early morning hours with high lichen activity. When combined, climate variables showed non-additive effects on lichen cover, and effects of increased CO2 levelled off with decreasing levels of relative humidity. Our results show that a decrease in relative humidity, rather than an increase in temperature, may be the key factor for the survival of the lichen D. diacapsis under climate change and that effects of increased CO2 levels might be offset by a reduction in non-rainfall water inputs in the future. Because of a global trend towards warmer and drier air and the widespread global distribution of D. diacapsis, this will affect lichen-dominated dryland biocrust communities and their role in regulating ecosystem functions worldwide.

How to cite: Porada, P., Baldauf, S., Raggio, J., Maestre, F., and Tietjen, B.: Strong effect of relative humidity on dryland lichens under climate change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12245, https://doi.org/10.5194/egusphere-egu21-12245, 2021.

EGU21-4557 | vPICO presentations | BG3.22

Tree-soil-water relations in a mature temperate forest under elevated CO2

Susan Quick, Giulio Curioni, Phillip J Blaen, Stefan Krause, and Angus Robert MacKenzie

Extreme anthropogenic global change, such as increasing atmospheric carbon dioxide, can challenge long-lived organisms including trees. Carbon uptake by trees, during photosynthesis, is inevitably accompanied by leaf transpiration; elevated atmospheric CO2 is, therefore, expected to reduce daytime plant water usage. The Free-Air Carbon-dioxide Enhancement (FACE) experiment at the Birmingham Institute of Forest Research (BIFoR) UK manipulates atmospheric CO2 in a 150 year old mixed deciduous temperate forest. In the sub-project described here, we compare diurnal and seasonal plant-water dynamics from individual trees under treatment (elevated CO2) and control conditions. Response of Pedunculate oak (Quercus robur), as the dominant tree species, is reported for the initial three years of elevated CO2, enabling us to characterise whether the woodland is starting to adapt. Xylem sap flux measurement reflects tree water usage and has been used as a proxy for transpiration at stand scale in forest experiments. This project explores a modified sap flux analysis approach, enabling individual trees to be compared and responses to be scaled up to treatment patch level. It considers: inputs-outputs (e.g. precipitation, transpiration), water flow (e.g. xylem sap flux), temperature and radiation to see how tree-soil-water interfaces behave and change with increased CO2. Measurement methods include spot observations (phenology, porometry), and data-logged measures (e.g. of soil moisture and xylem flow). Initially sap flux and stomatal conductance are considered in comparison with previous reported studies of tree water use efficiency and estimations of water storage. By considering these key measurements driven by a tree-centred view the results provide valuable data to improve vegetation, soil and landscape models and increase understanding of trees in mature future- forest environments.

How to cite: Quick, S., Curioni, G., Blaen, P. J., Krause, S., and MacKenzie, A. R.: Tree-soil-water relations in a mature temperate forest under elevated CO2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4557, https://doi.org/10.5194/egusphere-egu21-4557, 2021.

EGU21-3512 | vPICO presentations | BG3.22

Modeling the relation between leaf phenology and plant hydraulics in the Amazon rainforest: a trait-based approach on the effects of reduced precipitation and high CO2

Gabriela Martins Sophia, João Paulo Darella Filho, Caio Fascina, Bianca Fazio Rius, Bárbara Rocha Cardeli, Leonor Patrícia Cerdeira Morellato, and David Montenegro Lapola

Several dynamic global vegetation models (DGVMs) have been developed to better understand the vegetation's response to climate changes. However, DGVMs generate variable responses on the role of vegetation in the biogeochemical cycles, partially explained by the generalization made regarding the functional diversity, since it is represented by a small set of plant functional types. Trait-based models, which seek to include the variability of functional traits, emerge as a promising alternative for a better representation of the different plant life strategies, and consequently of functional diversity. Including leaf phenology in these models is of paramount importance because it plays a role in controlling the seasonality of carbon, water, and energy fluxes, but the models do not represent or represent inefficiently the phenology. In tropical ecosystems, such as in the Amazon, phenology is mainly driven by soil water availability and evapotranspirative demand, so simulating the impacts of a predicted drier climate require the representation of the connection between phenology and the hydraulic strategies of plants. Therefore, this work aims to contribute to the development of the CAETÊ trait-based model through the implementation of a leaf phenology module linked to plant hydraulic system. This development is being applied to the Amazon basin and its main objective is to improve the representation of the seasonality of vegetation with consequent improvement in the carbon and water cycle, and therefore to assess the impacts of climate changes on it. For this, two functional traits are being used as variants: ψ50 (xylem water potential at which 50% loss of hydraulic conductivity occurs) and τleaves (leaf carbon residence time). Through an environmental filter mechanism and traits trade-offs, each grid cell restricts the performance and survivorship of trait values combinations. The model is being applied under a 30% reduction of precipitation and increasing [CO2] to 600 ppmv. As preliminary results we have the performance of the equations that represent phenology and hydraulics developed offline from the model code, which represented the Leaf Economics Spectrum related to the τleaves, besides the isohydric and anisohydric strategies related to the ψ50 (e.g. high P50 values [-1 MPa] interrupted the hydraulic conductance in ~ 0.5 soil water [W; gH20 / gsoil], while low P50 values [-7 MPa] maintained conductance up to W = ~ 0.3). As expected results, two scales will be analyzed: at the community level, it is expected that it will present a change in the functional composition (i.e. composition of phenological and hydraulic strategies) in order to favor strategies that better deal with the new environmental conditions; at the ecosystem level, it is expected that this change in functional composition will alter the primary productivity and evapotranspiration. Finally, it is expected that the approach used will act as an alternative to investigate the relationship between hydraulics and phenology in Amazon in a less discretized way compared to a PFT approach, since this work is being a pioneer in considering this relation along with a logic of variant functional traits. Final results will be obtained before the EGU congress takes place.

How to cite: Martins Sophia, G., Darella Filho, J. P., Fascina, C., Fazio Rius, B., Rocha Cardeli, B., Cerdeira Morellato, L. P., and Montenegro Lapola, D.: Modeling the relation between leaf phenology and plant hydraulics in the Amazon rainforest: a trait-based approach on the effects of reduced precipitation and high CO2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3512, https://doi.org/10.5194/egusphere-egu21-3512, 2021.

EGU21-3514 | vPICO presentations | BG3.22

Modeling light competition in the Amazon forest: the effects of high CO2 in functional diversity and biogeochemical cycle.

Bárbara Rocha Cardeli, Bianca Fazio Rius, Caio Fascina, João Paulo Darela-Filho, Gabriela Martins Sophia, Thiago Sanna Freire Silva, and David Montenegro Lapola

The increase of CO2 concentrations implies direct and indirect (by changing climate) impacts on the terrestrial ecosystem. Several Dynamic Global Vegetation Models (DGVMs) have been developed to better understand the response of vegetation to climate change. However, the representation of plant diversity through a small set of Plant Functional Types (PFTs) adopted by the majority of DGVMs undermines their ability to represent functional diversity and fundamental interactions between these different life strategies of plants, like competition, which has been shown to be paramount in determining ecosystem functioning. Studies have shown that increasing CO2 concentration may determine the outcome of vegetation competition and, as a consequence, the ability to adapt to the environment, functional diversity, and community assembly mechanisms. Thus, the inclusion of competitive dynamics in these models becomes strategic to improve predictions and understanding the effects of climate change on vegetation and how it affects change in carbon fluxes and stocks in the community. In that sense, this project aims to contribute to the development of a light competition module within CAETÊ model (CArbon and Ecosystem functional Trait Evaluation model) which involves the implementation of allometric relations between plant organs. As a trait-based model, CAETÊ seeks to represent plant functional diversity in a less discrete way through the usage of variant values for functional traits. For this purpose, two key functional traits that are closely related to competition for light are employed as variants: wood density (WD) and specific leaf area (SLA). The main objective is to understand how light competition related to plant functional traits alters the response of Amazon plant communities under changing environmental conditions. As preliminary results, the algorithms containing the allometric and competition equations were developed outside the main model code and represent plant dynamics trade-offs between the variant functional traits and plant physiology and survivorship: WD relates to strategies of mortality and height growth. For example, high values of WD [1g/cm-3] are related to low heights [~30m.] and, low heights incur higher mortality rates; SLA relates to light competitive effect, Leaf Economics Spectrum, and LAI (leaf area index) determination, one of the most important parameters that determine the absorption of light by different life strategies. These trade-offs allow the representation of different plant life competition strategies. We expected that the light restriction for some functional strategies may incur a decrease in functional dominance and photosynthesis rate, consequently changing net primary productivity and after all the functional structure of the community. For functional diversity, it is expected changes in functional richness and functional divergence (related to the strength that competition exerts in the community) in order to favor strategies that better deal with the new environmental conditions simulated by CAETÊ with increasing [CO2] to 600 ppmv, for example. Finally, it is expected that this approach may contribute to improving the representation of competition for light in DGVMs to more assertively obtain the effects of climate changes on vegetation and ecosystem dynamics. Final results will be obtained until the EGU Congress takes place.

How to cite: Rocha Cardeli, B., Fazio Rius, B., Fascina, C., Darela-Filho, J. P., Martins Sophia, G., Sanna Freire Silva, T., and Montenegro Lapola, D.: Modeling light competition in the Amazon forest: the effects of high CO2 in functional diversity and biogeochemical cycle., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3514, https://doi.org/10.5194/egusphere-egu21-3514, 2021.

EGU21-15259 | vPICO presentations | BG3.22

Characterization of the resilience and variability of vegetation during the Holocene using a large database of pollen data

Raphael Hébert, Chenzhi Li, Thomas Laepple, and Ulrike Herzschuh

Global climatic changes which are expected in the 21st century are likely to create unparalleled disturbances on vegetation. In addition, human activities also increase the risk of fire disturbances and insect epidemies. We investigate the resilience of different biomes by examining their behaviour during the Holocene using a taxonomically harmonized and temporally standardized global fossil pollen datasets,synthesized from 2821 palynological records from the Neotoma Paleoecology Database and additional literature. Specifically, we study the composition variability on millennial time-scale and timescale-dependant scaling of variability from centennial to multi-millennial timescales. A principal component analysis was performed in order to characterize the principal modes of variability of the pollen assemblages. We find coherent regional signals of vegetation variability and scaling of variability from the pollen assemblages, indicating significant millennial scale variability which can be related to vegetation taxa and climates. Particularly, we observe more stability in North America and Northern Europe in areas dominated by boreal forest and deciduous forests. This may be linked to the greater stability of forest ecosystems and also a more stable climate over these areas which may be the result of stabilizing feedbacks. We find that diversity plays a key role in vegetation composition and that more diverse regions allow for greater variability. 

 

 

How to cite: Hébert, R., Li, C., Laepple, T., and Herzschuh, U.: Characterization of the resilience and variability of vegetation during the Holocene using a large database of pollen data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15259, https://doi.org/10.5194/egusphere-egu21-15259, 2021.

EGU21-10299 | vPICO presentations | BG3.22

Improving tree carbon use efficiency for climate-adapted more productive forests (iCUE-Forest)

Martin Thurner, Christian Beer, Stefano Manzoni, Anatoly Prokushkin, Zhiqiang Wang, Kailiang Yu, and Thomas Hickler

The rate at which forests take up atmospheric CO2 is critical with regard to their potential to mitigate climate change as well as their value for wood production. The allocation of carbon fixed through photosynthesis into biomass is crucially dependent on tree carbon use efficiency (CUE), which is determined by gross primary production (GPP) and plant respiration (Ra) via the relation CUE=(GPP-Ra)/GPP. The effect of future climate on CUE is unclear due to the unknown response of plant respiration to more severe increases in temperature. This motivates assessing spatial patterns in CUE across climatic gradients with marked temperature variations.  

Within the ”Improving tree carbon use efficiency for climate-adapted more productive forests” (iCUE-Forest) project, we aim to develop novel data-driven estimates of plant respiration, net primary production (NPP=GPP-Ra) and tree CUE covering the northern hemisphere boreal and temperate forests. These will be based on recent satellite-driven maps of tree living biomass, databases of N concentration measurements in tree compartments (leaves, stem/branches, roots) and the relationships between respiration rates and tissue N concentrations and temperature. Such estimates will enable the detection of spatial relationships between CUE and environmental conditions and facilitate the parameterization of dynamic global vegetation models which allow predicting the change in CUE in response to future climate and forest management.

Here we will present an extensive database of N concentration measurements in tree stems/branches and roots that we have compiled in addition to data available mainly for leaves from databases like TRY. More than 5000 measurements have been collected from the literature covering all common boreal and temperate tree species. Currently, we are exploring how the variation in tissue N concentrations is influenced by climate and tree species. Subsequently, we apply the derived tree-level relationships between tissue N concentrations and underlying drivers in combination with tree species distribution maps and estimates of tree compartment biomass based on satellite remote sensing products. In this way, we will derive novel estimates of the spatial distribution of N content in northern boreal and temperate forests that will in turn be used to assess CUE variations.

How to cite: Thurner, M., Beer, C., Manzoni, S., Prokushkin, A., Wang, Z., Yu, K., and Hickler, T.: Improving tree carbon use efficiency for climate-adapted more productive forests (iCUE-Forest), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10299, https://doi.org/10.5194/egusphere-egu21-10299, 2021.

EGU21-7624 | vPICO presentations | BG3.22

Impacts of European spruce bark beetle infestations on Norway spruce BVOC emissions

Erica Jaakkola, Anna Maria Jönsson, Per-Ola Olsson, Maj-Lena Linderson, and Thomas Holst

Tree killing by spruce bark beetles (Ips typographus) is one of the main disturbances to Norway spruce (Picea abies) forests in Europe and the risk of outbreaks is amplified by climate change with effects such as increased risk of storm felling, tree drought stress and an additional generation of spruce bark beetles per year[1]. The warm and dry summer of 2018 triggered large outbreaks in Sweden, the increased outbreaks are still ongoing and affected about 8 million m3 forest in 2020[2]. This is the so far highest record of trees killed by the spruce bark beetle in a single year in Sweden[2]. In 1990-2010, the spruce bark beetle killed on average 150 000 m3 forest per year in southern Sweden[3]. Bark beetles normally seek and attack Norway spruces with lowered defense, i.e. trees that are wind-felled or experience prolonged drought stress[4]. However, as the number of bark beetle outbreaks increase, the risk of attacks on healthy trees also increase[5]. This causes a higher threat to forest industry, and lowers the possibilities to mitigate climate change in terms of potential decreases in carbon uptake if the forests die[4,5]. Norway spruce trees normally defend themselves by drenching the beetles in resin[6]. The resin in turn contains different biogenic volatile organic compounds (BVOCs), which can vary if the spruce is attacked by bark beetles or not [4,6]. The most abundant group of terpenoids (isoprene, monoterpenes and sesquiterpenes), is most commonly emitted from conifers, such as Norway spruce[7,8]. The aim of this study was to enable a better understanding of the direct defense mechanisms of spruce trees by quantifying BVOC emissions and its composition from individual trees under attack

To analyze the bark beetles’ impact on Norway spruce trees a method was developed using tree trunk chambers and adsorbent tubes. This enables direct measurements of the production of BVOCs from individual trees. Three different sites in Sweden, with different environmental conditions were used for the study and samples were collected throughout the growing season of 2019. After sampling, the tubes were analyzed in a lab using automated thermal desorption coupled to a gas chromatograph and a mass spectrometer to identify BVOC species and their quantity.

The preliminary results show a strong increase in BVOC emissions from a healthy tree that became infested during the data collection. The finalized results expect to enable better understanding of how spruce trees are affected by insect stress from bark beetles, and if bark beetle infestation will potentially result in increased carbon emission in the form of BVOCs.

References

[1] Jönsson et al. (2012). Agricultural and Forest Meteorology 166: 188–200
[2] Skogsstyrelsen, (2020). https://via.tt.se/pressmeddelande/miljontals-granar-dodades-av-granbarkborren-2020?publisherId=415163&releaseId=3288473
[3] Marini et al. (2017). Ecography, 40(12), 1426–1435.
[4] Raffa (1991). Photochemical induction by herbivores. pp. 245-276
[5] Seidl, et al. (2014). Nature Climate Change, 4(9), 806-810.
[6] Ghimire, et al. (2016). Atmospheric Environment, 126, 145-152.
[7] Niinemets, U. and Monson, R. (2013). ISBN 978-94-007-6606-8
[8] Kesselmeier, J. and Staudt, M. (1999). Journal of Atmospheric Chemistry, 33(1), pp.23-88

How to cite: Jaakkola, E., Jönsson, A. M., Olsson, P.-O., Linderson, M.-L., and Holst, T.: Impacts of European spruce bark beetle infestations on Norway spruce BVOC emissions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7624, https://doi.org/10.5194/egusphere-egu21-7624, 2021.

EGU21-12622 | vPICO presentations | BG3.22

Effects of simulated nitrogen deposition increase on plant nutritional status and physiological responses at two contrasting Beech forest sites in Italy

Alessandra Teglia, Daniela Di Baccio, Federico Magnani, Matteucci Giorgio, Andrea Scartazza, Bruno De Cinti, Francesco Mazzenga, Enrico Muzzi, Dario Ravaioli, and Graziella Marcolini

Anthropogenic activities resulted in a significant increase in nitrogen (N) compounds in the atmosphere and their deposition back to the biosphere, with important implications on both carbon (C) and N cycles. Indeed, an increase in N deposition can increase forest productivity in N limited forest ecosystems. In addition, it can also increase N loss pathways, leading to soil acidification and nutrient imbalance. Several N manipulation experiments have been carried out for decades till now, though most of them focused on conifer forests. We consider two manipulation experiments established in 2015 on two beech (Fagus sylvatica L.) forests in Italy, Cansiglio and Collelongo sites, located on the Eastern Alps and Central Apennines, respectively. The two forests were chosen along a climate and N deposition gradient. Thus, our goal was to assess the effects of simulated N deposition increase on nutritional, physiological status and growth of beech forests from two contrasting climatic conditions. At both sites, N was added directly to the soil as NH4NO3 in two doses: 30 kg N ha-1 yr-1 and 60 kg N ha-1 yr-1. Moreover, in Cansiglio we also included a canopy N fertilization adding 30 kg N ha-1 yr-1. Leaves were collected in 2016 and 2018 for the analyses of nutrients, stable C and N isotopes, and photosynthetic pigments. The aboveground production was periodically monitored with girth band and litterfall collectors. The nutrient stoichiometry analysis showed elevated N concentrations and high N:P in both forests, even in the control plots. N addition significantly increased N:P and N:S ratios in the treated plots. Changes in chlorophyll concentration were mainly related to differences between the two sites, while carotenoids were also influenced by N fertilization. After four years, we did not find an effect of the treatment (regardless of the doses) on both tree growth and leaf biomass. Altogether, our results suggest that both forests were not N limited. Finally, difference between the two manipulation approaches will be discussed in terms of leaf nutrients and C and N stable isotopes in the case of Cansiglio site.

How to cite: Teglia, A., Di Baccio, D., Magnani, F., Giorgio, M., Scartazza, A., De Cinti, B., Mazzenga, F., Muzzi, E., Ravaioli, D., and Marcolini, G.: Effects of simulated nitrogen deposition increase on plant nutritional status and physiological responses at two contrasting Beech forest sites in Italy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12622, https://doi.org/10.5194/egusphere-egu21-12622, 2021.

EGU21-713 | vPICO presentations | BG3.22

How does leaf functional diversity affect the light environment in forest canopies? An in-silico biodiversity experiment

Elena Plekhanova, Pascal A. Niklaus, Jean-Philippe Gastellu-Etchegorry, and Gabriela Schaepman-Strub

Global change is affecting biodiversity, with consequences on carbon, water, and energy fluxes between the atmosphere, vegetation, and soil. The interaction of shortwave radiation with vegetation drives basic processes of the biosphere, such as primary productivity or species interactions through light competition.

In our study, we aim to understand the effects of biodiversity on canopy light absorption. We focus on the diversity of three key functional traits that influence the light-canopy interaction: leaf area index, leaf angle distribution and leaf optical properties. Our study is based on the in-silico combination of process-based modelling of radiation (3D radiative transfer model DART) with the well-established design of biodiversity experiments. We used this novel method to study the effects of leaf functional diversity on a light proxy for productivity (the fraction of absorbed photosynthetically active radiation (FAPAR)) and net radiation (shortwave albedo). We found that diverse canopies had lower albedo and higher FAPAR than the average of the corresponding monoculture values. In mixtures, FAPAR was unequally re-distributed between trees with distinct leaf traits and the net biodiversity effect on absorptance was greater when combining plant functional types with more distinct traits. Our results support the mechanistic understanding of overyielding effects in functionally diverse canopies and may partially explain some of the growth-promoting mechanisms in biodiversity-ecosystem functioning experiments. They can further help to account for biodiversity effects in dynamic vegetation and climate models.

We would like to present this study in the BG3.22 session, because it 1) contributes to the understanding of fundamental ecosystem functions related to light interaction 2) describes a novel in-silico combination of process-based modelling of radiation with the well-established design of biodiversity experiments.

How to cite: Plekhanova, E., Niklaus, P. A., Gastellu-Etchegorry, J.-P., and Schaepman-Strub, G.: How does leaf functional diversity affect the light environment in forest canopies? An in-silico biodiversity experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-713, https://doi.org/10.5194/egusphere-egu21-713, 2021.

EGU21-1518 | vPICO presentations | BG3.22

Non-linear response of Mediterranean ecosystem to interaction of drought and plant invasion

Simon Haberstroh, Maria C. Caldeira, Raquel Lobo-do-Vale, Joana I. Martins, Julia Moemken, Joaquim G. Pinto, and Christiane Werner

The impact of interacting global change stressors on terrestrial ecosystems is hard to predict due to non-linear, amplifying, neutral or even buffering interaction effects. We investigated the effects of drought and plant invasion on Mediterranean cork oak (Quercus suber L.) ecosystem functioning and recovery with a combined rain exclusion (30-45 % reduction) and shrub (Cistus ladanifer L.) invasion experiment. As key parameter, we determined tree, shrub and ecosystem transpiration in four treatments: 1) cork oak control stands, 2) cork oaks with rain exclusion, 3) cork oaks invaded by shrubs and 4) cork oaks with rain exclusion and shrub invasion. Rain exclusion and plant invasion led to moderate, but neutral reductions of tree transpiration of 18 % (compared to control) during the mild summer drought in 2018. In 2019, the rain exclusion simulated the second driest year since 1950 for Southwestern (SW) Iberia. The interaction effect of drought and plant invasion was strongly amplifying, reducing tree transpiration by 47 %. Legacy effects on shrubs under the rain exclusion treatment led to a non-linear response during recovery from the severe drought in 2019. Invaded trees showed a delayed transpiration recovery (-51 % vs. control) due to strong competition with shrubs, while invaded trees with rain exclusion recovered to 75 % of the control. This buffering interaction response was caused by a weaker competition from drought-stressed shrubs. Given the projected increase in the frequency, intensity and duration of drought, an increasing non-linear impact on Mediterranean cork oak ecosystems is expected. Our results demonstrate that abiotic stressors modulate biotic interactions thereby impacting ecosystem functioning in a highly dynamic manner. Further efforts are thus needed to model and manage the impact of interacting global change stressors on terrestrial ecosystems.

How to cite: Haberstroh, S., Caldeira, M. C., Lobo-do-Vale, R., Martins, J. I., Moemken, J., Pinto, J. G., and Werner, C.: Non-linear response of Mediterranean ecosystem to interaction of drought and plant invasion, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1518, https://doi.org/10.5194/egusphere-egu21-1518, 2021.

EGU21-11072 | vPICO presentations | BG3.22

The CAP Optimisation Hypothesis Provides Improved Formulations for Stomatal Conductance and Photosynthesis in JSBACH

Aleksanteri Mauranen, Jarmo Mäkelä, Teemu Hölttä, Yann Salmon, and Timo Vesala

Stomatal conductance formulations are of great importance to how land surface models predict carbon assimilation and transpiration in vegetation. In this study, novel stomatal conductance formulations based on the CAP optimisation hypothesis (Dewar et al. 2018) are implemented in the land surface model JSBACH. Besides new stomatal conductance functions, the CAP framework enables a computational streamlining of the resolution of photosynthesis rate and leaf internal CO2 concentration.

The formulations are based on the CAP optimisation hypothesis coupled to different photosynthesis models. Models constructed this way incorporate non-stomatal limitations to photosynthesis through the coupling of carbon assimilation to the soil-to-leaf hydraulic pathway. This entails a direct link from soil water status to stomatal conductance, photosynthesis rate and leaf internal CO2 concentration. While this construction does away with the need for some previous fitted or empirical parameters, new parameters are required to represent xylem hydraulic conductance and downregulation of photosynthesis during drought stress.

These new models are compared to the widely used USO stomatal conductance model (Medlyn et al. 2011). A standalone version of JSBACH is run for single grid cells representing two boreal Scots pine (Pinus sylvestris) dominated sites in Finland (Hyytiälä and Sodankylä). Climate forcing is done with FLUXNET data from 2001 through 2012 and observations are from eddy covariance measurements from the two sites.

Preliminary results indicate that some of the new formulations give reasonable results. This is very promising, since they are more detailed and theoretically robust than their semi-empirical predecessors, yet streamline the computational process.

References:
Dewar et al. 2018, New Phytol. 217: 571–581
Medlyn et al. 2011, Glob. Change Biol. 17: 2134–2144

How to cite: Mauranen, A., Mäkelä, J., Hölttä, T., Salmon, Y., and Vesala, T.: The CAP Optimisation Hypothesis Provides Improved Formulations for Stomatal Conductance and Photosynthesis in JSBACH, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11072, https://doi.org/10.5194/egusphere-egu21-11072, 2021.

EGU21-2090 | vPICO presentations | BG3.22

Are water and nutrient limitations promoting complementarity in minimal plant communities?

Stefano Manzoni, Magnus Lindh, Stefanie Hoeber, and Martin Weih

It has been hypothesized that resource limitation promotes complementary resource use by different species in a plant community. According to this hypothesis, more diverse communities would use available resources more efficiently by exploiting contrasting niches. As a result, diverse communities would have higher overall productivity than monospecific stands in resource-limited systems. While this hypothesis has been tested in various experiments, less attention has been devoted to combined water and nutrient limitation, and variations in complementarity vs. selection effects through time. Understanding these dynamics is particularly important in the context of climatic changes that might alter resource availability—specifically the timing and amount of rainfall. To assess how combined resource limitation alters allocation and productivity in monocultures vs. species mixtures, we set up a pot experiment with full factorial manipulation of both water and nutrient availability, for monocultures and mixtures of two Salix species. To capture expected increases in rainfall intermittency, water availability was manipulated by changing the timing of the water additions—not the total amount provided. Thus, in the infrequent irrigation treatment, longer dry periods occurred between larger water additions, leading to lower water availability at the end of each dry period, compared to the frequent irrigation treatment. The selected species differ in functional traits such as specific leaf area and stem diameter to height ratio, suggesting that they might fill different niches thereby allowing us to test the complementarity hypothesis despite them being closely related. With this experimental set up, we found that the Salix species with higher growth rate suffered the most water stress and that nutrient limitation caused higher root-to-shoot biomass ratio in both species. Both effects were expected, as larger plants growing in nutrient-rich conditions deplete water resources faster, and it is well known that nutrient shortage promotes allocation belowground. Regarding diversity effects, we found that both complementarity and net diversity effects increased through time as resource competition increased, and contrary to expectations were overall higher in the high nutrient supply and frequent watering treatments. These results suggest stronger interactions among the relatively larger plants growing under resource-rich conditions, compared to weak interactions among small plants. In turn, these stronger interactions among large plants might lead to more marked niche separation allowing for resource use complementarity.

How to cite: Manzoni, S., Lindh, M., Hoeber, S., and Weih, M.: Are water and nutrient limitations promoting complementarity in minimal plant communities?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2090, https://doi.org/10.5194/egusphere-egu21-2090, 2021.

BG3.23 – Towards an integrated view on carbon and nitrogen cycling in terrestrial ecosystems

Despite the ecological connection between natural and managed systems, they are often studied separately, by different research groups. This echoes the focus of this session that, despite the tight coupling of carbon (C) and nitrogen (N), global change investigations of these element cycles may be carried out by different research groups. This talk will address the contrasting approach to integrating element cycles between researchers in natural and managed systems.

Global change research in natural systems has focused on predicting the C balance of the system. Integrating research between C and other element cycles makes sense in this situation, because the growth and activity of the research organisms (animals, plants, microorganisms) are limited by other elements. This stoichiometric theory (multiple limitation hypothesis) has been investigated for at least three decades, and although C and other elements are often studied independently, many researchers in natural systems have embraced this elemental integration in their global change research. 

Managed systems also have a long history of element limitation research, primarily NPK, with a focus on maximising plant growth and the economy of fertiliser use efficiency. However, natural climate solutions - necessary because mandatory reductions in fossil fuel emissions are insufficient to meet climate targets – often rely on sequestering C in biomass and soils, changing the focus of managed system research to include C. As we know from our research in natural systems, the process of C sequestration is tightly coupled to N (and other elements). Unfortunately, most soil C process models or earth system models do not include N (or other elements). Very few soil C sequestration predictions include the C-cost of N2O losses - an important trade-off in N-saturated systems - primarily because there has been insufficient research into the microbial interdependency of C and N in managed soils.

In this talk I will discuss recent insights into how the integration of C and N (and other elements) in the ecological research of managed systems can improve our ability to mitigate the consequences of global change.

How to cite: Buckeridge, K.: The integration of element cycles: contrasting perspectives from natural and managed systems in global change research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14296, https://doi.org/10.5194/egusphere-egu21-14296, 2021.

EGU21-13480 | vPICO presentations | BG3.23

Short-term effects of experimental fire on CO2, CH4 and N2O exchange in a well-drained arctic tundra

Lena Hermesdorf, Ludovica D'Imperio, Bo Elberling, and Per Lennart Ambus

Wildfire frequency in the Arctic has increased in recent years and is projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in ecosystems. During three consecutive growing seasons, we investigated the immediate and short-term effects of experimental fire on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) surface fluxes in a well-drained tundra ecosystem in West Greenland. During the fire, we monitored litter and surface temperature, as well as the soil temperature in the top 0-5 cm. The results showed that surface temperatures exceeded 400 °C during the burning process and combusted all aboveground biomass, which significantly affected the ecosystem carbon (C) balance. Burned plots continued to be a net CO2 source for at least two years after burning. Meanwhile, soil temperature did not exceed 60 °C during the fire, and soil GHG cycling appeared relatively resistant to these conditions. Burning had an effect on soil properties and CH4 fluxes only immediately after the fire event and it had no significant effect on ecosystem respiration (ER). Instead net CH4 uptake and ER correlated (p<0.05) with soil moisture and soil temperature, respectively. No significant fire effects were observed in net N2O fluxes which suggests that processes linked to the nitrogen (N) cycle are driven by factors that were not affected by this moderate fire event.   

How to cite: Hermesdorf, L., D'Imperio, L., Elberling, B., and Ambus, P. L.: Short-term effects of experimental fire on CO2, CH4 and N2O exchange in a well-drained arctic tundra, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13480, https://doi.org/10.5194/egusphere-egu21-13480, 2021.

EGU21-376 | vPICO presentations | BG3.23

Phosphorus regulates ecosystem carbon dynamics after permafrost thaw

Yuanhe Yang, Guibiao Yang, Yunfeng Peng, Benjamin W. Abbott, Christina Biasi, Bin Wei, Dianye Zhang, Jun Wang, Jianchun Yu, Fei Li, Guanqin Wang, Dan Kou, and Futing Liu

The ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that the potential nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability. Here we combined two-year field observations along a permafrost thaw sequence (constituted by four thaw stages, i.e., non-collapse and 5, 14, and 22 years since collapse) with an in-situ fertilization experiment (included N and P additions at the level of 10 g N m-2 yr-1 and 10 g P m-2 yr-1, respectively) in a Tibetan swamp meadow to evaluate ecosystem C-nutrient interactions upon permafrost thaw. Our results showed that changes in soil P availability rather than N availability played an important role in regulating the increases in gross primary productivity and the decreases in net ecosystem exchange along the thaw sequence. The fertilization experiment further confirmed that P addition had stronger effects on plant growth than N addition in this permafrost ecosystem. These two lines of evidence highlight the crucial role of soil P availability in altering the trajectory of permafrost C cycle under climate warming.

How to cite: Yang, Y., Yang, G., Peng, Y., Abbott, B. W., Biasi, C., Wei, B., Zhang, D., Wang, J., Yu, J., Li, F., Wang, G., Kou, D., and Liu, F.: Phosphorus regulates ecosystem carbon dynamics after permafrost thaw, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-376, https://doi.org/10.5194/egusphere-egu21-376, 2021.

EGU21-14915 | vPICO presentations | BG3.23 | Highlight

Nitrogen loss in river and erosion banks in form of reactive dissolved nitrogen and nitrous oxide via microbial nitrification in permafrost-affected soils in the Lena Delta in the Siberian Arctic

Claudia Fiencke, Tina Sanders, Nadine Zell, Eva-Maria Pfeiffer, and Christian Beer

Permafrost affected soils store a huge amount of organic matter including carbon and nitrogen. But especially permafrost is expected to degrade significantly through deepening and erosion processes with important consequences for freshwater systems. Although Arctic ecosystems are strongly limited by bioavailable nitrogen (N), the loss of vegetation by thermokarst and lack of vegetation on riverbanks probably establish conditions for imbalance in the nitrogen cycle, therefore higher N-availability for microbial transformations and in consequence loss of reactive nitrogen.

Here we present data from expeditions in 2008 and 2019, where we found indeed relatively high concentrations of dissolved inorganic nitrogen, mainly as ammonium (up to approx. 10 µg N g dw-1 ) in the active layer of dry no vegetated carbon poor mineral soils of the riverbank and cliff (recently eroded by the Lena river). In the stratified permafrost-affected soils of the riverbank nitrate accumulated during the summer period, especially in more organic silty layers (4 % SOM) to extremely high concentrations (up to approx. 90 µg N-nitrate g dw-1). Decreasing ammonium and increasing nitrate concentrations during the vegetation period hint to the aerobic nitrification process, which is the main source of nitrate in terrestrial ecosystem. Together with high nitrate concentrations in the field, these soil layers showed high potential nitrification rates in aerobic incubation experiments (max. 14.4 µg N g dw-1 d-1, 21,6 g N m-3 d-1, 5 °C) combined with high varying but significant N2O production rates (max. 150 µg N-N2O m-3 d-1, 5 °C). Since nitrification rates positively respond to temperature (max. Q10 of 4) and ammonium availability, climate change may cause an increasing release of gaseous N-loss (N2O) or leaching of nitrate and dissolved organic nitrogen (DON) to aquatic ecosystems with further consequences. Hot spots of high N-availability in no vegetated river and erosion banks likely influence the microbial induced C cycle as C-mineralization but also atmospheric methane oxidation, which might be the interest of future studies.

How to cite: Fiencke, C., Sanders, T., Zell, N., Pfeiffer, E.-M., and Beer, C.: Nitrogen loss in river and erosion banks in form of reactive dissolved nitrogen and nitrous oxide via microbial nitrification in permafrost-affected soils in the Lena Delta in the Siberian Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14915, https://doi.org/10.5194/egusphere-egu21-14915, 2021.

EGU21-9314 | vPICO presentations | BG3.23

Different plant species drive the microbial methane and nitrogen cycles and CH4 and N2O emissions on coasts affected by brackish water

Mikk Espenberg, Bin Yang, Kristin Pille, Martin Maddison, Xiuzhen Li, and Ülo Mander

Coastal ecosystems are suffering increasing degradation in many parts of the world and the ecological integrity and biodiversity of those ecosystems have been greatly threatened due to the high load of pollutants produced largely through anthropogenic processes. Agricultural, industrial and domestic applications pollution mainly affect coastal zones via riverine inputs from contaminated urban and rural areas near shore, atmospheric deposition and direct dumping. Beside the different other pollutants, excessive nutrients have become major concerns which can completely change the functioning and appearance of coastal ecosystems. A variety of plants complete the ecological system of coasts and coastal vegetation may even govern the microbial processes and greenhouse gas emissions. With the need to better protect and manage the coastal areas, it is important to understand the decisive microbial processes of nutrients cycling in coastal ecosystem, especially in the face of the changing climate.

The aim of this study was to assess the abundances of soil bacteria and archaea and their potential to perform different carbon and nitrogen cycling processes in coastal zones and relate these nutrient transformation processes to greenhouse gas emissions. The study was carried out in Estonian and Chinese coasts which were affected by brackish water (mixed saline and fresh water) because of riverine inputs. Twice a month during the most intensive vegetation period, the gas samples (CO2, CH4, and N2O) were taken and different parameters of plant (Schoenoplectus tabernaemontanii and Phragmites australis in Estonia; Spartina alterniflora and Scirpus mariqueter in China) and water were measured in situ. Soil (from the 0–10 cm top layer) and plant samples were collected in the end of study. Besides different chemical parameters measured of soil samples, the archaeal and bacterial community abundance was evaluated by quantitative PCR. To characterise methane cycle, the abundances of methanogenic marker gene mcrA and methanotrophic marker gene pmoA were assessed. Genetic potential of nitrogen transformation processes was evaluated by targeting the following functional genes: bacterial, archaeal and COMAMMOX(complete oxidation of ammonium)-specific amoA (nitrification); nirS, nirK, nosZ clade I and nosZ clade II (denitrification); nifH (N2 fixation); nrfA (DNRA, dissimilatory nitrate reduction to ammonium); ANAMMOX- (anaerobic ammonium oxidation), and n-damo-specific 16S rRNA genes (nitrite dependent anaerobic methane oxidation).

The results concluded that different plant species played a critical role in mediating gas emissions, where their age composition and biomass was important. Relevance of n-damo process and its high genetic potential for CH4 reduction was detected in coastal areas. Still, four times higher CH4 emissions were observed on the Chinese coast compared to Estonia. DNRA process showed the greatest genetic potential in the Chinese research area, but this process was less likely to occur in the soil of Estonian Phragmites australis. As a result of nitrification and denitrification, N2O was emitted from the coasts to the atmosphere.

How to cite: Espenberg, M., Yang, B., Pille, K., Maddison, M., Li, X., and Mander, Ü.: Different plant species drive the microbial methane and nitrogen cycles and CH4 and N2O emissions on coasts affected by brackish water, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9314, https://doi.org/10.5194/egusphere-egu21-9314, 2021.

EGU21-10669 | vPICO presentations | BG3.23

Inter-seasonal investigation of coupled C & N greenhouse gas fluxes in pristine northern ecosystems

Lona van Delden, Julia Boike, Eeva-Stiina Tuittila, Timo Vesala, and Claire Treat

Accurate annual greenhouse gas (GHG) budgets are the crucial baseline for global climate change forecast scenarios. On the other hand, the parameterization of these forecast models requires more than high-quality GHG datasets, but also the constant improvement of the representation of GHG producing and consuming processes. Extensive research efforts are therefore focusing on increasing our knowledge of the main GHG producing carbon (C) and nitrogen (N) cycles, though surprisingly not so much into their direct interaction. Most annual GHG budgets from pristine northern ecosystems are based on interpolated datasets from sampling campaigns mainly taken during the growing season. Within the ERC funded FluxWIN project, we are investigating how soil and pore water C & N interact and their biogeochemical GHG drivers change over seasons. Freeze-thaw events have previously been identified as significant GHG drivers by rapidly changing moisture and oxygen conditions in the soil matrix, but it remains unclear if and how C & N coupling contributes to these non-growing season emissions. Therefore, a fully automated static chamber system is monitoring GHG fluxes in high frequency at a boreal peatland ecosystem in Siikaneva, Finland. Nutrient stocks and biogeochemical dynamics within the soil matrix are compared to GHG soil-atmosphere exchange in the form of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) all year-round. We control for climatic variability and isolate differences in non-growing season emissions by using a moisture gradient from well-drained upland soils to adjacent wetland ecosystems. The use of these automated high-frequency GHG measurements in combination with year-round biogeochemical monitoring maximizes the likelihood of capturing episodic emissions and their drivers, which are particularly important during fall freeze and spring thaw periods. The gained information on the coupled C & N biogeochemical cycles will improve feedback estimates of climate change by including non-growing season processes in global-scale process-based models.

How to cite: van Delden, L., Boike, J., Tuittila, E.-S., Vesala, T., and Treat, C.: Inter-seasonal investigation of coupled C & N greenhouse gas fluxes in pristine northern ecosystems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10669, https://doi.org/10.5194/egusphere-egu21-10669, 2021.

EGU21-8744 | vPICO presentations | BG3.23

Impact of spatial microclimatic variability on carbon and nitrogen cycling leading to methane emissions during the non-growing season of Siikaneva, Finland

Katharina Jentzsch, Lona van Delden, Julia Boike, Eeva-Stiina Tuittila, Timo Vesala, and Claire Treat

Non-growing season greenhouse gas emissions are still underrepresented in observation systems as well as process-based models despite growing evidence of their importance to annual budgets in high latitude regions. We therefore investigate ecological and biogeochemical processes in global carbon and nitrogen cycles during the non-growing and shoulder seasons at Siikaneva, nearby Hyytiälä Research Station in boreal Finland. The FluxWIN project investigates the current underestimation of annual methane (CH4) emissions from boreal ecosystems by combining high-frequency greenhouse gas measurements and biogeochemical monitoring. Identifying the processes leading to the large observed CH4 emissions requires thorough analysis of potential meteorological drivers controlling the soil temperature, including radiative forcing, surface energy balance and snow pack characteristics. The location of our research site within extensive long-term scientific infrastructure allows us to compare the measurements obtained from our newly set up meteorological station at a well-drained upland forest site to the ones recorded about 1 km south-east at an ICOS station in open fen. While both stations are subject to the same large-scale meteorological forcing due to their spatial proximity, the different ecosystem types might produce very different microclimates with differing freeze-thaw and soil temperature dynamics, which has potential implications for local carbon and nitrogen cycling leading to CH4 exchange. Controlling for spatial microclimatic variability will help us to evaluate the representativeness of our flux measurements and identified soil, geophysical and biogeochemical drivers when expanded to a larger spatial scale.

How to cite: Jentzsch, K., van Delden, L., Boike, J., Tuittila, E.-S., Vesala, T., and Treat, C.: Impact of spatial microclimatic variability on carbon and nitrogen cycling leading to methane emissions during the non-growing season of Siikaneva, Finland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8744, https://doi.org/10.5194/egusphere-egu21-8744, 2021.

BG3.24 – Peatlands under pressure

EGU21-1211 | vPICO presentations | BG3.24

Persistently high CH4 emissions 10 years after restoration: The necessity for long-term observations when measuring GHG emissions of transitional systems

Danica Antonijevic, Shrijana Vaidya, Claudia Vincenz, Nicole Jurisch, Nathalia Pehle, Elisa Albiac Borraz, Bertram Gusovius, Matthias Lück, Jürgen Augustin, and Mathias Hoffmann

When drained for e.g. agricultural use, natural peatlands turn from a net C sink to a net C source. It is therefore suggested that restoration of peatlands, despite of increasing CH4 emissions, holds the potential to mitigate climate change by reducing their overall global warming potential. The time span required for this transition, however, is fairly unknown. Moreover, greenhouse gas emission measurements from peatlands are often limited to a couple of years only. This is problematic in so far, as most peatland ecosystems are in transitional stage due to restoration related disturbances (e.g. enhanced water table) and global climate change. This might affect GHG emissions in one way or another which emphasizes the necessity of longer-term observations to avoid misinterpretations and premature conclusions.       
Exemplary for that, we present 14 consecutive years of CH4 flux measurements following restoration at a formerly long-term drained fen grassland within the Peene river catchment (near the town of Zarnekow: 53.52⁰N, 12.52⁰E). Restoration of peatland was done by simply opening the dike. Thus, no water table management was established and water table was strongly fluctuating.  CH4 flux measurements were conducted at two sites (restored vs. non-restored) using non-flow-through non-steady-state (NFT-NSS) opaque chambers. 
Throughout the 14 years study period, distinct stages of an ecosystems transition, differing in their impact on measured CH4 emissions, were observed. During the first two years of the measurement period directly following restoration in autumn 2004, an eutrophic shallow lake was formed. This development was accompanied by a fast vegetation shift from dying off cultivated grasses to submerged hydrophytes and helophytes and evidenced substantially increased CH4 emissions. Since 2008, helophytes have gradually spread from the shore line into the established shallow lake especially during drying years. This process was only periodically delayed by exceptional inundation, such as in 2011, 2012 and 2015, and finally resulted in coverage of the measurement site in 2016 and 2017. While, especially the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after helophytes were established at the measurement site. Hence, CH4 emissions only decreased after ten years transition following restoration and potentially reaching a new steady state.

How to cite: Antonijevic, D., Vaidya, S., Vincenz, C., Jurisch, N., Pehle, N., Albiac Borraz, E., Gusovius, B., Lück, M., Augustin, J., and Hoffmann, M.: Persistently high CH4 emissions 10 years after restoration: The necessity for long-term observations when measuring GHG emissions of transitional systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1211, https://doi.org/10.5194/egusphere-egu21-1211, 2021.

EGU21-1058 | vPICO presentations | BG3.24

When water runs dry — peatland C dynamic under extreme droughts

Vincent E.J. Jassey, Janna M. Barel, and Mariusz Lamentowicz

Ecosystems are increasingly exposed to climatic extremes, such as drought and extreme rainfall patterns. Recent studies evidenced the strong variability in ecosystem’s response to droughts, raising the issue of non-linear responses in ecosystem’s carbon (C) dynamic. The conundrum is what causes C fluxes to shift in response to drought, and most importantly, does such extreme events have lasting effects? Here, we will synthesize the results from three different studies testing the effect of droughts and/or extreme rainfall patterns on peatland CO2 fluxes.

In a first experiment, we tested the resistance and resilience effects of extreme rainfall patterns on peatland C fluxes in a mesocosm experiment. We found that increasingly intense but less frequent rainfall, with longer intermediate dry periods, destabilises water table dynamic, with cascading effects on peatland C fluxes. Yet, peatland C dynamics might be more resilient than expected as vascular plants may fulfil a compensatory role by taking up more C. Moreover, CO2 fluxes displayed lasting influence of extreme rainfall after restoration of the water table dynamics.

In a second experiment, we manipulated the water table depth in the field and generated a gradient spanning from -5 to -60 cm. We found that substantial changes in peatland CO2 respiration occurred when the water level fell below a critical point of -24 cm. Around that apparently critical water level, we showed that plant and fungal communities were suddenly altered and raised CO2 respiration rates.

In the last experiment, we tested the combined effect of prolonged drought and warming on the C uptake of two Sphagnum species. We found that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. We further found that mechanisms of compensation among the dominant Sphagnum species stabilized the average C uptake of the Sphagnum community over the growing season.

As a corollary, our results show that extreme climatic events induce functional transitions in peatland C dynamics. These functional transitions further depends on the phenotypic plasticity among plant and microbial species as well as on the evenness of specific functional groups that modulate the effects of droughts on peatland C dynamic.

How to cite: Jassey, V. E. J., Barel, J. M., and Lamentowicz, M.: When water runs dry — peatland C dynamic under extreme droughts, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1058, https://doi.org/10.5194/egusphere-egu21-1058, 2021.

EGU21-2384 | vPICO presentations | BG3.24

Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons

Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela

Abstract

Northern mires have sequestered substantial amounts of atmospheric carbon since the last glacial period forming one of the largest carbon pools in the biosphere (Hugelius et al., 2020). Current global warming is causing the subarctic and arctic regions warm rapidly, two to three times as fast as the rest of the world (Masson-Delmotte et al., 2018), which will affect the carbon balance of these mires.

In Kaamanen, northern Finland, we studied carbon dioxide (CO2) and methane (CH4) exchange between patterned mesotrophic fen and the atmosphere, both on ecosystem and plant community level. The ecosystem level measurements were conducted by utilizing eddy covariance method, while the fluxes on plant community scale were measured with flux chambers. The studied fen can be described as a mosaic of strings and flarks (or hummocks and hollows, respectively). The microtopography of the string-flark continuum form four main plant community types with varying water table conditions and vegetation composition. The measurements took place in 2017–2018. The two years in question were contrasting in their meteorological and environmental conditions. The 2017 growing season had average temperature, but high precipitation sum, while 2018 growing season was warm and dry. In July 2018 a north-western Europe-wide heatwave caused a month-long drought period at the site. Compared to 2017, the annual carbon balance of the Kaamanen fen was affected by earlier onset of photosynthesis in spring and the drought event during summer 2018.

We found that the annual carbon balance of the fen did not differ markedly between the studied years, even though the meteorological and environmental conditions did. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by the later drought period. Additionally, we found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. Most of the variation in ecosystem level carbon exchange could be explained by the variation in water table level, soil temperature and vegetation characteristics, which were also the environmental factors that varied between the plant community types.

 

References

Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C. and Yu, Z.: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Proceedings of the National Academy of Sciences - PNAS, 117, 20438–20446, doi:10.1073/pnas.1916387117, 2020.

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M. and Waterfield T. (Eds.): Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, World Meteorological Organization, Geneva, Switzerland, 2018.

How to cite: Heiskanen, L., Tuovinen, J.-P., Räsänen, A., Virtanen, T., Juutinen, S., Lohila, A., Penttilä, T., Linkosalmi, M., Mikola, J., Laurila, T., and Aurela, M.: Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2384, https://doi.org/10.5194/egusphere-egu21-2384, 2021.

EGU21-6281 | vPICO presentations | BG3.24

Temperature and moisture controls on non-growing season CO2 emissions in laboratory incubations with soils from northern peatlands

Eunji Byun, Fereidoun Rezanezhad, Linden Fairbairn, Nathan Basiliko, Jonathan Price, William Quinton, Pascale Roy-Léveillée, Kara Webster, and Philippe Van Cappellen

Canada has extensive peat deposits in northern high latitude wetlands and permafrost ecosystems. Peat accumulation represents a natural long-term carbon sink attributed to the cumulative excess of growing season net ecosystem production over non-growing season net mineralization. However, near-surface peat deposits are vulnerable to climate change and permafrost landscape transition. One specific concern is a potential rapid increase in the non-growing season carbon loss through enhanced organic matter mineralization under a warming climate. Our experimental study explores the response of peat CO2 exchanges to (1) temperature, using the conventional Q10 parameter, and (2) moisture content. The observed responses are expected to reflect, at least in part, differential soil microbial adaptations to varying wetland conditions, across two northern ecoclimatic zones. Laboratory incubations were carried out with shallow peat samples from different depths collected at seven Canadian wetland sites and adjusted to five moisture levels. For each subsample (varying by site, depth and moisture content), CO2 fluxes were measured at 12 sequential temperature settings from -10 to 35˚C. For each subsample, the data were fitted to an exponential equation to derive a Q10 value. In general, boreal peat samples were more temperature sensitive than temperate peat. The optimum moisture level for CO2 release was determined for all the subsamples and related to variations in wetland vegetation and landform types. As a general trend, increasing water saturation reduced the CO2 release rate from a given subsample. We further tested a flexible curve-fitting equation, as recently proposed on a theoretical basis, to recompile the data by ecoclimatic peat type and to account for the non-growing season dynamics. These findings will contribute to Canada’s national carbon budget model by guiding the development and calibration of the peatland module.

How to cite: Byun, E., Rezanezhad, F., Fairbairn, L., Basiliko, N., Price, J., Quinton, W., Roy-Léveillée, P., Webster, K., and Van Cappellen, P.: Temperature and moisture controls on non-growing season CO2 emissions in laboratory incubations with soils from northern peatlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6281, https://doi.org/10.5194/egusphere-egu21-6281, 2021.

EGU21-8969 | vPICO presentations | BG3.24

Greenhouse gas balance of open peatlands is globally governed by soil water content and archaeal abundance

Sandeep Thayamkottu, Jaan Pärn, Mohammad Bahram, Mikk Espenberg, Leho Tedersoo, Ülo Niinemets, and Ülo Mander

There is a general consensus that peatlands are the source of about 10% of the global CO2, CH4 and N2O greenhouse gas (GHG) emissions. Yet, our knowledge about underlying processes and environmental factors that regulate the GHG are limited. Here, we found that the GHG balance of CO2, CH4 and N2O in 48 open peatland sites on five continents can be predicted by a model that incorporates soil water content (SWC) and archaeal abundance. We used our global database (2011–2019) on peat characteristics and field-measured soil respiration (ER), CH4 and N2O emissions. Furthermore, we used the gross primary productivity (GPP) dataset by Running, Mu & Zhao (2015) on the basis of satellite data from the Moderate Resolution Imaging Spectrometer (MODIS) sensors alongside the ER to derive net ecosystem exchange (NEE) of carbon. The GHG balance follows SWC along a bell-shaped curve and increases with archaeal abundance and decomposition rate of peat-forming plant species. Thus, the net GHG emission peaks at intermediate SWC. These factors combined explains 61.9% (adjusted R2 = 0.587) of GHG balance and most of this variance is made up by the NEE of carbon (adjusted R2 = 0.97).

How to cite: Thayamkottu, S., Pärn, J., Bahram, M., Espenberg, M., Tedersoo, L., Niinemets, Ü., and Mander, Ü.: Greenhouse gas balance of open peatlands is globally governed by soil water content and archaeal abundance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8969, https://doi.org/10.5194/egusphere-egu21-8969, 2021.

EGU21-9922 | vPICO presentations | BG3.24

Changes in peatland hydrology alter organic matter chemical composition in ombrotrophic Finnish mires: a comparative Py-GCMS depth profile study

Kristy Klein, Miriam Groβ-Schmölders, Christine Alewell, and Jens Leifeld

From a carbon sequestration perspective, peatland restoration projects could be considered successful when net primary productivity exceeds decomposition, resulting in net peat growth in the ecosystem. To demonstrate the effectiveness of peatland restoration projects with a carbon storage aim, analytical techniques are needed that can distinguish between natural/restored ecosystems undergoing (or transitioning to) net peat growth and degraded ecosystems experiencing increased rates of aerobic decomposition (carbon loss). Molecular analysis techniques able to relate changes in organic matter (OM) chemical composition to changes in degradation status occurring on the mechanistic level are especially needed.

This study combined a molecular biomarker and chemical compound class approach to conduct a depth-based molecular comparison of natural (ON) and drained (OD) ombrotrophic peatland sites in Lakkasuo Finland. To explore how changes in hydrology impacted peat OM chemical composition, the relative abundance of various molecular biomarkers (Sphagnum marker p-isopropenylphenol, lignin vascular plant markers) and chemical compound classes (phenolics, polysaccharides, aromatics, N-containing compounds, lipids) was determined with depth from three replicate cores per site using pyrolysis gas chromatography tandem mass spectrometry (Py-GCMS). Py-GCMS results were compared with onsite vegetative assemblages and bulk elemental analysis conducted on the same cores. ON and OD were matched by age using radiocarbon dating at three depths per core.

For OD relative to ON, significant reductions in average relative percent abundance were observed for p-isopropenylphenol, phenolics and polysaccharides, and corresponding increases in abundance were observed for lignin, aromatics, N-containing compounds, and lipid sterols. Differences in compound classes between sites were greatest in the drainage-affected upper acrotelm, and diminished with depth. Samples consistently below the depth of the water table (>20 cm) followed similar trends in both ON and OD, suggesting that deeper horizons remained unaffected by the onsite drainage activities. An increasing trend in the relative abundance of lignin-derived compounds was observed with depth - particularly in ON. As the plant macrofossil assessment did not suggest previous dominance of vascular plants, this trend was considered evidence for preservation of lignin in anaerobic conditions in organic soils. Overall, these findings indicate that differences in chemical composition between the two sites can be directly correlated to OM transformation occurring on a mechanistic level, and that observed shifts in chemical composition reflect the effect of altered hydrology in peatland ecosystems.

How to cite: Klein, K., Groβ-Schmölders, M., Alewell, C., and Leifeld, J.: Changes in peatland hydrology alter organic matter chemical composition in ombrotrophic Finnish mires: a comparative Py-GCMS depth profile study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9922, https://doi.org/10.5194/egusphere-egu21-9922, 2021.

EGU21-12192 | vPICO presentations | BG3.24

Wet in the Anthropocene – a report of exceptionally stable hydrological conditions in a small bog over the last 1500 years

Katarzyna Marcisz, Piotr Kołaczek, Mariusz Gałka, Andrei-Cosmin Diaconu, and Mariusz Lamentowicz

Over the last few hundred years peatlands worldwide are experiencing substantial drying that is lowering their carbon storage potential. However, our high-resolution reconstruction of hydrological changes in a small Sphagnum-dominated peatland show that we can still observe healthy bogs in the fragmented landscape of Europe (Marcisz et al., 2020). We investigated last 1500 years history of a bog located in a young glacial landscape in Central Eastern Europe (NE Poland) using a multi-proxy approach and high-resolution dating. Our reconstruction showed a rare case of hydrological stability in the peatland that did not experience any dry shift over the last 1500 years, allowing for an undisturbed growth of Sphagnum, stable microbial communities, and high peat accumulation rates. High water tables (>12 cm depth to water table) influenced high resilience of the bog which was not affected by disturbances (deforestations, grazing or farming). Our palaeoecological data suggest that nature conservation practices which target high water tables are essential to maintain peatlands as a sink and not as a source of carbon in the future, supporting an earlier study that concluded a ca. 11-12 cm water table depth as a target number for peatland protection (Lamentowicz et al., 2019).

References:

Lamentowicz, M., Gałka, M., Marcisz, K., Słowiński, M., Kajukało-Drygalska, K., Druguet Dayras, M., Jassey, V.E.J., 2019. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biology Letters 15, 20190043.

Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C., Lamentowicz, M., 2020. Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene. Quaternary Science Reviews 231, 106180.

How to cite: Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C., and Lamentowicz, M.: Wet in the Anthropocene – a report of exceptionally stable hydrological conditions in a small bog over the last 1500 years, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12192, https://doi.org/10.5194/egusphere-egu21-12192, 2021.

Peatland ecosystems are integral to the mitigation of climate change as they represent significant terrestrial carbon sinks. In Ireland, peatlands cover ~20% of the land area but hold up to 75% of the soil organic carbon stock however many of these ecosystems (~85% of the total area) have been degraded due to anthropogenic activities such as agriculture, forestry and extraction for horticulture or energy. Furthermore, the carbon stocks that remain in these systems are vulnerable to inter-annual variation in climate, such as changes in precipitation and temperature, which can alter the hydrological status of these systems leading to changes in key biogeochemical processes and carbon and greenhouse gas exchange.  During 2018 exceptional drought and heatwave conditions were reported across Northwestern Europe, where reductions in precipitation coupled with elevated temperatures were observed. Exceptional inter-annual climatic variability was also observed at Clara bog, a near natural raised bog in the Irish midlands when data from 2018 and 2019 were compared. Precipitation in 2018 was ~300 mm lower than 2019 while the average mean annual temperature was 0.5°C higher. The reduction in precipitation, particularly during the growing season in 2018, consistently lowered the water table where ~150 consecutive days where the water table was >5cm below the surface of the bog were observed at the central ecotope location. The differing hydrological conditions between years resulted in the study area, as determined by the flux footprint of the eddy covariance tower, acting as a net source of carbon of 53.5 g C m-2 in 2018 and a net sink of 125.2 g C m-2 in 2019. The differences in the carbon dynamics between years were primarily driven by enhanced ecosystem respiration (Reco) and lower rates of Gross Primary Productivity (GPP) in the drier year, where the maximum monthly ratio of GPP:Reco during the growing season was 0.96 g C m-2 month in 2018 and 1.14 g C m-2 month in 2019. This study highlights both the vulnerability and resilience of these ecosystems to exceptional inter-annual climatic variability and emphasises the need for long-term monitoring networks to enhance our understanding of the impacts of these events when they occur.

How to cite: Saunders, M., Ingle, R., and Regan, S.: Assessing the impact of exceptional inter-annual climatic variability on rates of net ecosystem carbon dioxide exchange at Clara bog., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13414, https://doi.org/10.5194/egusphere-egu21-13414, 2021.

EGU21-15134 | vPICO presentations | BG3.24

Where are the peatlands? Comparing two global peatland maps through L-band brightness temperature simulations

Michel Bechtold, Sarith P. Mahanama, Rolf H. Reichle, Randal D. Koster, and Gabrielle J. M. De Lannoy

Mapping the global peatland distribution is important for embedding peatland processes into Earth System Models. Peatland maps are typically compiled from nation-specific soil or ecosystem maps or based on machine learning tools trained on such data. Here, we evaluate the performance of a land surface model with two different peatland map inputs in providing critical land surface estimates (soil moisture, temperature) to a Radiative Transfer Model (RTM) for L-band brightness temperature (Tb). We hypothesize that an improved performance of the land surface model in Tb space indicates a better spatial peatland distribution input within the footprint of Tb observations (~40 km).

We employ the NASA Catchment Land Surface Model (CLSM) with a recently added module for peatland hydrology (PEATCLSM modules). We run this model at a 9-km EASEv2 resolution over the Northern Hemisphere for two soil maps that differ in their peatland distributions. The applied soil distributions are: (MAP1) a combination of the Harmonized World Soil Database and the State Soil Geographic Database, also used to generate the Soil Moisture Active Passive (SMAP) Level-4 soil moisture product, and (MAP2) a hybrid of HWSD-STATSGO and the ‘PEATMAP’ product, which is mainly compiled from national peatland maps. MAP2 indicates ~30 % more peatland area over the Northern Hemisphere. For both peat distributions, CLSM is run and parameters of the RTM are calibrated with 10 years of multi-angular L-band Tb observations from the Soil Moisture and Ocean Salinity SMOS mission. Afterwards, CLSM is run together with the calibrated RTM within a data assimilation system, with and without (open-loop) assimilating SMAP Tb observations, for the period 2015-2020. Our results demonstrate that Tb misfits (in both the open-loop and assimilation runs) are reduced in the areas with the largest differences in peat distribution, thus indicating a basic validity of assuming a peatland-like hydrological dynamics for the larger peat extent of MAP2. Results will be discussed in the context of how peatlands are defined in global peatland maps and the question of what is typically modeled as a peatland in Earth System Models. We propose the evaluation of future releases of peatland maps in Tb space as a tool to evaluate their suitability for implementation into Earth System Models.

How to cite: Bechtold, M., Mahanama, S. P., Reichle, R. H., Koster, R. D., and De Lannoy, G. J. M.: Where are the peatlands? Comparing two global peatland maps through L-band brightness temperature simulations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15134, https://doi.org/10.5194/egusphere-egu21-15134, 2021.

Microbial communities of methane producing methanogens and consuming methanotrophs play an important role for the earths atmospheric methane budget. Despite their global significance, the functional potential of these communities is poorly understood. To investigate this, we applied the molecular technique, captured metagenomics, to identify the variability in functional diversity of microorganisms involved in the metabolism of methanein an environmentally controlled laboratory study. Nine plant-peat mesocosms dominated by the sedge Eriophorum vaginatum, with varying coverage, were collected from a temperate natural wetland is Sweden and subjected to a simulated growing season. Samples for analysis of captured metagenomes were taken from the top, bottom and root adjacent zone at the end of the experiment. In addition, over the simulated season, measured gas fluxes of carbon dioxide (CO2) and CH4, δ13C of emitted CH4 and the pore water concentration of dissolved methane and low molecular weight organic acids were recorded. The functional genes resulting from the captured metagenomes had a higher Shannon α-diversity in the root zone when compared to the bottom and top. Sequences coding for methane metabolism were significantly more diverse in the root and bottom zones when compared to the top. However, the frequency of Acetyl-CoA decarbonylase and methane monooxygenase subunit A were significantly higher in the high emitting methane flux category when compared to the medium and low emitting mesocosms. We conclude that captured metagenomic analyses of functional genes provides a good measure of the functional potential methanogenic and methanotrophic microbial communities. This technique can be used to investigate how methanogens and methanotrophs function in peatlands and thus, contribute to the concentration of atmospheric methane.

How to cite: White, J., Ström, L., Ahrén, D., Rinne, J., and Lehsten, V.: Captured metagenomics reveals high spatial variability in functional potential in CH4 producing and consuming microorganisms in a temperate Swedish peatland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10861, https://doi.org/10.5194/egusphere-egu21-10861, 2021.

EGU21-1937 | vPICO presentations | BG3.24

Sulphur constraints on peatland carbon cycle

Fred Worrall, Ian Boothroyd, Catherine Moody, Gareth Clay, and Geoff Abbott

EGU21-4358 | vPICO presentations | BG3.24

An assessment of the impact of the groundwater level decline during the open-pit extraction on the state of the subarctic wetlands 

Tamara Ponomareva, Anastasya Shtang, Olga Yarygina, and Svetlana Selyanina

Exploration and extraction of mineral resources have a significant impact on the environment. This anthropogenic impact is especially dangerous for the subarctic and arctic territories due to the vulnerability, instability and low capacity for self-recovery of northern ecosystems. The leading place takes the impact of open-pit mining on surface and ground waters. The region under study is characterized by excessive moistening due to the geographic location and climatic conditions.

The environmental monitoring of an open-pit mine located within the Belomoro-Kuloi plateau showed that the radius of the cone of depression is about 10 km, and its depth exceeds 180 m. A change in the hydrological regime of this territory can cause significant transformations of the oligotrophic ecosystems dominating here, and, accordingly, affect the state and functioning of relict swampy sub-tundra forests.

The aim was to assess the impact of the groundwater level decline on the structure and dynamics of oligotrophic phytocenoses and the corresponding edaphotop (the case of model sites located on an oligotrophic bog genetically and geographically close to the disturbed bogs).

It was found that both the phytocenosis as a whole and its individual components are sensitive to changes in hydrological conditions. However, they cannot act as an indicator in the short term because of the wide variability of the response, the significant ecological plasticity of the majority of bog species, and also a sufficiently long (up to 10-25 years) period for establishing the equilibrium state of the phytocenosis after the destabilizing effect. Changes in phytocenosis occur as a reaction to changes in edaphic conditions as a whole. Therefore, information on the properties and structure of peat deposits allows a rapid and reliable assessment of the processes occurring in the ecosystem during drainage.

The studying of the physicochemical properties of peat deposits confirms that changes in hydrological conditions find a fixed response in the composition of peat organic matter. Drainage of peat deposits leads to a significant increase in humification, a noticeable increase in the content of bitumen and humic compounds while reducing the content of easily and difficult hydrolysable components. This is consistent with changes in the structure and number of microbial communities, as well as with an increase in the depth of aeration of the peat deposit. Biogeotransformation is accompanied by synchronous processes of condensation and destruction of fulvic acids, as well as partial washing out of labile organic matter from the peat structure and, accordingly, an increase in the removal of organic matter into watercourses.

At the same time, restoration of drained bogs does not ensure the remediation of the structure and group chemical composition of peat to the initial values. Therefore, a drained bog, when restored, develops according to the mesotrophic or eutrophic type, as shown by other researchers. The change from oligotrophic communities to meso- and eutrophic ones leads to disruption of the delicate equilibrium of subarctic ecosystems and reduces the list and volume of ecosystem services that these wetlands provide, both at the local and global levels.

This work was supported by the RFBR grant No.18-05-60151 “Arctic”

How to cite: Ponomareva, T., Shtang, A., Yarygina, O., and Selyanina, S.: An assessment of the impact of the groundwater level decline during the open-pit extraction on the state of the subarctic wetlands , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4358, https://doi.org/10.5194/egusphere-egu21-4358, 2021.

EGU21-4474 | vPICO presentations | BG3.24

Remotely sensed temperature is a proxy of greenhouse gas emissions in intact and managed peatlands

Ain Kull, Iuliia Burdun, Gert Veber, Oleksandr Karasov, Martin Maddison, Valentina Sagris, and Ülo Mander

Besides water table depth, soil temperature is one of the main drivers of greenhouse gas (GHG) emissions in intact and managed peatlands. In this work, we evaluate the performance of remotely sensed land surface temperature (LST) as a proxy of greenhouse gas emissions in intact, drained and extracted peatlands. For this, we used chamber-measured carbon dioxide (CO2) and methane (CH4) data from seven peatlands in Estonia collected during vegetation season in 2017–2020. Additionally, we used temperature and water table depth data measured in situ. We studied relationships between CO2, CH4, in-situ parameters and remotely sensed LST from Landsat 7 and 8, and MODIS Terra. Results of our study suggest that LST has stronger relationships with surface and soil temperature as well as with ecosystem respiration (Reco) over drained and extracted sites than over intact ones. Over the extracted cites the correlation between Reco CO2 and LST is 0.7, and over the drained sites correlation is 0.5. In natural sites, we revealed a moderate positive relationship between LST and CO2 emitted in hollows (correlation is 0.6) while it is weak in hummocks (correlation is 0.3). Our study contributes to the better understanding of relationships between greenhouse gas emissions and their remotely sensed proxies over peatlands with different management status and enables better spatial assessment of GHG emissions in drainage affected northern temperate peatlands.

How to cite: Kull, A., Burdun, I., Veber, G., Karasov, O., Maddison, M., Sagris, V., and Mander, Ü.: Remotely sensed temperature is a proxy of greenhouse gas emissions in intact and managed peatlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4474, https://doi.org/10.5194/egusphere-egu21-4474, 2021.

EGU21-4489 | vPICO presentations | BG3.24

Exploring the variation in ecosystem scale methane fluxes and its drivers within a boreal mire complex

Koffi Dodji Noumonvi, Joshua L. Ratcliffe, Mats Öquist, Mats B. Nilsson, and Matthias Peichl

Northern peatlands cover a small fraction of the earth’s land surface, and yet they are one of the most important natural sources of atmospheric methane. With climate change causing rising temperatures, changes in water balance and increased growing season length, peatland contribution to atmospheric methane concentration is likely to increase, justifying the increased attention given to northern peatland methane dynamics. Northern peatlands often occur as heterogeneous complexes characterized by hydromorphologically distinct features from < 1 m² to tens of km², with differing physical, hydrological and chemical properties. The more commonly understood small-scale variation between hummocks, lawns and hollows has been well explored using chamber measurements. Single tower eddy covariance measurements, with a typical 95% flux footprint of < 0.5 km², have been used to assess the ecosystem scale methane exchange. However, how representative single tower flux measurements are of an entire mire complex is not well understood. To address this knowledge gap, the present study takes advantage of a network of four eddy covariance towers located less than 3 km apart at four mires within a typical boreal mire complex in northern Sweden. The variation of methane fluxes and its drivers between the four sites will be explored at different temporal scales, i.e. half-hourly, daily and at a growing-season scale.

How to cite: Noumonvi, K. D., Ratcliffe, J. L., Öquist, M., Nilsson, M. B., and Peichl, M.: Exploring the variation in ecosystem scale methane fluxes and its drivers within a boreal mire complex, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4489, https://doi.org/10.5194/egusphere-egu21-4489, 2021.

EGU21-9656 | vPICO presentations | BG3.24

Effects of labile carbon on anaerobic decomposition processes in permafrost wetlands

Maija E. Marushchak, Hannu Nykänen, Jukka Pumpanen, A. Britta K. Sannel, Lena Ström, Joel White, and Christina Biasi

Climate warming and permafrost thaw are exposing the large carbon (C) pools of northern wetlands to enhanced decomposition, potentially increasing the release of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Permafrost thaw is usually associated with changes in hydrology and vegetation: Ground collapse leads to the formation of new, productive thermokarst wetlands, and active layer deepening allows plant roots to penetrate to deeper soil layers. These processes promote interaction between old permafrost carbon and recent plant-derived carbon, but the effect of this interaction on anaerobic decomposition processes is poorly known.

Here, we report the preliminary results of a 1+-year-long soil incubation experiment where we investigated the role of fresh organics on anaerobic decomposition in arctic wetlands. We sampled mineral subsoil of Greenlandic wetland sites and the active layer and permafrost peat in a Swedish palsa mire, and incubated them with and without repeated amendments of 13C enriched glucose and cellulose. We determined the rate and isotopic composition of CO2 and CH4 with an isotopic laser, and estimated the contribution of soil organic matter decomposition vs. added carbon to the total C gas release. These results represent new understanding on how plant-derived organics change the magnitude and composition of C gas, thus affecting the climatic feedbacks from permafrost wetland C pool.

How to cite: Marushchak, M. E., Nykänen, H., Pumpanen, J., Sannel, A. B. K., Ström, L., White, J., and Biasi, C.: Effects of labile carbon on anaerobic decomposition processes in permafrost wetlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9656, https://doi.org/10.5194/egusphere-egu21-9656, 2021.

EGU21-12559 | vPICO presentations | BG3.24

Spatial and temporal variation of 13C-signature of methane emitted by a temperate mire ecosystem

Janne Rinne, Patryk Łakomiec, Patrik Vestin, Per Weslien, Julia Kelly, Bengt Liljebladh, Xianghua Xie, Natascha Kljun, Lena Ström, and Leif Klemedtsson

The net methane emission of any mire ecosystem results from a combination of biological and physical processes, including methane production by archaea, methane consumption by bacteria, and transport of methane from peat to the atmosphere. The complexity of spatial and temporal behavior of methane emission is connected to these.

13C-signature of emitted methane offers us a further constraint to evaluate our hypothesis on the processes leading to the variation of methane emission rates. For example, assuming the spatial variation in methane emission rate at microtopographic scale is due to variation in trophic status or variation in methane consumption, will lead to differences in the relation of methane emission rate and its 13C-signature, expressed as δ13C.

We have measured the methane emission rates and δ13C of emitted methane by six automated chambers at a poor fen ecosystem over two growing seasons. The measurements were conducted at Mycklemossen mire (58°21'N 12°10'E, 80m a.s.l.), Sweden, during 2019-2020. In addition, we measured atmospheric surface layer methane mixing ratios and δ13C to obtain larger scale 13C-signatures by the nocturnal boundary-layer accumulation (NBL) approach. All δ13C-signatures were derived using the Keeling-plot approach.

The collected data shows spatial differences of up to 10-15 ‰ in 10-day averages of δ13C-signatures between different chamber locations. Temporal variations of 10-day average δ13C-signatures from most chamber locations reached over 5 ‰, while the temporal variation of NBL derived δ13C-signature was slightly lower.

The observed spatial variation in the δ13C-signature was somewhat systematic, indicating, especially in the middle of the summers, the main control of spatial variation of methane emission to be the trophic status. The temporal changes, measured at different locations, indicate spatial differences in the temporal dynamics at the microtopographic scale. The temporal behavior of larger scale NBL δ13C-signature does not fully correspond to the behavior of the chamber derived average δ13C-signature.

How to cite: Rinne, J., Łakomiec, P., Vestin, P., Weslien, P., Kelly, J., Liljebladh, B., Xie, X., Kljun, N., Ström, L., and Klemedtsson, L.: Spatial and temporal variation of 13C-signature of methane emitted by a temperate mire ecosystem, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12559, https://doi.org/10.5194/egusphere-egu21-12559, 2021.

EGU21-13199 | vPICO presentations | BG3.24

Estimation of Gross Primary Productivity of a raised bog ecosystem using satellite models and eddy covariance techniques under exceptional climatic conditions  

Ruchita Ingle, Saheba Bhatnagar, Bidisha Ghosh, Laurence Gill, and Matthew Saunders

Peatlands are vital to the global carbon (C) cycle as they act as a significant C store and these systems in Ireland store between 1064 –1503 Gt C on ~20% of the land area. However, around 90% of this area has been drained and degraded by various anthropogenic activities and the emissions from these activities are approximately 3 million t C per year. A better understanding of the land-atmosphere C and greenhouse gas (GHG) dynamics is vital to halt these emissions and enhance the C sink strength of these ecosystems. Gross Primary Productivity (GPP) is a major part of the peatland carbon cycle and detailed knowledge of the spatial and temporal extent of GPP is imperative for improving our predictions of peatland ecology, biogeochemistry and carbon balance in response to global change. Eddy covariance (EC) techniques are widely used to measure carbon fluxes but can only account for fluxes within the flux footprint of the tower, and it is challenging to scale up data from EC towers to regional and global scales due to the limited number of towers and their geographic locations. This research assesses the relationship between remote sensing and ground-based measurements for a near-natural raised bog in Ireland using EC techniques and high-resolution Sentinel 2A satellite imagery. Vegetation indices (VIs) are one of the key input parameters for satellite-based GPP and most of the existing VIs have been developed for grassland, agriculture, and forest ecosystems. This study developed a hybrid index for raised bogs using multiple linear regression and six widely practiced conventional vegetation indices. Two approaches have been used in this study for estimating GPP using the LUE model. Initially, all the individual indices have been used to model the GPP, which was subsequently compared with the EC GPP to determine the performance of each index against the EC data. The model was run with meteorological data and satellite-derived vegetation indices. During the 2018 study period, the weather was exceptionally dry which made it challenging and rewarding at the same time as the hybrid index was developed for an exceptional year. It was crucial to test the performance of the hybrid index under more normal weather conditions with limited clear sky satellite imagery. Therefore, the hybrid index was validated for the year 2019 which had normal weather conditions. The hybrid index based modelled GPP showed a significant correlation with the EC GPP for both the years with an R2 > 0.95. Overall, this research has demonstrated the potential of combining EC techniques and the hybrid index along with satellite-derived models to better understand and monitor key drivers and patterns of GPP of raised bog ecosystems under different climate scenarios.

How to cite: Ingle, R., Bhatnagar, S., Ghosh, B., Gill, L., and Saunders, M.: Estimation of Gross Primary Productivity of a raised bog ecosystem using satellite models and eddy covariance techniques under exceptional climatic conditions  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13199, https://doi.org/10.5194/egusphere-egu21-13199, 2021.

EGU21-16046 | vPICO presentations | BG3.24

How does wildfire impact carbon delivery to peatland drainage networks?

Amy Pickard, Stacey Felgate, Paula Fernandez Garcia, Peter Gilbert, Dan Mayor, Don Monteith, and Roxane Andersen

Peatlands are a globally important carbon (C) store, although it is well understood that anthropogenic pressures including drainage can reduce potential for C sequestration, in part due to increased losses of C via the aquatic pathway. Superimposed onto land-use pressures on peatlands are those caused by extreme climate events. Following a drought in 2018 and a subsequent dry period in spring 2019, a large wildfire burnt approximately >60 km2 of blanket bog and wet heath within the Flow Country peatlands, North Scotland in May 2019. The fire burned various peatland land types, including near-natural peatland and drained peatland areas. This event created an urgent opportunity to quantify the interacting effects of peat condition and wildfire on water quality, with a focus on dissolved organic matter (DOM) losses. An extensive water monitoring programme was established, covering 40 individual headwater stream sampling locations across the Flow Country, and monthly sampling ran from September 2019 to October 2020, with samples analysed for dissolved organic carbon (DOC), nutrients and UV-vis-based measurements to inform DOM composition. Initial data shows that samples from burned, drained areas are associated with higher DOC concentrations relative to both burned, near natural peatland areas, and unburned control sites. Furthermore the DOM from burned, drained sites is of a more aromatic nature, as indicated by elevated specific UV absorbance (SUVA), compared to unburned control sites. Such findings imply that wildfires may adversely affect water quality through changes DOM quantity and quality in areas of damaged (drained) peatland. However, more detailed compositional analyses are required to accurately predict changes in the ecological functioning of this peatland derived DOM as it enters the aquatic environment and, therefore, its likely end-fate.

How to cite: Pickard, A., Felgate, S., Fernandez Garcia, P., Gilbert, P., Mayor, D., Monteith, D., and Andersen, R.: How does wildfire impact carbon delivery to peatland drainage networks?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16046, https://doi.org/10.5194/egusphere-egu21-16046, 2021.

EGU21-7450 | vPICO presentations | BG3.24

Simulating Future Distributions of Northern Permafrost Peatlands

Richard Fewster, Paul Morris, Ruza Ivanovic, Graeme Swindles, Anna Peregon, and Chris Smith

Northern permafrost peatlands represent one of Earth’s largest terrestrial carbon stores and are highly sensitive to climate change. Whilst frozen, peatland carbon fluxes are restricted by cold temperatures, but once permafrost thaws and saturated surficial conditions develop, emissions of carbon dioxide (CO2) and methane (CH4) substantially increase. This positive feedback mechanism threatens to accelerate future climate change globally. Whilst future permafrost distributions in mineral soils have been modelled extensively, the insulating properties of organic soils mean that peatland permafrost responses are highly uncertain. Peatland permafrost is commonly evidenced by frost mounds, termed palsas/peat plateaus, or by polygonal patterning in more northerly regions. Although the distribution of palsas in northern Fennoscandia is well-studied, the extent of palsas/peat plateaus and polygon mires elsewhere remains poorly constrained, which currently restricts predictions of their future persistence under climate change.  

Here, we present the first pan-Arctic analyses of the modern climate envelopes and future distributions of permafrost peatland landforms in North America, Fennoscandia, and Western Siberia. We relate a novel hemispheric-scale catalogue of palsas/peat plateaus and polygon mires (>2,100 individual sites) to modern climate data using one-vs-all (OVA) binary logistic regression. We predict future distributions of permafrost peatland landforms across the northern hemisphere under four Shared Socioeconomic Pathway (SSP) scenarios, using future climate projections from an ensemble of 12 general circulation models included in the Coupled Model Intercomparison Project 6 (CMIP6). We then combine our simulations with recent soil organic carbon maps to estimate how northern peatland carbon stocks may be affected by future permafrost redistribution. These novel analyses will improve our understanding of future peatland trajectories across the northern hemisphere and assist predictions of climate feedbacks resulting from peatland permafrost thaw. 

How to cite: Fewster, R., Morris, P., Ivanovic, R., Swindles, G., Peregon, A., and Smith, C.: Simulating Future Distributions of Northern Permafrost Peatlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7450, https://doi.org/10.5194/egusphere-egu21-7450, 2021.

EGU21-11589 | vPICO presentations | BG3.24

Peatland-ES-UK: a long-term, deep and holistic look at climate and management impacts on grousemoor managed UK blanket bog peatlands - carbon, water, biodiversity

Andreas Heinemeyer, Anthony Jones, Tom Holmes, Abby Mycroft, Will Burn, and Phoebe Morton

Large parts of the rather cold and wet UK uplands are dominated by peatlands, specifically blanket bogs. During most of the Holocene, those peatlands have locked away carbon for many thousands of years due to water logged conditions leading to low decomposition rates and long-term accumulation of soil organic matter as peat. Importantly, this peat accumulation not just increases carbon but also water storage and provides many other associated and vital ecosystem services to societies across the UK, such as drinking water.

However, since around 1850, much of the UK uplands have been under grousemoor management to encourage red grouse populations as part of shooting estates, including controversial drainage, heather burning, and more recently, alternative cutting. Due to the rather weak and often conflicting evidence base around impacts of such management more research is needed to unravel climate and management impacts on ecosystem functions and associated ecosystem services. Much of the controversial evidence base is based on short-term monitoring of only a few years (potentially misinterpreting short-term disturbance effects as long-term impacts), single site studies (not capturing edaphic and climatic variability) and space-for-time studies, often with different treatments located at different sites (and thus limited in their ability or even unable to disentangle confounding variables such as site environmental conditions/history from actual management impacts).

We present long-term data from a previously government-funded, and currently multi-funded and to 10 years extended, peatland management project investigating ecosystem functions from plot-to-catchment scales on three grousemoor sites across Northern England. The Peatland-ES-UK project is part of the Ecological Continuity Trust’s long-term monitoring network and is based on a Before-After Control-Impact design approach. Each of three replicated field sites consist of two paired 10 ha catchments under previous burn rotation management and part of current peatland restoration work. After one year of pre-treatment monitoring, catchments were allocated either a continuation of burning or an alternative mowing post-treatment catchment management rotation (the latter containing several 5x5 m sub-treatment monitoring plots including no management). Monitoring includes assessing hydrology, water budgets, carbon cycling, greenhouse gas emissions, peat properties, vegetation composition and key biodiversity.

We shall provide new and sometimes surprising and even challenging insights into blanket bog ecosystem functioning in an ecosystem services and habitat status context, highlighting the importance of long-term monitoring, experimental design, spatio-temporal changes and remaining uncertainties. Specifically, we shall present findings about water storage (water tables and stream flow), long-term carbon accumulation rates (peat cores), recent carbon budgets (flux chambers) and net greenhouse gas emissions (including methane). We also present some peatland model predictions around various land use impacts on past, present and future carbon storage potential. Finally, we call for a joint funding commitment across research, policy and land user organisations to ensure the continuation of such joined-up ‘real-world’ experimental and long-term monitoring work, as part of a national applied research platform network, as it provides the “gold standard” to inform evidence-based policy directly related to practitioner needs.

How to cite: Heinemeyer, A., Jones, A., Holmes, T., Mycroft, A., Burn, W., and Morton, P.: Peatland-ES-UK: a long-term, deep and holistic look at climate and management impacts on grousemoor managed UK blanket bog peatlands - carbon, water, biodiversity, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11589, https://doi.org/10.5194/egusphere-egu21-11589, 2021.

Despite being an important terrestrial carbon (C) reserve, tropical peatlands (TP) have been heavily degraded through extensive drainage and fire, to an extent where degraded TP occupies one-tenth of the total peatland area in Southeast Asia (as in 2015). Consequently, repeated fires along with frequent flooding can alter the microtopography, vegetation composition as well as higher diurnal temperature variation due to open canopy, where each is known to influence C dynamics. However, assessing the importance of all these variables on-site can be challenging due to difficult site conditions; hence an incubation experiment approach may provide more useful insights in disentangling the complex interplay of these important variables in regulating GHG (CO2 and CH4) production and emissions from fire-degraded tropical peatland areas. Therefore, we conducted an incubation study to investigate the interactions of microtopography (creating water-saturation conditions: mesic, flooded oxic, and anoxic), labile C inputs (in form of root exudate secretion from ferns and sedges), as well as on-site diurnal temperature variation in regulating CO2 and CH4 production from fire-degraded tropical peat.

            We found that CO2 and CH4 production significantly varied among treatments and were strongly regulated by microtopography, labile C inputs, and temperature variation. Mesic (oxic) treatments acted as a strong source of CO2 (230.4 ± 29 µgCO2 g-1 hr-1) and mild sink for CH4 (-5.6 ± 0.2 ngCH4 g-1 hr-1) compared to anoxic treatments acting as a mild source of CO2 (61.3 ± 6.2 µgCO2 g-1 hr-1) and strong source of CH4 (591.9 ± 112.1 ngCH4 g-1 hr-1). The addition of labile C enhanced both the CO2 and CH4 production irrespective of the treatment conditions, whereas the effect of diurnal temperature variation was clearly pronounced in mesic (for CO2) and anoxic (for CH4) conditions. Q10 values for both CO2 and CH4 production varied significantly with higher values for CO2 in mesic treatments (1.21 ± 0.28) and higher for CH4 in anoxic treatments (1.56 ± 0.35). We also observed a gradient across conditions, where flooded oxic treatments showed in-between values both for CO2 and CH4 production and temperature sensitivity, further reflecting the importance of on-site peat water-saturation in regulating the GHG production and emission from the fire degraded tropical peatland areas.

            Overall, these findings highlight how the water-saturation conditions due to microtopographic variation in peat surface, quality, and quantity of labile C secreted from plant communities and temperature variation during a day can influence the GHGs production rates from the fire degraded tropical peat. More importantly, given the current state and extent of degraded tropical peatland areas and future climate and land-use changes as well as frequent fire episodes in the region, our results demonstrate the increasing trend in GHG production from the fire-degraded tropical peatlands in Southeast Asia.

How to cite: Akhtar, H., Lupascu, M., and Sukri, R. S.: Effects of microtopography, root exudates analogues and temperature variation on CO2 and CH4 production from fire-degraded tropical peat, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2665, https://doi.org/10.5194/egusphere-egu21-2665, 2021.

EGU21-3220 | vPICO presentations | BG3.24

Divergent responses of permafrost peatlands to recent climate change

Thomas Sim, Graeme Swindles, Paul Morris, Andy Baird, Claire Cooper, Angela Gallego-Sala, Dan Charman, Thomas Roland, Werner Borken, Donal Mullan, Marco Aquino-López, and Mariusz Gałka

Permafrost peatlands are found in high-latitude regions and store globally-important amounts of soil organic carbon. These regions are warming at over twice the global average rate, causing permafrost thaw and exposing previously inert carbon to decomposition and emission to the atmosphere as greenhouse gases. However, it is unclear how peatland hydrological behaviour, vegetation structure and carbon balance, and the linkages between them, will respond to permafrost thaw in a warming climate. Here we show that permafrost peatlands follow divergent ecohydrological trajectories in response to recent climate change within the same rapidly warming region (northern Sweden). Whether a site becomes wetter or drier depends on local factors and the autogenic response of individual peatlands. We find that bryophyte-dominated vegetation demonstrates resistance, and in some cases resilience, to climatic and hydrological shifts. Drying at four sites is clearly associated with reduced carbon sequestration, while no clear relationship at wetting sites is observed. We highlight the complex dynamics of permafrost peatlands and warn against an overly-simple approach when considering their ecohydrological trajectories and role as C sinks under a warming climate.   

How to cite: Sim, T., Swindles, G., Morris, P., Baird, A., Cooper, C., Gallego-Sala, A., Charman, D., Roland, T., Borken, W., Mullan, D., Aquino-López, M., and Gałka, M.: Divergent responses of permafrost peatlands to recent climate change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3220, https://doi.org/10.5194/egusphere-egu21-3220, 2021.

EGU21-3348 | vPICO presentations | BG3.24

Predicting Non-Growing Season Net Ecosystem Exchanges of CO2 from a Canadian Peatland 

Arash Rafat, Fereidoun Rezanezhad, William Quinton, Elyn Humphreys, Kara Webster, and Philippe Van Cappellen

The world’s cold regions are experiencing some of the fastest warming, especially during the winter and shoulder seasons. Recent studies have further highlighted the significance of carbon dioxide (CO2) emissions during the non-growing season (NGS) to the annual carbon (C) budgets of northern peatlands. Because of the positive feedback of soil microbial respiration to warming, even at sub-zero temperatures, a warmer NGS may be expected to alter the C balance of peatlands, which are estimated to store about one-third of global terrestrial organic C stocks. However, estimates of NGS net ecosystem CO2 exchange (NEE) of peatlands remain highly uncertain. In this study, we use a variable selection methodology and a global sensitivity analysis (GSA) to determine the most influential environmental variables affecting the NGS-NEE of CO2 in a temperate Canadian peatland (Mer Bleue Bog; Ottawa, Canada). A data-driven machine learning model is trained on a 13-year (1998-2010) continuous record of eddy covariance flux measurements at the site. The model successfully reproduces the observed NGS-NEE CO2 fluxes using only 7 variables: soil temperature, soil moisture, air temperature, wind direction and speed, net radiation, and upwelling photosynthetic photon flux density. Of these 7 input variables, NGS-NEE is most sensitive to changes in net radiation, likely through the latter’s strong linkages to variations in plant phenology and snow cover. We further predict how the future NGS-NEE of the Mer Bleue Bog will change under three climate scenarios (RCP2.6, RCP4.5, and RCP8.5). According to the projections, mean NEE during the NGS could increase by up to 103% by the end of the 21st century. Our results thus reinforce the urgent need for a comprehensive understanding of peatlands as evolving sources of atmospheric CO2 in a warming world.

How to cite: Rafat, A., Rezanezhad, F., Quinton, W., Humphreys, E., Webster, K., and Van Cappellen, P.: Predicting Non-Growing Season Net Ecosystem Exchanges of CO2 from a Canadian Peatland , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3348, https://doi.org/10.5194/egusphere-egu21-3348, 2021.

EGU21-12193 | vPICO presentations | BG3.24

Post-fire carbon dioxide emissions from a peatland undergoing restoration

Rebekka Artz, Mhairi Coyle, Pete Gilbert, Roxane Andersen, and Adrian Bass

In May 2019, a major wildfire event affected >60 km2 within the 4000 km2 Flow Country in Northern Scotland, UK, a flagship blanket bog peatland that is being considered for UNESCO World Heritage Status. While the fire itself created significant damage, it also led to an extraordinary and unique opportunity to compare burned and unburned landscape scale greenhouse gas flux and surface energy dynamics using sites that, crucially, have otherwise identical biophysical characteristics (slope, aspect, peat depth) and land management histories. Since September 2019, carbon dioxide and methane flux data have been collected alongside other micrometeorological variables. Due to the COVID-19 lockdown in the UK, the team had severe difficulties in maintaining the equipment and hence, only partial and preliminary data will be reported here to showcase the findings from this project to date. The data obtained so far suggest a post-fire reduction in net CO2 emissions for a period of one year since the beginning of our monitoring campaign.

How to cite: Artz, R., Coyle, M., Gilbert, P., Andersen, R., and Bass, A.: Post-fire carbon dioxide emissions from a peatland undergoing restoration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12193, https://doi.org/10.5194/egusphere-egu21-12193, 2021.

EGU21-12999 | vPICO presentations | BG3.24

Net ecosystem exchange of CO2 and ecosystem respiration in two bogs in Estonia along disturbance gradient

Martin Maddison, Gert Veber, and Ain Kull

Northern peatlands are important terrestrial carbon (C) stores, but their ability to sequestrate C is at delicate balance affected by management and also by climate change. The climate change causes less snow pack and warmer winters with faster water table drop in spring and drier summers in most boreal areas. Due to those changes natural peatlands may become C source instead of sink.

This study presents ecosystem respiration (ER) over five-year period and the annual estimates of net ecosystem exchange (NEE) of CO2 in Umbusi and Laukasoo in Estonia along disturbance gradient from drained to natural ombrotrophic bog. Both study sites locate next to the active cutaway peatlands. There were four CO2 flux measurements plots with three measurements points at different distance from the drainage ditch (10, 50, 100 and 200 m in Umbusi; 3, 40, 50, 125 m in Laukasoo) to form a water table depth and soil moisture gradient on both study sites. ER was measured using opaque static chamber throughout of the year in period 2012-2016. A vented and thermostated transparent plastic chamber with removable opaque cover was used for CO2 exchange measurements. NEE measurements occurred biweekly from April to December in 2015, totally were done 648 measurements. NEE was derived from modelling of ER and gross primary production with temperature, photosynthetically active radiation, water level and days of year (as phenological phase) as driving variables.

Annual mean NEE at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo were 0.37, 0.28, 0.15, 0.08 and 0.44, 0.34, 0.04, 0.21 kg C m-2 y-1, respectively. Although mean NEE was positive for all plots on both sites, there were also negative annual NEE values in some points in undisturbed plots (100 and 200 m from the ditch in Umbusi and 50 and 125 m in Laukasoo).

Average water level at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo during growing period (from the beginning of May to the end of October) in 2015 were -94, -45, -22, -22 and -124, -33, -21, -22 cm, respectively. Monthly mean air temperature and sum of precipitation were not different from the long-term measurements in studied growing period in 2015 while winter was significantly warmer.

Modelled ER remained high for cold period because of higher air temperature in 2015. Due to higher respiration rate from non-frozen peat layer in cold season, more CO2 was released back to atmosphere and annually less C was accumulated. Monthly mean air temperature for cold period was 3.5 ºC warmer than the long-term average.

How to cite: Maddison, M., Veber, G., and Kull, A.: Net ecosystem exchange of CO2 and ecosystem respiration in two bogs in Estonia along disturbance gradient, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12999, https://doi.org/10.5194/egusphere-egu21-12999, 2021.

EGU21-13882 | vPICO presentations | BG3.24

Effects of Warming and Permafrost Thaw on Carbon Dioxide Fluxes from Boreal Peatlands in northwestern Canada

Christopher Schulze, David Olefeldt, Natascha Kljun, Laura Chasmer, Chris Hopkinson, Manuel Helbig, Gabriel Hould Gosselin, and Oliver Sonnentag

The Taiga Plains ecozone in northwestern Canada is warming rapidly which alters the carbon dioxide (CO2) fluxes of the boreal peat landscape in two ways: 1) directly by increasing temperatures going along with increasing fluxes and 2) indirectly via permafrost thaw and resulting wetland expansion. However, we still lack an understanding of how direct and indirect effects vary across a latitudinal climate gradient covering different extents of permafrost. In this study, we will compare two years of concurrent eddy covariance measurements made over forested permafrost peat plateaus at Smith Creek (discontinuous permafrost) and Scotty Creek (sporadic permafrost) to assess differences in net CO2 exchange and its two component fluxes, gross primary productivity (GPP) and ecosystem respiration (ER). Footprint analysis will be used to assess the net CO2 balance of peat plateaus and thermokarst wetlands at both sites. We hypothesize that GPP and ER will be higher at the warmer Scotty Creek site, due to both, more abundant thermokarst wetlands and higher GPP and ER of peat plateaus at this southern site. We also hypothesize that the effects of warming on GPP are greater than on ER and thus that the warmer Scotty Creek site is a greater net CO2 sink. Our study will conclude on the carbon feedback of warming peat landscapes near the southern limit of permafrost in northwestern Canada in response to Climate Change.

How to cite: Schulze, C., Olefeldt, D., Kljun, N., Chasmer, L., Hopkinson, C., Helbig, M., Gosselin, G. H., and Sonnentag, O.: Effects of Warming and Permafrost Thaw on Carbon Dioxide Fluxes from Boreal Peatlands in northwestern Canada, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13882, https://doi.org/10.5194/egusphere-egu21-13882, 2021.

EGU21-15049 | vPICO presentations | BG3.24

Towards unravelling the 'Black Box' of peatland carbon: Linking peatland habitat condition and management to water chemistry and quality

Abby Mycroft, Andreas Heinemeyer, Kirsty Penkman, Jenny Banks, and Tim Thom

In the UK, peatlands are a significant provider of many ecosystem services including drinking water provision and carbon sequestration. However, a history of intense management and other environmental factors such as air pollution has led to large scale peatland degradation. In fact, a large proportion of UK peatland habitat, particularly upland blanket bog, is no longer being classified as ‘active’. Such degraded peatlands are characterised by lower water tables, causing increased peat decomposition and thus loss of carbon. Carbon is mainly lost via respiration (CO2 and CH4) and as dissolved organic carbon (DOC), the latter leading to a potential associated decline in water quality (affecting colour and taste); however, separating climatic from vegetation impacts and attributing negative impacts to management remains a challenge.

A particular issue in the UK is water quality from uplands containing blanket bog, as they provide most of the UK’s drinking water. Over recent decades drinking water quality has deteriorated as seen in increasing DOC concentrations. Whilst previous work has explored links between rising DOC and management practices, particularly grousemoor management involving rotational burning of vegetation to encourage red grouse populations on shooting estates, there continues to be a lack of understanding linkages in relation to alternative management/restoration, vegetation composition and, in particular, underpinning peat chemical processes. Understanding such linkages is becoming ever more important as many degraded peatlands are currently being restored by revegetation and rewetting as well as exploring alternative management such as mowing of vegetation.

Unravelling the underpinning peat chemistry and plant-soil processes regulating carbon cycling, and producing and/or altering DOC and its various constituent components, is key to understand impacts upon water treatment requirements. Of particular concern is that chemical (coagulant) water treatment has potential health implications via disinfectant by-product formation following chlorination of DOC rich water supply. Thus, ill-informed land management and/or restoration alongside climatic change may incur additional water treatment pressures and costs, putting increased pressure on an already strained system. Therefore, it is important to understand the role of catchment-scale peat plant-soil chemical processes and adapt best-practice land management options for supporting drinking water quality at the peatland source.

Here, insights into peat physical and chemical properties are presented, towards enabling management decisions based on ‘treatment at source’ rather than the conventional ‘end of pipe’ drinking water treatment. Field samples and monitoring of peat mesocosm cores taken from across a spectrum of ‘intact’ to degraded and restored UK blanket bogs (including conventionally burnt and alternatively mown grousemoors) are routinely monitored for gaseous carbon fluxes, DOC and water quality parameters relating DOC properties (e.g. UV-spectra) to vegetation, habitat condition and management. Mesocosms also included sampling from individual vegetated cores, each with two attached plant-free cores, either with or without roots. We compare findings from controlled mesocosms to samples from field sites, assess potential methodological aspects affecting DOC collection and characterisation, unravel potential links to specific vegetation types and management/habitat condition, and explore the characterisation of DOC compounds linked to colour, high coagulant demand and the formation of disinfectant by-products.

How to cite: Mycroft, A., Heinemeyer, A., Penkman, K., Banks, J., and Thom, T.: Towards unravelling the 'Black Box' of peatland carbon: Linking peatland habitat condition and management to water chemistry and quality, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15049, https://doi.org/10.5194/egusphere-egu21-15049, 2021.

BG3.25 – Terrestrial ecosystem responses to global change: integrating experiments and models to understand carbon, nutrient, and water cycling

EGU21-3455 | vPICO presentations | BG3.25 | Highlight

Diverse functional responses drive ecosystem drought impact and recovery - insights from an ecosystem-scale drought experiment

Christiane Werner, Laura Meredith, Nemiah Ladd, Johannes Ingrisch, Angelika Kübbert, and Joost van Harem and the B2WALD

The increase in frequency and severity of droughts endangers ecosystem functioning worldwide, however, the mechanisms determining ecosystem susceptibility to drought and legacy effects during recovery remain poorly understood. To disentangle complex ecosystem dynamics we imposed a 9.5-week drought on the Biosphere 2 tropical rainforest, a thirty-year old enclosed forest. To trace ecosystem scale interactions, we implemented a whole-ecosystem labelling approach in the world’s largest controlled growth facility: the Biosphere 2 Tropical Rainforest,  the B2 Water, Atmosphere, and Life Dynamics (B2WALD) experiment. We measured the dynamics and processes across scales analyzing total ecosystem exchange, soil, trunk and leaf fluxes of H2O, CO2 and volatile organic compounds (VOCs), and their stable isotopes over five months. To trace changes in soil-plant-atmosphere interactions we labelled the entire ecosystem with a 13CO2-isotope pulse during pre-drought and drought and traced the carbon flow from the leaves to stems, roots, and soil. Subsequently, we introduced 2H-labelled deep-water label during severe drought, providing a unique opportunity to evaluate the importance of deep-water reserves, transit times and legacy effects during the recovery of ecosystem functioning.

The tropical rainforest displayed highly dynamic, non-linear responses during dry-down and rewetting. Drought sequentially propagated through the vertical forest strata, with a rapid increase in vapor pressure deficit, the driving force of tree water loss, in the top canopy layer and early dry-down of the upper soil layer but delayed depletion of deep soil moisture. This induced a two-phase response of ecosystem fluxes: gross primary production (GPP), ecosystem respiration (Reco), and evapotranspiration (ET) declined rapidly during early drought and moderately under severe drought. Atmospheric VOC composition was highly dynamic, with peak emissions of isoprene during early drought followed by monoterpenes and hexanal during severe drought. Thus, the dynamics of different VOCs in the atmosphere closely mirrored different drought stages, and point to distinct physiological processes underlying stages of the total ecosystem response.

Ecosystem 13CO2-pulse-labeling showed that drought enhanced the mean residence times of freshly assimilated carbon- indicating down-regulation of carbon cycling velocity and delayed transport form leaves to trunk and roots. During the recovery significant legacy effects were observed. Interestingly, the majority of the deep-rooted canopy trees taped into deep-water reserves, but exhibited large differences in transit times until maximum d2H-labelled water was transpired. Drought-sensitive canopy trees, which dominated the ecosystem water flux, responded swiftly reaching 2H-enriched transpiration within 1-21 days and maximum values 14-days after the 2H-pulse. In contrast, drought tolerant canopy trees transpired maximum 2H-labeled deep-water with a delay of 4-weeks. Understory trees and shrubs showed no or minimal 2H2O uptake, indicating limited access to deep water.

We found highly diverse responses of carbon and water fluxes, driven by the interplay two key factors: species-specific drought adaptations and heterogeneity in microclimate conditions within the mixed forest. These data highlight the importance of quantifying drought impacts on forest functioning beyond the intensity of (meteorological) drought, but also taking the structural and functional composition of the forest into account, as interactive effects between biotic and abiotic factors determine how drought cascades through the system.

How to cite: Werner, C., Meredith, L., Ladd, N., Ingrisch, J., Kübbert, A., and van Harem, J. and the B2WALD: Diverse functional responses drive ecosystem drought impact and recovery - insights from an ecosystem-scale drought experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3455, https://doi.org/10.5194/egusphere-egu21-3455, 2021.

EGU21-13426 | vPICO presentations | BG3.25

Fine root exudation rate increases in drier soils, but tree level carbon exudation does not change under drought in mature Fagus sylvatica - Picea abies trees

Benjamin D. Hafner, Melanie Brunn, Marie J. Zwetsloot, Kyohsuke Hikino, Karin Pritsch, Fabian Weikl, Nadine K. Rühr, Emma J. Sayer, and Taryn L. Bauerle
Drought is a severe natural risk that increases drying-rewetting frequencies of soils. Yet, it remains largely unknown how forest ecosystems respond to dry-wet cycles, hampering our ability to evaluate the overall sink and source functionality for this large carbon pool. Recent investigations suggest that the release of soluble carbon via root exudation increases under drought, influencing soil carbon stabilization and mineralization. However, an integration of root exudation into the carbon allocation dynamics of drought stressed trees is missing. We hypothesized that roots in dry soil layers have a higher exudation rate than roots in more moist layers across different soil depths. Further, we tested if higher exudation rates under drought are attenuated by reduced root abundance in dry soils and if the fraction of root exudation from total carbon allocation increases with decreasing photosynthesis rates under drought. At the KROOF experimental site in southern Germany, where mature beech (Fagus sylvatica L.) and spruce (Picea abies (L.) Karst.) trees were exposed to artificial drought stress for five consecutive growing seasons, we show that at the root level root exudation rate increases in drier soils. Especially roots in the upper soil profile and roots of spruce trees increased root exudation under drought. When scaled to whole tree level, we did not find differences in total exudation between drought stressed and control trees, indicating sustained root exudation at the tree level under drought. As photosynthesis rates and therefore total carbon assimilation was substantially reduced under drought (by 50 % in beech and almost 70 % in spruce), the fraction of root exudation from total assimilation slightly increased for drought stressed trees. Our results demonstrate that stimulation of root exudation rates with drought exists in natural temperate forest ecosystems but might be mitigated by reduced fine root abundance under drought. Nevertheless, increased exudation per root surface area will have localized impacts on rhizosphere microbial composition and activity especially in the topsoil exposed to more extreme dry-wet cycles. Finally, also the exudate composition can help to determine how priming of soil organic matter relates to belowground carbon allocation dynamics and to disclose processes of complementary species interaction and should be emphasised in future studies.

How to cite: Hafner, B. D., Brunn, M., Zwetsloot, M. J., Hikino, K., Pritsch, K., Weikl, F., Rühr, N. K., Sayer, E. J., and Bauerle, T. L.: Fine root exudation rate increases in drier soils, but tree level carbon exudation does not change under drought in mature Fagus sylvatica - Picea abies trees, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13426, https://doi.org/10.5194/egusphere-egu21-13426, 2021.

EGU21-3330 | vPICO presentations | BG3.25

Quantifying whole tree non-structural carbon dynamics under long-term experimental drought using radiocarbon

Drew Peltier, Mariah Carbone, Christopher Ebert, Xiaomei Xu, Henry Adams, Nate McDowell, Will Pockman, Andrew Richardson, and Amy Trowbridge

Under increasingly frequent, persistent, and severe drought events, predicting future forest carbon dynamics necessitates quantitative understanding of the physiological processes leading to tree mortality and physiological impairment. The responses of non-structural carbon (NSC; primarily sugars and starch) pools in mature trees is particularly important, as dynamics in NSC interact with hydraulic damage to perturb future tree growth. However, NSC concentration measurements alone are not suUcient to understand the stress responses of tree NSC pools formed over years to decades. Thus, we are using radiocarbon (14C) to quantify the age of NSC stored within, and used by, piñon pine trees exposed to either severe or long-term drought stress at the Sevilleta LTER, in New Mexico, USA. Measuring the age of NSC allows inference on the storage history of a tree, and how different NSC pools may be altered by drought. Experimental plots are subjected to either 0% (control) or 90% reduction in precipitation. A 45% precipitation reduction plot has also been in place since 2009, offering a chance to study the impacts of a decade of drought. We are measuring Δ14C of NSC in twigs, bole sapwood, and coarse roots, as well as in CO2 respired from the bole and branches. Our goal is to quantify the role of different-aged NSC pools across tree organs in driving whole-tree physiological responses to drought. Preliminary results show that the long-term droughted trees store and respire on average younger NSC than control trees. Ongoing drought treatments and sampling will provide additional information on how NSC dynamics in these trees are influenced by drought.

How to cite: Peltier, D., Carbone, M., Ebert, C., Xu, X., Adams, H., McDowell, N., Pockman, W., Richardson, A., and Trowbridge, A.: Quantifying whole tree non-structural carbon dynamics under long-term experimental drought using radiocarbon, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3330, https://doi.org/10.5194/egusphere-egu21-3330, 2021.

EGU21-11173 | vPICO presentations | BG3.25

Carbon allocation of mature spruce upon drought release – results from a whole-tree 13C-labeling study 

Kyohsuke Hikino, Jasmin Danzberger, Vincent Riedel, Benjamin D. Hafner, Benjamin D. Hesse, Romy Rehschuh, Nadine K. Ruehr, Melanie Brunn, Marco Lehmann, Fabian Weikl, Karin Pritsch, and Thorsten E. E. Grams

This contribution presents the result of a free-air 13C labeling experiment on mature Norway spruce (P. abies [L.] KARST.) upon watering after five years of recurrent summer drought in southern Germany, focusing on whole tree allocation processes. Mature spruce trees had been exposed to recurrent summer drought from 2014 to 2018 through complete exclusion of precipitation throughfall from spring to late fall (i.e., March to November).  In early summer 2019, the drought stressed spruce trees were watered to investigate their recovery processes. In parallel with the watering, we conducted a whole-tree 13C labeling in canopies and traced the signal in various C sinks, i.e. stem phloem and CO2 efflux, tree rings at different heights, coarse roots, fine root tips, mycorrhiza, root exudates, and soil CO2 efflux.

We hypothesize that drought stressed spruce preferentially allocates newly assimilated C to belowground sinks upon drought release. Conversely to our expectations, allocation to belowground C sinks was not stimulated in drought stressed compared to control spruce. Likewise, the relative amount of recently fixed C allocated to aboveground sinks did not differ between treatments. Our findings suggest that the belowground C sinks are not of higher priority for the allocation of newly assimilated C upon watering after long-term drought. The observed allocation pattern is discussed taking total above- and belowground biomass as well as C source/sink relations into account.

How to cite: Hikino, K., Danzberger, J., Riedel, V., Hafner, B. D., Hesse, B. D., Rehschuh, R., Ruehr, N. K., Brunn, M., Lehmann, M., Weikl, F., Pritsch, K., and Grams, T. E. E.: Carbon allocation of mature spruce upon drought release – results from a whole-tree 13C-labeling study , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11173, https://doi.org/10.5194/egusphere-egu21-11173, 2021.

EGU21-33 | vPICO presentations | BG3.25

Carbon storage in phosphorus limited grasslands may decline in response to elevated nitrogen deposition: a long term field manipulation and modelling study 

Christopher Taylor, Victoria Janes-Bassett, Gareth Phoenix, Ben Keane, Iain Hartley, and Jessica Davies

In ecosystems where nitrogen (N) limits plant productivity, N deposition can stimulate plant growth, and consequently, promote carbon (C) sequestration by increasing input of detrital C and other forms of plant C to the soil. However, other forms of nutrient limitation such as phosphorus (P) limitation and N-P co-limitation are widespread and may increase in prevalence with N deposition. Our understanding of how terrestrial ecosystem C, N and P cycling may be affected by N deposition when N is not the sole limiting resource is fairly limited. In this work, we investigate the consequences of enhanced N addition on C, N and P cycling in grasslands that exhibit contrasting forms of nutrient limitation.

We do so by collecting data from a long-term nutrient manipulation experiment on two N-P co-limited grasslands; an acidic grassland of stronger N-limitation and a calcareous grassland of stronger P limitation, and integrating this into a mechanistic C, N and P cycling model (N14CP). To simulate the experimental grasslands and explore the role of P access mechanisms in determining ecosystem state, we allowed P access to vary, and compared the outputs to plant-soil C, N and P data. Combinations of organic P access and inorganic P availability most closely representing data were used to simulate the grasslands and quantify their temporal response to nutrient manipulation.

The modelled grasslands showed contrasting responses to simulated N deposition. In the acidic grassland, N addition greatly increased C stocks by stimulating biomass productivity, but the same N treatments reduced the organic C pool in the calcareous grassland. Nitrogen deposition exacerbated P limitation in the calcareous grassland by reducing the size of the bioavailable P pool to plants, reducing biomass input to the soil C pool. Plant acquisition of organic P played an important role in determining the nutrient conditions of the grasslands, as both simulated grasslands increased organic P uptake to meet enhanced P demand driven by N deposition. Greater access to organic P in the acidic grassland prevented a shift to P limitation under elevated levels of N deposition, but organic P access was too low in the calcareous grassland to prevent worsening P limitation.

We conclude that grasslands of differing limiting nutrients may respond to N deposition in contrasting ways, and stress that as N deposition shifts ecosystems toward P limitation, a globally important carbon sink risks degradation.

How to cite: Taylor, C., Janes-Bassett, V., Phoenix, G., Keane, B., Hartley, I., and Davies, J.: Carbon storage in phosphorus limited grasslands may decline in response to elevated nitrogen deposition: a long term field manipulation and modelling study , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-33, https://doi.org/10.5194/egusphere-egu21-33, 2021.

EGU21-15742 | vPICO presentations | BG3.25

Use eco-physiological modelling to investigate Potassium limitation of wood productivity in tropical eucalypt plantations

Ivan Cornut, Nicolas Delpierre, Guerric Le Maire, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, and Jean-Paul Laclau

Potassium (K) is essential for a wide range of physiological functions in plants, and a limiting element for wood productivity in numerous forest ecosystems. However, the contribution of each of the K-sensitive physiological processes to the limitation of wood productivity is poorly known. In trees, K deficiency acts both on the source and the sinks of carbon making it difficult to disentangle its effects on wood productivity. The literature dealing with the influence of K-limitation on tree physiologywhile disparate, shows some converging results. Furthermore, K-limited tropical Eucalyptus plantations have been studied extensively over the last 2 decades. Large scale fertilization experiments, run over multiple rotations, allow us to gain insight into the ecosystem’s K-cycle as a whole and the physiological processes that are impacted the most by K deficiency. Mechanistic modeling of this system should allow us to quantify the relative contribution of each process when it comes to wood productivity limitation by K. We have thus adapted an eco-physiological model (CASTANEA-CNP), previously used in temperate forest settings, to use in tropical eucalypt plantations. This has led us to adapt existing nutrient (N and P) eco-physiological modeling frameworks specifically for K as well as focus on processes that are little impacted by N and P availability but greatly by K availability. The biological K-cycle model was calibrated using the comprehensive experimental data. Carbon and water fluxes were calibrated using data from a flux tower site (Eucflux) with the same environmental conditions as the experimental plots. The development of a new canopy generation model was mandated by both the continuous nature of leaf generation in Eucalyptus grandis and the major interaction between leaf ontogeny and the K-cycle. At first we focus mainly on carbon assimilation at the canopy level. Here we present the preliminary results obtained by this model.

How to cite: Cornut, I., Delpierre, N., Le Maire, G., Guillemot, J., Nouvellon, Y., Campoe, O., and Laclau, J.-P.: Use eco-physiological modelling to investigate Potassium limitation of wood productivity in tropical eucalypt plantations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15742, https://doi.org/10.5194/egusphere-egu21-15742, 2021.

EGU21-16306 | vPICO presentations | BG3.25

Multi-site Sensitivity analysis of DNDCv.Can model to predict N2O emissions from German croplands with maize, rapeseed and wheat 

Jarno Rouhiainen, Dorothee Neukam, Rene Dechow, Rima Rabah Nasser, and Henning Kage

Nitrous oxide is an important greenhouse gas. In Germany, around 50% of annual nitrous oxide emissions originate from managed agricultural land. Among other options, the mitigation of nitrous oxide emissions from arable land is one important measure to reduce greenhouse gas emissions of the agricultural sector. Several mitigation options have been examined including reduced application of nitrogen fertilizers, timing of fertilizer applications, crop residue management, pH management or application of nitrification inhibitors. Depending on the underlying natural conditions (soil, climate), these measures vary in their mitigation efficiency.

Suitable methods are required to evaluate and quantify mitigation strategies for nitrous oxide emissions at a regional and national scale. For this purpose, several model approaches have been developed ranging from simple stochastic equations to sophisticated process-based models. Because of their reduced input requirements, stochastic approaches like emission factor approaches are common to quantify nitrous oxide emissions and mitigation effects while process based models are promising tools to describe interactions of natural conditions and anthropogenic activities. They have the potential to be more accurate and informative.

However, due to the complex nature of N2O producing processes in croplands and the high spatial and temporal variability of N2O fluxes the portability of model developments from one site to another site or the validity of upscaling methods are questionable. We collected available field experimental data measuring nitrous oxide emissions to improve and analyze the prediction accuracy of model approaches in Germany, recently with data of 19 sites and 1251 site years in total and focus on the crop types wheat, maize and rape.

Here, we present this data set and show results of model applications and a multi-site sensitivity analyses with the process based model DNDCv.Can. Contrary to other DNDC versions, DNDCvCAN allows to modify a range of internal parameters.

We performed sensitivity analyses based on the Morris method by varying 45 model parameters. Each participating site was modeled for a three years period and the simulations were repeated for each parameter 500 times, resulting to 23000 simulations per site. Highest impact on N2O emissions were caused by soil concentrations of humads, humus and black carbon and their related C/N ratios. Surprisingly, N2O emissions showed only minor sensitivites in general on hydrological parameters and

on parameters related to N cycling in soil profile. Parameters controling macropore flow, nitrifier growth and denitrifier growth made here an exception. Sets of ranked most sensitive parameters varied between sites showing that multi-site sensitivity analyses might be helpful to identify global and local parameters for model calibration and help to assess regional mitigation effects.

How to cite: Rouhiainen, J., Neukam, D., Dechow, R., Rabah Nasser, R., and Kage, H.: Multi-site Sensitivity analysis of DNDCv.Can model to predict N2O emissions from German croplands with maize, rapeseed and wheat , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16306, https://doi.org/10.5194/egusphere-egu21-16306, 2021.

EGU21-12505 | vPICO presentations | BG3.25

Modelling the Impact of Future Climate on Mountainous Watershed Nitrogen Cycling 

Helen Weierbach, Taylor Maavara, Erica Woodburn, and Nicholas Bouskill

Terrestrial nitrogen cycling plays an important role in regulating the export of nitrogen to surface waters. Terrestrial nitrogen transformations, however, are sensitive to changes in climate and disturbances, including altered temperature and precipitation patterns, snowpack depth, or wildfires. Thus, understanding how changing climate impacts terrestrial nitrogen cycling and the corresponding export of N to surface waters is an important part of understanding the impact of climate change on Earth’s freshwater resources. In this study, we investigate the short-term impacts of changing temperature, water partitioning and wildfire in the mountainous East River Watershed (ERW) located in the Upper Colorado River Basin. We use the High Altitude Nitrogen Suite of Models (HAN-SoMo), a course resolution semi-distributed ensemble of process based models developed for the ERW, to model changes in N through the vadose zone, surface waters and groundwater. HAN-SoMo was developed and calibrated against over 1600 N concentration measurements in the ERW to explore equifinality in parameter combinations. Three calibration scenarios were developed which explore the importance of different N sources and sinks throughout the watershed. Results of the most probable calibration suggest that the N cycling in the ERW is dominated by instream transformations and recycling of cow and plant matter. Additionally, results suggest that geogenic N from weathering of Mancos shale accounts for about 12% of N sources in the watershed. Here we will use the most probable HAN-SoMo calibration to explore possible changes in nitrogen cycling (key sources and sinks, N fluxes, etc.) under perturbations in temperature, water sources and wildfire.

 

How to cite: Weierbach, H., Maavara, T., Woodburn, E., and Bouskill, N.: Modelling the Impact of Future Climate on Mountainous Watershed Nitrogen Cycling , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12505, https://doi.org/10.5194/egusphere-egu21-12505, 2021.

EGU21-5553 | vPICO presentations | BG3.25

ForBioFunCtioN: Forest soil carbon and the effects of climate change and forest management

Carl-Fredrik Johannesson, Klaus Steenberg Larsen, Brunon Malicki, and Jenni Nordén

Boreal forests are among the most carbon (C) rich forest types in the world and store up to 80% of its total C in the soil. Forest soil C development under climate change has received increased scientific attention yet large uncertainties remain, not least in terms of magnitude and direction of soil C responses. As with climate change, large uncertainties remain in terms of the effects of forest management on soil C sequestration and storage. Nonetheless, it is clear that forest management measures can have far reaching effects on ecosystem functioning and soil conditions. For example, clear cutting is a widely undertaken felling method in Scandinavia which profoundly affects the forest ecosystem and its functioning, including the soil. Nitrogen (N) fertilization is another common practice in Scandinavia which, despite uncertainties regarding effects on soil C dynamics, is being promoted as a climate change mitigation tool. A more novel practice of biochar addition to soils has been shown to have positive effects on soil conditions, including soil C storage, but studies on biochar in the context of forests are few.

In the face of climate change, the ForBioFunCtioN project is dedicated to investigating the response of boreal forest soil CO2 and CH4 fluxes to experimentally increased temperatures and increased precipitation – climatic changes in line with projections over Norway – within a forest management context. The experiment is set in a Norwegian spruce-dominated bilberry chronosequence, including a clear-cut site, a middle-aged thinned stand, a mature stand and an old unmanaged stand. Warming, simulated increased precipitation, N fertilizer and biochar additions will be applied on experimental plots in an additive manner that allows for disentangling the effects of individual parameters from interaction effects. Flux measurements will be undertaken at high temporal resolution using the state-of-the-art LI-7810 Trace Gas Analyzer (©LI-COR Biosciences). The presentation will show the experimental setup and first measurements from the large-scale experiment.

How to cite: Johannesson, C.-F., Larsen, K. S., Malicki, B., and Nordén, J.: ForBioFunCtioN: Forest soil carbon and the effects of climate change and forest management, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5553, https://doi.org/10.5194/egusphere-egu21-5553, 2021.

EGU21-11834 | vPICO presentations | BG3.25

Understanding the Phosphorus Cycling Strategies of Beech Forest Ecosystems along a Natural Soil Phosphorus Gradient: Observational Evidence and Modeling Challenges

Lin Yu, Cecilia Akselsson, Silvia Caldararu, Katrin Fleischer, Marion Schrumf, and Sönke Zaehle

Phosphorus (P) is a macro nutrient affecting the terrestrial ecosystem productivity and future carbon (C) balance, and is known as the main constraint for C sequestration in tropical ecosystems, such as Amazon rainforests and Eucalyptus forests. However, in temperate and boreal forests, nitrogen (N) is usually considered as the main limiting nutrient for plant growth and the role of P cycling is less highlighted. Through a comprehensive investigation of soil and biological properties of five European beech forest sites along a wide range of natural soil P stocks, Lang et al. (2017) have concluded that P availability can shape plant-microorganism-soil interactions in forest ecosystem and the P cycling strategy switches from an “acquiring strategy” to a “recycling strategy” as the soil P availability decreases. The switch from a P-rich “acquiring strategy” to a P-poor “recycling strategy” is significantly concurrent with decreasing forest floor turnover rates (from 1/5 to 1/40 per year), increasing organic C to P ratios (from 110 to 984; A horizons), and increasing proportions of fine-root biomass in the forest floor (from 10% to 80%), as well as some less significant ecosystem properties, such as the total soil organic C and N, resorption of leaf P before senescence, and P concentrations in leaf litter and fine roots. However, none of the vegetative traits (foliar N and P contents, tree height, basal area, and tree volume) changed systematically along the soil P gradient, indicating that the shift in soil P cycling strategies allows for satisfying plant P demand.

This observational evidence imposes great challenges on the modeling of forest ecosystems, especially on the modeling of soil processes and plant-soil interactions. In conventional models, several of these features cannot be reproduced, due to 1) fixed first-order kinetics of decomposition, 2) lack of mechanisms for soil C storage/stabilization, 3) lack of explicit microbial dynamics and processes, 4) fixed stoichiometry in plant and soil, 5) lack of dynamic plant C allocation to roots and root exudation, 6) ignorance of C cost for nutrient mobilization.

In this presentation, we would like to propose modeling solutions to these challenges based on a novel modeling framework of QUINCY (Thum et al. 2019) and JSM (Yu et al. 2020). The new model allows separation of the sink (photosynthesis) and source (nutrients and water availabilities) in plant growth and applies a dynamic C allocation to maximize assimilation of limiting resources. It is vertical- and microbial-explicit in the soil processes, and mechanistically describes the effects of microbial dynamics on soil C decomposition and stabilization as well as nutrient mobilization. The preliminary results have shown increasing C investments from plant-microbe to soil P mobilization with decreasing soil P availability. It allows us to reproduce the observed patterns in litter turnover, root allocation, soil C storage,  and soil stoichiometry, indicating the important role of C-nutrient interactions in the P cycling modeling. We hope with the advances of modeling P cycling strategies in temperate forest ecosystems, we could also better model P cycling in the tropics and better project future C sequestration globally.

How to cite: Yu, L., Akselsson, C., Caldararu, S., Fleischer, K., Schrumf, M., and Zaehle, S.: Understanding the Phosphorus Cycling Strategies of Beech Forest Ecosystems along a Natural Soil Phosphorus Gradient: Observational Evidence and Modeling Challenges, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11834, https://doi.org/10.5194/egusphere-egu21-11834, 2021.

EGU21-11818 | vPICO presentations | BG3.25

In situ gas-exchange: automated, light-dark measurements of CO2 fluxes on a geothermal temperature gradient in a Sub-Arctic grassland ecosystem 

Linsey Marie Avila, Klaus Steenberg Larsen, Bjarni D. Sigurdsson, and Pall Sigurdsson

Climate effects are projected to be largest in Arctic and Sub-Arctic regions of the world with these areas being affected fourfold when compared to other areas around the globe. Because these regions are so susceptible to the changing climate, research into how these ecosystems will be affected by rising temperatures is essential. A large majority of current research points to a mass greening of the northern latitudes with higher temperatures, leading to an enhanced uptake of CO2. While this is already documented, these ecosystems also possess a significant soil organic carbon pool with a high CO2 emission potential. The net climate feedback of Arctic ecosystems therefore remain highly uncertain. Utilizing high-frequency measurements of ecosystem-level carbon exchange in these regions could unearth a valuable understanding of just how rising temperatures will affect the soil-plant continuum in varying future climate scenarios.

 

For the newly established FutureArctic project, located at ForHot in Iceland, we installed four ECO2flux automated chambers at one of the naturally heated grasslands sites in July of 2020. The automatic chambers were placed at different locations along a soil temperature gradient with treatments covering an average of 0, 3.5, 7.5, and 12.5 degree warming above the ambient temperature. The major aim is to investigate the underlying carbon balance processes in order to ascertain a better insight into how future climate change induced temperature increases could affect such ecosystems. We hypothesize that the detailed analysis of carbon uptake (gross primary production, GPP) and carbon release (ecosystem respiration, RE) along the temperature gradient will expose a latent change from net carbon sink to net carbon source as temperatures increase.

 

Preliminary analysis for the first nine months was conducted. The fluxes of CO2 showed evident heterogeneity between the conditions with a greater overall increase of RE than GPP with increasing temperature. During the growing season GPP was highest in the third treatment with warming between +5 to 10 degrees, which supports the Arctic greening hypothesis. At the highest temperature treatment, GPP was much lower than in the ambient treatment indicating a drop off in ecosystem productivity and, quite possibly, a temperature threshold for this ecosystem. The observed temperature response appears non-linear with a threshold of about +10°C where both GPP and RE decrease. Knowledge of these non-linear temperature responses for GPP and RE will be of great importance when trying to predict future changes to the carbon balance in Arctic and Sub-Arctic ecosystems.

How to cite: Avila, L. M., Steenberg Larsen, K., Sigurdsson, B. D., and Sigurdsson, P.: In situ gas-exchange: automated, light-dark measurements of CO2 fluxes on a geothermal temperature gradient in a Sub-Arctic grassland ecosystem , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11818, https://doi.org/10.5194/egusphere-egu21-11818, 2021.

EGU21-3154 | vPICO presentations | BG3.25

N:P imbalance effects on the seasonal C cycle in a Mediterranean Tree-Grass Ecosystem

Richard Nair, Tarek El-Madany, Arnaud Carrara, Yunpeng Luo, Olaf Kolle, Gerardo Moreno, Markus Reichstein, Marion Schrumpf, Thomas Wutzler, and Mirco Migliavacca

N limited ecosystems worldwide are shifting towards other limitations due to anthropogenic N deposition exceeding the rate of change in other drivers. Mediterranean ecosystems are among those thought to be shifting to P limitation and ‘N:P imbalances’ but this occurs alongside strong environmental limits on C uptake in both winter and summer in a distinct bimodal phenological cycle. At the ecosystem scale, carbon cycle components such as gross and net primary productivity, respiration or ecosystem carbon use efficiency, are a result of accumulation of physiological and community effects in both plants and soils. The functioning of such systems is commonly measured at plot or individual level, but scalable, inter-site comparisons are complicated because multiple interacting gradients of driving factors, weather and seasonal timing do not correlate through geographic space. 

Here, we explore the interaction of seasonal conditions and nutrient treatment on eddy-covariance derived C cycle properties in a ecosystem-scale ‘stoichiometry manipulation experiment in a Mediterranean tree-grass system (5 years after a large, one off fertilization, 'MANIP experiment') where the close location means sites can be compared with similar local weather and seasonality. 

During the 5 year study period, N:P ratios in soil pools regress towards pretreatment conditions in both N and NP treated footprints, and generally plant level effects decline through time. Nonetheless, holistic C uptake differences between nutrient treatments (e.g. in GPP) remain for the entire 5 year study period. Effects are particularly strong in spring (late in the phenological year) where the accumulation of biomass magnifies treatment differences and water is not limiting.  The effects of increased nutrient availability and altered N:P stoichiometry are also visible on resource use in winter, a relatively fallow period rarely studied in non-continuous measurements. Treatment effects in these winter periods differ from effects in spring, but both contribute to overall ecosystem-level responses to the nutrient treatments. The effect of nutrient balance on carbon cycling and carbon use efficiency is seasonally driven as fertilized treatments have both higher ecosystem-scale carbon use efficiency and light use efficiency, including in winter. However the fertilized treatments are also relatively less affected by years with warmer winter temperatures than the unfertilized treatments. N:P imbalanced treatments are also more water sensitive than those with balanced stoichiometry. Physiological and community change response studies in such systems must consider both year round and multi-year representation for scalable and transferable understanding. 

How to cite: Nair, R., El-Madany, T., Carrara, A., Luo, Y., Kolle, O., Moreno, G., Reichstein, M., Schrumpf, M., Wutzler, T., and Migliavacca, M.: N:P imbalance effects on the seasonal C cycle in a Mediterranean Tree-Grass Ecosystem, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3154, https://doi.org/10.5194/egusphere-egu21-3154, 2021.

The feedback of the terrestrial carbon cycle to global climate change is among the largest uncertainties in climate change research. To test the potential ecosystem effects of future climate scenarios, a field-scale FACE (Free Air CO2 Enrichment) experiment combined with increased temperatures and extended summer drought was performed in the period 2005–2013 on a temperate heathland/grassland ecosystem in Denmark (the CLIMAITE project). A major finding from the original experiment was that the soil carbon pool increased by approximately 20% under elevated CO2 over the 8 years of the study*.

The FACE treatment was in effect also an in situ labeling experiment because the added CO2 was depleted for 13C (13CO2FACE=-29‰)compared to ambient atmospheric CO213CO2AIR=-8‰). Therefore, the isotopic signal of the remaining soil carbon can be used to investigate the turnover of soil carbon during the time since the end of the original study.

During the growing season in 2020, seven years after the CO2 fumigation experiment was terminated, soil samples were extracted in all plots using the same sampling strategy as in previous samplings. Interestingly, the direct soil C pool measurements showed that the extra soil carbon, which was stored during the eight years with elevated CO2 had been lost again over the course of the following seven years. The isotopic composition of the different soil layers had also changed back towards the values measured in control plots, although still being slightly more depleted for 13C. Still, the convergence of the isotopic composition in the different treatments confirms the trend observed from the direct C pool measurements and also hints that a part of the more recalcitrant carbon taken up during the elevated CO2 experiment is still there while most of the labile/less recalcitrant carbon has been decomposed and reemitted to the atmosphere. The results show that the soil carbon pool in the ecosystem is extremely dynamic and may change fast in response to changes in major ecosystem drivers, and in particular is highly sensitive to the atmospheric CO2 concentration.

*Dietzen CA, Larsen KS, Ambus P, Michelsen A, Arndal MF, Beier C, Reinsch S, Schmidt IK (2019) Accumulation of soil carbon under elevated CO2 unaffected by warming and drought. Global Change Biology, 25: 2970–2977. doi: 10.1111/gcb.14699.

How to cite: Li, Q., Larsen, K. S., and Gundersen, P.: Re-visiting a long-term Free Air CO2 Enrichment (FACE) experiment in a Danish heathland/grassland ecosystem (CLIMAITE) reveals highly dynamic soil carbon , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12059, https://doi.org/10.5194/egusphere-egu21-12059, 2021.

EGU21-5938 | vPICO presentations | BG3.25

Maximum soil organic matter decomposition along temperature gradient in Colombian topsoils: Dry Forests

Gerardo Ojeda, Hernando García, Susanne Woche, Jorg Bachmann, Georg Guggenberger, Camila Pizano, Francy Ceballos, and Marina Sanchéz

Contextualization: In 2011, it was published a curious conundrum, which forms the basis of the present study: why, when organic matter is thermodynamically unstable, does it persist in soils, sometimes for thousands of years? The question challenges the idea that the recalcitrant or labile character of soil organic matter (SOM) is a sufficient argument to ensure SOM persistence. Temperature could play an important role in SOM decomposition, especially in tropics. Particularly, tropical dry forest (TDF) represents an important ecosystem with unique biodiversity and fertile soils in Colombia. At present, the increase in population density and consequently, in the demands of energy and arable land, have led to its degradation.

 

Knowledge gap: Although the mentioned question was formulated several years ago, it has still to be answered, hence limiting the development of new soil organic carbon (SOC) models or the quantification of its ecosystem services. A key point, in terms of soil carbon storage, is to determine the maximum rate of CO2 emissions from soils (Rmax). Traditionally, it is considered that Rmax occurs at the 50% of field capacity. Unfortunately, information about the environmental conditions under which this maximum occurs is scarce.

 

Purpose: The main objectives of this study were: (a) determine the maximum rate of soil respiration or CO2 emissions from soil in TDF soils and (b) to estimate the main environmental drivers of maximum SOM decomposition along a temperature gradient (20°, 30°, 40°C) in incubated soils.

 

Methodology: Soils pertained to permanent plots were sampled in six different TDF of Colombia. The evolution of CO2 emissions (monitored by an infrared gas analyser), relative humidity and soil temperature were recorded in time on incubated soils samples. Temperature was maintained constant at 20°C, 30°C and 40°C during soil incubations under soil drying conditions. Additionally, elemental composition (Fe, Ca, O, Al, Si, K, Mg, Na) of SOM and chemical composition of soil organic carbon (SOC: aromatic-C, O-alkyl-C, Aliphatic-C, Phenolic and Ketonic-C) were determined by X-ray photoelectron spectroscopy (XPS).

 

Results and conclusions: The majority of TDF soil samples (90.7%) presented that its peak of CO2 emissions occurs at soil-water contents higher than saturation (0 MPa), at 20°, 30° and 40°C. Clearly, to consider that the maximum soil respiration rate could be observed at the 50% of field capacity, underestimated the real maximum value of carbon mineralization (48-68%.) Globally, increases in the Rmax values corresponded to increases in electrical conductivity, soil desorption rates, total carbon and nitrogen contents, and decreases in bulk density (BD) and aggregate stability. Taking into account the temperature gradient, increments in calcium and aromatic carbon contents corresponded to decrements in Rmax values but only at 30°C and 40°C, respectively. Some authors indicated that at high soil moisture contents, iron reduction could be release protected carbon. However, no significant relation between Fe and Rmax was observed. Consequently, physical and chemical properties related to SOM accessibility and decomposability by microbial activity, were the main drivers and controls of maximum SOM decomposition rates.

How to cite: Ojeda, G., García, H., Woche, S., Bachmann, J., Guggenberger, G., Pizano, C., Ceballos, F., and Sanchéz, M.: Maximum soil organic matter decomposition along temperature gradient in Colombian topsoils: Dry Forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5938, https://doi.org/10.5194/egusphere-egu21-5938, 2021.

EGU21-8217 | vPICO presentations | BG3.25

Carbon allocation in early successional tree species at elevated air humidity and different soil nitrogen sources

Marili Sell, Ivika Ostonen, Gristin Rohula-Okunev, Azadeh Rezapour, and Priit Kupper

Global climate change scenarios predict increasing air temperature, enhanced precipitation and air humidity for Northern latitudes. We investigated the effects of elevated air relative humidity (RH) and different inorganic nitrogen sources (NO3-, NH4+) on above- and belowground traits in different tree species, with particular emphasis on rhizodeposition rates. Silver birch, hybrid aspen and Scots pine saplings were grown in PERCIVAL growth chambers with stabile temperature, light intensity and two different air humidity conditions: moderate (mRH, 65% at day and 80% at night) and elevated (eRH, 80% at day and night). The collection of fine root exudates was conducted by a culture-based cuvette method and total organic carbon content was determined by Vario TOC analyser. Fine root respiration was measured with an infra-red gas analyser CIRAS 2.  

We analysed species-specific biomass allocation, water and rhizodeposition fluxes, foliar and fine root traits in response to changing environmental conditions. The eRH significantly decreased the transpiration flux in all species. In birch the transpiration flux was also affected by the nitrogen source. The average carbon exudation rate for aspen, birch and pine varied from 2 to 3  μg C g-1 day -1. The exudation rates for deciduous tree species tended to increase at eRH, while conversely decreased for coniferous trees (p=0.045), coinciding with the changes in biomass allocation. C flux released by fine root respiration varied more than the fine root exudation, whereas the highest root respiration was found in silver birch and lowest in aspen. At eRH the above and belowground biomass ratio in aspen increased, at the expense of decreased root biomass and root respiration.  

Moreover, eRH significantly affected fine root morphology, whereas the response of specific root area was reverse for deciduous and coniferous tree species. However, fine roots with lower root tissue density had higher C exudation rate. Our findings underline the importance of considering species-specific differences by elucidating tree’s acclimation to environmental factors and their interactions.   

How to cite: Sell, M., Ostonen, I., Rohula-Okunev, G., Rezapour, A., and Kupper, P.: Carbon allocation in early successional tree species at elevated air humidity and different soil nitrogen sources, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8217, https://doi.org/10.5194/egusphere-egu21-8217, 2021.

EGU21-16179 | vPICO presentations | BG3.25 | Highlight

Increasing tropical water control on interannual CO2 growth rate over the past decades

Laibao Liu and Sonia Seneviratne

Terrestrial climate-carbon feedbacks are the leading-order uncertainties in climate projections, hindering the full assessment of climate mitigation scenarios. Since year-to-year variations of atmospheric carbon dioxide growth rate (CGR) are mostly driven by fluctuations of tropical land carbon fluxes, it provides a “natural experiment” to explore the climate drivers of terrestrial carbon cycle. Recently, direct observations of terrestrial water storage confirmed the tight coupling between the water and carbon cycles, in addition to the well-documented temperature effects. Here we show that the strength of this relationship between CGR and the interannual variability of tropical water has increased substantially from 1960 to 2018 and has even recently become stronger than CGR-temperature correlations. We find that this increment may be relevant to local drying trends in a warming climate and that above-ground carbon uptake might be a critical underlying ecological process. We also demonstrate that most state-of-the-art Earth System models and land surface models do not capture this increasing carbon-water coupling over time. Our results suggest that tropical water availability could increasingly dominates the interannual variability of the terrestrial carbon cycle in the future and that current models may not be able to capture this feature.

How to cite: Liu, L. and Seneviratne, S.: Increasing tropical water control on interannual CO2 growth rate over the past decades, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16179, https://doi.org/10.5194/egusphere-egu21-16179, 2021.

EGU21-13494 | vPICO presentations | BG3.25

How does increasing CO2 influence the land-atmosphere exchange of carbon and water in response to soil and air dryness?

Chunhui Zhan, René Orth, Markus Reichstein, Mirco Migliavacca, Sönke Zaehle, and Alexander Winkler

Variability in the photosynthetic uptake of CO2 by plants due to climate variability plays an essential role in modulating the growth rate of atmospheric CO2. In particular water stress induced by the compounding effect of vapor pressure deficit (VPD) and soil moisture anomalies has a large bearing on photosynthetic CO2 uptake, especially in semi-arid areas. The ongoing rise in atmospheric CO2 concentration can influence the water-use efficiency of plants, their carbon assimilation rate, and consequently the global cycles of carbon and water.  However, the extent to which physiological effects of increasing CO2 influence the coupling of VPD, soil moisture, and land-atmosphere CO2 fluxes is currently poorly understood.

In this study we use the terrestrial ecosystem model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system, Thum et al. 2019, GMD) to study CO2-induced changes in the interaction of plant productivity and both soil moisture and VPD. With the sensitivity of stomatal conductance to atmospheric CO2 concentration implemented in the model, we investigate century-long simulations across different climate regimes and biomes. In semi-arid regions we find a positive relationship between anomalies of VPD and gross primary productivity (GPP) at both start and end of summer months, and a negative relationship in the dry period (usually from June to August in boreal summer). This suggests there is a transition in the limiting factor of GPP from energy (compound effect of temperature and radiation) to water and back in the course of one year. The negative correlation between VPD and GPP during the dry period weakens over time with rising CO2, while a stronger positive correlation between soil moisture and GPP becomes apparent. After quantifying and understanding the CO2 effects in these model simulations, we apply our analysis framework to observational data from the FLUXNET site collection to analyze whether we can confirm the model-based findings despite shorter records.

How to cite: Zhan, C., Orth, R., Reichstein, M., Migliavacca, M., Zaehle, S., and Winkler, A.: How does increasing CO2 influence the land-atmosphere exchange of carbon and water in response to soil and air dryness?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13494, https://doi.org/10.5194/egusphere-egu21-13494, 2021.

EGU21-11391 | vPICO presentations | BG3.25

Assessing the impact of rainfall intensification on ecosystem productivity

Yiannis Moustakis, Simone Fatichi, Christian J Onof, and Athanasios Paschalis

Increasing atmospheric CO2 levels, temperature, and atmospheric drought as well as changes in rainfall structure (event frequency, storm intensity) are expected to jointly alter ecosystem responses in the future. High-resolution convection-permitting models have been recently employed at continental scales to develop robust projections of climate, and particularly precipitation, at fine spatiotemporal scales (~1km, ~1hour) overcoming the documented limitations of larger scale general circulation models.

Climate projections at fine spatiotemporal scale can support robust quantification of ecosystem responses under a changing climate when used in conjunction with state-of-the-art terrestrial biosphere models resolving the soil – vegetation – atmosphere continuum processes at those scales. In this study, we assess the changes in ecosystem functioning for multiple biomes in North America. We use the 4km, 1-h future WRF continental-wide simulation over the US together with a state-of-the-art stochastic weather generator and the Tethys & Chloris ecohydrological model to investigate ecosystem responses for 33 sites where eddy covariance data exist (i.e., FLUXNET sites).

We designed a series of numerical experiments tuned to disentangle the roles of CO2, temperature and the structure of precipitation, while considering the effect of natural weather variability.

Our results reveal that the impact of mean annual rainfall is dominant in more arid sites, while sites of intermediate wetness are more sensitive to the temporal structure of precipitation at fine scales. Wet sites, which are energy limited, are more sensitive to temperature increase instead. The impact of rainfall is partly offset by increases in atmospheric drought. The fertilization effect of elevated CO2 levels is strong in this high-end (RCP 8.5) scenario across all sites. Fertilization is more pronounced for sites of low and intermediate wetness, where stomatal closure allows for positive feedbacks through water savings.

How to cite: Moustakis, Y., Fatichi, S., Onof, C. J., and Paschalis, A.: Assessing the impact of rainfall intensification on ecosystem productivity, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11391, https://doi.org/10.5194/egusphere-egu21-11391, 2021.

EGU21-3660 | vPICO presentations | BG3.25

Greenhouse-gas feedbacks estimated from Dansgaard-Oeschger events

Mengmeng Liu, Laurie Menviel, Iain Colin Prentice, and Sandy P. Harrison

There are large uncertainties in the estimation of greenhouse-gas feedbacks: model-based estimates vary considerably; recent observations are too short provide strong constraints. Rapid climate changes during the last glacial period (Dansgaard-Oeschger, D-O, events) are potentially valuable because they are comparable in rate and magnitude to projected future climate warming, and are registered near-globally. Here we use D-O events to quantify the centennial-scale feedback strength of feedbacks involving CO2, CH4 and N2O. We use climate model simulations of the D-O events to estimate the relationship between global mean and Greenland temperature. We then relate global mean temperature changes to changes in greenhouse-gas concentrations derived from ice-core records, and then estimate the associated radiative forcing. We found the magnitude of the feedbacks (expressed in gain, with 95 % confidence interval) to be 0.07 ± 0.02 for CO2, 0.04 ± 0.01 for CH4, 0.04 ± 0.01 for N2O. These estimates are more constrained than previous model-based estimates but comparable to estimates based on recent observations.

How to cite: Liu, M., Menviel, L., Prentice, I. C., and Harrison, S. P.: Greenhouse-gas feedbacks estimated from Dansgaard-Oeschger events, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3660, https://doi.org/10.5194/egusphere-egu21-3660, 2021.

EGU21-5028 | vPICO presentations | BG3.25

The NEE-PAR relationship for a young spruce plantation

Holger Lange, Junbin Zhao, and Raika Bethke

In a young Norway spruce stand (planted in 2012) at Hoxmark, Southeast Norway, Net Ecosystem Exchange (NEE) was measured using Eddy Covariance. The data were carefully processed with time-dependent stand parameters (i.e. canopy height), a detailed footprint analysis and calculated at 30 min temporal resolution. Photosynthetic Active Radiation (PAR) as the primary driver for carbon uptake was also available at the site.

Despite its young age, the plantation already acted as a net carbon sink according to the annual NEE budget, e.g. by ca. 300 g C m-2 in 2019. However, the response of the system depended strongly on hydrometeorological conditions. We demonstrate this by investigating the relationship between NEE and PAR for this system in a temporally local fashion (30 days moving windows), using a Michaelis-Menten approach involving three parameters. Although the regression captured up to ca. 80% of the variance, the parameter estimates differed substantially throughout the season, and were contrasting between the very dry year 2018 and the close to normal year 2019.

Comparison with other EC-equipped sites in a future study will clarify whether this variable sensitivity is due to the young age or is a pattern pertaining also to mature spruce stands.

How to cite: Lange, H., Zhao, J., and Bethke, R.: The NEE-PAR relationship for a young spruce plantation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5028, https://doi.org/10.5194/egusphere-egu21-5028, 2021.

BG3.27 – Forest methane (CH4) and nitrous oxide (N2O) cycles

EGU21-5144 | vPICO presentations | BG3.27

Betula shrubs as conduits for soil methane on peatlands

Markku Koskinen, Lukas Kohl, Tiia Grönholm, Tatu Polvinen, Anuliina Putkinen, Raija Laiho, Mari Pihlatie, and Päivi Mäkiranta

Methane (CH4) emissions from a peatland are a balance between CH4-producing and consuming processes in the peat.Certain graminoid and other herbaceous plant species provide a pathway for CH4 to escape from the peat profile without becoming available to CH4-consuming microbes (eg. Riutta et al. 2020). Whether also shrubs such as Betula nana and trees such as B. pubescens that are abundant in peatlands provide such a pathway is at least partly an open question.

We measured CH4 fluxes of B. nana shoots both at a field site on a north boreal fen and in a climate-controlled (temperature, PAR) cabinet setup. In the field, sporadic measurements were made with manual chambers. Both chamber setups enclosed one shoot of the plant. In the climate-controlled setup, flux was measured multiple times per hour with an automated chamber system, and CH4 concentration in the soil was monitored with gas samples. PAR and temperature were monitored by the automated setup. 13C-labelled CH4 was injected into the soil in the climate-controlled setup to confirm that the source of the CH4 in the chamber was the soil and not possible aerobic CH4 production in the shoot, nor external contamination. Potential microbial CH4 production within B. nana is evaluated through PCR detection and sequencing of the methanogenic mcrA gene (in progress). In the climate-controlled setup, fluxes were measured similarly also from saplings of B. pubescens and B. pendula – a related species that does not grow in peatlands. A computerized tomography (CT) scan of the plants was performed to assess the presence or absence of aerenchymatic tissues, which could act as a pathway for the CH4 in the plant.

CH4 emission from B. nana shoots was observed both in the field and in the climate-controlled setup. No PAR dependence of the emission was found, excluding the possibility of aerobic production of CH4 in the shoot. Further, the labelling experiment confirmed that B. nana acted as a conduit for CH4 originating from the soil. B. pubescens showed little flux and B. pendula no flux, even though CH4 was present in the soil. The CT scan confirmed presence of aerenchymatic tissue in the shoots B. nana and to a lesser extent in B. pubescens but not in B. pendula.

 

 

References

Riutta, T., Korrensalo, A., Laine, A.M., Laine, J., Tuittila, E.-S., 2020. Interacting effects of vegetation components and water level on methane dynamics in a boreal fen. Biogeosciences 17, 727–740.

How to cite: Koskinen, M., Kohl, L., Grönholm, T., Polvinen, T., Putkinen, A., Laiho, R., Pihlatie, M., and Mäkiranta, P.: Betula shrubs as conduits for soil methane on peatlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5144, https://doi.org/10.5194/egusphere-egu21-5144, 2021.

EGU21-5189 | vPICO presentations | BG3.27

Methane emissions from Scots pine and Norway spruce in the spring

Salla Tenhovirta, Lukas Kohl, Markku Koskinen, Marjo Patama, and Mari Pihlatie

Plant shoots can emit methane (CH4) which is produced by an unknown aerobic, non-enzymatic process within the plant. Only a few publications report shoot CH4 fluxes outside a laboratory setting, and those of boreal trees come to contradictory results (Machacova et al., 2016; Sundqvist et al., 2012).  Resolving the CH4 fluxes of boreal trees is needed in order to understand the role of boreal forests in the global methane budget.

We conducted shoot chamber measurements on Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) between April and May 2019, to find out if the shoots of boreal conifer trees are a source of aerobic CH4 during the early growing season. The experiment was done with potted 2-3 year old nursery saplings in a common garden experiment, to enable regular measurements over a period of six weeks. CH4 fluxes were measured 2-3 times per day, on two days per week from seven saplings (four P. sylvestris and three P. abies, respectively). We also conducted two around the clock campaigns where we measured the saplings hourly throughout the day and night. The CH4 and carbon dioxide (CO2) exchange were quantified with a portable LGR online greenhouse gas analyser connected in closed loop to custom-made, transparent shoot chambers. Photosynthetically active radiation (PAR) was measured concurrently with a PP Systems EGM-4 monitor.

Our measurements show emissions of CH4 from both tree species, ranging from 0.25 to 7.64 and -0.45 to 6.42 g-1 needle dry weight h-1 (inter-quartile range) from P. sylvestris and P. abies shoots, respectively. The shoot CH4 emissions from both species correlated positively with PAR. During the around the clock measurements the emissions showed a diurnal pattern. Our experiment demonstrates that the shoots of both P. sylvestris and P. abies can be a source of CH4 in the spring and that the source process is likely driven by solar irradiation.

 

References

Machacova, K., Bäck, J., Vanhatalo, A. et al. 2016. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Scientific Reports, 6(September 2015), 1–8.

Sundqvist, E., Crill, P., Mlder, M. et al. 2012. Atmospheric methane removal by boreal plants. Geophysical Research Letters, 39(21), 10–15.

How to cite: Tenhovirta, S., Kohl, L., Koskinen, M., Patama, M., and Pihlatie, M.: Methane emissions from Scots pine and Norway spruce in the spring, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5189, https://doi.org/10.5194/egusphere-egu21-5189, 2021.

EGU21-15441 | vPICO presentations | BG3.27

Greenhouse gas dynamics in drained peatlands: CH4 and N2O fluxes from tree stems and soil

Reti Ranniku, Thomas Schindler, Eliisa Lehtme, Ülo Mander, Katerina Machacova, and Kaido Soosaar

Peatland soils are considered the dominating source of nitrous oxide (N2O) and methane (CH4) to the atmosphere. However, there are high spatio-temporal uncertainties regarding the budgets of these greenhouse gases (GHG) from peatlands due to complex dynamics between the chemical, physical and biological variables occurring in the soil. GHG fluxes from peatland soils are relatively well studied, however, tree stems have received far less attention and are often overlooked in GHG models and assessments. It is necessary to study relationships between stem and soil fluxes, and their chemical, physical and biological drivers to understand the fluxes' origin.

Our ongoing project focuses on measuring GHGs from tree stems and soil in the Agali Birch Forest Research Station in Estonia, representing a drained peatland with Downy Birch (Betula pubescens) and Norway Spruce (Picea abies) trees. Twelve representative sub-sites were selected in the study area. One half consist of an adjacent set of a Downy Birch and a Norway Spruce tree with manual tree stem chambers, plus one automatic dynamic soil chamber. The remaining sub-sites are set pairs of birch trees and soil chambers. Six birch trees and all six spruce trees have stem chambers installed at 10, 80 and 170 cm above the ground to measure stem fluxes' vertical profile. Chambers on the six remaining birch trees were only installed at the lowest height. During the weekly ongoing sampling campaigns that started in October 2020, we use manual static gas extraction from rigid stem chambers to analyse hourly changes in chamber headspace concentrations of CH4 and N2O. The gas samples are analysed in the laboratory within two weeks of collection using gas chromatography. Automated soil chambers collect CH4 and N2O flux data every two hours per chamber, and a connected Picarro measuring unit analyses the gas samples in-situ.

When extrapolated, our results can help understand stem and soil GHG emissions on an ecosystem level and acknowledge the role of tree stems for local and regional GHG budgets. Within a larger research framework, these GHG flux data will be joined with detailed soil biogeochemistry and microbial dynamics to further improve process-based modelling of peatland GHG emissions. We plan to continue our measurements for one full year to understand the seasonal changes in CH4 and N2O emissions patterns.

How to cite: Ranniku, R., Schindler, T., Lehtme, E., Mander, Ü., Machacova, K., and Soosaar, K.: Greenhouse gas dynamics in drained peatlands: CH4 and N2O fluxes from tree stems and soil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15441, https://doi.org/10.5194/egusphere-egu21-15441, 2021.

EGU21-15979 | vPICO presentations | BG3.27

Long-term soil methane uptake in a mature pine forest in Soontaga Forest Station, Estonia

Muhammad Kamil Sardar Ali, Ülo Mander, Thomas Schindler, Katerina Machacova, Kaire Rannik, Veiko Uri, and Kaido Soosaar

Methane (CH4) has high global warming potential, and its atmospheric concentration is increasing rapidly at the present rate of 0.3% yr-1. Forest ecosystems cover a large part of the biosphere and play a significant role in climate change. Upland forest soils are considered as important terrestrial sinks for atmospheric CH4; however, the complex interactions between microbial processes of CH4 production and oxidation, and environmental drivers are not well understood. Balance of CH4 in the forest ecosystems depends on two main natural processes, i.e., anaerobic methanogenesis and aerobic methanotrophy, driven by multiple environmental factors. A forest ecosystem's ability to exchange CH4 depends on the soil type, environmental conditions, species composition, living trees and deadwood, age and health conditions of the tree stand, and their CH4 balance can vary between seasons and years.

In this study, we present long-term CH4 fluxes (from 2015 to 2019) in a 60-200-year-old coniferous forest site of Scots pine (Pinus sylvestris) grown on loose sandy soil in Soontaga research station (58°01'N 26°04'E) in Estonia. The fluxes of CH4 were measured every two weeks, using a manual static soil chamber (n = 6) and gas chromatography method. Air temperature, precipitation and humidity, and soil moisture and temperature (10 cm depth) were measured continuously. The average annual temperature and precipitation recorded were 7.3 + 1.0 °C and 54.3 + 3.9 mm, respectively.

The results showed that mature pine forest soil was an annual net sink of CH4: −21.14 + 0.59 g ha−‍1 yr-1 (mean + SE). No significant difference (p < 0.05) was found between the soil CH4 uptake and tree age. Methane uptake correlated negatively (r= 0.61, p < 0.05) with soil temperature and showed similar seasonal dynamics being highest during the vegetation period (Apr-Oct) and lowest during the non-vegetation period (Nov-Mar). The highest CH4 uptake (−36.93 g ha−‍1) was observed in July 2018, the warmest and driest month during the overall period. Even though soil moisture was only weakly correlated (r2 = 0.15, p < 0.05) with CH4 uptake, the CH4 flux was affected by precipitation. As a result of this, it is noticed that CH4 uptake in the cold and wet conditions decreased with increasing precipitation in winter and increased with warming during warm and dry conditions in summer.

Concluded, our coniferous pine forest was sequestering CH4 during the investigated five years. The soil CH4 uptake could be explained by CH4 oxidation at optimal temperature in the water-unsaturated surface soil regulating the soil's microbial activity.

How to cite: Sardar Ali, M. K., Mander, Ü., Schindler, T., Machacova, K., Rannik, K., Uri, V., and Soosaar, K.: Long-term soil methane uptake in a mature pine forest in Soontaga Forest Station, Estonia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15979, https://doi.org/10.5194/egusphere-egu21-15979, 2021.

EGU21-12093 | vPICO presentations | BG3.27

Complete Enclosure of Stunted Trees to Study Greenhouse Gas Fluxes in Birch-Invaded Peatland

William Barrop, Russell Anderson, Roxane Andersen, and Sylvia Toet

Ombrotrophic, naturally open peatlands are increasingly susceptible to invasion by scrub and trees due to human disturbance, N deposition and climate change. There is limited research on the effect these trees have on ecosystem functions and their removal can be costly, making decisions over best management practice challenging. The adverse growing conditions associated with many of these peatlands can result in stunted tree growth meaning that complete enclosure of a tree remains a practical possibility. In this study we aim to quantify the CH4 and CO2 fluxes from whole trees growing on a disturbed peatland and assess their significance relative to the fluxes between the vegetated peat surface and atmosphere. We also aim to identify if the establishment of trees impacts CH4 and CO2 fluxes from the vegetated peat surface, as compared to adjacent uninvaded peatland.

We have developed a removable chamber capable of enclosing whole trees of up to 3 metres high, making it suitable for use on juvenile or stunted trees. Being able to enclose an entire tree removes potential errors caused by estimating whole tree fluxes by upscaling measurements from a subsample of tree surfaces. The chamber is constructed with a transparent membrane and removable cover so that light and dark measurements can be taken. We use the chamber to take CH4 and CO2 flux measurements on a site with approximately 20-year-old silver birch trees (Betula pendula) of an average height of 2-3 metres. Flux measurements have been taken from the trees and ground collars at different times of year. We have also studied diurnal variation.

Our initial results have shown that the trees on our site are emitters of CH4, although this emission is small in comparison to that produced by the rest of the habitat. The vegetated peat surface in the wooded area had lower CH4 emission but reduced CO2 uptake as compared to the open area. The diurnal study on one tree indicates that methane emissions increase at night. A further diurnal study is planned to explore this further. This study extends the limit on the size of vegetation that can be sampled by a manually operated flux chamber.

How to cite: Barrop, W., Anderson, R., Andersen, R., and Toet, S.: Complete Enclosure of Stunted Trees to Study Greenhouse Gas Fluxes in Birch-Invaded Peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12093, https://doi.org/10.5194/egusphere-egu21-12093, 2021.

EGU21-2809 | vPICO presentations | BG3.27

Short lived peaks of stem methane emissions in temperate black alder forest - irrelevant for ecosystem methane budgets?

Daniel Köhn, Anke Günther, and Gerald Jurasinski

Tree stems can be a source of the greenhouse gas methane (CH4) and locally as regionally important to the overall GHG budget. Stem emissions even hold the potential of narrowing down knowledge gap in the global methane budget. However, assessments of the global importance of stem CH4 emissions are complicated by a lack of research and high variability between individual ecosystems. Here, we determined the contribution of emissions from stems of mature black alder (Alnus glutinosa (L.) Gaertn.) to overall CH4 exchange in two temperate peatlands. We measured emissions from stems and soils using closed chambers in a drained and an undrained alder forest over 2 years. Furthermore, we studied the importance of alder leaves as substrate for methanogenesis in an incubation experiment. Stem CH4 emissions at the undrained alder forest were very variable in time and only persisted for a few weeks during the year. Generally the drained alder forest did not soil nor stem CH4 emissions. Different upscaling approaches were assessed and all approaches showed that stem CH4 emissions contributed less than 0.3 % to the total ecosystem CH4 budget. However, stem CH4 seem to depend strongly on the hydrological regime and therefore vary strongly between ecosystems. Hence, every ecosystem must be consdidered attentively with respect to their stem CH4 emissions.

How to cite: Köhn, D., Günther, A., and Jurasinski, G.: Short lived peaks of stem methane emissions in temperate black alder forest - irrelevant for ecosystem methane budgets?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2809, https://doi.org/10.5194/egusphere-egu21-2809, 2021.

EGU21-4706 | vPICO presentations | BG3.27

Methane exchange in forests

Ruochan Ma, James Stockdale, Niall P. McNamara, James Morison, Sirwan Yamulki, and Sylvia Toet

Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG) after carbon dioxide (CO2), globally responsible for more than 20% of the additional radiative forcing since 1750. Well-drained forest soils are considered as one of the most important biological CH4 sinks. Net CH4 exchange in forest soils depends on the balance of two contrasting microbial processes, i.e. CH4 production and CH4 oxidation, which are controlled by the population and activity of methanogens and methanotrophs, respectively. Additionally, recent reports have shown that living stems and shoots of trees in forests may produce and emit substantial quantities of CH4, which can offset CH4 consumption by soils; potentially switching the forest from a net CH4 sink to a net source.

Tree-emitted CH4 in forests may result from biological production in soils which is subsequently absorbed by roots and then transported in stems and emitted from stems and leaves. However, there is also evidence that CH4 emissions from living tree stems may be biologically produced in situ within tree stems themselves. Long-term and high-frequency measurements of stem CH4 flux in various individuals, tree species and forest ecosystems are needed to unravel the potential underlying mechanisms and pathways of stem CH4 exchange.

This research compares CH4 exchange from tree stem fluxes and soil in forest stands of English oak (Quercus robur) and Japanese larch (Larix kaempferi) and tries to understand the underlying mechanism of stem CH4 exchange in temperate forests. High-frequency measurements of tree stem CH4 exchange across various individuals were carried out in 2020 and the results will be presented from this study to help inform forest management and how to promote this globally important forest CH4 sink under climate change.

How to cite: Ma, R., Stockdale, J., P. McNamara, N., Morison, J., Yamulki, S., and Toet, S.: Methane exchange in forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4706, https://doi.org/10.5194/egusphere-egu21-4706, 2021.

EGU21-10079 | vPICO presentations | BG3.27

Methane Stem Fluxes Under Elevated CO2

Josep Barba and Vincent Gauci

Tree stems can exchange CH4 with the atmosphere at rates that can strongly affect GHG budgets at regional scales. However, we do not know those fluxes’ sensitivity to different components of climate change, such as the increase in concentrations of atmospheric CO2. An increase in CO2 concentrations might result in a change of water use efficiency, reducing transpiration fluxes, which may enhance soil methanogenesis due to an associated increase in soil water content. Additionally, an increase of CO2 could also stimulate net primary production, increasing the supply of fresh carbohydrates to the rhizosphere, and thus stimulating CH4 production in soil anaerobic microsites which may themselves become larger or more numerous due to the additional oxygen demand placed by the fresh carbohydrate on the soil atmosphere. Given the positive relation between soil and stem CH4 exchange processes, any increase in soil CH4 production may result in higher stem emissions. However, that effect of soil production on stem fluxes might decrease with stem height, with lower fluxes or even CH4 uptake at higher stem heights. In this study, we present preliminary data on spatial and temporal variability of stem CH4 fluxes measured in mature oak trees growing under both control and elevated CO2 concentrations (~150 ppm above atmospheric concentrations) in a FACE experiment (free air CO2 enrichment; BIFoR-FACE). These data may be crucial for informing processed based models on how forests GHG fluxes might behave under predicted future climate conditions.

How to cite: Barba, J. and Gauci, V.: Methane Stem Fluxes Under Elevated CO2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10079, https://doi.org/10.5194/egusphere-egu21-10079, 2021.

EGU21-2405 | vPICO presentations | BG3.27

Tree stem greenhouse gas emissions from forested closed landfill sites

Alice Fraser-McDonald, Carl Boardman, Toni Gladding, Stephen Burnley, and Vincent Gauci

Tree planting has the potential to increase carbon sequestration and is used as a common management strategy on former landfill sites to improve their visual appeal and manage issues such as leachates from decomposing organic matter. Tree stems mediate methane (CH4) emissions to the atmosphere from anaerobic soils, bypassing bacterial populations that would otherwise break down CH4 before it is released to the atmosphere. This process has been observed in wetland forests but has yet to be measured in a landfill context. We examined whether trees emitted more CH4 and carbon dioxide (CO2) on a closed UK landfill site relative to a more natural, comparable control site to determine the importance of this natural phenomenon in a managed environment. CH4 and CO2 fluxes from tree stem and soil surfaces were measured using flux chambers and an off-axis integrated cavity output spectroscopy analyser. Temporal and seasonal variations in greenhouse gas emissions from landfill tree stems were also investigated, as well as the impact of different landfill management techniques including site closure methods and tree species planted. Analyses showed that tree stem emissions from landfill were larger than from trees in the non-landfill control site. However, there was high variability in the greenhouse gas fluxes from trees on the landfill. Findings from this investigation suggest that conditions associated with landfill construction may increase CH4 emissions from trees planted on their surface after closure of the site. Trees planted on former landfill sites may therefore result in additional CH4 emissions to the atmosphere.

How to cite: Fraser-McDonald, A., Boardman, C., Gladding, T., Burnley, S., and Gauci, V.: Tree stem greenhouse gas emissions from forested closed landfill sites, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2405, https://doi.org/10.5194/egusphere-egu21-2405, 2021.

EGU21-4335 | vPICO presentations | BG3.27

European beech is a net annual source of methane (CH4)

Katerina Machacova, Hannes Warlo, Kateřina Svobodová, Thomas Agyei, Tereza Uchytilová, Petr Horáček, and Friederike Lang

Trees are known to be sources of methane (CH4), an important greenhouse gas, into the atmosphere. However, still little is known about the seasonality of the tree stem CH4 fluxes, particularly for the dormant season, and about the impact of environmental parameters on this gas exchange. This makes the estimation of net annual ecosystem CH4 fluxes difficult.

We determined seasonal dynamics of CH4 exchange of mature European beech stems (Fagus sylvatica) and of adjacent forest floor in a temperate montane forest of White Carpathians, Czech Republic, from November 2017 to December 2018. We used static chamber methods and gas chromatographic analyses. We aimed to understand the unknown role in seasonal changes of CH4 fluxes of these forests, and the spatiotemporal variability of the tree fluxes.

The beech stems were net annual sources for atmospheric CH4, whereas the forest floor was a predominant sink for CH4. The stem CH4 emissions showed high inter-individual variability and clear seasonality following the stem CO2 efflux. The fluxes of CH4 peaked during the vegetation season, and remained low but significant to the annual totals during winter dormancy. By contrast, the forest floor CH4 uptake followed an opposite flux trend with low CH4 uptake detected in the winter dormant season and elevated CH4 uptake during the vegetation season. Based on our preliminary analyses, the detected high spatial variability in stem CH4 emissions can be explained neither by the CH4 exchange at the forest floor level, nor by soil CH4 concentrations, soil water content and soil temperature, all measured in vertical soil profiles close to the studied trees.

European beech trees, native and widely spread species of Central Europe, seem to markedly contribute to the seasonal dynamics of the ecosystem CH4 exchange, and their CH4 fluxes should be included into forest greenhouse gas emission inventories.

 

Acknowledgement

This research was supported by the Czech Science Foundation (17-18112Y), National Programme for Sustainability I (LO1415), CzeCOS (LM2015061), and SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797). We thank Libor Borák and Leszek Dariusz Laptaszyński for their technical and field support.

 

How to cite: Machacova, K., Warlo, H., Svobodová, K., Agyei, T., Uchytilová, T., Horáček, P., and Lang, F.: European beech is a net annual source of methane (CH4), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4335, https://doi.org/10.5194/egusphere-egu21-4335, 2021.

EGU21-4223 | vPICO presentations | BG3.27

Effects of liming on soil structure and GHG fluxes at three spruce sites in SW Germany

Martin Maier, Valentin Gartiser, Verena Lang, Raphael Habel, Lelde Jansone, and Peter Hartmann

Forest soils in Central Europe received massive atmospheric deposition of SO2 and NOx during the second half of the 20th century. The resulting fast acidification of the soils was accompanied by massive forest dieback and problematic nutrient imbalances at some sites. After the emissions of SO2 have been reduced in the 80´s and 90´s, the situation of acidic deposition has been gradually improving. Yet, the deposition of N compounds remains high and still has an impact on forest ecosystems. Natural soil development and “regeneration” is a slow process, which is why other options were investigated to recover heavily affected forest soils. A well-known means to mitigate the observed effects of the anthropogenic acidification surges is liming, i.e. the application of minerals such as CaCO3 and CaMg(CO3)2 that are able to buffer strong acids. Liming directly affects soil pH which is a “master variable” of the soil. Soil pH, and thus, liming, affects and interacts with many soil processes from mineralization of organic matter and humification, to (de-) stabilization soil structure, nutrient availability and mobility, plant growth and more.

Several study sites were established in the 1980 in Baden-Wuerttemberg to study long term effects of liming on soil structure and forest growth. At all sites a “control” plot and a “limed” plot were established next to each other. The limed plots were treated with approx. 3 t ha-1 of CaCO3 in the 1980´s and 6 t ha-1 of Ca/MgCO3 in 2003. Here we report on results from three sites (Bad Waldsee, Hospital, Herzogenweiler) with Spruce stands (70-110 years), where long term effects of liming on the physical soil structure and soil gas profiles (2017-2019) were studied (Jansone et al., 2020). Liming resulted in a reduction of the thickness of the humus layer and a blurring of the previously clearly separated boundary between the mineral soil and the humus layer. Even though total pore space in the top soil was slightly reduced at the limed plots, soil gas diffusivity was higher at a given air-filled pore-space. This indicates a better connectivity in the air-filled pores, that means more larger pores connecting the atmosphere at the soil surface and the mineral soil. Soil CO2 concentrations showed clear seasonal patterns and a typical increase with depth. Higher CO2 concentrations tend to be found in the un-limed control plots. Soil CH4 concentrations at the soil–humus interface were closer to atmospheric concentrations in the limed plots compared to the control plots. This can be interpreted as an effect of the decrease in the thickness of the humus layer and the increase in the soil gas diffusivity (better aeration) or in a reduced activity of the methanotrophic community.

 

Acknowledgement

This research was financially supported by Bundesministerium für Ernährung und Landwirtschaft (BMEL), grant number 28W-B-4-075-02 (2018–2021).

Literature

Jansone, L., von Wilpert, K. and Hartmann, P., 2020. Natural Recovery and Liming Effects in Acidified Forest Soils in SW-Germany. Soil Systems, 4(38): 1-35.

How to cite: Maier, M., Gartiser, V., Lang, V., Habel, R., Jansone, L., and Hartmann, P.: Effects of liming on soil structure and GHG fluxes at three spruce sites in SW Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4223, https://doi.org/10.5194/egusphere-egu21-4223, 2021.

EGU21-1923 | vPICO presentations | BG3.27

Isotopic evidence for axial tree stem methane oxidation within subtropical lowland forests

Luke Jeffrey, Damien Maher, Douglas Tait, Michael Reading, Elenora Chiri, Chris Greening, and Scott Johnston

Knowledge regarding processes, pathways and mechanisms that may moderate methane (CH4) sink/source behaviour along the sediment - tree stem - atmosphere continuum remains incomplete. Here, we applied stable isotope analysis (δ13C-CH4) to gain insights into axial CH4 transport and oxidation in two common and globally distributed subtropical lowland forest species (Melaleuca quinquenervia and Casuarina glauca). We found consistent trends in CH4 flux (decreasing with height) and δ13C-CH4 enrichment (increasing with height) in relation to stem height from the ground. The average lower tree stem (0-40 cm) δ13C-CH4 of M. quinquenervia and C. glauca flooded forests (-53.96 ‰ and -65.89 ‰) were similar to adjacent flooded sediment CH4 ebullition (-52.87 ‰ and -62.98 ‰), suggesting that CH4 is produced mainly via sedimentary sources. Upper stems (81-200 cm) displayed distinct δ13C-CH4 enrichment (M. quinquenervia -44.6 ‰ and C. glauca -46.5 ‰ respectively) compared to lower stems. Coupled 3D photogrammetry and novel 3D measurements on M. quinquenervia revealed that distinct hotspots of CH4 flux and isotopic fractionation were likely due to bark anomalies where preferential pathways of gas efflux were likely enhanced. By applying a  fractionation factor (derived from previous lab based tree stem bark experiments), diel experiments revealed greater δ13C-CH4 enrichment and higher oxidation rates in the afternoon relative to the morning. Overall, we estimate CH4 oxidation rates between the lower to upper stems across both species ranged from 1 to 69 % (average 33.1 ± 3.4 %), representing a substantial tree-associated CH4 sink occurring during axial transport.

How to cite: Jeffrey, L., Maher, D., Tait, D., Reading, M., Chiri, E., Greening, C., and Johnston, S.: Isotopic evidence for axial tree stem methane oxidation within subtropical lowland forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1923, https://doi.org/10.5194/egusphere-egu21-1923, 2021.

EGU21-8119 | vPICO presentations | BG3.27

Methane emissions from an unmanaged degraded tropical peatland: Interacting influences of plant-processes and groundwater level

Chandra Shekhar Deshmukh, Ankur R. Desai, Chris D. Evans, Susan E. Page, Ari Putra Susanto, Nardi Nardi, Nurholis Nurholis, Hendrizal M. Hendrizal, Sofyan Kurnianto, Yogi Suardiwerianto, Adibtya Asyhari, Supiandi Sabiham, Fahmuddin Agus, and Dwi Astiani

Tropical peatlands are a complex ecosystem with poorly understood biogeochemical regimes. An immense peat carbon stock and waterlogged-anaerobic conditions may possibly favor methane formation in this ecosystem. Methane is released to the atmosphere either from soil/water surface or through vegetation (both herbaceous plant and tree). Using the conventional flux chamber method, assessing spatiotemporal variability and vegetation-mediated methane emissions remains a practical challenge for scientists. Consequently, research related to ecosystem-scale methane exchange remains limited. Yet, published data display a large range of methane emission estimates and, hence, highlight a knowledge gap in our science on tropical peatland methane cycling.

In this context, we set out to measure the net ecosystem methane exchange (NEE-CH4) from an unmanaged degraded peatland in the east coast of Sumatra, Indonesia. The measurements were conducted using the eddy covariance system, composed of a 3D sonic anemometer coupled with a LI-7700 open-path methane analyzer, above the vegetation canopy at 41 m tall tower for over 4 years period (October 2016-September 2020). Therefore, the measurements incorporated all existing methane sources and sinks within the flux footprint, i.e. soil surface, trunk of living tree, vascular plant, and water surface.

Our measurements indicate that unmanaged degraded tropical peatland emitted 54±12 kg CH4 ha-1 year-1 to the atmosphere. The magnitude of daytime NEE-CH4 were up to six times larger than those during the nighttime. This cautions that sampling bias (e.g. only daytime measurements) can overestimate the daily NEE-CH4. The diurnal variation in NEE-CH4 was correlated with associated changes in the canopy conductance to water vapor. Therefore, it was attributed to the vegetative transport of dissolved methane via transpiration. There was no clear relationship between NEE-CH4 and soil temperature, while it decreased exponentially with declining groundwater level. Low groundwater level enhances methane oxidation in the upper oxic peat layer. Further, low groundwater level might relocate methane production below the root zone, resulting in insufficient methane in the root zone to be taken and transported to the atmosphere.

Our results, which are among the first eddy covariance exchange data reported for any tropical peatland, should help to reduce uncertainty in the estimation of methane emissions from a globally important ecosystem, and to better understand how land-use changes affect methane emissions.

How to cite: Deshmukh, C. S., Desai, A. R., Evans, C. D., Page, S. E., Susanto, A. P., Nardi, N., Nurholis, N., Hendrizal, H. M., Kurnianto, S., Suardiwerianto, Y., Asyhari, A., Sabiham, S., Agus, F., and Astiani, D.: Methane emissions from an unmanaged degraded tropical peatland: Interacting influences of plant-processes and groundwater level, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8119, https://doi.org/10.5194/egusphere-egu21-8119, 2021.

EGU21-14938 | vPICO presentations | BG3.27

Methane fluxes from Zambian tropical wetlands

Jacob Shaw, Grant Allen, Patrick Barker, Joseph Pitt, James Lee, Stéphane Bauguitte, Dominika Pasternak, Keith Bower, Michael Daly, Mark Lunt, Anita Ganesan, Adam Vaughan, Rebecca Fisher, James France, David Lowry, Paul Palmer, Prudence Bateson, and Euan Nisbet

Airborne measurements of methane (CH4) were recorded over three major wetland areas in Zambia in February 2019 during the MOYA (Methane Observations and Yearly Assessments) ZWAMPS field campaign. Enhancements of up to 600 ppb CH4 were measured over the Bangweulu (11°36’ S, 30°05’ E), Kafue (15°43’ S, 27°17’ E), and Lukanga (14°29’ S, 27°47’ E) wetlands. Three independent methods were used to quantify methane emission fluxes; aircraft mass balance, aircraft eddy covariance, and atmospheric inversion modelling. Results yielded methane emission fluxes of 10-20 mg CH4 m-2 hr-1, which were up to an order of magnitude greater than the emission fluxes simulated by various wetland process models (WetCHARTs ensemble and LPX-Bern). Independent column CH4 observations from the TROPOMI instrument were used to verify these fluxes, and investigate their applicability for timescales longer than the duration of the MOYA flight campaign.

How to cite: Shaw, J., Allen, G., Barker, P., Pitt, J., Lee, J., Bauguitte, S., Pasternak, D., Bower, K., Daly, M., Lunt, M., Ganesan, A., Vaughan, A., Fisher, R., France, J., Lowry, D., Palmer, P., Bateson, P., and Nisbet, E.: Methane fluxes from Zambian tropical wetlands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14938, https://doi.org/10.5194/egusphere-egu21-14938, 2021.

EGU21-13260 | vPICO presentations | BG3.27

Inter-specific variations in tree stem methane and nitrous oxide exchanges in a tropical rainforest

Warren Daniel, Clément Stahl, Benoît Burban, Jean-Yves Goret, Jocelyn Cazal, Ivan Janssens, and Laëtitia Bréchet

Tropical forests are the most productive terrestrial ecosystems, global centres of biodiversity and important participants in the global carbon and water cycles. The Amazon, which is the most extensive tropical forest, can contain more than 600 trees (diameter at breast height above 10 cm) and up to 200 tree species in only one hectare of forest. In upland forest, tropical soils are known to be a methane (CH4) sink and a weak source of nitrous oxide (N2O), which are both major greenhouse gases (GHG). Most of researches on GHG fluxes have been conducted on the soil compartment but recent works reported that tree stems of some tropical forests can be a substantial source of CH4 and, a to lesser extend of N2O. Tropical tree stems can act as conduits of soil-produced GHG but biophysical mechanisms controlling GHG fluxes and differences among tree species are not yet fully understood.

In order to quantify CH4 and N2O fluxes of different tropical tree species, we took gas samples in 101 mature tree stems of twelve species with the manual chamber technique during the wet season 2020, in a French Guiana forest. Tree species were selected because of their abundance and their habitat preference. We chose trees belonging to two contrasted forest habitats, the hill-top and hill-bottom, which are respectively characterized by aerobic conditions and seasonal anaerobic conditions. Simultaneously with sampling GHG, we measured bark moisture and tree diameter. Four tree species were found in both habitats whereas the eight others were only present in one of these two habitats.

Among the 101 tree stems, 78.6% were net sources of CH4 with a greater proportion in hill-bottom than hill-top. Overall, stem CH4 fluxes were significantly and positively correlated with the wood density (χ2 = 28.0; p < 0.01; N = 75) but neither with the habitat, bark moisture or tree size. We found a significant effect of the tree species on stem CH4 fluxes (F = 3.7, p < 0.001) but no interactions between the tree species and habitats.

Among 43.0% of the stem N2O fluxes that were different from zero, half were from trees that were net sources of N2O mainly located in hill-top. Stem N2O fluxes are not significantly correlated with habitat, as also with the tree size, wood density or bark moisture. Unlike stem CH4 fluxes, tree species did not significantly influence stem N2O fluxes.

Our study revealed that, in tropical forest, spatial variations in GHG fluxes would not only depend on soil water conditions, but also on tree species. Specific tree traits such as the wood density can favour stem CH4 emissions by providing more or less effective pore space for CH4 diffusion but seems to have a limited influence on stem N2O fluxes maybe because of the lower diffusive and ebullitive transport of N2O compared to CH4. Further investigation linking tree species traits and tree GHG fluxes are, however, necessary to elucidate the processes and mechanisms behind tree CH4 and N2O exchanges.

How to cite: Daniel, W., Stahl, C., Burban, B., Goret, J.-Y., Cazal, J., Janssens, I., and Bréchet, L.: Inter-specific variations in tree stem methane and nitrous oxide exchanges in a tropical rainforest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13260, https://doi.org/10.5194/egusphere-egu21-13260, 2021.

BG4.2 – Biogeochemistry of coastal seas and continental shelves

EGU21-15714 | vPICO presentations | BG4.2 | Highlight

Submarine Groundwater Discharge: The invisible mechanism that degrades the quality of crystalline bathing water in the Balearic Islands

Aaron Alorda-Kleinglass, Isabel Ruiz-Mallen, Marc Diego-Feliu, Valentí Rodellas, and Jordi Gracia-Orellana

Coastal environments have experienced a rapid transformation due to the expansion of tourism. This growth may enhance problems as over-saturation of spaces or environmental pollution. One of the main problems is associated with the collapse of environmental infrastructures, which may become saturated during high seasons. Indeed, wastewater treatment plants (WWTP) can be located in coastal areas delivering high concentrations of nutrient effluents into the marine environment. Alternatively, WWTP effluents are introduced into coastal aquifers via injection wells, given that the geological matrix is used to filter naturally the transported effluent solutes. However, the injection of significant amounts of WWTP effluents can modify the hydrogeological dynamics and enrich substantially the solute concentrations in groundwaters. Zones with a hydraulic connection between the coastal aquifer and the sea, these contaminated groundwaters may be transferred to coastal environments via Submarine Groundwater Discharge (SGD). Thus, SGD may act as a pathway delivering part of the WWTP-derived nutrients and pollutants into the marine environment, which may lead to eutrophication or harmful algal blooms. More importantly, such process may become threatening for society when the discharge occurs into bathing waters, affecting the ecosystem and perception of stakeholders.

In this study, we evaluate the role of SGD as a conveyor of nutrients from a karstic coastal aquifer affected by the injection of WWTP effluents to the Deià cove in Mallorca (Balearic Islands). Results show that the tourism seasonality changes the coastal aquifer natural dynamics during the dry season, delivering via SGD, nutrients concentrations above the maximum limits established by the Spanish and European water framework directives. Due to those enriched nutrient fluxes, the coastal water ecosystem has registered the highest values of ∂15N in Posidonia oceanica in the Balearic Islands and suffers periodic algal blooms, creating a conflict among stakeholders.

How to cite: Alorda-Kleinglass, A., Ruiz-Mallen, I., Diego-Feliu, M., Rodellas, V., and Gracia-Orellana, J.: Submarine Groundwater Discharge: The invisible mechanism that degrades the quality of crystalline bathing water in the Balearic Islands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15714, https://doi.org/10.5194/egusphere-egu21-15714, 2021.

EGU21-10833 | vPICO presentations | BG4.2

Submarine groundwater discharge (SGD) in the springs of Sahlenburg tidal flat, Germany: a geochemical approach. 

Roger Carvalho da Silva, Hannelore Waska, Kai Schwalfenberg, and Thorsten Dittmar

Submarine groundwater discharge (SGD) is an important connection between fresh groundwater and the marine ecosystem. The scientific interest in SGD has grown considerably during the last decades due to the recognition of SGD in coastal environments as a significant source of nutrients and pollutants.  The Sahlenburg area (Northern Germany) is known by its highly permeable sediments and high rainfall precipitation that produces a large reservoir of groundwater.  Such characteristics are essential for industry, agriculture and drinking water supply with a large regional importance. In addition, this groundwater discharges in the form of highly productive springs directly into the adjacent tidal flats, with so far unknown effects on the local biogeochemistry.  The aim of this study was to characterize the spatial distribution of salinity, fluorescence dissolved organic matter (FDOM), dissolved organic matter (DOC) and total dissolved nitrogen (TDN) of the springs of Sahlenburg tidal flat area in Cuxhaven, Germany. We hypothesize that the SGD composition is changing on its way through the tidal flat due to biogeochemical factors. This may affect the composition of the water in the final part of the pathway with more influence of seawater. Porewater springs were sampled in February 2019 during low tide in three different types of locations in the tidal flat area: nearshore where the springs are located close to the vegetated shoreline (salt marsh), offshore approximately 70 meters from the vegetation and in the middle from both locations. In addition, porewater from a nearby sandy beach (around 500 meters away from the area of spring sampling), and surface samples from a nearby lake and seawater, were obtained. Salinity and FDOM were measured in situ, and DOC and TDN in the laboratory.  The preliminary data showed low average values for salinity in all springs (0.2-1.4), as well as in beach porewater, indicating strong influence of fresh groundwater in the whole area. When comparing the three spring location types, the lowest salinities were found offshore, and the highest nearshore. This difference could be due to the size of the springs, since nearshore springs usually were smaller when compared to offshore springs. Furthermore, depressions in the tidal flat relief close to nearshore springs favored seawater retention in pools during low tide. Additionally, we found higher average values for DOC and FDOM in the nearshore when compared with the other spring areas, but lower compared to the lake, beach porewater and seawater. The average values for TDN (272-452 µmol L-1) in the groundwater springs were higher when compared to all other sample types (beach porewater, seawater, and lake water) in this study. These values suggest an anthropogenic input (e.g., agriculture influence) in the surrounding watershed and might stimulate primary productivity in the tidal flat. We conclude that groundwater springs in Sahlenburg tidal flat differ locally in their biogeochemistry due to different residence times, heterogeneity of sediment layers, and size of the springs.

 

How to cite: Carvalho da Silva, R., Waska, H., Schwalfenberg, K., and Dittmar, T.: Submarine groundwater discharge (SGD) in the springs of Sahlenburg tidal flat, Germany: a geochemical approach. , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10833, https://doi.org/10.5194/egusphere-egu21-10833, 2021.

EGU21-13923 | vPICO presentations | BG4.2

Physical Modelling of Wave-Driven Groundwater Flows in a Sand Beach Using Transparent Soil

Greg Siemens, Ryan Mulligan, and Delaney Benoit

The characteristics of waves breaking on a beach can have significant impacts on how water infiltrates and influences coastal groundwater flows. The effects of continuous wave action on groundwater in coastal aquifers is important to understand to predict subsurface flows in beaches. This investigation will study how coastal wave dynamics in the swash zone impact the groundwater table using physical laboratory modelling and detailed image analysis that allows for high density spatial and temporal resolution degree of saturation measurements using unsaturated transparent soil as illustrated in Figure 1. Transparent soil methods will be applied to observe simulated wavedriven subsurface flows in a cross-section of a sandy beach. The objective of this study is to extend the current knowledge of how waves drive groundwater fluctuations by experimentally quantifying the time and length scales of flow within a beach.

Figure 1.

Transparent soil can be used to experimentally measure subsurface fluid/air flow and is used to quantify spatial and temporal saturation conditions every few seconds during an experiment. Digital image analysis allows for millimeter spatial resolution throughout the domain. Transparent soil is formed are applied by using crushed quartz rock in place of sand and an oil mixture with an identical refractive index to the grains (Peters et al. 2011). When the pores of the crushed quartz are saturated with the oil, the mixture appears transparent. When dry, the crushed quartz appears opaque. Change in colour is quantified, through digital image analysis, to measure degree of saturation throughout the domain (Sills et al. 2017)

This study applied transparent soil techniques in its first application to understand coastal processes by observing how incident waves infiltrate beaches and induce groundwater table fluctuations. Four tests are reported with variations in beach slope and wave properties, and the images are processed to quantify spatial and temporal degree of saturation variation. In each test, the swash interacted with the groundwater table by forming a partially saturated zone above the saturated zone of the beach. This partially saturated mound followed a consistent shape, that varied in size and rate of change primarily due to beach slope. The partially saturated zone is formed by a combination of capillary forces and downward infiltration, forming a continuously dampened zone in the beach. Finally, the results show a strong inverse correlation between the wetting front formed in a beach and the slope of the swash zone. Steeper slopes displayed much larger partially saturated mounds and were observed to do so in a slower manner compared to flatter slopes.

 

Peters, S. B., Siemens, G., and Take, W. A. (2011). “Characterization of Transparent Soil for Unsaturated Applications.” Geotechnical Testing Journal, 34(5).

Sills, L.-A. K., Mumford, K. G., and Siemens, G. A. (2017). “Quantification of Fluid Saturations in Transparent Porous Media.” Vadose Zone Journal, 16(2), 1–9.

How to cite: Siemens, G., Mulligan, R., and Benoit, D.: Physical Modelling of Wave-Driven Groundwater Flows in a Sand Beach Using Transparent Soil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13923, https://doi.org/10.5194/egusphere-egu21-13923, 2021.

The benthic oxygen consumption rate (OCR) has been widely used to measure the total benthic organic carbon degradation rate, while the oxygen distribution provides the general biogeochemistry state of marine sediments. In shallow coastal environments the light driven photosynthesis by benthic microalgae, resulting in large diurnal oscillations of oxygen concentration, further affects the oxygenation of the sediment. Yet, for permeable sediments, studies incorporating pore water advection driven by physical forces into oxygen consumption and distribution measurements are  still limited. Here we examine the combined effect of benthic oxygen production and advective oxygen transport on oxygen dynamics and consumption rate in a microphytobenthos-dominated sediment (permeability k =2 x 10-11 to 5 x 10-11 m2) in a laboratory simulation with stirred benthic chambers at 40 rpm. Under alternating light (50 μE m−2 s-1) and flow regimes, oxygen concentration, penetration depth and consumption rates were monitored by means of micro-profiling and planar optode measurements. In all cases, we found that oxygen penetration depth increased up to a factor of 2 with pore water flow simulation. On the other hand, advective transport was found to reduce maximum oxygen concentration in the sediment by up to 30 %.  The OCR were up to 2-times higher with only light (28 ± 3.5 µM/min) compared to combined light and flow simulation, however the total oxygen uptake was generally uniform in all chambers (41.83 ± 5.9 mmol/m2 d-1), suggesting the local redistribution of oxygen with flow without marked overall changes in O2 consumption. Our result emphasized the importance of advective transport controlling benthic oxygenation in photic permeable sediment.

How to cite: Werna, W. and Forster, S.: Benthic Oxygen dynamics: Influence of pore water advection and microphytobenthos in a permeable sediment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1239, https://doi.org/10.5194/egusphere-egu21-1239, 2021.

EGU21-1837 | vPICO presentations | BG4.2

Impact of Thiomargarita on the rates of N, S and P turnover in mudbelt sediments from the Benguela Upwelling System: a model study

Pei-Chuan Chuang, Matthias Zabel, Stefan Sommer, Florian Scholz, Paul Vosteen, and Andrew W. Dale

The availability of major nutrients, nitrogen (N) and phosphorus (P), largely controls primary productivity in eastern boundary upwelling systems. The oxygen minimum zone (OMZ) on the Namibian shelf is characterized by high productivity and extraordinarily high particulate organic carbon (POC) contents (up to 19 % dry weight) in the surface sediments. The anaerobic degradation of POC by bacterial sulfate reduction leads to the production of hydrogen sulfide (H2S) that supports extensive communities of large sulfur bacteria Thiomargarita namibiensis in surface shelf sediments. These bacteria oxidize sulfide by reducing nitrate (NO3-) to either ammonium (NH4+) or dinitrogen (N2). Thiomargarita also affect phosphorus cycling by intracellular incorporation of polyphosphates and extracellular formation of hydroxyapatites. In order to understand and quantify the complexity of the coupled benthic cycles of C, N, P, S, Fe in the Benguela Upwelling System, a reaction-transport model (RTM) was used to simulate sediment biogeochemical data collected from the RV Meteor cruise (M157, August 4th-September 16th 2019) off Namibia. This allowed deeper insights into the role of sulfur-oxidizing bacteria on P and N fluxes across the sediment surface. Results are presented that point toward potentially strong feedbacks by Thiomargarita on primary production in response to ongoing global warming and ocean deoxygenation.

How to cite: Chuang, P.-C., Zabel, M., Sommer, S., Scholz, F., Vosteen, P., and Dale, A. W.: Impact of Thiomargarita on the rates of N, S and P turnover in mudbelt sediments from the Benguela Upwelling System: a model study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1837, https://doi.org/10.5194/egusphere-egu21-1837, 2021.

EGU21-2924 | vPICO presentations | BG4.2

Unraveling seasonal carbon-limitation of benthic nitrate-reduction in the coastal Baltic Sea

Dana Hellemann, Sanni-Leea Aalto, Eero Asmala, Tom Jilbert, Mikko Kiljunen, Boris Koch, Joanna Norkko, and Alf Norkko

Excess bioavailable nitrogen (N) is the key driver of coastal eutrophication, thus knowledge on the fate of N in coastal systems is imperative for improving eutrophication mitigation measures. In the coastal Baltic Sea, benthic heterotrophic denitrification, the main process of bioavailable N-removal from a coastal system, has recently been suggested to be seasonally limited by labile organic carbon (OC) availability1 - despite the system´s richness in labile organic matter from long-term eutrophication. This challenges our common understanding of the intrinsic link between C- and N-cycling, and highlights the need for a more advanced concept of OC availability. Hence, in this project, we (i) extensively characterized the biochemical composition of coastal OC beyond traditional descriptors of ‘lability’, applying techniques such as isotopic fingerprinting and Fourier transform ion cyclotron resonance mass spectrometry, and (ii) concurrently quantified benthic nitrate reduction rates both with and without addition of easily degradable OC (glucose), to ultimately confirm and understand proposed OC-limitation of denitrification in coastal sediments. All measurements were done in high temporal and spatial resolution at the southern coast of Finland, covering a three-month period from late winter to early summer that included the peak annual input of fresh organic matter to the benthic system by the phytoplankton spring bloom. First results will be presented and their implications for understanding seasonal N turnover and coastal eutrophication dynamics will be discussed.

1Hellemann D, Tallberg P, Aalto SL, Bartoli M, Hietanen S (2020) Seasonal cycle of benthic denitrification and DNRA in the aphotic  coastal zone, northern Baltic Sea. Mar Ecol Prog Ser 637:15–28

How to cite: Hellemann, D., Aalto, S.-L., Asmala, E., Jilbert, T., Kiljunen, M., Koch, B., Norkko, J., and Norkko, A.: Unraveling seasonal carbon-limitation of benthic nitrate-reduction in the coastal Baltic Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2924, https://doi.org/10.5194/egusphere-egu21-2924, 2021.

EGU21-5163 | vPICO presentations | BG4.2

Spatial and seasonal variation in dissolved silica benthic fluxes in the shallow zones of the southern Baltic Sea

Zuzanna Borawska, Beata Szymczycha, Marc J. Silberberger, Marta Szczepanek, Katarzyna Koziorowska-Makuch, and Monika Kędra

Dissolved silica (DSi) is an important macronutrient in the marine environment, necessary for growth of many aquatic organisms. Yet, DSi marine cycle is still not fully recognized, especially in dynamic, coastal zones. Although DSi is mainly transported to the sea by rivers, benthic fluxes of DSi, which originate from dissolution of the siliceous remains in the sediments, can also represent an important source of bioavailable silicon in the ocean. Benthic DSi fluxes are mainly powered by diffusion, but their rates are strongly shaped by the benthic fauna. Still, the role of benthos in these processes is not fully recognized. The main goal of this study was to investigate how various environmental factors and benthic fauna may shape the coastal cycle of Si in coastal environments during different seasons.

Our study was conducted in the shallow coastal ecosystems of the southern Baltic Sea characterized by contrasting environmental conditions: shallow, brackish and enclosed Szczecin Lagoon (Oder river estuary), dynamic open waters near Łeba with relatively low anthropogenic influence, enclosed Puck Bay and Vistula prodelta. We investigated both shore ecosystems (app. 0.5 m depth) and deeper areas (from 6 up to 60 m depth). DSi concentrations in the bottom waters and environmental characteristics (T, S, O2, sediment organic matter) were investigated at 6 stations, during three seasons (winter, spring and autumn) in years 2019-2020 with s/y Oceania (IOPAN) and directly from the shore. Additionally, samples from shore stations were collected during summer. DSi benthic fluxes were determined at each station by performing ex situ incubations of sediment cores (n = 4-5) with natural benthic assemblages. The benthic organisms in studied cores were collected, identified, counted, and weighed.

The lowest fluxes were measured at sandy stations while highest return fluxes were observed at muddy sites. High variability in DSi benthic fluxes along studied localities was observed, ranging from -1.11 mmol d-1m-2 in summer at shore station in the Puck Bay and up to 6.79 mmol d-1m-2 in Szczecin Lagoon in autumn. We used  Gaussian Generalized Linear Models (GLMs) to estimate the role of environmental conditions, benthic fauna characteristics  and interactions among them in the variability of DSi benthic flux across studied localities. The most important predictors for the fluxes were all pair-wise interactions of temperature, total organic carbon, the C/N molar ratio, and the density of benthic macrofauna. Both interaction terms that included C/N ratio, a measure of organic matter quality (i.e. low C/N ratio indicates higher quality), were associated with increased DSi uptake by the sediment. Further, the interaction term between T and benthic marcofauna density was also linked to negative benthic fluxes of DSi. In contrast, the interaction of T and TOC caused a strong increase in DSi return fluxes.

How to cite: Borawska, Z., Szymczycha, B., Silberberger, M. J., Szczepanek, M., Koziorowska-Makuch, K., and Kędra, M.: Spatial and seasonal variation in dissolved silica benthic fluxes in the shallow zones of the southern Baltic Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5163, https://doi.org/10.5194/egusphere-egu21-5163, 2021.

EGU21-8356 | vPICO presentations | BG4.2

The impact of depositional conditions on biogeochemical cycling of iron and stable iron signatures in sediments of the Argentina Continental Margin

Anne-Christin Melcher, Susann Henkel, Thomas Pape, Anette Meixner, Simone A. Kasemann, Male Köster, Jessica Volz, Henriette Wilckens, Elda Miramontes, Walter Geibert, Tilmann Schwenk, Thomas Frederichs, Michael Staubwasser, and Sabine Kasten

The Argentina Continental Margin represents a unique geologic setting to study interactions between bottom currents and sediment deposition as well as their impact on (bio)geochemical processes, particularly the cycling of iron (Fe). Our aim was to determine (1) how different depositional conditions control post-depositional (bio)geochemical processes and (2) how stable Fe isotopes (δ56Fe) of pore water and solid phases are affected accordingly. Furthermore, we (3) evaluated the applicability of δ56Fe of solid Fe pools as a proxy to trace past diagenetic alteration of Fe, which might be decoupled from current redox conditions. Sediments from two different depositional environments were sampled during RV SONNE expedition SO260: a site dominated by contouritic deposition on a terrace (Contourite Site) and the lower continental slope (Slope Site) dominated by hemipelagic sedimentation. Sequentially extracted sedimentary Fe [1] and δ56Fe analyses of extracts and pore water [2,3] were combined with sedimentological, radioisotope, geochemical and magnetic data. Our study presents the first sedimentary δ56Fe dataset at the Argentina Continental Margin.

The depositional conditions differed between and within both sites as evidenced by variable grain sizes, organic carbon contents and sedimentation rates. At the Contourite Site, non-steady state pore-water conditions and diagenetic overprint occurs in the post-oxic zone and the sulfate-methane transition (SMT). In contrast, pore-water profiles at the Slope Site suggest that currently steady-state conditions prevail, leading to a strong diagenetic overprint of Fe oxides at the SMT. Pore-water δ56Fe values at the Slope Site are mostly negative, which is typical for on-going microbial Fe reduction. At the Contourite Site the pore-water δ56Fe values are mostly positive and range between -0.35‰ to 1.82‰. Positive δ56Fe values are related to high sulfate reduction rates that dominate over Fe reduction in the post-oxic zone. The HS- liberated during organoclastic sulfate reduction or sulfate-mediated anaerobic oxidation of methane (AOM) reacts with Fe2+ to form Fe sulfides. Hereby, light Fe isotopes are preferentially removed from the dissolved pool. The isotopically light Fe sulfides drive the acetate-leached Fe pool towards negative values. Isotopic trends were absent in other extracted Fe pools, partly due to unintended dissolution of silicate Fe masking the composition of targeted Fe oxides. Significant amounts of reactive Fe phases are preserved below the SMT and are possibly available for reduction processes, such as Fe-mediated AOM [4]. Fe2+ in the methanic zone is isotopically light at both sites, which is indicative for a microbial Fe reduction process.

Our results demonstrate that depositional conditions exert a significant control on geochemical conditions and dominant (bio)geochemical processes in the sediments of both contrasting sites. We conclude that the applicability of sedimentary δ56Fe signatures as a proxy to trace diagenetic Fe overprint is limited to distinct Fe pools. The development into a useful tool depends on the refining of extraction methods or other means to analyse δ56Fe in specific sedimentary Fe phases.

 

References:

[1]Poulton and Canfield, 2005. Chemical Geology 214: 209-221.
[2]Henkel et al., 2016. Chemical Geology 421: 93-102.
[3]Homoky et al., 2013. Nature Communications 4: 1-10.
[4]Riedinger et al., 2014. Geobiology 12: 172-181.

How to cite: Melcher, A.-C., Henkel, S., Pape, T., Meixner, A., Kasemann, S. A., Köster, M., Volz, J., Wilckens, H., Miramontes, E., Geibert, W., Schwenk, T., Frederichs, T., Staubwasser, M., and Kasten, S.: The impact of depositional conditions on biogeochemical cycling of iron and stable iron signatures in sediments of the Argentina Continental Margin, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8356, https://doi.org/10.5194/egusphere-egu21-8356, 2021.

EGU21-8754 | vPICO presentations | BG4.2

Benthic Cycling of Phosphate in the changing Arctic Ocean

Constance Lefebvre, Felipe S. Freitas, Katharine Hendry, and Sandra Arndt

The Arctic Ocean is currently experiencing rapid oceanographic shifts and significant sea-ice loss as a result of regional atmospheric and oceanic warming. The Barents Sea is a notable example of these phenomena, having seen a near 40% decline of its April sea-ice extent since 1979, and a progressive northward expansion of Atlantic Water (i.e., Atlantification). Such changes affect primary productivity and nutrient cycling in ways that remain poorly understood. Longer ice-free periods and the inflow of warmer Atlantic Water are expected to lead to extended bloom seasons on short, near-future timescales and therefore increase nutrient uptake in upper water layers. The benthic recycling of nutrients is believed to play an important part in replenishing nutrient inventories in overlying waters thus maintaining high primary productivity over the continuously expanding growth season. Therefore, it is crucial to increase our understanding of nutrient dynamic controls in changing oceans to make more accurate predictions and decipher the complex feedbacks involved in these evolving environments. However, most efforts to constrain and quantify nutrient fluxes so far have been directed at silicon, nitrogen or iron. This study aims to provide specific insight into phosphorus (P) cycling through its response to OM fluctuations and coupling with iron cycling. An integrated data-model approach was used to investigate the dynamics of P cycling at the sediment-water interface across five locations along the 30°E meridian that were drilled in the framework of the ChAOS project in the Barents Sea. The model approach allowed to explore the sensitivity of P cycling to plausible ranges of reactive iron and OM inputs. Greater inputs of reactive iron were found to decrease benthic phosphate fluxes (JPO4) whereas greater inputs of OM increased phosphate return to the water column. The quality of these inputs is equally significant: JPO4 decreased when iron hydroxides were made more reactive and increased with more reactive OM. Our findings indicate that variation in climatically sensitive processes, such as burial of terrestrial sediments and iron cycling, could represent powerful feedbacks on JPO4 through adsorption/desorption mechanisms. Results also reveal significant oceanographic controls on JPO4, suggesting Atlantification of the Barents Sea will play into future phosphate availability.

How to cite: Lefebvre, C., S. Freitas, F., Hendry, K., and Arndt, S.: Benthic Cycling of Phosphate in the changing Arctic Ocean, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8754, https://doi.org/10.5194/egusphere-egu21-8754, 2021.

EGU21-13368 | vPICO presentations | BG4.2

The role of large benthic sulfur bacteria in biogeochemical cycles - a model approach.

Natalia Herran, Martin Schmidt, Volker Mohrholz, and Heide Schulz-Vogt

On the seabed of oxygen minimum zones (OMZ), embedded in organic-rich sediments, large sulfur bacteria (LSB) fulfil an important ecological role by detoxifying the overlying bottom waters. Thiomargarita Namibiensis and Beggiatoa spp. are chemoautotrophic microorganisms that reduce sulfur compounds to create biomass and link by doing so the carbon, sulfur, oxygen and nitrate cycle very efficiently. This particular ability make life in suboxic and hypoxic coastal waters feasible. Nevertheless, due to the complexity of sulfur oxidation and its various pathways the quantification of such activity is of great complexity. Hereby, we describe a model framework of LSB activity to implement intrinsic properties of the bacteria based on field observations and numerical modelling validations, linking the stoichiometry and energy conservation efficiency of LSB while counting for the reduced sulfur pools and its partitioning sub-products.

How to cite: Herran, N., Schmidt, M., Mohrholz, V., and Schulz-Vogt, H.: The role of large benthic sulfur bacteria in biogeochemical cycles - a model approach., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13368, https://doi.org/10.5194/egusphere-egu21-13368, 2021.

EGU21-4726 | vPICO presentations | BG4.2

Compositional pattern of lignin derived phenols of sediments as a proxy of accumulation of terrestrial organic matter in coastal zone of the Laptev Sea

Alexander Ulyantsev, Svetlana Bratskaya, Nikolay Belyaev, Oleg Dudarev, and Igor Semiletov

The modern East Siberian Arctic shelf represents a fascinating area with a vast expansion of subsea permafrost that holds a large pool of frozen immobilised organic carbon (OC). Amplified climate change at high latitudes has raised growing concerns about potential positive carbon–climate feedbacks. Degradation of permafrost in the Arctic could constitute a positive feedback to climate change due to activation of this OC stock, while recognizing the origin and peculiarities of organic matter (OM) is useful for predicting the potential for involving the ancient OC in modern carbon cycling. This paper emphasises the molecular composition of lignin-derived phenols (LDP) in bottom sediments and subsea permafrost from the Laptev Sea shelf as a proxy to describe the main sources, distribution, and preservation of terrestrial OM. The compositional pattern and concentration of LDP revealed irregular dynamics of terrigenous OM supply in the study area, that were governed primarily by continental flows. The OC concentration in the studied sediments varied from 0.04% to 23.1% (mean 1.74%, median 1.07%). The concentration of LDP in the studied 126 samples from five sediment cores obtained from Buor-Khaya Bay varied from 0.7 to 13191 (mean 539, median 63.5) µg/g of dry sediment as the sum of vanillyl, syringyl, and cinnamyl (VSC) compounds and from 0.03 to 27.6 (mean 1.61, median 0.76) mg/100 mg of OC content. All OC-rich samples showed higher concentrations of LDP and virtually non-oxidized lignin. Vegetation proxies suggested that vascular plant tissues account for a significant fraction of the lignin in the examined samples, with a strong share of gymnosperms. The concentration of LDP correlates to OC content, indicating a strong supply of terrestrial OC to the study area. Degradation proxies indicate a predominant supply of wood-rich non-oxidized terrestrial OM. The well-preserved lignin revealed in the studied deposits represents a specific feature of Quaternary lithodynamics of the Laptev Sea and is not typical for the majority of bottom sediments of the World Ocean. Good correlation between OC and lignin concentration suggests that terrigenous fluxes were the main contributor to OM supply. Distribution of specific lignin phenols and related ratios coupled with lithology and grain size revealed that fluvial processes have been leading here.

This research was supported through the Russian Scientific Foundation (grant no. 19-77-10044) within the framework of the state assignment of the Shirshov Institute of Oceanology RAS (grant no. 0149-2019-0006).

How to cite: Ulyantsev, A., Bratskaya, S., Belyaev, N., Dudarev, O., and Semiletov, I.: Compositional pattern of lignin derived phenols of sediments as a proxy of accumulation of terrestrial organic matter in coastal zone of the Laptev Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4726, https://doi.org/10.5194/egusphere-egu21-4726, 2021.

EGU21-11032 | vPICO presentations | BG4.2

The impact of sediment resuspension on non-cyanobacterial nitrogen fixation along the Southern Baltic coastline

Tina Liesirova, Tobias Aarenstrup-Launbjerg, Lasse Riemann, and Maren Voss

Benthic nitrogen fixation by heterotrophic non-cyanobacterial diazotrophs (NCDs) is common in anoxic marine sediments, however, it is currently unclear how resuspension of sediments affects this activity. Moreover, physical mixing processes are strongest in shallow coastal waters where permeable sediments prevail and anoxic conditions rarely occur. It is therefore of interest to understand whether such coastal sites provide ecological niches for NCDs. In order to gain insight into NCD nitrogen fixation during sediment resuspension, slurry incubations were carried out with nearshore sediments from stations along the Southern Baltic coastline and, for comparison, with anoxic sediments from the Gdansk Deep. Parallel to this, we carried out separate incubations treated with sodium molybdate, an inhibitor of sulfate reducing bacteria (SRB), to differentiate SRB activity from total NCD activity. Our data show low rates of nitrogen fixation by NCDs and indicate that SRBs (e.g. Desulfovibro) are actively fixing nitrogen. Nitrogen fixation rates varied greatly between locations, influenced by sediment grain size and POC-loading. Interestingly, nitrogen fixation took place despite of micromolar concentrations of inorganic nitrogen, which implies that NCDs may be more resilient towards N-stress than formerly expected. In conclusion, our experimental study supports previous findings of stimulation of nitrogen fixation by sediment resuspension, even in permeable sediments, however, at low rates.

How to cite: Liesirova, T., Aarenstrup-Launbjerg, T., Riemann, L., and Voss, M.: The impact of sediment resuspension on non-cyanobacterial nitrogen fixation along the Southern Baltic coastline, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11032, https://doi.org/10.5194/egusphere-egu21-11032, 2021.

EGU21-15925 | vPICO presentations | BG4.2

Composition of the Fe-Mn nodules and associated microbial communities of the Kara Sea, Arctic Ocean

Natalia Shulga, Sergej Abramov, Sergej Gavrilov, and Konstantin Ryazantsev

This work is based on ferromanganese nodules, crusts and underlying sediments collected from the different parts of the Kara Sea shelf (Arctic). The geochemistry, morphology and organic matter content of nodules, crusts and sediments were determined with ICP-MS, SEM-EDS and GC/MS. The associated microbial communities were identified with 16S rRNA (gene) sequencing. Nodules from the Kara Sea shelf significantly differ from their more common abyssal analogues. These shelf nodules have an irregular tabular morphology and relatively low abundances of Mn (up to 19 wt.%), Fe (up to 24 wt.%), other trace metals and the REYs. The Kara Sea nodules show concentric layering that is also typical of deep-sea diagenetic nodules. Samples subdivided into two groups: Mn-rich (Mn/Fe = 0.35 on av.) and Fe-rich (Mn/Fe = 1.65 on av.). The negative Ce anomaly suggests a diagenetic origin of the nodules and crusts. The input of organic matter to the ore deposits in the study area has three main sources (according to n-alkane composition): 1) marine (planctonogenic); 2) low-transformed terrestrial organic matter derived from river run-off; 3) microbial-derived source. Microbial communities of nodules and crusts are substantially different from benthic microbial communities in sediments. They dominated by taxa involved in N cycle, particularly responsible for denitrification (Cyclobacteriaceae and Kiloniellaceae), nitrification (“Candidatus Nitrosopumilus” and Nitrosomonas), comammox (Nitrospira) and anammox (Nitrosococcaceae) [1]. Dissimilatory Fe(III)- and Mn(IV)-reducing Geopsychrobacter was identified in Fe-rich ore samples. This taxon can be involved in Fe(III)- and Mn(IV)-dependent anaerobic oxidation of methane [2]. In contrast, microbial community of underlying sediments dominated by sulfate-reducing bacteria (SRB). Some of the identified SRB (e.g. Desulfobulbaceae and Desulfosarcinaceae) are able to form syntrophic associations with anaerobic methanotrophic archaea [3]. Identified n-alkanes can be oxidized by Anaerolineaceae growing in syntrophic association with methanogens. Furthermore, we revealed that manganese nodules and crusts can be used potentially as important electron acceptors for oxidation of organic compounds by Geopsychrobacter, Desulfuromonadales and Colwellia. Applied multi-disciplinary approach to the study of the Fe-Mn nodules and crusts will help to determine their contribution in formation of unique biogeochemical environments in the Kara Sea.

This work was supported by the Russian Science Foundation (grant 19-77-00107).

How to cite: Shulga, N., Abramov, S., Gavrilov, S., and Ryazantsev, K.: Composition of the Fe-Mn nodules and associated microbial communities of the Kara Sea, Arctic Ocean, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15925, https://doi.org/10.5194/egusphere-egu21-15925, 2021.

Inter-tidal wetlands at mangroves, salt marshes and sea grass bed are important carbon reservoirs that play a significant role in climate change mitigation. However, the lack of large-scale quantification and source identification of sediment organic carbon (SOC) in inter-tidal wetlands hampers the assessment of carbon storage potential in these systems. In this research, we hypothesized that SOC in the inter-tidal wetlands of Chinese East Coast were mainly from three potential sources (terrestrial soil, marine phytoplankton, local C3 and C4 plants as mangrove and salt marsh plants ). Based on elemental ratios and stable carbon isotope of core sediment from the inter-tidal wetlands along the east coast of China, we quantified the contribution of organic carbon (OC) sources and explored the hydrological and plant drivers controlling the variations of OC source contribution among different coastal environmental settings. We found SOC in the large estuaries (river runoff more than 50 billion m3/a) originated predominantly from terrestrial soil OC (46±9%), while the primary OC source of the smaller estuaries was marine phytoplankton OC (61±14%). These results suggested that the contribution of terrestrial soil OC increased with river runoff, whereas the share of marine phytoplankton OC decreased with runoff. Moreover, while mangroves played a substantial role in carbon storage at the southern part of the coast, our estimates revealed a sharp decline in the contribution of mangrove OC since the 1980s. These findings indicate carbon storage in the inter-tidal wetlands varies among contrasting coastal environmental conditions and among wetlands with different ages, providing implications for inter-tidal wetlands as an important carbon sink in the global carbon budget.

How to cite: Ding, Y. and Wang, D.: Identification and Quantification of Sediment Organic Carbon in the Inter-tidal Wetlands of Eastern Coast of China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3699, https://doi.org/10.5194/egusphere-egu21-3699, 2021.

EGU21-5499 | vPICO presentations | BG4.2 | Highlight

Sedimentary trace metals: improving proxies for deoxygenation in coastal European seas

Mareike Paul, Niels A. G. M. van Helmond, Caroline P. Slomp, Sami A. Jokinen, Joonas J. Virtasalo, Helena L. Filipsson, and Tom Jilbert

Deoxygenation in response to eutrophication and climate change in coastal systems is increasing worldwide. Low oxygen conditions cause the chemical transformation of redox-sensitive trace metals (e.g. molybdenum and uranium) in seawater, and their subsequent transport to the sediment. Sedimentary trace metal contents can therefore be used as a record of changes in bottom water oxygen conditions allowing the history of deoxygenation to be reconstructed. However, most trace metal studies have focused on strongly reducing and sulfidic settings, leaving mildly reducing and oxygenated (but eutrophic) settings vastly understudied. Currently, it is unknown to what extent existing trace metal redox proxies are applicable to reconstruct oxygen conditions in coastal zones experiencing mild deoxygenation, despite the fact that such areas occupy vast stretches of the coastal oceans. Here, we study trace metal enrichments in 13 European coastal marine sites with varying bottom water redox conditions and depositional environments. Our data demonstrates that sedimentary molybdenum and uranium contents are sensitive to deoxygenation across a range of settings, although the mechanisms of enrichment may vary. Improved understanding of molybdenum and uranium dynamics in mildly reducing coastal settings will facilitate the development of reliable and widely applicable molybdenum and uranium-based redox proxies.

How to cite: Paul, M., van Helmond, N. A. G. M., Slomp, C. P., Jokinen, S. A., Virtasalo, J. J., Filipsson, H. L., and Jilbert, T.: Sedimentary trace metals: improving proxies for deoxygenation in coastal European seas, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5499, https://doi.org/10.5194/egusphere-egu21-5499, 2021.

EGU21-12156 | vPICO presentations | BG4.2

Ecosystem composition and environmental factors as drivers of pH on Barrier Reefs

Sarah Cryer, Claire Evans, Filipa Carvalho, Sara Fowell, Urska Martincic, Gilbert Andrews, Samir Rosado, Arlene Young, Antoine de Ramon, and Socratis Loucaides

Tropical coral reefs are both biologically diverse and economically important ecosystems, yet are under threat globally, facing a multitude of stressors including global warming, ocean acidification, nutrient loading, over-fishing and sedimentation. Reef building corals precipitate an aragonite skeleton (CaCO3), which forms the base of the coral reef ecosystem, but it is this skeleton, which makes them sensitive to changes in ocean pH. To precipitate their skeletons, corals raise their internal pH, as seawater pH decreases this increases the energy demands needed to facilitate calcification. Furthermore, reductions in coral calcification has significant implications for reef health, potentially altering community structure with reef-wide consequences. Global ocean pH is decreasing due to rising atmospheric concentrations of CO2, however, dynamic ecosystems, alongside carbon and freshwater input from land, may result in coastal ocean pH being lower than is predicted by open ocean models. While it is predicted than ocean pH will decrease by 0.3 units by 2100 if emissions are not curbed, coral reefs, particularly those near major river outflow, may already be experiencing pH values similar to that of future scenarios.

Our aim was to determine the factors which influence pH in coastal reef systems and thus potentially mitigate or exacerbate atmospheric CO2 mediated ocean acidification. This was achieved by contrasting reefs in distinct environmental settings and collecting data over a sufficient temporal resolution to permit the identification of pertinent drivers. To accomplish this we deployed fixed point observatories in the distinct reefs of Belize (fore and back reef sites), Fiji and Dominica. These custom-built platforms were equipped with a spectrophotometric pH sensor and a conductivity, temperature and dissolved oxygen (CT-DO) sensor from which data was logged at 30-120 minute intervals.

A strong diel cycle in pH, O2 and temperature was observed at all reef sites in response to the changing balance of respiration and photosynthesis. However, the range of these changes varied between the different sites - Belize fore reef (pH 7.849­ – 8.000), Belize back reef (pH 7.897 – 8.039), Fiji (pH 7.951 – 8.0950) and Dominica (pH 7.843 – 8.144). Meteorological conditions, such as wind direction, affected the amplitude of diurnal pH variability and its relationship with other parameters, likely by influencing mixing and the spatial distribution of seawater and freshwater endmembers. The relationship between pH and O2 varied between sites reflecting differences in ecosystem processes (e.g. calcification and primary production) and ecosystem composition (e.g. hard coral and algae cover, proximity to seagrass). Our data confirms that different reef sites are subject to varying degrees of ocean acidification and that controls on pH vary between environments. Furthermore, it highlights the need for widespread high-resolution monitoring to identify, and where possible enact protective measures, in vulnerable reef regions. As coral reefs continue to experience ocean acidification our data also serves to document baseline conditions against which future changes can be assessed.

 

How to cite: Cryer, S., Evans, C., Carvalho, F., Fowell, S., Martincic, U., Andrews, G., Rosado, S., Young, A., de Ramon, A., and Loucaides, S.: Ecosystem composition and environmental factors as drivers of pH on Barrier Reefs, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12156, https://doi.org/10.5194/egusphere-egu21-12156, 2021.

EGU21-12008 | vPICO presentations | BG4.2 | Highlight

Source to Sea: Transport of organic carbon and iron from forested environments to coastal waters and sediments

Celeste Kellock, Craig Smeaton, Nadeem Shah, William Austin, and Christian Schroeder

There is strong evidence that the source of terrestrial carbon and iron geochemistry play an important role in organic carbon transport and preservation in coastal and marine sediments 1,2,3. There is a global drive to increase forestry and Scotland is undergoing a period of afforestation4. A portion of this is being planted in sea loch (fjord) catchments; however the effect of this increase in forestry on coastal carbon transport and storage is poorly understood. Fjord systems have recently been identified as significant terrestrial carbon stores5 therefore understanding how afforestation of these catchments changes the carbon dynamics from source to sea, is key.

In this study Mossbauer spectroscopy, XRD and XRF are used to examine how iron concentration and speciation differs within Scottish fjord sediments. This preliminary data provides insight of the variation in iron speciation in fjord systems, processes controlling iron transport and speciation and potential mineral binding mechanisms in coastal sediments. This enables us to start addressing key knowledge gaps in the transport of organic carbon and iron from land (forested source areas) to sea (fjords). Thus, contributing to our overarching aim of tracing the movement and interactions of organic carbon across the terrestrial - aquatic interface.

Through this project, further analytical techniques such as biomarker analysis, isotopic analysis and SEM, will be used to improve our understanding of source to sea processes in fjord systems throughout the northern hemisphere. This will hopefully enable improved understanding and quantification of local and national carbon stocks. Further insights into carbon and iron burial mechanisms may allow us to tailor land use and management around fjord environments to maximise natural carbon storage.

How to cite: Kellock, C., Smeaton, C., Shah, N., Austin, W., and Schroeder, C.: Source to Sea: Transport of organic carbon and iron from forested environments to coastal waters and sediments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12008, https://doi.org/10.5194/egusphere-egu21-12008, 2021.

EGU21-1298 | vPICO presentations | BG4.2 | Highlight

Influence of land-use on the dynamics, quantity and composition of the organic matter transported across estuaries

E. Elena Garcia-Martin, Richard Sanders, Chris D. Evans, Vassilis Kitidis, Dan J. Lapworth, Andrew P. Rees, Bryan Spears, Andy Tye, Jennifer L. Williamson, and Daniel J. Mayor

The flux of terrigenous organic carbon across estuaries is an important and changing component of the global carbon cycle, but it is poorly understood. It has been proposed that estuaries can act either as a transporter of terrestrial dissolved organic carbon (DOC) to the ocean or as a reactor system in which DOC can be buried or transformed into carbon dioxide and released to the atmosphere. However, there is no clear understanding of the factors that drive estuaries to behave in one way or the other. Here we present the results from a study conducted in thirteen British estuaries which drain catchments of diverse land-uses under different hydrological conditions. Our data show that land-use influences the composition of the dissolved organic matter (DOM), the mixing dynamics of DOC and the quantity of DOC exported off the estuaries. Estuaries, whose catchments are less intensively managed and represent more natural ecosystems (average proportion of arable and (sub)-urban land-use ~12 %), contain a higher proportion of biologically-refractory “humic-like” DOM, which is transported conservatively across the salinity gradient. In contrast, estuaries whose catchments are more intensively managed (average proportion of arable and (sub)-urban land-use ~32 %) contain a high fraction of “protein-like” DOM which is transported non-conservatively, and thus suggest the existence of additions and removal processes across the salinity gradient. Furthermore, estuaries with more intensively managed catchments tend to export more DOC to coastal areas than they receive from rivers. Our results indicate that future changes in land-use have the potential to alter aquatic fluxes of terrigenous DOM and the fate of the constituent carbon.

How to cite: Garcia-Martin, E. E., Sanders, R., Evans, C. D., Kitidis, V., Lapworth, D. J., Rees, A. P., Spears, B., Tye, A., Williamson, J. L., and Mayor, D. J.: Influence of land-use on the dynamics, quantity and composition of the organic matter transported across estuaries, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1298, https://doi.org/10.5194/egusphere-egu21-1298, 2021.

EGU21-183 | vPICO presentations | BG4.2

Distribution of iron porphyrin like complexes along the land sea continuum of the Iroise Sea

Agathe Laes, Gabriel Dulaquais, Alexandre Hemery, Matthieu Waeles, Romain Davy, Jeremy Devesa, Ricardo Riso, and Stefan Lalonde

The aim of FeLINE project (Fer Ligands In the aulNe Estuary) was to determine the distribution of iron and associated ligands concentrations along the land sea continuum of the Iroise Sea (Bay of Brest, France). Iron porphyrin like ligands (Fe-Py) such as heme and hemoproteins are relevant complexes in iron biogeochemical cycling as they can persist in seawater and on marine particulates. This work reveals for the first time the distribution of Fe-Py concentrations (dissolved plus reactive particulate) along a temperate macrotidal estuary. Unfiltered samples were collected in October 2019 across a transect of the Aulne river and estuary / Rade of Brest / Iroise Sea during low tidal coefficient (39). Fe-Py concentrations were determined using flow injection analysis with chemiluminescence detection adapted from Vong et al. (2007). Various interferences (organic, metallic, pH and salinity) were tested. The detection limit attained was 11 pmol.l-1 and the time of analysis 1min30s per sample. The Fe-Py concentrations varied from 0.007 ±0.002 nmol.l-1 for S=33.98 and 1.177 ±0.007 nmol.l-1 for S = 0.92. The Fe-Py concentrations clearly showed a non-conservative behavior due to various processes other than simple mixing of natural and seawater. The highest values revealing a Fe-Py enrichment were observed in the Estuarine Turbidity Maximum (ETM) for which concentrations varied between 1.177 ±0.007, S = 5.2 and 0.738 ±0.004 nmol.l-1 S = 8.59. This positive anomaly of Fe-Py concentrations (40%) also corresponded to the lowest pH values (pH =7.27-7.32). The distal part of the transect displayed a negative anomaly for salinities comprised between 15 and 25 (loss of 37%). The four last points geographically corresponding to the Bay of Brest (S>35) exhibited low and stable Fe-Py concentrations of 0.007±0.002 and 0.024 ± 0.003 nmol.l-1. The supply and removal fluxes were respectively estimated at 2.4±0.2g/d and 8.1 ± 0.8g/d, revealing an average Fe-Py removal of 39.8% that is probably due to particle flocculation.

How to cite: Laes, A., Dulaquais, G., Hemery, A., Waeles, M., Davy, R., Devesa, J., Riso, R., and Lalonde, S.: Distribution of iron porphyrin like complexes along the land sea continuum of the Iroise Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-183, https://doi.org/10.5194/egusphere-egu21-183, 2021.

Since the early eighties of the 20th century nitrogen and phosphorus loads of the River Elbe, a river entering the North European Shelf at the southeastern coast, have decreased by a factor of about four. This resulted in a reduction of the eutrophication status in the adjacent German Bight and the coastal waters west of Denmark. In addition, benthic carbon and alkalinity pools have changed due to 1- changed carbon loads and, 2- changed decay pathways of benthic organic carbon.

We investigate the consequences of observed nutrient and organic loads by rivers with a 3D-biogeochemical model including a 3D-early diageneses model within the sediment for the time 1979 - 2014.   

The results show a strong decrease of benthic carbon rather due to decreasing nutrient loads and subsequent autochthonous biological production than changes in organic loads. The export of inorganic carbon from the sediment is related to the magnitude of benthic organic carbon and cannot explain the strong decrease of the benthic POC pool. During the time until the early nineties aerobic degradation increases, whereas denitrification and sulfate reduction as organic matter degradation pathway decreases.

Alkalinity production due to benthic organic matter degradation decreases over the first half of the investigated time interval and keeps constant during the second half. Denitrification and sulfate reduction dominate the mechanisms decreasing the alkalinity export. Benthic nitrification consuming alkalinity strongly increases during the first half of the time dampening the decrease of alkalinity export.

How to cite: Paetsch, J. and Thomas, H.: Consequences of nutrient load reductions for carbon and alkalinity dynamics within the region of freshwater influence of River Elbe, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1716, https://doi.org/10.5194/egusphere-egu21-1716, 2021.

EGU21-15187 | vPICO presentations | BG4.2

High local nutrient input influence on oligotrophic phytoplankton production and lipid biogeochemistry

Tihana Novak, Blaženka Gašparović, Ivna Vrana Špoljarić, and Milan Čanković

Marine phytoplankton are crucial for ecosystem function and responsible for almost half of world’s primary production. In order to grow and reproduce phytoplankton need sufficient amount of macro and micro nutrients. Nutrient concentrations are changeable in different water mases and dependable on different natural and anthropogenic sources such as terrestrial water inputs, recycling by sloppy feeding, remineralization with bacteria and atmospheric deposition. High nutrient input to oligotrophic regions raises phytoplankton biomass that leads to higher organic matter production and heterotrophs` development.  Anthropogenic nutrient inputs are considered as the main cause of coastal eutrophication. Marine lipids, dominantly produced by phytoplankton, are good biogeochemical traces of organic matter origin and processing in marine environment and phytoplankton adaptation to environmental perturbations. They are important for multiple cell mechanisms functioning.

The goal of this research was to investigate the influence of a point source of nutrients on organic matter production and lipid composition as a consequence of phytoplankton acclimation to different nutrient loads. We sampled at two geographically close stations in the Krka River Estuary mouth, oligo- to mesotrophic Martinska station and station in vicinity of the town of Šibenik that is under high anthropogenic influence. Samples were taken from three depths (above, on and below halocline) and in four different seasons covering annual cycle. Lipid classes were characterized by thin–layer chromatography–flame ionization detection. Data are supported by hydrographic, dissolved organic carbon and particulate organic carbon parameters. We will discuss the changes of organic matter accumulation and estuarine lipid biogeochemistry caused by human activity.

 

Acknowledgement

This research was financed by the Croatian Science Foundation project BiREADI (IP-2018-01-3105).

How to cite: Novak, T., Gašparović, B., Vrana Špoljarić, I., and Čanković, M.: High local nutrient input influence on oligotrophic phytoplankton production and lipid biogeochemistry, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15187, https://doi.org/10.5194/egusphere-egu21-15187, 2021.

Pronounced changes in the climate system that lead to a significant reduction in sea ice cover and active glacier melting provoke the great interest in ecosystem studies of archipelago bays in the high Arctic. In addition to increasing the duration of the open water period, the glacier melting increases the fresh water discharge from the archipelagos and thereby affects the coastal ecosystems of the Arctic region. There is practically no information about the ecosystems of the archipelago bays of the seas of the Russian Arctic due to the inaccessibility. Within the framework of the program “Investigation of the Russian Arctic ecosystems” in 2007-2020 held by Shirshov Institute of Oceanology, modern comprehensive studies of ecosystems of Novaya Zemlya bays, including phytoplankton (as primary producer of organic matter) were carried out. The most frequent observations were conducted in Blagopoluchiya Bay (North Island of Novaya Zemlya Archipelago), which has several coastal runoffs of glacial origin flow.

We found that despite the constant enrichment with allochthonous suspended matter and nutrients with runoff from Novaya Zemlya to the Blagopoluchiya Bay there was no increase in phytoplankton production during the summer open water period (Borisenko et al. Thesis EGU21-9528). On the contrary, the quantitative characteristics of phytoplankton in euphotic layer were extremely low: 0.2-0.7 mkgC/l and 0.03 - 0.15 mkgChl/l. Obviously the inclusion of allochthonous nutrients in local production cycles over the sea part of the bay was difficult.

To clarify the reasons of such low phytoplankton productivity against the background of the enrichment with nutrients of ​​Blagopoluchiya Bay, multifactorial experiments were carried out on the monoculture of the cosmopolitan diatom Thalassiosira nordenskioeldii Cleve, 1873, which is one of the dominant species in the Novaya Zemlya bays. Algae culture was isolated from the phytoplankton community of the Kara Sea and adapted to a salinity of 31 psu, typical for Novaya Zemlya bays. In addition to routine cell counting under microscope we used PAM-fluorometry to control the growth characteristics of algae that makes it possible to observe the photosynthetic activity of algae.

It was shown that the functioning of algae is greatly influenced by a significant gradients in salinity. When fresh runoff from Novaya Zemlya is mixed with the seawater of the bay, marine planktonic algae experience significant osmostress and immediately settle down and die off. With a slight dilution (up to 29-30 psu) of sea water by freshwater from the archipelago, the algae functioned well and doubled their biomass for 2-3 days. At the same time, we found that the algae were well adapted to a significant range of illumination: 40-200 µE, which apparently allows them to maintain high level of photosynthetic activity under the changing arctic illumination during the Arctic summer at high latitudes.

This study was performed within the framework of the state assignment of IO RAS, (topic no. 0149-2019-0008) and supported by the Russian Foundation of Basic Research (projects no. 18–05–60069Arctic and 19-04-00322 А).

How to cite: Sergeeva, V. and Vorobieva, O.: Functioning of phytoplankton in the bays of Novaya Zemlya Archipelago, Kara Sea ​​ (Blagopoluchiya Bay) during summer., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11895, https://doi.org/10.5194/egusphere-egu21-11895, 2021.

EGU21-2348 | vPICO presentations | BG4.2

The role of anoxygenic phototrophs in the Baltic Sea

Peihang Xu, Christian Furbo Christiansen, and Carolin Löscher

Both oxygenic and anoxygenic phototrophic bacteria (OPB and APB, respectively) are widely distributed in the ocean and play significant roles in carbon cycle and marine productivity. These organisms capture light as energy source via chlorophyll or bacteriochlorophylls-based photosystems. While OPB are relatively well studied, information on APB is rather scarce although they have been shown abundant in some ocean ecosystems and may play an important role in oxygen depleted environments. Here, we investigate the spatial profile of OPB and APB, gene abundance and expression of the key functional marker gene pufM (APB specific photosynthetic reaction center subunit M), in one fjord and three basins of the Baltic Sea using 16S rRNA amplicon sequencing and qPCR. Among the microbial community, abundances of OPB and APB were found to be similar thus emphasizing a potential importance of APB, with APB representing 1.6-17.5% and OPB representing 0.5-20%. Among APB, we identified eleven different orders, with Rhodobacterales being quantitatively dominant. The identified seven orders of OPB were dominated by Synechococcales. OPB were more abundant than APB in surface waters (<8m), while APB were comparably more abundant in deeper waters. Besides a depth-dependent distribution, we observed an impact of salinity on the distribution of APB and OPB, both of which being suggestive of distinct niches for those primary producer clades. pufM gene abundance ranged from 104 to 109 copies/L, with highest counts detectable in the mixed layer (<40m), however, even in deeper waters where gene abundances decreased APB pufM gene expression was high with up to 104 copies/L. These results indicate APB may play a more important role in marine primary productivity which has been underestimated before. 

How to cite: Xu, P., Christiansen, C. F., and Löscher, C.: The role of anoxygenic phototrophs in the Baltic Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2348, https://doi.org/10.5194/egusphere-egu21-2348, 2021.

EGU21-9528 | vPICO presentations | BG4.2

Content and variability of nutrients in the water area of ​​Blagopoluchiya Bay (Novaya Zemlya, Kara Sea)

Gennadii Borisenko, Alexander Polukhin, and Valentina Sergeeva

In the frames of the scientific program “Investigation of the Russian Arctic ecosystems” in 2007-2020 held by Shirshov Institute of Oceanology, comprehensive studies of the bays of the Novaya Zemlya archipelago (NZA) were carried out. There is very little information in the scientific literature on the dynamics and hydrochemical structure of the waters of the bays. Our investigations have revealed that the concentration of nutrients (first of all, nitrates and silicate) in the bays of NZA was higher than in the surrounding water area of ​​the Kara Sea. The most well studied and open for investigations is the Blagopoluchiya Bay in the northern island of NZA. Blagopoluchiya Bay is a fjord-type bay with several streams of the glacier origin.

The concentrations of nutrients (N, P, Si, C) in the streams were observed in August-September (0-1.53 µM of PO43-, 6.4-50.2 µM of SiO32-, 0.6-11.2 µM of NO2-+NO3-, 732-4815 µM of DIC). The observed content of nutrients in the waters of the bay was on average 2 times lower, but not lower than the level limiting the development of phytoplankton.

We suppose that high concentrations of nutrients in NZA bays in August-September were supported by increasing glacial runoff from NZA during the summer open water period and the removal of products of degradation of shore rocks with it. Despite the constant enrichment of nutrients, the concentration of phytoplankton in Blagopoluchiya Bay was extremely low (0.2-0.7 mkgC/l) in comparison with the adjacent marine part of the Kara Sea in all years of research.  Perhaps it was due to osmostress of planktonic algae during desalination of the bay by the NZA runoff.

This work was supported by the State Agreement of The Ministry of Science and Education of Russian Federation (theme №0128-2019-0008); Russian Foundation for Basic Research project 18-05-60069 (processing hydrochemistry data); Russian Scientific Foundation project 19-17-00196 (data obtaining); by the Grant of the President of the Russian Federation MK-860.2020.5 (processing carbonate chemistry data).

How to cite: Borisenko, G., Polukhin, A., and Sergeeva, V.: Content and variability of nutrients in the water area of ​​Blagopoluchiya Bay (Novaya Zemlya, Kara Sea), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9528, https://doi.org/10.5194/egusphere-egu21-9528, 2021.

EGU21-8648 | vPICO presentations | BG4.2

Metabolic alkalinity release from the Elbe estuary to the North Sea

Mona Norbisrath, Jeannette Hansen, Kirstin Dähnke, Tina Sanders, Justus E. E. van Beusekom, and Helmuth Thomas

The Elbe is the largest river entering the German Bight. Its estuary is a heavily used waterway connecting the sea to Germany’s biggest port in Hamburg. The Elbe navigation channel is continuously dredged, and agricultural fertilizer input from the catchment ensuing large phytoplankton blooms in the river Elbe exerts additional anthropogenic pressure. Biogeochemistry in the estuary is additionally governed by the North Sea and its strong tidal cycles, which ensure an exchange of fresh and marine waters.

The aims were to quantify the release of the carbon species total alkalinity (TA) and dissolved inorganic carbon (DIC) along the Elbe estuary, and to estimate the contribution of aerobe and anaerobe metabolic processes. Therefore, we used water samples collected continuously during a cruise in June 2019, to measure TA and DIC, and the stable isotopes of nitrate. We applied mass balances, to characterize the metabolic activity and detect their effect on the carbon species

The Elbe estuary could be subdivided into two parts: 1) an outer marine driven part, which is dominated by conservative mixing, also visible in higher TA than DIC values, and 2) an inner fresh water part in which metabolic processes play an important role.

We found a strong increase in TA and DIC (several hundred µmol kg-1) in the Hamburg port area, with higher DIC than TA values. We unraveled the water column impacts of nitrification and denitrification on TA and DIC by analyzing the stable isotopes δ15N-NO3- and δ18O-NO3-, and identified water column nitrification as a dominant pelagic process in the port of Hamburg and in the fresh water part further downstream. Because nitrification cannot explain the significant increase of TA and DIC in the port region, anaerobic processes such as denitrification in the sediment also appear to play an important role.

 

How to cite: Norbisrath, M., Hansen, J., Dähnke, K., Sanders, T., van Beusekom, J. E. E., and Thomas, H.: Metabolic alkalinity release from the Elbe estuary to the North Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8648, https://doi.org/10.5194/egusphere-egu21-8648, 2021.

EGU21-10502 | vPICO presentations | BG4.2

Observations Inform Improvements in Model Silicon Cycling in a Semi-enclosed Coastal Sea

Elise Olson, Nina Nemcek, and Susan Allen

We have developed a coupled physical-biological model representing plankton and nutrient dynamics of the Strait of Georgia, a fjord-like semi-enclosed coastal sea on the west coast of Canada. The nutrient-phytoplankton-zooplankton-detritus (NPZD)-type biological model is based on nitrogen uptake and remineralization with a coupled silicon cycle and includes both diatom and non-siliceous phytoplankton functional groups. The Strait of Georgia exhibits an estuarine circulation driven by input from the Fraser River as well as many smaller rivers and streams. It has high levels of dissolved silica (can be >50 μM even at the surface). Silicon-replete conditions shape key characteristics of the local ecosystem, which include heavily silicified glass sponge reefs as well as frequent diatom and occasional silicoflagellate blooms. We therefore consider the ability of the model to match observed silicon levels an indicator of the fidelity of its representation of local biogeochemistry. Silicon in the model may be in the form of dissolved silica, living diatoms, or particulate biogenic silica, and model diatom growth may be limited by nitrogen, light, or dissolved silica availability. We will discuss the challenges involved in accurately representing important drivers of the regional silicon cycle. These include accurately capturing the division of primary productivity between diatoms and non-siliceous phytoplankton functional groups, as well as uncertainties in the magnitude of terrestrial inputs and sediment fluxes. We will show how evaluating the model functional groups by comparison with phytoplankton community composition determined by high performance liquid chromatography (HPLC) has informed our interpretation of model results and provided direction for efforts at improving model performance. We will discuss the impact of targeted adjustments to model parameters on the model silicon cycle in light of comparisons to observations.

How to cite: Olson, E., Nemcek, N., and Allen, S.: Observations Inform Improvements in Model Silicon Cycling in a Semi-enclosed Coastal Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10502, https://doi.org/10.5194/egusphere-egu21-10502, 2021.

EGU21-16506 | vPICO presentations | BG4.2

Characterization of an optical signature of the DOM of the coastal permafrost in the Mackenzie delta, by PARAFAC analysis

Aude Flamand, Gwénaëlle Chaillou, Lauren Kipp, and Dustin Whalen

Global warming increases the thawing rate of the permafrost in high northern latitudes. The Arctic soil organic carbon accounts for over 50% of global soil carbon which is roughly twice the amount present in the atmosphere. An increasing amount of the newly mobilized old organic carbon, and its associated compounds, originating from permafrost thaw, is expected to be delivered to the Arctic Ocean by rivers and groundwater discharges all along the Arctic coastline. Absorbance and fluorescence spectroscopy can be used to identify a specific optical signature of permafrost-derived solutes with the objective of studying their transport and transformation to coastal waters. Emission-excitation spectra (EEMs) from three sampling sites along the coastal area of the delta were assessed and parallel factor analysis (PARAFAC) was used to identify three different components characterizing the origin and the nature of the organic carbon present in various types of samples (massive ice, groundwater, seawater and water samples on top/bottom of slumps). This study suggests that the carbon originating from the thawing of the permafrost could indeed be traced along the coastal area of the Delta.

How to cite: Flamand, A., Chaillou, G., Kipp, L., and Whalen, D.: Characterization of an optical signature of the DOM of the coastal permafrost in the Mackenzie delta, by PARAFAC analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16506, https://doi.org/10.5194/egusphere-egu21-16506, 2021.

EGU21-9419 | vPICO presentations | BG4.2

Past century increases of terrestrial nutrient inputs impact both the coastal and open ocean carbon cycle

Fabrice Lacroix, Tatiana Ilyina, Moritz Mathis, Goulven Gildas Laruelle, and Pierre Regnier

Past century increases in terrigenous N and P inputs to the ocean due to industrialization, agricultural practices and wastewater have been reported to have dramatic consequences for ecosystems in various coastal regions. Yet, the impacts of increased nutrient inputs through river transports and atmospheric deposition on the coastal and open ocean carbon cycle have yet to be quantitatively investigated at the global scale. To address this gap of knowledge, we enhanced the ocean biogeochemical model HAMOCC at a horizontal resolution of around 0.4° in order to improve the representation of temporal changes of riverine fluxes and of coastal ocean dynamics in the model. Through a series of simulations with differing model forcings, we isolated individual effects arising from (1) increasing atmospheric CO2 levels, (2) a changing physical climate and (3) alterations in oceanic inputs of terrigenous P and N inputs, all over the 1905 to 2010 period. Our results indicate a strong response of the coastal ocean ecosystem to increased terrestrial nutrient inputs, which induce the global coastal Net Primary Production (NPP) to increase by 14% over the simulation time span. This eutrophication signal is, furthermore, partly exported to the open ocean, which undergoes an increase in NPP of 1.75 Pg C yr-1, or 4 % in relative terms, in the simulations, owing to the cross-shelf export of 33-46% of the anthropogenic P and N inputs to the coastal ocean. As a whole, increased P and N inputs lead to an overall global ocean NPP rise of around 2.15 Pg C yr-1, or 5% (combined coastal and open ocean). This net increase attributed to land-ocean couplings exceeds the simulated global oceanic NPP decrease of 4 % associated with stronger upper ocean thermal stratification over the time span, a feedback that been under stronger scrutiny in published literature. Our results suggest that increased riverine nutrient concentrations due to anthropogenic activities may also have substantial impacts for ecosystems in the open ocean, in contrary to what was assumed until now, although this is dependent on the rate of transfer of the nutrients from the coastal to the open ocean.

How to cite: Lacroix, F., Ilyina, T., Mathis, M., Laruelle, G. G., and Regnier, P.: Past century increases of terrestrial nutrient inputs impact both the coastal and open ocean carbon cycle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9419, https://doi.org/10.5194/egusphere-egu21-9419, 2021.

EGU21-9689 | vPICO presentations | BG4.2

The palaeoceanographic history of the Celtic Sea since the last deglaciation and its potential for carbon storage

Jacob Noble, Alix Cage, Olivia Beavers, Bradley Sparks, Mark Furze, and James Scourse

Shelf seas account for around 10-30% of ocean productivity, 30-50% of inorganic carbon burial and up to 80% of organic carbon storage (Sharples et al., 2019); as such, shelf-sea sediments are a potential store of carbon and could play an important role in the ‘blue’ carbon cycle, and thus global climate. UK shelf-sea hydrography is dominated by seasonal stratification which drives productivity; however, stratification evolved with sea-level and tidal dynamic changes over the Holocene epoch on the UK shelf, and thus carbon stores will have changed over time. These shallow marine environments are typically seen as erosional environments and have therefore been somewhat overlooked in terms of palaeoenvironments with only a few studies from the UK continental shelf (e.g. Austin and Scourse, 1997). Here we use a core collected from the Celtic Deep, on the UK shelf, to explore environmental change, and the evolution of stratification in this setting and the potential role it plays in the global carbon cycle.

JC106-052PC, a 7.5m long marine sediment core, was recovered in 2018 at a water-depth of 116 m from the Celtic Deep (a relatively deep trough in the Celtic Sea between Britain and Ireland) as part of the BRITICE project. A radiocarbon date of 10,435 ±127 years cal BP at 4.1m suggests the core covers the Holocene epoch and preceding deglacial period. Preliminary multiproxy data from this expanded archive (ITRAX XRF, organic content, benthic foraminifera assemblages) points to changing environmental conditions and productivity potentially reflecting the evolution of seasonal stratification in the Celtic Sea over the Holocene. Work currently focuses on increasing the resolution of the benthic foraminifera record of JC106-052PC, extending the record into the deglacial period, and applying a benthic foraminifera transfer function approach to estimate sea-surface temperature of the Celtic Sea during the Holocene and deglacial period.  

This study aims to increase our understanding of the shelf-sea dynamics and productivity of the Celtic Sea over the last deglacial to Holocene period. By elucidating the response of the Celtic Sea to changing sea level and oceanographic conditions, and its capacity to act as a carbon store, we can better understand the role of other shelf environments, potentially benefiting global studies of palaeoclimate and future climate change. 

How to cite: Noble, J., Cage, A., Beavers, O., Sparks, B., Furze, M., and Scourse, J.: The palaeoceanographic history of the Celtic Sea since the last deglaciation and its potential for carbon storage, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9689, https://doi.org/10.5194/egusphere-egu21-9689, 2021.

EGU21-5692 | vPICO presentations | BG4.2 | Highlight

Recent FerryBox observations reveal a strong increase in surface seawater pCO2 in the North Sea

Vlad Macovei, Yoana Voynova, Holger Brix, and Wilhelm Petersen

Surface seawater carbon dioxide partial pressure (pCO2) in the North Sea, a large temperate shelf sea, was measured between 2014 and 2018 using FerryBox-integrated membrane sensors on ships of opportunity. The use of commercial vessels ensured a high spatio-temporal resolution, with data available year-round in areas belonging to all the stratification regime types found in the North Sea. Average annual cycles revealed a dominant biological control on pCO2 variability, with thermal effects modulating its amplitude. In the regions of freshwater influence, the biogeochemical characteristics of the riverine end-member also influenced the pCO2 measured near shore. Deseasonalized winter trends of seawater pCO2 were positive (ranging from 4.4 ± 2.0 µatm yr-1 to 8.4 ± 2.9 µatm yr-1 depending on the region), while the trends calculated including all deseasonalized monthly averages were even higher (ranging from 9.7 ± 2.8 µatm yr-1 to 12.2 ± 1.4 µatm yr-1). All these trends were stronger than the atmospheric pCO2 trend. Consequently, during our study period, the southern North Sea became a stronger source and the northern North Sea became a weaker sink for atmospheric carbon with implications for the Northwestern European Shelf carbon uptake capacity.

How to cite: Macovei, V., Voynova, Y., Brix, H., and Petersen, W.: Recent FerryBox observations reveal a strong increase in surface seawater pCO2 in the North Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5692, https://doi.org/10.5194/egusphere-egu21-5692, 2021.

The North Sea’s location has made it an object of oceanographic study for over 150 years. But within the more recent past, this shelf sea with its strong continental shelf pump system has captivated science’s attention for a different reason: artificial ocean alkalinization (AOA). Through the enhancement of metabolic pathways or the addition of dissolved alkaline minerals into the ocean to draw down atmospheric CO2, AOA seems to offer a compelling option to mitigate climate change. But without judicious thought, human interaction could come at great cost. Alkalinity plays an integral role within a system’s biogeochemistry, and disruptions may result in large scale changes to small scale environments. But, within the North Sea, an extremely effective tracer of total alkalinity has been found, 228Ra. This isotope along with 226Ra, comprise the two long-lived isotopes of the Radium Quartet with half-lives of 1600yrs and 5.8yrs, respectively. As naturally occurring, sediment-derived radioisotopes, 228Ra and 226Ra have the potential to map the water-mass composition, the distribution patterns, and the associated timescales from shelf-sediment interaction to the open ocean. Furthermore, providing a possible method to shed light on the North Sea’s water-mass distributions, changing alkalinity patterns, and the potential effects of AOA. Over the course of this study, we will identify the basin’s key water-mass patterns and end members through the use of 226Ra and 228Ra, complemented by hydrological and carbonate parameters collected from the North Sea during the summers of 2018 and 2019 aboard the German research vessel Heincke. By employing inverse modelling techniques, we will investigate how AOA can cause changes on both a local and potentially global scale.

How to cite: Mears, C., Thomas, H., and Wolschke, H.: Using long-lived radium isotopes as water-mass tracers in the North Sea and investigating their use for tracking artificial ocean alkalinization, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8232, https://doi.org/10.5194/egusphere-egu21-8232, 2021.

EGU21-2283 | vPICO presentations | BG4.2 | Highlight

Global trends in air-water CO2 exchange over seagrass meadows revealed by atmospheric Eddy Covariance

Bryce Van Dam, Pierre Polsenaere, Aylin Barreras-Apodaca, Christian Lopes, Zulia Sanchez-Mejia, Tatsuki Tokoro, Tomohiro Kuwae, Lucia Gutiérrez Loza, Anna Rutgersson, James Fourqurean, and Helmuth Thomas

Coastal vegetated habitats like seagrass meadows can mitigate anthropogenic carbon emissions by sequestering CO2 as “blue carbon” (BC). Already, some coastal ecosystems are actively managed to enhance BC storage, with associated BC stocks included in national greenhouse gas inventories. However, the extent to which BC burial fluxes are enhanced or counteracted by other carbon fluxes, especially air-water CO2 flux (FCO2) remains poorly understood. To this end, we synthesized all available direct FCO2 measurements over seagrass meadows made using a common method (atmospheric Eddy Covariance), across a globally-representative range of ecotypes. Of the four sites with seasonal data coverage, two were net CO2 sources, with average FCO2 equivalent to 44 - 115% of the global average BC burial rate. At the remaining sites, net CO2 uptake was 101 - 888% of average BC burial. A wavelet coherence analysis demonstrates that FCO2 was most strongly related to physical factors like temperature, wind, and tides. In particular, tidal forcing appears to shape global-scale patterns in FCO2, likely due to a complex suite of drivers including: lateral carbon exchange, bottom-driven turbulence, and pore-water pumping. Lastly, sea-surface drag coefficients were always greater than prediction for the open ocean, supporting a universal enhancement of gas-transfer in shallow coastal waters. Our study points to the need for a more comprehensive approach to BC assessments, considering not only organic carbon storage, but also air-water COexchange, and its complex biogeochemical and physical drivers.

How to cite: Van Dam, B., Polsenaere, P., Barreras-Apodaca, A., Lopes, C., Sanchez-Mejia, Z., Tokoro, T., Kuwae, T., Gutiérrez Loza, L., Rutgersson, A., Fourqurean, J., and Thomas, H.: Global trends in air-water CO2 exchange over seagrass meadows revealed by atmospheric Eddy Covariance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2283, https://doi.org/10.5194/egusphere-egu21-2283, 2021.

EGU21-14382 | vPICO presentations | BG4.2

Insights of greenhouse gases (CO2, CH4 and N2O) dynamics in sub-tropical estuaries from a coupled hydrodynamic-biogeochemical estuarine model 

Peisheng Huang, Naomi S. Wells, Bradley D. Eyre, Daniel Paraska, and Matthew R. Hipsey

Coastal waters are typically productive aquatic ecosystems and play an important role in the global greenhouse gas (GHG) budget. However, the uncertainty in the estimation of GHG emission from estuaries remains large due to significant variability in GHG concentrations in time and space. This study aimed to provide a more accurate estimation of GHG emissions from sub-tropical estuaries by validating and analyzing results from a 3D hydrodynamic-biogeochemical model used to capture the temporal and spatial dynamics of the major GHG (CO2 CH4, and N2O). The model was applied to the Brisbane, Maroochy, and Noosa Estuary in Queensland, Australia, representing systems under high, median, and low human impacts, and was validated with datasets from long-term monitoring stations and field campaigns along the freshwater-marine continuum. Distinct spatial heterogeneity of GHG distribution was found with the upstream acting as a hotspot for emission to the atmosphere, despite this area occupying a relatively small portion of the rivers. Seasonal variations of pCO2 at the surface were driven mostly by the changes in water temperature and DIC concentrations, while strong diurnal variation was also found, driven by the changes related to tidal forcing. All GHG showed distinct signatures in the three rivers, related to trophic statues and hydrology. The model allowed us to approximate the fraction of incoming carbon and nitrogen that was lost to the atmosphere as GHG emissions, which is a step towards improving regional and national GHG budgets. A link of the biogeochemical model to a parameter optimization software PEST is being used to assist in uncertainty analysis from the model outputs.

How to cite: Huang, P., Wells, N. S., Eyre, B. D., Paraska, D., and Hipsey, M. R.: Insights of greenhouse gases (CO2, CH4 and N2O) dynamics in sub-tropical estuaries from a coupled hydrodynamic-biogeochemical estuarine model , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14382, https://doi.org/10.5194/egusphere-egu21-14382, 2021.

EGU21-13862 | vPICO presentations | BG4.2

The Impact of a Modest Anthropogenic Carbon Increase on the Carbonate Chemistry Balance of a Temperate Fjord System

Tereza Jarnikova, Debby Ianson, Susan E. Allen, Andrew E. Shao, and Elise M. Olson

Coastal regions are typically characterized by considerable physical variability that in turn leads to dramatic variability in coastal carbonate chemistry.  Recent shipboard and mooring-based observations have shown large spatial and temporal variations of carbonate chemistry parameters, including air-sea CO2 flux and aragonite saturation state, in one prominent coastal region in the Northeast Pacific Ocean - the Salish Sea. The range of the observed variability in the regional carbonate system is significantly larger than the global anthropogenic change, complicating the detection of secular carbon trends. Simultaneously, sparse observations limit understanding of the carbonate balance as a whole. Here, we use a highly resolved coastal model, SalishSeaCast, to characterize the drivers of the carbonate chemistry balance of the Salish Sea, with an emphasis on air-sea CO2 flux and aragonite saturation state. We then investigate the impact of a relatively modest increase in anthropogenic carbon in this region in the context of the governing physical and biological dynamics of the system. We examine the striking effects of the anthropogenic change to date on the inorganic carbon balance of the system, highlighting impacts on the aragonite saturation state of the system and its buffering capacity, as well as suggesting some bounds for the regional air-sea and lateral carbon fluxes. We then use the GLODAP dataset of global coastal carbon observations to consider our results in the context of other regions of the Pacific Rim and the global coastal ocean. 

How to cite: Jarnikova, T., Ianson, D., Allen, S. E., Shao, A. E., and Olson, E. M.: The Impact of a Modest Anthropogenic Carbon Increase on the Carbonate Chemistry Balance of a Temperate Fjord System, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13862, https://doi.org/10.5194/egusphere-egu21-13862, 2021.

EGU21-14046 | vPICO presentations | BG4.2

Short-term changes of anthropogenic eutrophication with precipitation in tropical coastal waters (Guanabara Bay, Rio de Janeiro, Brazil)

Tainan Fonseca, Roberta Bittencourt Peixoto, Luana Pinho, Leticia Cotrim da Cunha, Ricardo Pollery, and Humberto Marotta

Eutrophication in coastal waters caused by non-treated urban discharges has been considered one of the most important effects of global change. At tropical latitudes, nutrient dynamics may be especially intense due to increased metabolic responses supported by high temperatures and solar incidence throughout the year. In addition, short-term variations, such as in rainfall and the tidal regime, may determine important changes in nutrient concentrations and the subsequent trophic status of coastal waters, which are still neglected especially during nocturnal periods due to common logistical constraints. Here, we assessed 24-h variations of water quality during the winter season in a tropical eutrophic bay that receives large inputs of nutrients from non-treated urban effluents (Guanabara Bay, RJ, Brazil). We measured concentrations of dissolved forms of nutrients (nitrate, nitrite, N-ammoniacal, phosphate, and silicate) and carbon (DOC), and oxygen (DO) associated with temperature, salinity, and pH in surface waters each 2h over two daily cycles (July and August 2018). Water samples for nutrients and DOC were preserved for later analysis, while other variables were measured in the field. A biomonitoring system with a submersible pump was used to collect surface coastal waters without bubbling, and along a 70 m pipe from the beach to the field lab. In turn, meteorological data were obtained from a city weather station located ~6 Km from the sampling area. The monthly accumulated precipitation with respect to the 24-h cycle in July was ~70% lower than in August (58 and 16 mm, respectively), although only that in July has showed a rainfall event during the sampling period. As a result, average DOC and N-ammoniacal concentrations in surface waters were ~50% lower, while nitrate, silicate and DO concentrations ~56, 164 and 50 % higher, respectively, during the 24-h cycle in August compared to July. Also, waters were slightly more basic and less saltier in August, contrasting with similar average values of phosphate concentrations and temperature between both sampling periods. Finally, DO concentrations indicated an intense metabolism, varying from a peak of supersaturation with high solar incidence to net autotrophy (2 pm) to undersaturation values as a proxy of net heterotrophy after the nocturnal period (6 am). In conclusion, this short-term study showed that higher monthly accumulated precipitation may dilute high DOC and N-ammoniacal concentrations in coastal aquatic ecosystems undergoing anthropogenic eutrophication. On the other hand, silicate and nitrate concentrations might be related to higher runoff inputs from the watershed. The event of precipitation in July also confirmed a drastic increase in nitrate concentrations, likely due to inputs from the watershed. Therefore, our findings reveal the complexity of accumulated and immediate effects of rainfall on nutrient levels in tropical coastal waters, which  highlight the importance of biomonitoring studies specially in urban areas.

How to cite: Fonseca, T., Bittencourt Peixoto, R., Pinho, L., Cotrim da Cunha, L., Pollery, R., and Marotta, H.: Short-term changes of anthropogenic eutrophication with precipitation in tropical coastal waters (Guanabara Bay, Rio de Janeiro, Brazil), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14046, https://doi.org/10.5194/egusphere-egu21-14046, 2021.

SolveSAPHE, the Solver Suite for Alkalinity-PH Equations (Munhoven, 2013, DOI:10.5194/gmd-6-1367-2013), hereafter SolveSAPHE v.1, was the first carbonate chemistry speciation package that was able to securely and reliably calculate pH for any physically meaningful pair of total alkalinity (AlkT) and dissolved inorganic carbon (CT) values. We have now revised and extended the solution approach developed for SolveSAPHE v.1 so that AlkT & CO2, AlkT & HCO3 and AlkT & CO3 problems can be processed as well.

The mathematical analysis of the modified alkalinity-pH equations reveals that the AlkT & CO2 and AlkT & HCO3 problems have one and only one positive root for any physically sensible pair of data (i.e., such that, resp., [CO2] > 0 and [HCO3] > 0). For AlkT & CO3 the situation is completely different: there are pairs of data values for which there is no solution, others for which there is one and still others for which there are two. Similarly to its predecessor, the new SolveSAPHE-r2 offers automatic root bracketing and efficient initialisation schemes for the iterative solvers. The AlkT & CO3 problem is furthermore autonomously and completely characterised: for any given pair of data values, the number of solutions is determined and non-overlapping bracketing intervals are calculated.

The numerical solution of the alkalinity-pH equations for the three new pairs is far more difficult than for the AlkT & CT pair. The Newton-Raphson and the secant based solvers from SolveSAPHE v.1 had to be reworked in depth to reliably process the three additional data input pairs. The AlkT & CO2 pair is computationally the most demanding. With the Newton-Raphson based solver, it takes about five times as long to solve as the companion AlkT & CT pair, while AlkT & CO32– requires about four times as much time. All in all, the secant based solver offers the best performances. It outperforms the Newton-Raphson based one by up to a factor of four and leads to equation residuals that are up to seven orders of magnitude lower. For carbonate speciation problems posed by AlkT and either one of [CO2], [HCO3] or [CO32–] the secant based routine from SolveSAPHE-r2 is clearly the method of choice; for calculations with AlkT & CT, the SolveSAPHE v.1 solvers will perform better, due to the mathematically favourable characteristics of the alkalinity-pH equation for that pair.

How to cite: Munhoven, G.: SolveSAPHE-r2: a new versatile 4x4 engine for carbonate system pH calculations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9477, https://doi.org/10.5194/egusphere-egu21-9477, 2021.

BG4.3 – (Paleo-)environmental reconstructions from biomineralized carbonates: From the Precambrian to the present

EGU21-825 | vPICO presentations | BG4.3 | Highlight

Status-quo of carbonate cadmium isotope compositions as a paleo-productivity proxy

Simon V. Hohl

Cadmium (Cd) and isotope systematics are emerging tools for studying the biogeochemical cycling of micronutrients in the oceans, and sedimentary archives, as Cd concentrations in seawater show a nutrient-like behaviour, with surface depletion and deep water enrichments. However, the underlying processes are yet to be fully understood. The Cd concentration and isotopic composition of seawater are set by the balance of Cd inputs (and their isotopic composition) and the fractionation on removal to sedimentary sinks. The most favoured explanation is the Cd utilisation by marine phototrophic biomass, causing the surface water’s dissolved Cd pool depletion creating a depth gradient of increasing Cd concentrations and lighter isotopic compositions. Under incomplete oxidative recycling, organic matter may act as an effective Cd sink and authigenic minerals may store the ambient seawater’s Cd isotope composition.

Consequently, stable Cd isotope compositions in marine carbonates show broad variations linked to paleo-productivity and redox state changes. Additional fractionation processes govern the Cd isotopic compositions of marine sediments. Besides biological utilisation, experimental Cd partitioning into authigenic calcites or sulphides under variable redox and salinity conditions has been shown.  Therefore, when applying Cd isotopes in carbonates, other geochemical proxies must be evaluated very carefully to understand the involved Cd fractionation processes. This presentation aims to present the status quo of research done on authigenic and biologic carbonates and carbonate leachates in carbonatic shales to show the strengths and pitfalls of this new emerging bio-geoscience isotope proxy and its use for paleoenvironmental reconstructions on Earth and beyond.

 

 

How to cite: Hohl, S. V.: Status-quo of carbonate cadmium isotope compositions as a paleo-productivity proxy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-825, https://doi.org/10.5194/egusphere-egu21-825, 2021.

EGU21-1984 | vPICO presentations | BG4.3

Trace metals and Nd isotopes in 3.35 Ga old stromatolites of the Strelley Pool Formation (Australia) unravel the genesis of carbonates and chert

Sebastian Viehmann, Simon V. Hohl, Nathalie Tepe, Martin Van Kranendonk, Joachim Reitner, Thilo Hofmann, Christian Koeberl, and Patrick Meister

Stromatolites are laminated, presumably microbial, structures, consisting largely of an authigenic precipitate, thus providing potential geochemical archives of early Earth aqueous environments and their habitability. In this study, we report trace element and Sm/Nd isotope data from Palaeoarchean stromatolites and adjacent cherts of the Strelley Pool Formation (NW Australia), obtained by ICP-MS and TIMS, to test their reliability as archives for palaeo-environmental reconstruction and to understand authigenic mineral formation. Stromatolitic carbonates plot together with the stratigraphically underlying Marble Bar cherts on a linear Sm-Nd regression line yielding an age of 3253 ±320 Ma. In contrast, associated crystal-fan carbonates yield 2718 ±220 Ma, suggesting that their Sm-Nd isotope system was altered after deposition. Geochronological information via Sm-Nd dating of black and white cherts is limited, probably due to a reset of the isotope system during an unknown Paleoproterozoic or younger alteration event. Carbonates, as well as white cherts, show shale-normalized rare earth element and yttrium patterns (REYSN; except for redox-sensitive Ce and Eu) parallel to those of modern seawater, indicating a seawater-derived origin. Positive EuSN anomalies (2.1 - 2.4), combined with heterogeneous ɛNd3.35Ga values (-3.2 to +5.8) within alternating stromatolite laminae, support that seawater chemistry was affected by both continental weathering and high-temperature hydrothermal fluids that episodically delivered chemical elements from young mafic and older felsic rock sources into the stromatolite environment. In contrast, black cherts show REYSN patterns characteristic of a non-seawater source and significant amounts of elements leached from the surrounding rocks, overprinting the pristine geochemical composition of ancient seawater. In conclusion, Archaean stromatolites indeed preserve pristine authigenic phases at the mm-scale that contain signatures representative of the water chemistry prevailing in the depositional environment of the time.

How to cite: Viehmann, S., Hohl, S. V., Tepe, N., Van Kranendonk, M., Reitner, J., Hofmann, T., Koeberl, C., and Meister, P.: Trace metals and Nd isotopes in 3.35 Ga old stromatolites of the Strelley Pool Formation (Australia) unravel the genesis of carbonates and chert, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1984, https://doi.org/10.5194/egusphere-egu21-1984, 2021.

EGU21-4122 | vPICO presentations | BG4.3

Palaeoenvironmental signals from stromatolites of the Mesoproterozoic Stoer Group, N.W. Scotland

Paul Dennis, Bridie Duchesne, and Alina Marca

The sedimentary environment and notably the climate conditions that pertained during deposition of the Mesoproterozoic (~1200 Ma) Torridonian Stoer Group have been subject to debate for some time. On one hand it has been proposed that, despite the low palaeolatitude, the Group is largely represented by fluvio-lacustrine sediments deposited under cold, possibly glacial conditions.  On the other hand, evidence and arguments have been put forward in favour of either a marine, or arid to semi-arid terrestrial environment. Contributing to this debate, in this study we focus on thin calcitic layers within the Clachtoll formation and younger Poll a’ Mhuilt member that may represent stromatolites, or stromatolite like deposits. Whilst recent work has cast doubt on the biogenic origin of these calcite layers, suggesting they may be either evaporitic or detrital in origin, we believe that much of the petrographic and isotope evidence is equivocal. Focusing on large scale morphology, sedimentary structures, micro-fabrics and mineralogy we  present new evidence for the biogenicity of these deposits. A key difficulty is resolving both diagentic (pressure solution, stylolite development and neomorphism) and later grain growth fabrics associated with low grade metamorphism from unaltered fabrics and grains. In combination with bulk (δ13C and δ18O) and clumped isotope (Δ47) studies we find that whilst the Stoer Group has undergone low grade metamorphism with maximum temperatures of ca. 120oC the isotope system has remained closed with respect to exchange with diagenetic and metamorphic fluids. The implication is that the very depleted δ18O values for the calcites of -18‰VPDB are characteristic of the original environmental conditions. Meteoric water values would need to be as low as -15 to -20‰VSMOW for precipitation of the calcite at ambient Earth surface temperatures. This is prima facie evidence that the deposits are terrestrial and not marine and at face value also implies cold conditions with isotopically depleted rainfall. We cannot rule out, however, that precipitation sourced from a global ocean that is significantly depleted in 18O as suggested by some models may contribute to explaining the very depleted isotope signatures and apparent low temperatures.

How to cite: Dennis, P., Duchesne, B., and Marca, A.: Palaeoenvironmental signals from stromatolites of the Mesoproterozoic Stoer Group, N.W. Scotland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4122, https://doi.org/10.5194/egusphere-egu21-4122, 2021.

EGU21-8911 | vPICO presentations | BG4.3

Living and fossil microbialites in Laguna de Los Cisnes (Southernmost Chile): A duel between biotic and abiotic processes

Clément Pollier, Daniel Ariztegui, Alejandro Nuñez Guerrero, and Jorge Rabassa

Appeared more than 3.5 billion years ago, microbialites represent one of the oldest ecosystems on Earth. These architects of oxygenic photosynthesis dominate the fossil record for nearly 80% of Earth's history, having influenced the evolution of the planet notably by changing the properties of the atmosphere. Despite a dramatic decline in their abundance from the start of the Phanerozoic, they still develop today in a wide spectrum of depositional environments (The Bahamas, Australia, Brazil, etc.). The spatio-temporal distribution of microbialites therefore make them a valuable archive of both life and Earth evolution. However, after nearly 100 years of research, their origin as well as their environmental significance is still a matter of debate. Little is known about microbialite formation, in particular the relative roles of microbial versus environmental factors ruling their growth. Laguna de Los Cisnes located at 53 ° 25' S and 70 ° 40' W in Chilean Tierra del Fuego, Patagonia, provides us with a unique site to fill this gap. This basin was formed during the retreat of the ice following the last glaciation about 10,000 years ago. Subsequently, the lake was densely colonized by microbial mats that developed the presently living and fossil carbonate microbialites. We have explored the relative contribution of environmental versus biological factors controlling microbialite morphogenesis across various scales.

Macroscopically, these organo-sedimentary deposits have an extension of almost 8 km2 encompassing several morphologies exceptionally large with maximum heights and widths of 1.5 m and 5.0 m respectively. Crater-like shapes are dominant, displaying a spherical to elongated character most frequently unfilled. Both spatial distribution and temporal succession of morphotypes indicate that the dominant physico-chemical character of the water is critical in the localization as well as in the style of the microbial carbonate factory, which in turn is reflected in the morphological character of the subsequent deposit. The microbialite meso-structure reveals a pattern of three lithological distinctive stacked layers. This fabric reflects a multiphase history of formation, linked with the ecological succession of specific bacterial communities throughout time that are still strongly influenced by the prevailing environmental conditions. Interestingly, the simultaneous occurrence of various living bacterial mats provides insights regarding the microscale interactions between the different compounds of the bacterial ecosystem (cyanobacteria, sulfate-reducing bacteria, green algae and diatoms) and their relative roles in the calcification processes.

Finally, the presence of extraordinary well-preserved fossil outcrops along with living microbialites gives a temporal dimension to this study, laying the foundation for the development of a new formation model. By applying the latter to other microbialites outcropping at different geographical and temporal scales, the microbial carbonates of Laguna de Los Cisnes can provide critical information to better reconstruct the dominant environmental conditions during the early evolution of life on Earth.

How to cite: Pollier, C., Ariztegui, D., Nuñez Guerrero, A., and Rabassa, J.: Living and fossil microbialites in Laguna de Los Cisnes (Southernmost Chile): A duel between biotic and abiotic processes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8911, https://doi.org/10.5194/egusphere-egu21-8911, 2021.

EGU21-14810 | vPICO presentations | BG4.3

The uranium isotopic composition of modern stromatolites forming in Shark Bay, Western Australia

Ashley N. Martin, Monika Markowska, Allan R. Chivas, and Stefan Weyer

Stromatolites represent some of the earliest evidence for life and are valuable geochemical archives for understanding the rise of oxygen on early Earth. Metal redox proxies in carbonates, such as stable uranium isotopes (238U/235U), are useful for assessing the oxidation state of ancient waterbodies, but may also be sensitive to local water chemistry and early sedimentary diagenesis. This requires the validation of such proxies in modern environments before applying them to ancient carbonates. Here we measure the U isotopic composition of modern stromatolites forming in Hamelin Pool in Shark Bay, Western Australia – a large hypersaline marine embayment and the largest modern example of stromatolite development globally. Actively-growing stromatolite tops from Shark Bay exhibited a narrow range of δ238U from -0.30 to -0.33‰, corresponding to an offset of ca. +0.1‰ from seawater. Such an offset has not been found in other biotic marine carbonates, which exhibit seawater-like δ238U (ca. -0.4‰), but is consistent with findings from carbonate co-precipitation experiments. One hypothesis for our measured +0.1‰ offset is the elevated Ca concentration of the hypersaline Shark Bay seawater relative to open seawater. This results in a greater proportion of dissolved U present as Ca2UO2(CO3)3, which is expected to be isotopically lighter than other U species and not incorporated during carbonate mineral formation. Higher δ238U up to +0.11‰ were measured in the deeper stromatolite laminae, consistent with the expected U isotope signatures for U reduction. Stromatolite radiocarbon ages show that the diagenetic modification of U occurs within ~1 ka and may be considered syndepositional on geological timescales. These results from the deeper stromatolite laminae support the application of a ca. -0.4‰ correction factor to the δ238U of stromatolites formed in oxic waterbodies, similar to other biotic carbonates. It is unclear whether the additional +0.1‰ offset found in stromatolite tops is particular to seawater chemistry of Shark Bay or a general feature of microbial carbonate precipitation. This warrants investigation of the δ238U proxy in other modern environments where stromatolites proliferate.

How to cite: Martin, A. N., Markowska, M., Chivas, A. R., and Weyer, S.: The uranium isotopic composition of modern stromatolites forming in Shark Bay, Western Australia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14810, https://doi.org/10.5194/egusphere-egu21-14810, 2021.

Biogeochemical disruptions across the Cretaceous-Paleogene boundary : insights from sulfur isotopes

 

Arbia JOUINI1*, Guillaume PARIS1, Guillaume CARO1, Annachiara BARTOLINI2

1 Centre de Recherches Pétrographiques et Géochimiques, CRPG-CNRS, UMR7358, ,15 rue Notre Dame des Pauvres, BP20, 54501Vandoeuvre-lès-Nancy, France, email:Arbia.jouini@univ-lorraine.Fr

2 Muséum National D’Histoire Naturelle, Département Origines & Evolution, CR2P MNHN, CNRS, Sorbonne Université, 8 rue Buffon CP38, 75005 Paris, France

 

The Cretaceous–Paleogene (KPg) mass extinction event 66 million years ago witnessed one of the ‘Big Five’ mass extinctions of the Phanerozoic. Two major catastrophic events, the Chicxulub asteroid impact and the Deccan trap eruptions, were involved in complex climatic and environmental changes that culminated in the mass extinction including oceanic biogenic carbonate crisis, sea water chemistry and ocean oxygen level changes. Deep understanding of the coeval sulfur biogeochemical cycle may help to better constrain and quantify these parameters.

Here we present the first stratigraphic high resolution isotopic compositions of carbonate associated sulfate (CAS) based on monospecific planktic and benthic foraminifers' samples during the Maastrichtian-Danian transition from IODP pacific site 1209C. Primary δ34SCAS data suggests that there was a major perturbation of sulfur cycle around the KPg transition with rapid fluctuations (100-200kyr) of about 2-4‰ (±0.54‰, 2SD) during the late Maastrichtian followed by a negative excursion in δ34SCAS of 2-3‰ during the early Paleocene.

An increase in oxygen levels associated with a decline in organic carbon burial, related to a collapse in primary productivity, may have led to the early Paleocene δ34SCAS negative shift via a significant drop in microbial sulfate reduction. Alternatively, Deccan volcanism could also have played a role and impacted the sulfur cycle via direct input of isotopically light sulfur to the ocean. A revised correlation between δ34SCAS data reported in this study and a precise dating of the Deccan volcanism phases would allow us to explore this hypothesis.

Keywords : KPg boundary, Sulphur cycle, cycle du calcium, Planktic and benthic foraminifera

 

How to cite: Jouini, A.: Biogeochemical disruptions across the Cretaceous-Paleogene boundary : insights from sulfur isotopes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14669, https://doi.org/10.5194/egusphere-egu21-14669, 2021.

EGU21-10173 | vPICO presentations | BG4.3

Calcification depth of deep-dwelling planktonic foraminifera from eastern North Atlantic: evidence from stable oxygen isotope ratios of shells from plankton tows 

Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera

Stable oxygen isotopes (δ18O) of planktonic foraminifera are one of the most used tools to reconstruct environmental conditions of the water column. Since different species live and calcify at different depths in the water column, the δ18O of sedimentary foraminifera reflects to a large degree the vertical habitat and interspecies δ18O differences and can thus potentially provide information on the vertical structure of the water column. To fully unlock the potential of foraminifera as recorders of past surface water properties, it is necessary to understand how and under what conditions the environmental signal is incorporated into the calcite shells of individual species. Deep-dwelling species play a particularly important role in this context, since their calcification depth reaches below the surface mixed layer. Here we report δ18O measurements made on four deep-dwelling Globorotalia species collected with stratified plankton tows in the Eastern North Atlantic. Size and crust effects on the δ18O signal were evaluated showing that a larger size increases the δ18O of Globorotalia inflata and Globorotalia hirsuta, and a crust effect is reflected in a higher δ18O in Globorotalia truncatulinoides. The great majority of the δ18O values can be explained without invoking disequilibrium calcification. When interpreted in this way the data imply depth-integrated calcification with progressive addition of calcite with depth to about 300 m for G. inflata and to about 500 m for G. hirsuta. In Globorotalia scitula, despite a strong subsurface maximum in abundance, the vertical δ18O profile is flat and appears dominated by a surface layer signal. In G. truncatulinoides, the δ18O profile follows equilibrium for each depth, implying a constant habitat during growth at each depth layer. The δ18O values are more consistent with the predictions of the Shackleton (1974) paleotemperature equation, except in G. scitula, which shows values more consistent with the Kim and O’Neil (1997) prediction.  In all cases, we observe a difference between the level where most of the specimens were present and the depth where most of their shell appears to calcify.

How to cite: Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Schulz, M., and Kucera, M.: Calcification depth of deep-dwelling planktonic foraminifera from eastern North Atlantic: evidence from stable oxygen isotope ratios of shells from plankton tows , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10173, https://doi.org/10.5194/egusphere-egu21-10173, 2021.

EGU21-2618 | vPICO presentations | BG4.3

Biogeography of benthic foraminifera in contourite drift systems

Anna Saupe, Johanna Schmidt, Jassin Petersen, André Bahr, and Patrick Grunert

Benthic foraminifera colonize a wide range of marine environments, including contourite drift systems (CDS). CDS are characterized by sustained bottom currents and cover large areas on the seafloor, e.g., in the North Atlantic. Due to their high sedimentation rates, they represent fundamental archives for paleoclimatology and paleoceanography. Some studies already highlight the influence of high current velocities on assemblages of epibenthic foraminifera and suggest their applicability as a reliable proxy for bottom current reconstructions (Schönfeld, 2002; Jorissen et al., 2007 and references therein). Certain epibenthic foraminiferal species live as highly adapted opportunistic suspension feeders using elevated substrates as a unique ecological niche. Through their elevated microhabitat, they optimize the uptake of suspended food particles gaining an advantage over other epibenthic organisms. However, their application as a bottom current proxy has so far been limited to the Iberian Margin and has been barely tested outside the Gulf of Cadiz (e.g., Diz et al., 2004).

The present study aims to document biogeographic distribution patterns of benthic foraminifera in extended CDS from different latitudes. Two data sets from the high-latitude North Atlantic (50-62°N) are presented here. The surface samples of the first data set originate from the Björn and Gardar drifts between the Reykjanes Ridge and the Rockall Plateau south of Iceland. Deposition is primarily controlled by the Iceland Scotland Overflow Water. The second data set is located further west within the Eirik Drift on the southern slope of the Greenland margin. The main controlling water mass is the Deep Western Boundary Current.

Initial results show that epibenthic species dominate over infaunal taxa. The data set is mainly determined by the tubular agglutinated species Rhabdammina abyssorum, Saccorhiza ramosa, and Rhizammina algaeformis, as well as hyaline forms such as Hoeglundina elegans, Cibicidoides wuellerstorfi, and Cibicides refulgens. Thus, several different suspension-feeding taxa dominate the data set. Three assemblages of benthic foraminifera are distinguished: agglutinated suspension feeders dominating in more clayey environments, hyaline suspension feeders dominating in sandier environments with increased current velocities, and infaunal detritus feeders dominating below 2000 m water depth.

The presented data sets are currently complemented by samples from the Campos drift on the Brazilian margin (10°-22°S). Together, the low, mid and high latitude data sets will improve our understanding of biogeographic distribution patterns of benthic foraminifera in CDS. The expected results will be fundamental to ensure the applicability of foraminifera-based proxy methods for bottom current reconstruction.

References

Diz, P., Guillermo, F., Costas, S., Souto, C., Alejo, I., 2004. Distribution of benthic foraminifera in coarse sediments, Ria de Vigo, NW Iberian Margin. J. Foraminifer. Res. 34, 258–275. https://doi.org/10.2113/34.4.258

Jorissen, F.J., Fontanier, C., Thomas, E., 2007. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, in: Hillaire-Marcel, C., de Vernal, A. (Eds.), Proxies in Late Cenozoic Paleoceanography: Pt. 2: Biological Tracers and Biomarkers. pp. 263–325. https://doi.org/10.1016/S1572-5480(07)01012-3

Schönfeld, J., 2002. Recent benthic foraminiferal assemblages in deep high-energy environments from the Gulf of Cadiz (Spain).

Mar. Micropaleontol. 44, 141–162. https://doi.org/10.1016/S0377-8398(01)00039-1

How to cite: Saupe, A., Schmidt, J., Petersen, J., Bahr, A., and Grunert, P.: Biogeography of benthic foraminifera in contourite drift systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2618, https://doi.org/10.5194/egusphere-egu21-2618, 2021.

EGU21-12655 | vPICO presentations | BG4.3

Production and calcification variations of the key coccolithophore species Gephyrocapsa during the Late Pleistocene (MIS 14 to MIS 7)

Alba González-Lanchas, José-Abel Flores, and Francisco J. Sierro

There is an increasing interest in understanding the role of coccolithophores, a group of major calcifying phytoplankton, in the marine carbon cycle: they have a dual contribution to the operation of the carbonate and biological pumps during their lifecycle. How the recent changes in seawater carbonate chemistry are affecting their production and calcification is a matter of debate in the scientific community. Culture experiments suggest that modern coccolithophore species (Emiliania huxleyi) is sensitive to such variations. Conversely, could past evolutionary or adaptative changes in the most important coccolithophore species have an impact on ocean chemistry?  

We focus on the interval comprising the MIS 14 to 7 (Mid-Brunhes, Pleistocene) when a remarkable increase in the amplitude of glacial/interglacial atmospheric CO2 was recorded. We analyzed (i) the composition of the dominant coccolithophore Gephyrocapsa assemblages and (ii) the morphometric parameters (length, mass, and thickness) of its coccoliths (carbonated scales) in samples from a set of sediment cores (Sites IODP U1314, U1385and ODP 925 and 977) located in a north-south transect in the North Atlantic and the western Mediterranean Sea. We estimated the primary productivity conditions at the different regions and explore methodological approaches to measure the calcification of Gephyrocapsa coccoliths.

Preliminary results show a correlation between the abundance of coccoliths, assemblage composition, and coccolith morphology at different regions. A comparison with geochemical and sedimentological records suggests a significant role of Gephyrocapsa coccolithophore in marine organic and carbonate production throughout the interval. These observations open the discussion about the existence of a global environmental relationship between coccolithophore assemblages and coccolith morphometrical variations, but also, a possible impact of the changes in the Gephyrocapsa production and calcification on the ocean chemistry.

How to cite: González-Lanchas, A., Flores, J.-A., and Sierro, F. J.: Production and calcification variations of the key coccolithophore species Gephyrocapsa during the Late Pleistocene (MIS 14 to MIS 7), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12655, https://doi.org/10.5194/egusphere-egu21-12655, 2021.

EGU21-3268 | vPICO presentations | BG4.3 | Highlight

A stable oxygen isotope record of weather-timescale variability in the Eocene greenhouse world, using the giant marine gastropod Campanile giganteum

Nick Van Horebeek, Johan Vellekoop, Alexander J. Clark, Niels J. de Winter, Yannick Stroobandt, and Robert P. Speijer

Instrumental climate data are only available for the last few hundred years. To extend this record back in time, climate proxies are used. However, on the geological timescale, the temporal resolution of most paleoclimate records does not provide information about seasonality, let alone events on the weather-timescale. These weather-timescale events are becoming more frequently integrated in models to predict future climate change, but reconstructions of variability with such short timescales in the geological record are extremely rare.

A recent study by de Winter et al. (2020) has revealed that the Eocene giant marine gastropod Campanile giganteum (Lamarck, 1804) had growth rates exceeding 600 mm/year along the helix, far exceeding those of most other modern and fossil molluscs. With such high growth rates, these giant gastropods have the unique potential to record weather-timescale variability in the Eocene greenhouse world. Therefore, we generated a high-resolution (mm-scale) δ18O record on a well-preserved specimen of C. giganteum from the Paris Basin in Fleury-la-Rivière, France, in order to generate a unique ultra-high resolution record of intra-annual, weather-timescale variability in the Eocene. Our preliminary results show a clear seasonal pattern with δ18O values ranging between 0.1‰ and -2.5‰, superimposed by weekly variations of up to 0.5‰. This could provide insights in weather patterns in the Eocene greenhouse climate and potentially allow the identification of extreme weather events.

 

Reference

de Winter N.J., Vellekoop J., Clark A.J., Stassen P., Speijer R.P., Claeys P., (2020) The Giant Marine Gastropod Campanile Giganteum (Lamarck, 1804) as a High‐Resolution Archive of Seasonality in the Eocene Greenhouse World., Geochemistry, Geophysics, Geosystems, 21(4), https://doi.org/10.1029/2019GC008794

How to cite: Van Horebeek, N., Vellekoop, J., Clark, A. J., de Winter, N. J., Stroobandt, Y., and Speijer, R. P.: A stable oxygen isotope record of weather-timescale variability in the Eocene greenhouse world, using the giant marine gastropod Campanile giganteum, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3268, https://doi.org/10.5194/egusphere-egu21-3268, 2021.

EGU21-3114 | vPICO presentations | BG4.3

A century of otolith-derived temperature exposure of Icelandic and Norwegian cod (Gadus morhua)

Gotje von Leesen, Bjarte Bogstad, Einar Hjörleifsson, Ulysses S. Ninnemann, and Steven E. Campana

Increasing water temperatures are predicted around the globe with high amplitudes of warming in Subarctic and Arctic regions where Atlantic cod (Gadus morhua) populations currently flourish. We reconstructed population abundance, oxygen isotope and temperature chronologies from otoliths of the two largest cod populations in the world - the Icelandic and the Northeast Arctic (NEA) cod - to determine if their temperature selectivity over the last 100 years was driven by rising water temperatures and/ or changes in abundance. For δ18Ootolith analysis, individual annual growth increments from immature and mature life history stages of cod collected in southern Iceland and the Lofoten area (Norway) were micromilled from adult otoliths. Ambient temperatures of Icelandic and Norwegian cod were reconstructed using otolith δ18O. Linear mixed effect models were applied to identify and quantify the density-dependent temperature selectivity of both cod populations. The results indicated that Icelandic cod migrated into warmer waters with increasing abundance (p < 0.05), whereas NEA cod moved into colder waters (p < 0.001). The temperature selectivity of NEA cod was also significantly correlated with water temperatures at 0-200 m depth (p < 0.001), indicating that NEA cod were at least partially exposed to increasing ocean temperatures due to global warming. Stable oxygen isotope and ambient temperature chronologies can be an important tool for sustainable management plans in terms of future global warming as it can be used to predict re-distribution as oceans warm.

How to cite: von Leesen, G., Bogstad, B., Hjörleifsson, E., Ninnemann, U. S., and Campana, S. E.: A century of otolith-derived temperature exposure of Icelandic and Norwegian cod (Gadus morhua), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3114, https://doi.org/10.5194/egusphere-egu21-3114, 2021.

EGU21-6168 | vPICO presentations | BG4.3

Daily cyclicity in bivalve shell chemistry: Paleo-weather record or circadian rhythm?

Niels de Winter, Lukas Fröhlich, Daniel Killam, Wim Boer, Lennart de Nooijer, Gert-Jan Reichart, and Bernd Schöne

Bivalve shells have a long-standing reputation as archives for high-resolution (seasonal scale) (paleo)climate variability due to their incremental growth, yielding accurate shell chronologies, and their abundance, diversity, and high preservation potential in the fossil record (Schöne and Surge, 2012). Capitalizing on innovations in geochemical techniques, high-resolution sclerochronology can now resolve changes in bivalve shell chemistry beyond the daily resolution (e.g. Sano et al., 2012; Warter et al., 2018). When applied on fossil shells, these ultra-high-resolution records have the potential to bridge the gap between climate and weather reconstructions and yield unprecedented information about bivalve paleobiology, extreme weather events in past climates and even astronomical cycles (Warter and Müller, 2017; de Winter et al., 2020; Yan et al., 2020).

However, studies of sub-daily scale shell chemistry are almost exclusively limited to giant clams (Tridacna spp.), due to their high growth rates. It is hitherto unknown if and how such diurnal cycles in chemistry differ in other genera across the bivalve clade and/or whether they are exclusive to photosymbiotic clams. In addition, it is not clear whether the daily cycles are formed in response to environmental conditions (e.g. light or temperature sensitivity) or reflect circadian rhythms.

To answer these questions, we combine ultra-high-resolution (hourly scale) Laser Ablation ICP-MS trace element profiles through shells of various tridacnid species from the tropical Gulf of Aqaba with profiles through the giant scallop (Pecten maximus) from the temperate Atlantic coast of northwestern France. We observe trace element cycles on in the daily frequency domain in both tridacnids and pectinids. This shows that these diurnal cycles are formed regardless of shell mineralogy (aragonite vs. calcite), living environment (tropical inter-tidal vs. temperate sub-tidal) and occur in highly unrelated bivalve taxa. Our data helps the interpretation of similar records from fossil shells in terms of past (extreme) weather events, climate, and shell growth.

 

References

de Winter, N. J. et al. Paleoceanography and Paleoclimatology 35, e2019PA003723 (2020).

Sano, Y. et al. Nature Communications 3, 761 (2012).

Schöne, B. R. & Surge, D. M. Treatise Online 24, Volume 1, Chapter 14 (2012).

Warter, V., Erez, J. & Müller, W. Palaeogeography, Palaeoclimatology, Palaeoecology 496, 32–47 (2018).

Warter, V. & Müller, W. Palaeogeography, Palaeoclimatology, Palaeoecology 465, 362–375 (2017).

Yan, H. et al. PNAS 117, 7038–7043 (2020).

How to cite: de Winter, N., Fröhlich, L., Killam, D., Boer, W., de Nooijer, L., Reichart, G.-J., and Schöne, B.: Daily cyclicity in bivalve shell chemistry: Paleo-weather record or circadian rhythm?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6168, https://doi.org/10.5194/egusphere-egu21-6168, 2021.

EGU21-13178 | vPICO presentations | BG4.3

A modern snapshot of the isotopic composition of lacustrine biogenic carbonates: Records of seasonal water temperature variability

Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster

Carbonate shells and encrustations from lacustrine organisms provide proxy records of past environmental and climatic changes. The oxygen isotopic composition (δ18O) of such carbonates depends on water temperature during carbonate precipitation, and on the δ18O of the lake water. Lake water δ18O, in turn, is controlled by the δ18O of precipitation in the catchment, water residence time and mixing, and by evaporation. A paleoclimate interpretation of carbonate δ18O records requires a site-specific calibration based on an understanding of the local conditions.

For this study, carbonates and water were sampled in the littoral zone of lake Locknesjön, central Sweden (62.99°N, 14.85°E, 328 m a.s.l.) along a water depth gradient from 1 to 8 m. We took samples from living organisms and sub-recent samples in surface sediments of the calcifying algae Chara hispida, the mollusk Pisidium, and adult and juvenile instars of two ostracod species, Candona candida and Candona neglecta.

We show that neither the δ18O of carbonates nor the δ18O of water vary significantly with water depth, indicating a well-mixed epilimnion. The largest differences in the mean carbonate δ18O between species are caused by vital offsets, i.e. the species-specific deviation from the δ18O of inorganic carbonate which would have been precipitated in isotopic equilibrium with the water. After subtraction of these constant vital offsets, remaining differences in the mean carbonate δ18O between species can mainly be attributed to seasonal water temperature changes. The lowest δ18O values are observed in Chara encrustations, which form during the summer months when photosynthesis is most intense. Adult ostracods, which calcify their valves during the cold season, display the highest δ18O values. This is because an increase in temperature leads to a decrease in fractionation between carbonate and water, and therefore to a decrease in carbonate δ18O. An increase in temperature also leads to an increase in the δ18O of lake water through its effect on precipitation δ18O and on evaporation, and consequently to an increase in carbonate δ18O, opposite to the temperature effect on fractionation. However, the seasonal and inter-annual variability in lake water δ18O is small (0.5‰) due to the long water residence time. Seasonal changes in the temperature-dependent fractionation are therefore the dominant cause of carbonate δ18O differences between species.

Temperature reconstructions based on “paleo-temperature” equations for equilibrium carbonate precipitation using the mean δ18O of each species and the mean δ18O of lake water are well in agreement with the observed seasonal water temperature range. The high carbonate δ18O variability of samples within a species, on the other hand, leads to a large scatter in the reconstructed temperatures based on individual samples. This implies that care must be taken to obtain a representative sample size for paleo-temperature reconstructions.

How to cite: Labuhn, I., Tell, F., von Grafenstein, U., Hammarlund, D., Kuhnert, H., and Minster, B.: A modern snapshot of the isotopic composition of lacustrine biogenic carbonates: Records of seasonal water temperature variability, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13178, https://doi.org/10.5194/egusphere-egu21-13178, 2021.

EGU21-7247 | vPICO presentations | BG4.3

Sclerochronological evidence of pronounced seasonality from the Pliocene of the southern North Sea Basin, and its implication

Andrew Johnson, Annemarie Valentine, Melanie Leng, Bernd Schöne, Hilary Sloane, and Stijn Goolaerts

Various elements of the biota of the early Pliocene Coralline Crag Formation (southern North Sea Basin, eastern England) have been taken to indicate a warm temperate marine climate, with summer surface temperatures above 20 °C and winter temperatures above 10 °C [1]. However, summer and winter temperature estimates from oxygen-isotope (δ18O) sclerochronology of benthic invertebrates are typically in the respective cool temperate range when calculated using a plausible modelled value for water δ18O of +0.1‰. For instance, examples of the bivalve mollusc Aequipecten opercularis from the Ramsholt Member indicate summer maximum temperatures of 11.0–15.7 °C and winter minimum temperatures of 4.4–7.1 °C [2]. Amongst other evidence, the pattern of microgrowth-increment variation in Ramsholt-Member A. opercularis points to a depth below the summer thermocline, hence the temperatures recorded for that season provide an underestimate of surface temperature; this may well have been in the warm temperate summer range [2], as suggested by the pelagic dinoflagellate biota [3]. However, the cool temperate benthic winter temperatures indicated by isotopic data are likely also to have obtained at the surface, pointing to a greater seasonal range in surface temperature (perhaps > 15 °C) than in the modern North Sea (< 13 °C) [2]. This conclusion is not changed by adoption of a different (invariant) value for water δ18O and also follows from data for a specific late Pliocene interval (Mid-Piacenzian Warm Period) elsewhere in the southern North Sea Basin (Belgium, Netherlands [4]). Here we present isotopic evidence of a seasonal range in surface temperature higher than now at other times in the late Pliocene. Examples of A. opercularis from several horizons in the Lillo Formation (Belgium) and the Oosterhout Formation (Netherlands) indicate seasonal ranges in benthic temperature of 10–14 °C. Seasonal variation in water δ18O can only plausibly account for about 1 °C of these ranges. Taking into consideration microgrowth-increment evidence of a setting below the summer thermocline, the seafloor ranges imply that the surface seasonal range was sometimes 17 °C or more. Other bivalves (Atrina fragilis, Arctica islandica, Pygocardia rustica, Glycymeris radiolyrata) do not indicate such a high seasonal range in benthic (and hence surface) temperature but this can be attributed to inadequate sampling—time-averaging or a failure to recover evidence of seasonal extremes because of growth breaks. The high surface temperature range could reflect a reduction in vigour of the North Atlantic Current and hence diminished oceanic supply of heat in winter.

References:

[1] Vignols et al. (2019), Chem. Geol. 526, 62–83. https://doi.org/10.1016/j.chemgeo.2018.05.034.

[2] Johnson et al. (2020), Palaeogeogr. Palaeoclimatol. Palaeoecol. 561. https://doi.org/10.1016/j.palaeo.2020.110046.

[3] Head (1997), J. Paleontol. 71, 165–193. https://doi.org/10.1017/S0022336000039123.

[4] Valentine et al. (2011), Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 9–16. https://doi.org/10.1016/j.palaeo.2011.05.015.

How to cite: Johnson, A., Valentine, A., Leng, M., Schöne, B., Sloane, H., and Goolaerts, S.: Sclerochronological evidence of pronounced seasonality from the Pliocene of the southern North Sea Basin, and its implication, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7247, https://doi.org/10.5194/egusphere-egu21-7247, 2021.

EGU21-7818 | vPICO presentations | BG4.3

Investigating the impact of growth kinetics on geochemical records of oyster shells

Rute Coimbra, Fernando Rocha, Rosa Freitas, Adrian Immenhauser, Ana Cristina Azerêdo, and Maria Cristina Cabral

Sclerochronology provides valuable proxy data for investigating high-resolution paleoclimate dynamics at seasonal/(sub-)annual scale. Nevertheless, the interpretation of these proxy data is often hampered by the interplay between three main factors: (i) paleoenvironmental patterns; (ii) vital (physiological and kinetic) effects related to biomineralization pathways; and (iii) potential alteration during diagenetic modification of skeletal materials.

Because the interaction between environmental and metabolic factors is, at present, one of the most difficult to quantify, an ideal opportunity is brought forward to better understand the complexity of environment-metabolism interaction in marine biogenic carbonate archives. A project was tailored to investigate the impact of growth kinetics on geochemical proxy data (carbon and oxygen stable isotopes and main and trace elemental data) from oyster shells responding to changes in metabolism due to environmental fluctuations. Motivated by the exceptionally favourable circumstance that oyster farms are located near our Institution in Aveiro (Portugal), these will be used as a natural laboratory. Most interestingly, in Aveiro, oyster growth rates are significantly higher compared to those cultivated in France (Arcachon Bay). This is the case despite the fact, that the oysters grown in Aveiro are imported from France, and this will form the main study site of this project. In order to have a wider range of observational sites, a third oyster station in Southern Portugal (Olhão), influenced by warmer coastal waters will also be sampled. Finally, modern oyster specimen will be compared and contrasted with well-preserved ancient Crassostrea and Ostrea material in an attempt to bridge the gap between the Present and the Mesozoic.

State-of-the-art petrographic and geochemical research involving both modern and ancient oysters of the same genus will be performed. With reference to recent specimens, this must be performed in combination with a strict biological assessment of oyster metabolic performance, but with focus on carbonate archive research. An international Research Team (Portugal, Germany, France, Spain) was assembled, bringing together experts from a wide range of research fields, including Carbonate Geochemistry, Biomineralization, Sedimentology, Mineralogy, (Micro) Palaeontology, Sclerochronology, Biology, Ecology, Artificial Intelligence, and Data Modelling.

The goals of this project include: (i) establishing the link between modern environmental seasonal fluctuations, oyster growth rates and impact on the geochemical record of the shell, while additionally understanding non-linear responses (e.g., ontogenenetic evolution, effects of storms or other extreme events); (ii) compile information from a variety of proxies (bio-geochemical, petrographic, mineralogical, ecological), locations and times, aiming to test the best approaches for integration with a coherent framework; (iii) explore the link to ancient shell-archives, distinguishing between the various forcers of their geochemical signals, more specifically the interplay between paleoenvironmental conditions and vital effects.

How to cite: Coimbra, R., Rocha, F., Freitas, R., Immenhauser, A., Azerêdo, A. C., and Cabral, M. C.: Investigating the impact of growth kinetics on geochemical records of oyster shells, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7818, https://doi.org/10.5194/egusphere-egu21-7818, 2021.

BG4.4 – Aquatic biogeochemical cycles of carbon, nitrogen and phosphorus. From measurements to understanding hydrochemical patterns and processes

EGU21-14774 | vPICO presentations | BG4.4

Column experiments show that cycling of both nitrogen and phosphorus is altered by dissolved organic carbon in river sediments

Marc Stutter, Daniel Graeber, and Gabriele Weigelhofer

Since agriculture and wider development have altered simultaneously runoff, pollution and natural structures in catchments (e.g. wetlands, floodplains, soil drainage, riparian trees) aquatic ecosystems deviate from background concentrations of N and P, but also organic C (OC). Hence mechanistic studies coupling OC, N and P are needed and whilst data coupling OC:N is becoming more available and interpreted this is not yet the case for aquatic OC:P.  Column flow experiments (excluding light) allow preliminary controlled study of microbial biogeochemical processes in benthic sediments exposed to factorial nutrients (here +C, +NP, +CNP using simple dissolved substrates glucose, nitrate, and phosphate).

Based on the stoichiometric theory, we tested the hypothesis that bioavailable DOC will stimulate the heterotrophic uptake of soluble reactive P (SRP) and dissolved inorganic nitrogen in stream sediments. Glucose-C additions increased nutrient uptake, but also NP additions enhanced consumption of native and added OC. The effects of C addition were stronger on N than P uptake, presumably because labile C stimulated both assimilation and denitrification, while adsorption (unaffected by the presence or not of OC) formed a part of P uptake. Internal biogeochemical cycling lessened net nutrient uptake due to N and P recycling into dissolved organically-complexed forms (DOP and DON).

Simple column experiments point to mechanisms whereby availability of organic carbon can stimulate N and P sequestration in the bed of nutrient-polluted streams. This should promote further studies coupling OC with N and, especially P, towards better knowledge and ability to incorporate coupled macronutrient cycles into nutrient models and, potentially, ecosystem management.

How to cite: Stutter, M., Graeber, D., and Weigelhofer, G.: Column experiments show that cycling of both nitrogen and phosphorus is altered by dissolved organic carbon in river sediments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14774, https://doi.org/10.5194/egusphere-egu21-14774, 2021.

EGU21-1658 | vPICO presentations | BG4.4

Microbial-driven Impact of the Topmost Bed Sediment Layer on Aquatic Phosphate Fluxes

Simeon Choo, Olaf Dellwig, Janine Wäge-Recchioni, and Heide Schulz-Vogt

There is a longstanding principle that the uppermost layer of aquatic sediment is the primary regulator of nutrient loads in the bottom water zone, pertaining to the fact that it is significantly biological in nature and thus the site of a myriad of biota-associated processes. Nevertheless, although this principle is seemingly obvious, there is unusually scant literature corroborating the impact of the uppermost sediment layer on water column nutrient fluxes, in particular soluble reactive phosphorus (SRP). It has also been theorized that in certain environments, large bacteria play a major role in phosphorus cycling in the sediment. This challenges the prevailing dogma that the control of bottom water phosphate (PO43-) is mainly attributed to the SRP flux contribution from iron (Fe) oxide-bound P in sediment or remineralisation under anoxia and warming conditions respectively. In this study, elevated temperature as well as anoxic incubation treatments were set up to demonstrate that in response to an increased level of PO43- being released under stressful conditions, the topmost bed sediment layer (TBSL) has an unmistakable impact on P sequestration and stabilisation of the bottom water PO43- fluxes. Likewise, we also show that large filamentous microorganisms residing in the TBSL were seemingly active in polyphosphate (polyP) accumulation during these stress-inducing conditions. This therefore strongly points to a new and important biological sink for the SRP flux at the benthic layer of an aquatic environment.

How to cite: Choo, S., Dellwig, O., Wäge-Recchioni, J., and Schulz-Vogt, H.: Microbial-driven Impact of the Topmost Bed Sediment Layer on Aquatic Phosphate Fluxes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1658, https://doi.org/10.5194/egusphere-egu21-1658, 2021.

EGU21-3031 | vPICO presentations | BG4.4

The role of organic matter and bacterial physiology on river metabolism at low flow

Masihullah Hasanyar, Nicolas Flipo, Thomas Romary, and Shuaitao Wang

Development of accurate water quality modelling tools is necessary for integrated water quality management of river systems. The existing water quality models can simulate dissolved oxygen (DO) concentration quite well in rivers, however, there are discrepancies during summer low flow season which are assumed to be due to the heterotrophic bacterial decomposition of organic matter (OM) (Wang, 2019). Therefore, we used the C-RIVE biogeochemical model in order to evaluate the influence of controlling parameters on the DO simulations at low flow.

Four Sobol’ sensitivity analyses (SA) were carried out based on an evolving strategy of reduction in the number of parameters and hiding the inter-parameter interactions. The studied parameters are bacterial (such as growth rate of bacteria), OM-related (repartition and degradation of OM into constituent fractions) and physical (for instance reaeration of river due to navigation and wind) whose variation ranges are selected based on a detailed literature review.

Bacterial growth and mortality rates are by far the two most influential parameters followed by bacterial yield and the share of biodegradable dissolved organic matter (BDOM). More refined SA results indicate that depending on the net bacterial growth (=growth – mortality) being low or high, the bacterial yield and BDOM concentration are the most influential parameters, respectively. Reaeration constant due to navigation and the bacterial uptake of substrate are the other two influential parameters identified in this work. 

The results of this study highlight the importance of accurate in-situ sampling and measurement of these influential parameters in order to reduce modelling uncertainties, as well as the necessity for a suitable sampling frequency in order to characterize potential bacterial community switch during transient events such as combined sewer overflows. 

References:

Wang, S. (2019). Simulation Du Métabolisme de La Seine Par Assimilation de Données En Continu. These de doctorat, Paris Sciences et Lettres

How to cite: Hasanyar, M., Flipo, N., Romary, T., and Wang, S.: The role of organic matter and bacterial physiology on river metabolism at low flow, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3031, https://doi.org/10.5194/egusphere-egu21-3031, 2021.

EGU21-1443 | vPICO presentations | BG4.4

Interaction between carbon cycling and phytoplankton community succession in hydropower reservoirs: Evidence from stable carbon isotope analysis

Xiao jing, Wang baoli, Qiu Xiao-long, Yang Mei-ling, and Liu Cong-qiang

EGU21-4836 | vPICO presentations | BG4.4

Online counter gradient LC-FT-ICR-MS enables detection of highly polar natural organic matter fractions

Limei Han, Jan M. Kaesler, Chang Peng, Thorsten Reemtsma, and Oliver J. Lechtenfeld

Natural organic matter (NOM) is a highly complex mixture of natural organic molecules. The hyphenation of liquid chromatography (LC) with ESI-FT-ICR MS for the molecular characterization of NOM have shown to be a promising approach. However, due to changing solvent composition during gradient elution in LC-FT-ICR-MS, ionization conditions also change throughout the chromatographic separation process. In this study, we applied a post-LC column counter gradient (CG) to ensure stable solvent conditions for transient ESI-MS signals. SRFA and a peat pore water samples were used as representative dissolved NOM samples for method development and validation. Our results show that in the isocratic range segment, the TIC intensities of CG was increased by a factor of 1.5 fold, as compared to the standard gradient (SG) method. In addition, the application of the CASI mode for low abundance fractions revealed over 3 times more molecular formulas (especially for CHNO, CHOS, CHNOS formula classes) than in full scan mode. The number of detected highly polar NOM compounds (with elemental ratios H/C < 1, O/C > 0.6) were more than 20 times larger for CG-LC mode as compared to direct infusion (DI) (5715 vs 266 MF).We conclude that the new CG-LC-FT-ICR MS method achieved a novel insight into the highly polar fractions of NOM, which are inaccessible in conventional DI measurements.

Key words: Natural organic matter (NOM), online LC-FT-ICR MS method, CASI mode, ESI

 

How to cite: Han, L., Kaesler, J. M., Peng, C., Reemtsma, T., and Lechtenfeld, O. J.: Online counter gradient LC-FT-ICR-MS enables detection of highly polar natural organic matter fractions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4836, https://doi.org/10.5194/egusphere-egu21-4836, 2021.

EGU21-4970 | vPICO presentations | BG4.4

Spatial changes in instream DOM quality under base flow conditions linked with different DOM sources in small forested catchments

Maria Paula da Silva, Katharina Blaurock, Burkhard Beudert, Jan H. Fleckenstein, Luisa Hopp, Stefan Peiffer, Thorsten Reemtsma, and Oliver J. Lechtenfeld

Dissolved organic matter (DOM) plays an important role in aquatic systems controlling metal bioavailability and mobility, and nutrient cycling. The quantity and quality of instream DOM determine its role and behavior in aquatic systems. Headwater streams are particularly sensitive systems to study the changes in DOM dynamics due to their immediate interface with adjoining hillslopes and the high soil-to- water-area ratio. However, the controls, sources and mobilization processes of DOM export in natural forested catchments are still poorly understood. The objective of this study is to combine high temporal resolution spectroscopic DOM analysis with high-resolution mass spectrometry data to characterize the spatial changes in DOM composition along a low-order stream in a forested catchment (Bavarian Forest National Park - Germany) during base flow conditions. Furthermore, the study aims to link the patterns found instream with fingerprints of DOM end member sources. DOM quality was monitored over 1.5 year in three sites along the stream using absorption indices indicators of aromaticity (SUVA254) and molecular weight (E2:E3) and data aggregating quality parameters and intensity based on formulas derived from discrete samples analyzed by FT-ICR-MS. Additionally, three end members corresponding to DOM in deep ground water, shallow ground water and water in the top layer of the soil were sampled in the catchment.

At base flow conditions, no significant changes in DOC concentration were observed spatially. Yet, absorption indices from DOM exhibited clear spatial patterns, with higher aromatic and lower molecular weight DOM at the lower floodplain compared to upstream. From the FT-ICR-MS data, however, high aggregate quality data showed a small gradient in DOM quality between the upper and lower parts of the catchment, with the relationship between DOC concentration and the relative intensity (RI) of molecular formulas being a better descriptor of the spatial changes. The patterns observed in formulas with an increase or decrease in RI at higher DOC concentrations is indicative of changes in DOM sources between upper and lower parts of the catchment. The characterization of end members could further elucidate the observed changes in RI of formulas. In the studied catchment, formulas with a decrease in RI at higher DOC concentration agree with the formulas most commonly found for DOM from the deep ground water, whereas the formulas being enriched at higher DOC concentration changed along the stream. At the upper part of the catchment, these formulas are the ones most abundantly present at the shallow ground water, whereas at the lower part these formulas are also representative of formulas found in the sample collected at the superficial layer of the soil. The monitoring of DOM amount and quality in the small forested catchments showed that DOM spatial variability is connected with the availability and mobilization of different sources, even during base flow conditions. The use of spectrophotometers allowed us to identify general trends in DOM quality and concentration, while FT-ICR-MS data was crucial to characterize DOM quality and link the findings instream with DOM sources.

How to cite: da Silva, M. P., Blaurock, K., Beudert, B., H. Fleckenstein, J., Hopp, L., Peiffer, S., Reemtsma, T., and J. Lechtenfeld, O.: Spatial changes in instream DOM quality under base flow conditions linked with different DOM sources in small forested catchments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4970, https://doi.org/10.5194/egusphere-egu21-4970, 2021.

EGU21-9553 | vPICO presentations | BG4.4

The CO2 exchange of a small mountain lake as affected by the local thermo-topographically driven flow regime

Katharina Scholz, Tom Battin, Elisabet Ejarque, Albin Hammerle, Martin Kainz, Jakob Schelker, and Georg Wohlfahrt

Lakes receive large amounts of carbon (C) from the surrounding catchment and, together with the connecting streams, play an important and active role in the global C cycle. The received C can either be lost through the outflow and eventually transported to the ocean, or transformed and stored in sediments or outgassed to the atmosphere. Globally, lakes are estimated to emit 0.3 – 0.64 Pg C m-2 in form of CO2 annually.  Although subalpine and alpine lakes were observed to be supersaturated with CO2, long-term measurements of lake-atmosphere CO2 exchange are sparse. Several methods to quantify water-atmosphere gas exchange exist, like chambers, eddy covariance (EC), mass-balance or gradient based methods including boundary layer models (BLM), each having its own advantages and disadvantages. However, quantifying CO2 exchange in aquatic ecosystems has often proved to be challenging. Here, both the BLM and the EC methods were used to estimate the air-water CO2 exchange of Lake Lunz, a small lake situated in complex mountainous topography of the Austrian Alps. The results indicated that the lake was a small source of CO2. Fluxes were affected by the thermo-topographic flow regime of the field site and its surroundings which drove the local wind pattern but also determined the local atmospheric CO2 concentration.  During most nights, a significant increase in atmospheric CO2 was observed which decreased the differential CO2 concentration at the air-water interface and therefore led to decreased nocturnal CO2 efflux. This diurnal pattern, however, was obscured in the EC measurements, because the method itself highly depends on the local wind regime. Because lakes are an integral part of mountain ranges which are characterized by catchments with complex topography, our findings are most likely of broader impact.

How to cite: Scholz, K., Battin, T., Ejarque, E., Hammerle, A., Kainz, M., Schelker, J., and Wohlfahrt, G.: The CO2 exchange of a small mountain lake as affected by the local thermo-topographically driven flow regime, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9553, https://doi.org/10.5194/egusphere-egu21-9553, 2021.

EGU21-9863 | vPICO presentations | BG4.4

Bioavailable DOC : reactive macronutrient ratios control heterotrophic nutrient assimilation - An experimental proof of the macronutrient-balance hypothesis

Daniel Graeber, Youngdoung Tenzin, Marc Stutter, Gabriele Weigelhofer, Tom Shatwell, Wolf von Tümpling, Jörg Tittel, and Dietrich Borchardt

We assess the “macronutrient-balance hypothesis,” which we define as: “Aquatic heterotrophic nutrient assimilation is controlled by the balance between the bioavailable DOC : reactive macronutrient stoichiometry and the microbial stoichiometric macronutrient demand.” Here we define the reactive macronutrients as the sum of dissolved inorganic nitrogen, soluble-reactive phosphorus (SRP), and dissolved bioavailable organic N (bDON) & P (bDOP). A global meta-analysis of monitoring data from various freshwaters suggests this hypothesis, yet clear experimental support is missing.

We assessed this hypothesis in a proof-of-concept experiment for waters from four different small agricultural streams. We used seven different bioavailable DOC (bDOC) : reactive N and bDOC : reactive P ratios, induced by seven different levels of alder leaf leachate addition. With these treatments and a stream-water specific bacterial inoculum, we conducted a separate 3-day experiment, with three independent replicates per combination of stream water, treatment and sampling occasion. Here, we extracted dissolved organic matter (DOM) fluorophores by measuring excitation-emission matrices with subsequent parallel factor decomposition (EEM-PARAFAC). We assessed the true bioavailability of DOC, DON, and the DOM fluorophores as solute concentration difference between the beginning and end of each experiment. Separately, we predicted bDOC and bDON concentrations based on the bioavailable fluorophores, which we compared to their true bioavailability measured before. Due to very low DOP concentrations, the DOP determination uncertainty was high, and we had to neglect DOP as part of the reactive P.

For bDOC and bDON, the bioavailability measurements agreed with the same fractions calculated indirectly from bioavailable DOM fluorophores (bDOC r² = 0.96, p < 0.001; bDON r² = 0.77, p < 0.001), hence we could predict bDOC and bDON concentrations based on the molecular composition of DOM. Moreover, we found that bDOC : reactive nutrient ratios at specific ranges (molar bDOC : reactive N = 2 − 17; molar bDOC : reactive P = 50 − 300) control microbial heterotrophic nutrient uptake.

In summary, the results of our simple laboratory experiment provide first proof that the bDOC : reactive macronutrient ratio strongly controls heterotrophic reactive macronutrient uptake. Combined with the previous large-scale monitoring evidence, our study implies that the “macronutrient-balance hypothesis” holds in many aquatic ecosystems. However, this hypothesis needs to be corroborated by further experiments with different DOC sources and assessments of changes in bDOC : reactive macronutrient ratios on freshwater carbon and nutrient cycles.

How to cite: Graeber, D., Tenzin, Y., Stutter, M., Weigelhofer, G., Shatwell, T., von Tümpling, W., Tittel, J., and Borchardt, D.: Bioavailable DOC : reactive macronutrient ratios control heterotrophic nutrient assimilation - An experimental proof of the macronutrient-balance hypothesis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9863, https://doi.org/10.5194/egusphere-egu21-9863, 2021.

With increasing pressures on water resources due to population, industrialization, agriculture, urbanization and climatic changes, improved temporal and spatial understanding of water quality is required. The development of new monitoring parameters, along with new monitoring technologies, are needed to provide real-time insight into the biogeochemical processes that underpin aquatic ecosystem health. Aquatic fluorescent organic matter (AFOM) has recently been explored for its potential to measure underpinning microbial activity within aquatic systems, which are essential in maintaining ecosystem health and function, with specific focus on the utilisation of tryptophan-like fluorescence (TLF or Peak T). In situ real-time portable fluorimeters have been extensively used for the identification and measurement of anthropogenic pollutants, such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. More recently, this portable fluorescence technology has been adapted for the monitoring and sensing of biological contamination, using microbially derived fluorescence signals (TLF). 

The principal aim of this research was to deploy, for the first time in the field, the VLux TPro sensor (Chelsea Technologies Ltd., UK) and to assess the ability of this novel fluorescence-based sensor to detect the presence of biological contamination and elevation of microbial activity. This sensor has been developed to correct in situ real-time sensing data for optical interferences (caused by high turbidity and absorbance), as well as to provide quantitative fluorescence data by reporting in standardised quinine sulphate units (QSU). The urban surface waters within the city of Kolkata provide an interesting challenge for water quality sensors, allowing exploration of sensor performance in a range of water bodies ranging from turbid river waters to open sewer canals. 

The sensor data collected demonstrates the ability of the VLux to identify waters with high bacterial loads using Peak T fluorescence. Moderate and weak positive correlations are seen for Peak T and E. coli or total coliform counts, R2 = 0.55 and 0.38 respectively. However, a strong significant correlation is identified between Peak T and the total bacterial cell counts (R2 = 0.75). This demonstrates that Peak T should not be used as a species-specific enumerator in complex surface water matrices. It does, however, demonstrate the ability of the VLux to successfully measure optically corrected and quantitative Peak T fluorescence in QSU. Therefore, data regarding the activity and fast-acting dynamics of freshwater bacterial communities, in response to pollution events, can now be reliably sensed and collected. This was demonstrated by the elevated Peak T fluorescence intensity observed when biologically contaminated water entered the main river channel, enabling identification of contamination hotspots. Sensing data has been further validated by laboratory analysis of spot samples confirming the significant correlations between Peak T and bacteria and nutrient concentrations. Further field-based research is required to determine the feasibility of long-term catchment scale sensor deployment as part of a sensing network, for the monitoring of biological activity and pollution events in freshwaters.  

 

Acknowledgements: This research was supported by the NERC-DST Indo-UK Water Quality Programme NE/R003106/1 and DST/TM/INDO-UK/2K17/30. We would also like to acknowledge Chelsea Technologies Ltd. for ongoing VLux TPro sensor support.

How to cite: Fox, B., Thorn, R., Dutta, T., and Reynolds, D.: A Case Study: The deployment of a novel in situ fluorimeter for monitoring biological contamination within the urban surface waters of Kolkata, India. , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12646, https://doi.org/10.5194/egusphere-egu21-12646, 2021.

EGU21-12676 | vPICO presentations | BG4.4

Wavelet Analysis Identifies Carbon Processes in a Subarctic Stream During Snowmelt Spring Flood

Danny Croghan, Pertti Ala-Aho, Annalea Lohila, Jeffrey Welker, Jussi Vuorenmaa, Mika Aurela, Kaisa-Riikka Mustonen, Bjørn Kløve, and Hannu Marttila

Snowmelt spring floods dominate the annual carbon flux in Arctic streams. However, climate change is altering their timing and magnitude due to changes in snow conditions, further altering the processes controlling the carbon cycle at the catchment scale. Current knowledge is limited by a lack of high-resolution data from Arctic areas. In this study we combine high-resolution biogeochemical-hydro-climatological variables with spectral wavelet analysis for new insights into carbon processes.

This study was conducted during the snowmelt spring flood period in a sub-arctic headwater catchment in Pallas-Ylläs national park, Finland (68°02′N, 24°16′W). We collected in-stream dissolved organic carbon (DOC), carbon dioxide (C02), and terrestrial C02 flux alongside a suite of hydro-climatological variables measured at 30-minute intervals. Continuous wavelet transformations and wavelet coherence were produced to assess the relationship between hydro-climatological variables and carbon variables at different periodicities.

Wavelet transforms indicated that the onset of snowmelt caused the development of significant diel periodicity for in-stream DOC, CO2 and terrestrial CO2 flux, while substantial periods of significant periodicity were observed at multiple day periodicities. Wavelet coherence analysis identified that DOC was consistently lead by flow and conductivity across daily and multiple daily scales suggesting that transport of carbon from the surface and shallow sub-surface pathways to the stream were the predominant processes controlling in-stream DOC. Interestingly for in-stream CO2, groundwater level showed periodic rather than consistent spectral coherence suggesting it is not a consistent control on CO2 in the spring flood. The strongest coherence for in-stream CO2 was with in-stream O2, which may suggest the importance of in-stream metabolism as a control on in-stream CO2 dynamics. Terrestrial CO2 fluxwas controlled by notably different processes than in-stream Carbon and linked strongest to climatological variables. Photosynthetically active radiation (PAR) showed the strongest relationship with CO2 terrestrial flux dynamics. 

Our study highlights the unique processes controlling different parts of the carbon cycle in a headwater arctic catchment during the snowmelt spring flood. We highlight in-stream DOC as particularly vulnerable to changes in spring flood magnitude and timing given the importance of snowmelt dominated transport processes to DOC flux. To identify future changes in the Arctic carbon cycle, wavelet analysis shows potential as tool to analyse changes in processes in high-resolution datasets.

How to cite: Croghan, D., Ala-Aho, P., Lohila, A., Welker, J., Vuorenmaa, J., Aurela, M., Mustonen, K.-R., Kløve, B., and Marttila, H.: Wavelet Analysis Identifies Carbon Processes in a Subarctic Stream During Snowmelt Spring Flood, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12676, https://doi.org/10.5194/egusphere-egu21-12676, 2021.

EGU21-12720 | vPICO presentations | BG4.4

A pan-Arctic algorithm for DOC concentrations from CDOM spectra

Rafael Gonçalves-Araujo, Mats Granskog, Christopher Osburn, and Colin Stedmon
The surface layer of the Arctic Ocean carries a higher dissolved organic carbon (DOC) content than other ocean basins. Climate change impacts the Arctic aquatic DOC-pool by e.g., introducing DOC trapped in permafrost soils as they thaw and by increasing the terrestrial runoff and primary production. Sampling for DOC in the Arctic is rather challenging given its remoteness and difficult access to the region and that it is not possible yet to determine DOC concentrations from instruments deployed in the field. Compared to DOC, colored dissolved organic matter (CDOM) absorption spectroscopy is an easy-to-measure, relatively quick and cost-effective approach which is often closely related to DOC concentrations in water samples. In regions in close proximity to rivers, linear relationships between CDOM absorption at 350nm (a350) and DOC often can be found and, thus, have improved prediction of DOC using two end‐members. However, in regions with two or more end‐members of comparable DOC concentrations (shelf seas and oceanic waters) these relationships are difficult to derive, as there might be pools of similar concentration/intensity but different ratio of absorption to DOC (carbon specific absorption coefficient, a*). Here we present an algorithm to estimate DOC concentrations based on quantitative (a350) and qualitative (spectral absorption slope between 275 and 295nm, S275-295) properties of CDOM. The algorithm considers that there is a linear correlation between DOC and a350 but that the slope of the relationship (inverse of a*) varies depending on the exponent of the ultraviolet (UV) spectral slope (S275‐295), that is, the character or source of DOM. We compiled a Pan-Arctic dataset (n=3607) from a wide range of aquatic systems spanning lakes, rivers, estuaries, coastal and shelf seas and open ocean with salinity ranging from 0 to 35.3. DOC ranged between 19 and 2304µM, whereas a350 varied from 0.01–81.33m-1 and S275-295 ranged 12–39µm-1. The algorithm provided significant and robust (r2=0.93; p<0.0001) DOC estimates (pDOC), ranging 1–2598µM (RMSE=64µM). This indicates that, besides its simplicity, this method is capable of capturing the extremely high variability of DOC within the broad gradient of Arctic aquatic systems considered in this study. Apart from that, pDOC estimates could reproduce both DOC profiles and the DOC vs. salinity relationship across the Arctic Ocean (i.e., distinct sites with highly distinct hydrographic conditions). This potentially makes the method suitable for high-resolution and long-term in situ monitoring of DOC concentrations in Arctic aquatic systems from e.g., absorbance measurements from in situ nitrate sensors.

How to cite: Gonçalves-Araujo, R., Granskog, M., Osburn, C., and Stedmon, C.: A pan-Arctic algorithm for DOC concentrations from CDOM spectra, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12720, https://doi.org/10.5194/egusphere-egu21-12720, 2021.

EGU21-13347 | vPICO presentations | BG4.4

Dissolved oxygen gradients in hyporheic zones depend on fine sediment and associated respiration rates

David Piatka, Romy Wild, Jürgen Geist, Robin Kaule, Ben Gilfedder, Stefan Peiffer, and Johannes A. C. Barth

Dissolved oxygen (DO) in the hyporheic zone (HZ) is a crucial parameter for the survival of many stream organisms and is involved in a multitude of aerobic chemical reactions. However, HZ DO budgets are easily perturbed by climate change and anthropogenic processes that have caused increased deposition of fine sediments (< 2 mm) in many stream beds. The fine sediment fraction hampers exchange of DO-rich stream water with the HZ. In this study we performed a raster sampling approach (0.90 cm length x 1.50 cm width; 30 cm distance between sampling points) at sediment depths of 10 and 25 cm with a focus on DO and its stable isotopes (δ18ODO). The aim was to analyze small-scale turnover patterns in a forested (site 1) and an anthropogenically influenced stream section (site 2) in a 3rd order stream in southern Germany. Grain size analyses showed similar average fine sediment fractions at site 1 (42.5 ±13.7 %) and site 2 (46.3 ±10.8 %). They increased with depth at both sites (38.5 ± 6.3 %, 0-15 cm; 46.5 ± 17.4 %, 15-30 cm at site 1 and 40.6 ±4.5 %, 0-15 cm; 52.0 ±12.2 %, 15-30 cm at site 2). DO concentrations in the HZ ranged from 1.4 to 4.5 mg L-1 (2.0 ±0.7 mg L-1) and 1.5 to 1.8 mg L-1 (1.7 ±0.1 mg L-1) at site 1 and from 1.2 to 2.9 mg L-1 (1.6 ±0.5) and 1.0 to 2.4 mg L-1 (1.6 ±0.4) at site 2 at 10 and 25 cm depth, respectively. The low DO concentrations in the HZ suggest high DO consumption rates and reduced exchange with stream water. This is possibly a result of increased fine sediment proportions. However, other factors such as organic carbon contents and increased respiration rates may also influence DO gradients. In contrast, the stream water had an average DO concentration of 9.8 ±0.2 mg L-1. Associated δ18ODO values of the open water (23.4 ±0.1 ‰) differed from those of sediment waters that showed averages of +22.5 ±0.5 ‰ and +22.4 ±0.3 ‰ at site 1 and +22.5 ±0.4 ‰ and +22.3 ±0.2 ‰ at site 2 at 10 and 25 cm depth, respectively. These sedimentary values indicated dominant photosynthesis, even though due to absence of light in the subsurface this process seems unlikely. Therefore, kinetically-driven processes such as diffusion, interactions with Fe or unknown DO sources within the HZ might have caused such 16O-enriched values. Our findings suggest that the analyses of DO, δ18ODO and fine sediment gradients in the HZ should be combined with stable carbon isotope measurements to further our understanding of hyporheic processes relevant for stream biota.

 

How to cite: Piatka, D., Wild, R., Geist, J., Kaule, R., Gilfedder, B., Peiffer, S., and Barth, J. A. C.: Dissolved oxygen gradients in hyporheic zones depend on fine sediment and associated respiration rates, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13347, https://doi.org/10.5194/egusphere-egu21-13347, 2021.

EGU21-14334 | vPICO presentations | BG4.4

Source-dependent variations in organic carbon degradation rates in lake sediments 

Xingguo Han, Julie Tulo, Longhui Deng, Annika Fiskal, Carsten Schubert, Lenny Winkel, and Mark Lever

Lake sediments are globally important organic carbon (OC) sinks. Biomolecule chemical reactivity, adsorption and physical shielding have been suggested as important factors in controlling OC degradation rates in sediments. Yet, few studies have investigated the relative importance of these variables, or traced how OC from different organismal sources changes over time due to source-dependent variations in degradation rates.

We investigate the factors that control organic biomolecule degradation based on analyses of eukaryotic DNA, biomarkers, and (macro)molecule compositions (using pyrolysis-GC/MS) in sediments of five lakes in central Switzerland that differ in trophic state. We specifically target biomolecules of dominant phytoplankton groups (diatoms, green algae), and terrestrial vascular plants. We show that the decay rates of diatom DNA are significantly higher than those of diatom lipid biomarkers and (macro)molecules, consistent with the higher chemical reactivity of DNA. However, the decay rates of green algal DNA and vascular plant DNA are much slower than those of diatom DNA and similar in magnitude to their corresponding membrane lipids and (macro)molecules. In the case of vascular plant biomolecules (DNA, lignin, polyaromatic compounds), no significant biomolecule degradation was detected over the time scales studied (1-5 centuries).

Our results suggest that chemical reactivity and physical shielding, but not adsorption, are key variables controlling organic biomolecule decay in the lakes studied. In the case of green algae and vascular plants, greater chemical resistance of cell wall structural components to microbial attack appears to facilitate long-term preservation of even highly reactive, intramolecular compounds, such as DNA. These findings have important implications for the use of sedimentary eukaryotic DNA records to reconstruct past environmental changes.

How to cite: Han, X., Tulo, J., Deng, L., Fiskal, A., Schubert, C., Winkel, L., and Lever, M.: Source-dependent variations in organic carbon degradation rates in lake sediments , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14334, https://doi.org/10.5194/egusphere-egu21-14334, 2021.

EGU21-15473 | vPICO presentations | BG4.4

Nutrient cycling and productivity of a Himalayan Glacier Surface

Monica sharma shamurailatpam, Chris yates, Jon telling, Jemma l. wadham, and Ramanathan al

Nutrients deposited and cycled on the glacier surfaces are important not only because of their role in the global biogeochemical cycling in the downstream environments, but also because of their importance as a primary food source for microbes inhabiting glacial surfaces, their ice surface darkening properties, and the consequent potential for enhancing glacier melt. The present study focuses on the Chhota Shigri (CS) Glacier in the North-Western (NW) Indian Himalayan region. The dissolved organic carbon (DOC) concentration in the bare ice is relatively higher than the other aspects studied in the glacial environment of CS indicating that much of the active microbial activity occurring in the bare ice. Total inorganic nitrogen (TIN) is typically concentrated in the snow, which is the major contributor of NO3-. The rapid declining of TIN in the bare ice as compare to other aspects and its enrichment in DOC suggests for a more active microbial activity occurrence in the exposed ice rather than in isolated cryoconites holes in the Chhota Shigri Glacier. The net biological productivity indicates the dominance of net gross photosynthesis over respiration, suggesting a net autotrophic production in CS.

How to cite: sharma shamurailatpam, M., yates, C., telling, J., l. wadham, J., and al, R.: Nutrient cycling and productivity of a Himalayan Glacier Surface, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15473, https://doi.org/10.5194/egusphere-egu21-15473, 2021.

EGU21-16201 | vPICO presentations | BG4.4

Emerging controls of in-stream uptake at the catchment scale

Joni Dehaspe and Andreas Musolff

Nitrate (NO3-) and phosphate (PO43-) inputs to rivers are high in Germany and Europe following energy and food production demands, which can cause harm to aquatic ecosystems and jeopardize drinking water supplies. It is known that permanent and non-permanent nutrient uptake can retain significant amounts of NO3- and PO43- in river networks, however, there is little knowledge about the mechanistic processes involved and their controlling factors on catchment scales. In this work we apply a data driven analysis using the shape of stable, multi-annual, low frequency concentration-discharge (C-Q) relationships in about 500 German monitoring stations. More specifically, the bending of NO3- C-Q relationship was shown to encode uptake efficiency. We systematically address the effects of light and shading, stream ecological status, land-use, hydrological conditions, stream network configurations and chlorophyll a patterns as potential in-stream processing predictors. This assessment allows us to conclude on dominant controls of NO3- uptake efficiency across a wide range of landscape types.

How to cite: Dehaspe, J. and Musolff, A.: Emerging controls of in-stream uptake at the catchment scale, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16201, https://doi.org/10.5194/egusphere-egu21-16201, 2021.

BG4.5 – Experimental Approaches in Marine Biogeosciences

EGU21-13706 | vPICO presentations | BG4.5

A multi-observer approach to promote the conservation of north Adriatic marine biogenic habitats

Marco Sigovini, Luigi Tosi, Andrea Bergamasco, Sandra Donnici, Andrea Sabino, and Alessandro Bergamasco

Environments along the ocean-land continuum strictly interlink to each other both in horizontal and in vertical. Most of the acting processes require investigation through a multi looking observation approach, integrating coastal oceanography, hydrogeology and marine ecology. This can be achieved by simultaneously looking from different perspectives at the same environmental context and processes.
The present study focuses on the northern Adriatic Sea, where a number of peculiar, diverse and valuable coastal and marine ecosystems are localized, characterized by high biodiversity and productivity, such as the Lagoon of Venice and the underwater biogenic-geogenic rocky outcrops named tegnùe. Their structural complexity and habitat heterogeneity is increased by the role of habitat forming species, bioconstructors and biodemolitors. To understand the ecological and morphogenetic role of these organisms, selected biogenic formations and habitats, such as the fan mussel Pinna nobilis colonies on both the Lagoon of Venice and the rocky outcrops, were investigated. Innovative approaches are here presented to map and characterize these biogenic habitats at different hierarchical levels, in order to promote their conservation.

How to cite: Sigovini, M., Tosi, L., Bergamasco, A., Donnici, S., Sabino, A., and Bergamasco, A.: A multi-observer approach to promote the conservation of north Adriatic marine biogenic habitats, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13706, https://doi.org/10.5194/egusphere-egu21-13706, 2021.

EGU21-14032 | vPICO presentations | BG4.5

High-resolution carbon and oxygen isotope record in modern brachiopod Pictothyris picta collected off Okinoshima, Japan

Kazuma Oikawa, Hideko Takayanagi, Kazuyoshi Endo, Masa-aki Yoshida, and Yasufumi Iryu

Carbon (δ13C) and oxygen (δ18O) isotope composition of Rhynchonelliformea brachiopods (hereafter, called ‘brachiopods’) have been regarded as useful paleoenvironmental indicators throughout the Phanerozoic. However, recent studies have revealed that the isotopic composition in modern brachiopod shells records not only environmental changes in ambient seawater but also is influenced by biological controls such as the chemical/isotopic composition of calcifying fluids and physiological processes (e.g., growth rates, metabolism). The latter is known as biological isotope fractionation effects, such as kinetic, metabolic, and pH effects. Recently, a new calcification mechanism in brachiopod shell formation, ion transport mechanism, was proposed. In this study, we measured δ13C and δ18O values of the primary (PL) and secondary (SL) shell layers of three Pictothyris picta (one male and two female specimens) collected at a water depth of~61 m off Okinoshima to improve our understanding of biological isotope fractionation effects during their shell secretion. We obtained ontogenetic-series δ13C and δ18O profiles from the PL (PL-Ont) and the uppermost SL (SL-Ont) at the sampling resolution of 3 days to 8 months per sample. We obtained inner-series δ13C and δ18O profiles from the innermost SL (SL-In) as well. The variations in the δ13C and δ18O profiles of the PL-Ont showed similar trends to those of the SL-Ont. However, the PL-Ont values mostly exhibited relatively lower δ18O values than those of the SL-Ont. Cross plots between the δ13C and δ18O values of the PL-Ont indicated a strong positive correlation and were lower than those of calcite precipitated in isotopic equilibrium with ambient seawater at the fast growth stage, suggesting the significant influence of the kinetic isotope fractionation effect. The SL was precipitated in oxygen isotopic equilibrium with ambient seawater regardless of the growth stage and/or the seasonal changes in living environments. Furthermore, the PL-Ont, SL-Ont, and SL-Inshowed similar δ18O values during the cold season, indicating negligible influences of the kinetic, pH, and magnesium effects on δ18O composition. The δ13C values of the PL-Ont formed at the cold season (= micro-portion formed under the least kinetic isotope fractionation effect) were lower than those of the SL, indicating the stronger metabolic effect on the PL secretion. Our isotopic data showed that the time lag of the PL and the SL formation varies among specimens.

How to cite: Oikawa, K., Takayanagi, H., Endo, K., Yoshida, M., and Iryu, Y.: High-resolution carbon and oxygen isotope record in modern brachiopod Pictothyris picta collected off Okinoshima, Japan, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14032, https://doi.org/10.5194/egusphere-egu21-14032, 2021.

EGU21-12913 | vPICO presentations | BG4.5

Foraminifera-sponge interactions – commensalism to parasitism in the Norwegian-Greenland Sea

Bianca Lintner, Michael Lintner, Jutta Wollenburg, Erik Wurz, and Petra Heinz

This is the first study on the interactions between foraminifera and sponges. Although Cibicides and Hyrrokin are regarded as parasites on siliceous sponges, it is not yet clarified whether foraminifera specifically colonize sponges or are accidentally sucked in during the pelagic stage. To better elucidate these relationships, 12 sponges of different genera were examined and their foraminiferal communities analyzed. In 2018, the sponges for this study were collected with a ROV in water depths of 223 to 625 m in the Norwegian-Greenland Sea. Sponge parts were preserved in ethanol (96 %) and stained with Rose Bengal (2g l-1) to allow a differentiation between the living and dead foraminiferal fauna.

Each sponge sample contained several hundred live and dead foraminiferal individuals of up to 60 different species. Even on Geodia baretti, which is able to release barettin to avoid colonalisation of other organisms, few foraminiferal individuals were observed. On all sponges, the most abundant genus was Cibicides, with Cibicides lobatulus and Cibicides refulgens as the most common taxa. Other very common species were Discorbinella bertheloti or Epistominella nipponica. Also, Hyrrokkin sarcophaga was found on different sponges and following its lifestyle, penetrating the sponge surfaces. The fact that besides adult foraminifera splendid juvenile stages were found indicate that foraminifera reproduced while inside the sponges. This reproduction might be stimulated/triggered by enhanced food availability by the pumping sponge.

In summary, sponges are a special habitat for a high number of foraminiferal taxa. Their interaction ranges from parasitic lifestyle up to reproduction purposes. All these aspects highlight the importance of foraminifera-sponge interactions.

How to cite: Lintner, B., Lintner, M., Wollenburg, J., Wurz, E., and Heinz, P.: Foraminifera-sponge interactions – commensalism to parasitism in the Norwegian-Greenland Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12913, https://doi.org/10.5194/egusphere-egu21-12913, 2021.

EGU21-16223 | vPICO presentations | BG4.5

Red algae-bearing benthic foraminifera adapted to extremely warm temperatures and high salinity in the Persian Gulf 

Christiane Schmidt, Katharina Neumüller, Raphael Morard, Hildegard Westphal, Gurjit Theara, Grace Vaughan, and John Burt

The Persian Gulf hosts corals reefs under the most extreme conditions in the world, where summer maxima reach >36°C in combination with high salinities >44 PSU. While high bleaching thresholds characterize corals on these reefs, knowledge of adaptation of other calcifiers to local conditions is lacking. Benthic foraminifera are important calcifiers for coral reefs ecosystems as they build calcium carbonate tests. To map the environmental envelopes and the physiological limits of dispersal of benthic foraminfera, we exposed adult and juvenile foraminifera to a range of temperature and salinity conditions. Samples were collected from two reefs in the southern Gulf of Abu Dhabi, UAE. The dominant symbiont-bearing foraminifera was Peneroplis planatus hosting the endosymbiotic red algae Porphyridium purpureum. This was a surprising finding of sampling in these extreme reefs, as other symbiont-bearing benthic foraminifera are normally more abundant, but were completely absent in the reefs investigated. In the laboratory, we exposed P. planatus to 27°C (control), 35°C local summer maxima, and 39°C, +4°C above summer maxima, each with and without sediment substrates. The ecophysiological parameters growth, survivorship and photophysiological performance were measured. Photosynthetic rates declined after one week of exposure to 35°C and symbionts were photoinhibited at 39°C. Conditions were clearly more hostile for the symbionts, as host survival was high and growth rates unaffected by temperature. We hypothesize that to sustain growth the holobionts gained energy through heterotrophy under these conditions. In a second experiment, we exposed asexually reproduced offspring to an orthogonal temperature and salinity stress treatment (27-39°C, x 34-42 PSU) for four weeks. Asexual reproduction occurred in several treatments but was reduced under high salinity and temperature and combination of both parameters. The higher rate of asexual reproduction at control conditions indicates that stressful conditions do not trigger asexual reproduction in P. planatus, but rather suppress it. The results indicate that P. planatus can resist temperatures above current summer maxima for short periods of time, but that reproduction is impaired. Such heat-adapted populations may be considered a refuge for colonizing an increasingly warming Indian Ocean. Reproductive declines in the local population with increased warming threatens the long-term viability of this uniquely adapted organism.

How to cite: Schmidt, C., Neumüller, K., Morard, R., Westphal, H., Theara, G., Vaughan, G., and Burt, J.: Red algae-bearing benthic foraminifera adapted to extremely warm temperatures and high salinity in the Persian Gulf , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16223, https://doi.org/10.5194/egusphere-egu21-16223, 2021.

EGU21-15029 | vPICO presentations | BG4.5

The coral reef-dwelling Peneroplis spp. shows calcification resilience to ocean acidification conditions - results from culture experiments

Laurie Charrieau, Katsunori Kimoto, Delphine Dissard, Beatrice Below, Kazuhiko Fujita, Yukiko Nagai, and Takashi Toyofuku

Ocean acidification is a consequence of current anthropogenic climate changes. The concomitant decrease in pH and carbonate ion concentration in sea water may have severe impacts on calcifying organisms. Coral reefs are among the first ecosystems recognized vulnerable to ocean acidification. Within coral reefs, large benthic foraminifera (LBF) are major calcium carbonate producers.

The aim of this study was to evaluate the effects of varying pH on survival and calcification of the symbiont-bearing LBF species Peneroplis spp. We performed culture experiments to study their resistance to ocean acidification conditions, as well as their resilience once placed back under open ocean pH (7.9).

After three days, small signs of test decalcification were observed on specimens kept at pH 7.4, and severe test decalcification was observed on specimens kept at pH 6.9, with the inner organic lining clearly appearing. After 32 days under pH 7.4, similar strongly decalcified specimens were observed. All the specimens were alive at the end of the experiment. This result demonstrates the resistance of Peneroplis spp. to an acidified pH, at least on a short period of time.

After being partially decalcified, some of the living specimens were placed back at pH 7.9. After one month, the majority of the specimens showed recalcification features, mostly by addition of new chambers. The trace elements concentrations of the newly formed chambers were analysed by LA-ICPMS. Interestingly, more chambers were added when food was given, which highlights the crucial role of energy source in the recalcification process. Moreover, the newly formed chambers were most of the time abnormal, and the general structure of the tests was altered, with potential impacts on reproduction and in situ survival. In conclusion, if symbiont-bearing LBF show some resistance and resilience to lowered pH conditions, they will remain strongly affected by ocean acidification.

How to cite: Charrieau, L., Kimoto, K., Dissard, D., Below, B., Fujita, K., Nagai, Y., and Toyofuku, T.: The coral reef-dwelling Peneroplis spp. shows calcification resilience to ocean acidification conditions - results from culture experiments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15029, https://doi.org/10.5194/egusphere-egu21-15029, 2021.

EGU21-14762 | vPICO presentations | BG4.5

Local adaptation of a Lessepsian invader species to winter conditions in the Mediterranean Sea

Débora Silva Raposo, Raphaël Morard, Christiane Schmidt, and Michal Kucera

In recent decades the “Lessepsian” migration caused a rapid change in the marine community composition due to the invasion of alien species from the Red Sea into the Mediterranean Sea. Among these invaders is the large benthic foraminifera Amphistegina lobifera, a diatom-bearing species that recently reached the invasion front in Sicily. There it copes with colder winters and broader temperature than in its original source, the Red Sea. It is not yet known how (or if) the population from the invasion front has developed adaptation to this new thermal regime. Understanding the modern marine invasive patterns is a crucial tool to predict future invasive successes in marine environments. Therefore, in this study we aim to evaluate the physiological responses to cold temperatures of A. lobifera populations at three different invasive stages: source (Red Sea), early invader (Eastern Mediterranean) and invasion front (Sicily). For this, we conducted a culturing experiment in which we monitored the responses of the foraminifera (growth, motility) to temperatures of 10, 13, 16, 19°C + control (25°C) over four weeks. To address what is the role of their endosymbionts in the adaptation process, we also monitored their photosynthetic activity (Pulse Amplitude Modulation - PAM fluorometer) during the experiment. The growth rate of the foraminifera was reduced for all populations below 19°C as well as the motility, reduced until 16°C and dropping to zero below 13°C. The response of the endosymbionts was however different. There was a reduced photosynthetic activity of the Red Sea and Eastern Mediterranean populations at colder temperatures observed by the lower maximum quantum yield (Fv:Fm) and effective quantum yield (Y(II)), when compared to their initial levels and to the other treatments. In the meantime, the endosymbionts of the Sicily population stood out with the highest photosynthetic activity (Fv:Fm and Y(II)) in the treatments bellow 13 °C (P < 0.05). In conclusion, we observed that while the host responses were similar between the three populations, the endosymbionts from the invasion front population shows the best performance at colder temperatures. This suggests that the photo-symbiosis has an important role in adaptation, most likely being a key factor to the success of past and future migrations.

How to cite: Silva Raposo, D., Morard, R., Schmidt, C., and Kucera, M.: Local adaptation of a Lessepsian invader species to winter conditions in the Mediterranean Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14762, https://doi.org/10.5194/egusphere-egu21-14762, 2021.

EGU21-7192 | vPICO presentations | BG4.5

The propagule method as a tool to study assemblage dynamics in benthic foraminifera: An example with pH variations

Anna E. Weinmann, Susan T. Goldstein, Maria V. Triantaphyllou, and Martin R. Langer

Benthic foraminifera are important indicators for ecological studies. The assemblage composition of local communities can be used to analyze influences of environmental variables such as temperature, salinity, pH, and others. In recent years, the experimental propagule method has emerged as an effective tool to evaluate the influence of these variables on assemblage dynamics of benthic foraminifera. Propagules (tiny juveniles) of benthic foraminifera are widespread and can survive outside of a species’ natural distribution range. Their ability to become dormant and be re-activated once local conditions become suitable, is an important driver behind the capacity of foraminiferal assemblages to react quickly to environmental changes. In the laboratory, the propagules are first separated from the coarser fractions by sieving and then cultured under different conditions.

In the present study, we analyzed the effect of ocean pH on the composition of shallow-water assemblages from Corfu Island (Greece). Like other calcifying organisms, assemblages of foraminifera are susceptible to pH variations and have revealed compositional shifts along natural or experimental pH gradients. Our experimental set-up included four pH treatments between 6.5 and 8.5 at constant temperature and salinity (22°C and 38 ppt) for 5 weeks.

At the conclusion of the cultivation experiment, we found high numbers of grown specimens (825–1564 per replicate) and a high survivability rate throughout all treatments (78–87%). Higher pH (7.8 and 8.5) resulted in assemblages that were dominated by monothalamous and porcelaneous species, whereas lower pH (6.5 and 7.2) lead to a reduction in porcelaneous and an increase in agglutinated species. Several taxa showed significant positive or negative correlations with decreasing pH values.

Our results are congruent with previous findings that reported compositional shifts from calcareous to agglutinated taxa with decreasing pH (both from culture and field observations). Our study also indicates that the activation of propagules is an important mechanism behind assemblage dynamics in shallow-water foraminifera. As such, it offers an improved insight into potential resilience and recovery mechanisms of foraminiferal assemblages with regard to local or seasonal pH variations as well as ongoing ocean acidification.

How to cite: Weinmann, A. E., Goldstein, S. T., Triantaphyllou, M. V., and Langer, M. R.: The propagule method as a tool to study assemblage dynamics in benthic foraminifera: An example with pH variations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7192, https://doi.org/10.5194/egusphere-egu21-7192, 2021.

EGU21-15345 | vPICO presentations | BG4.5

Kleptoplastic foraminifera: a trophic strategy of life 

Julia Courtial, Edouard Metzger, Jérémy Lothier, Constance Choquel, Anis M. Limami, Caroline Cukier, and Emmanuelle Geslin

Foraminifera are single-celled organisms, and part of protists. They are present in all types of environments, though most foraminifera are marine benthic and are found from the deep ocean to the intertidal zone. Thus, foraminifera are subjected to various environmental stresses, (natural or anthropogenic). Because of their rapid response to stresses and their strong resistance, foraminifera are studied as paleo-environmental indicators. However, little is currently known about their biology, and specifically their metabolism and physiology. Some foraminifera species are notably known to retain, in their cytoplasm, chloroplasts from diatom preys. This phenomenon is called kleptoplasty. It has been shown that kleptoplasts remain intact and photosynthetically functional from a few days to several weeks, depending of the foraminiferal species and abiotic factors as light. In order to better understand this life strategy and the advantages provided to foraminifera by kleptoplasty in a coastal mudflat environment, we study metabolism of kleptoplastic and non-kleptoplastic species.

The “Mudsurv” (Mudflat survey, OSUNA) project initiated in 2016 a monitoring of the foraminiferal fauna and sediment geochemistry of Bourgneuf Bay (French Atlantic Coast). The main foraminiferal species observed were: Ammonia sp. T6, Elphidium oceanense and a kleptoplastic specie, Haynesina germanica. We therefore set up a monthly monitoring of respiration and photosynthesis of those kleptoplast and non-kleptoplast foraminifera species. The oxygen production or consumption is measured by microelectrodes in light and darkness. Preliminary results suggest a seasonality of photosynthesis in kleptoplast foraminifera. A second approach, using gas chromatography-mass spectrometry (GC-MS)-based experiments, provided us with the first’s foraminifera metabolomes highlighting kleptoplast species metabolic specificities.

How to cite: Courtial, J., Metzger, E., Lothier, J., Choquel, C., Limami, A. M., Cukier, C., and Geslin, E.: Kleptoplastic foraminifera: a trophic strategy of life , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15345, https://doi.org/10.5194/egusphere-egu21-15345, 2021.

EGU21-14673 | vPICO presentations | BG4.5

Feeding experiments of the seep-associated foraminifer Nonionellina labradorica with a marine methanotroph from the Arctic

Christiane Schmidt, Geslin Emmanuelle, Bernhard Joan M., LeKieffre Charlotte, Roberge Helene, Svenning Mette Marianne, Schweizer Magali, and Panieri Guiliana

Foraminifera on the seafloor are known to have species-specific feeding habits. Among those are deposit feeders, eating organic detritus and bacteria. Little is known about the feeding habits of foraminifera from Arctic seep environments. That is, in particular, of interest as variable δ13C values in the tests of foraminifera have been suggested to be partly linked with a diet rich in bacteria, themselves lighter in δ13C values. As there is little information on the ecology of the foraminifer Nonionellina labradorica (Dawson, 1860), this study examined feeding habits on bacteria and compared them to in situ collected specimens, using Transmission Electron microscopy (TEM). As bacterial food, the marine methane-oxidizing bacterium Methyloprofundus sedimenti was chosen, which is an important representative of methanotrophs in the marine environment near methane seeps. Sediment samples containing living N. labradorica specimens collected in close vicinity(approx. 5 m) from an active methane seep in Storfjordrenna, Barents Sea (382-m water depth).  We performed a feeding experiment on N. labradorica (n=17 specimen), which were incubated in the dark at in situ temperature. Specimens were fed at the beginning of the experiment, except the un-fed controls, and incubations terminated after 4, 8 and 20 h. After fixation in epoxy resin the ultrastructure of all specimens and their food vacuoles was observed and compared using a TEM. All examined specimens were living at the time of fixation, based on observation of intact mitochondrial membranes. In all specimens, inorganic detritus was preserved inside food vacuoles. Closer observation of food vacuoles also revealed that in addition to inorganic debris, such as clay, occasionally bacteria were visible. This led us to conclude that our N. labradorica can  generally be classified as a deposit feeder, which is rather a generalist than a specialist. Regarding uptake of M. sedimenti, the timing of the experimentation seemed to be critical. We did not observe methanotrophs preserved in the resin at the 4 and 8 h incubations, but found two putative methanotrophs near the apertural region after the 20-h incubation. After closer observation, we could identify one of those two putative specimen as the menthanothroph M. sedimenti near the foraminiferal aperture, based on presence of a typical type I stacked intracytoplasmic membrane (ICM) and storage granules (SC). We concluded that N. labradorica may ingest M. sedimenti via “untargeted grazing” in seeps. Further studies must examine the exact relationship between diet and δ13C in foraminiferal test on several different paleo-oceanographically relevant species.

How to cite: Schmidt, C., Emmanuelle, G., Joan M., B., Charlotte, L., Helene, R., Mette Marianne, S., Magali, S., and Guiliana, P.: Feeding experiments of the seep-associated foraminifer Nonionellina labradorica with a marine methanotroph from the Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14673, https://doi.org/10.5194/egusphere-egu21-14673, 2021.

EGU21-12003 | vPICO presentations | BG4.5

Carbon and nitrogen budgets and respiration rates of selected foraminifera of the Gullmar Fjord in Sweden

Julia Wukovits, Nicolaas Glock, Johanna Nachbagauer, Petra Heinz, Wolfgang Wanek, Margarete Watzka, and Alexandra-Sophie Roy

Benthic foraminifera are highly abundant, ubiquitous marine protists, with many species feeding on microalgae or phytodetritus. Knowledge about carbon and nitrogen budgets and metabolic activities of benthic foraminifera can help to increase our understanding about their ecology and their role in aquatic biogeochemistry at the sediment-water interface. This can further increase their application as proxies for environmental changes. Shifts in the benthic foraminiferal communities of the Swedish Gullmars Fjord document the shift from well oxygenated bottom waters to seasonal hypoxia at its deepest location the Alsbäck Deep (125 m), during the last century.

So far there are only investigations available relating foraminiferal community composition with increased primary productivity and resulting hypoxia in this Fjord. In contrast, studies about the species-specific feeding ecology or food derived foraminiferal carbon and nitrogen fluxes are scarce.

Therefore, laboratory feeding experiments and respiration rate measurements were carried out with Bulimina marginata, Cassidulina laevigata and Globobulima turgida, abundant foraminifera in such environments, collected in August 2017.

Experiments were conducted to evaluate the carbon and nitrogen intake and turnover of dual (13C and 15N) isotope labelled Phaeodactylum tricornutum detritus; detritus of a common diatom in the Gullmar Fjord. For the feeding experiments, foraminifera were incubated at 9.1°C in the dark, in sterile filtered seawater at ambient oxygen concentrations. The foraminifera were fed for a period of 24 hours and subsequently incubated without food for another 24 hours. After each incubation cycle, foraminiferal respiration rates were measured. The individuals were analyzed via Elemental Analyzer-Isotope Ratio Mass Spectroscopy to evaluate 13C/12C and 15N/14N ratios and their bulk content of organic carbon and nitrogen.

Additionally, we present carbon and nitrogen to volume ratios for the foraminifera B. marginata, C. laevigata, G. turgida, G. auriculata and Nonionella turgida, as derived from elemental analysis and light microscopy imaging.

The results show, that B. marginata, an opportunistic species associated with high fluxes of organic matter, had the highest rate of specific carbon and nitrogen intake and turnover. Cassidulina laevigata, a species that co-occurs with fresh phytodetritus and does not tolerate very low oxygen concentrations, showed lower carbon and nitrogen intake rates. Globobulima turgida, a denitrifying infaunal species that thrives under hypoxia, showed the lowest specific carbon and nitrogen intake and turnover rates. Respiration rates of all species did not depend on incubation with or without a food source. The foraminifera showed similar carbon and nitrogen densities per test volume across all species.

Overall this study helps to improve the knowledge on the nutritional ecology of the investigated species, demonstrating the close relation between feeding/metabolic rates and their environmental niche and highlighting the need to introduce foraminiferal data in future marine carbon and nitrogen flux models.

How to cite: Wukovits, J., Glock, N., Nachbagauer, J., Heinz, P., Wanek, W., Watzka, M., and Roy, A.-S.: Carbon and nitrogen budgets and respiration rates of selected foraminifera of the Gullmar Fjord in Sweden, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12003, https://doi.org/10.5194/egusphere-egu21-12003, 2021.

EGU21-12402 | vPICO presentations | BG4.5

Effects of heavy metals (Pb, Cu, Zn) on algal food uptake by Elphidium excavatum (Foraminifera) 

Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, Frank von der Kammer, Thilo Hofmann, and Petra Heinz

Foraminifera are unicellular organisms which are important for marine C and N processing. Feeding experiments showed that the food uptake and thus the turnover of organic matter are influenced by changes of physical parameters (e.g., temperature, salinity). Since many areas of the Baltic Sea are strongly affected by anthropogenic activity and therefore contaminated by heavy metals from shipping in the past, this study examined the effect of heavy metal pollution on the food uptake of the most common foraminiferal species of the Baltic Sea, Elphidium excavatum. In 2019, we collected water and sediment containing living E. excavatum in the Kiel Fjord. In laboratory experiments, Baltic Sea seawater was enriched with metals at various levels above normal seawater: Zn (9.2-, 144- and 1044-fold), Pb (2.4-, 48.5- and 557-fold) and Cu (5.6- and 24.3-fold), and the foraminiferal uptake of 13C- and 15N-labelled phytodetritus was measured by isotope ratio mass spectrometry. Significant differences in food uptake were observable at different types and levels of heavy metals in sea water. An increase in the Pb concentration did not affect food uptake, whereas strong negative effects were found for high levels of Zn and especially for Cu. Interestingly, experiments with short incubation periods (1 and 5 days) showed greater differences in food uptake from undisturbed conditions than those of longer incubation times (10 and 15 days). In summary, an increase in the heavy metal pollution in the Kiel Fjord will likely lead to a significant reduction in the turnover of organic matter by foraminifera such as E. excavatum.

How to cite: Lintner, M., Lintner, B., Wanek, W., Keul, N., von der Kammer, F., Hofmann, T., and Heinz, P.: Effects of heavy metals (Pb, Cu, Zn) on algal food uptake by Elphidium excavatum (Foraminifera) , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12402, https://doi.org/10.5194/egusphere-egu21-12402, 2021.

EGU21-13839 | vPICO presentations | BG4.5

Photosynthetic carbon assimilation and electron transport rate in two symbiont-bearing planktonic foraminifera

Haruka Takagi, Tetsuichi Fujiki, and Katsunori Kimoto

Photosymbiosis is one of the important features in planktonic foraminifera. The number of symbiont cells within one host is reported to be well over a few thousand, which means that photosynthesis by photosymbiosis might be a “hot spot” of primary production, especially in oligotrophic oceans. Information of photosynthetic activity of symbionts is also essential when interpreting the geochemical proxies recorded in foraminiferal tests because the microenvironmental condition in the vicinity of foraminifera is greatly affected by rapid biological activities such as photosynthesis and respiration. Recently, active chlorophyll fluorometry is increasingly being used as a useful and instant tool to estimate photosynthesis. However, the carbon assimilation rate is the only direct measure of photosynthetic carbon flow. Therefore, confirming the relationship between the active fluorometry-based photosynthetic rate (electron transport rate, ETR) and carbon assimilation rate (CAR) is required before utilizing ETR to understand the dynamics of carbon in the foraminifera-symbiont system.

Here, we compared CAR and ETR for two species, Trilobatus sacculifer (dinoflagellate-bearing) and Globigerinella siphonifera Type II (pelagophyte-bearing). CAR was estimated using 14C‐tracer experiment and ETR was estimated using active fluorometric measurement by fast repetition rate fluorometry.

The results showed that the CAR and ETR were correlated positively (p << 0.01) for both species. However, the regression slopes of the two species were largely different. The slope, representing the apparent electron requirement for carbon assimilation (e/C), was estimated to 28.5 for T. sacculifer and 101.1 for G. siphonifera. These values were strikingly high. Theoretically, under optimal growth conditions, phototrophs’ e/C should be 4 based on the minimum number of electrons derived from 2 water molecules to generate 1 oxygen molecule. So, we hypothesized that the observed high e/C in the foraminifera-algal consortia is partly attributable to the utilization of unlabeled respiratory carbon (resulting in underestimation of CAR). Considering the theoretical and empirically realistic e/C, we estimated the proportion of the carbon source for photosynthesis. The results showed that a considerable amount of carbon should be derived from the host’s respired CO2. The higher contribution of the respired CO2 was suggested in G. siphonifera than in T. sacculifer.

From the viewpoint of utilizing test geochemistry such as δ13C as paleoceanographic proxies, one should beware that the potential magnitude of the photosynthetic effect can differ between species. This study suggests that in G. siphonifera, photosynthetic carbon incorporation from seawater is smaller, and utilization of the host-derived carbon by symbionts is more efficient, indicating that G. siphonifera would be less susceptible to the alteration of geochemical composition by photosynthesis and respiration. This attempt to couple the ETR and CAR could comprehensively disclose an interesting perspective of these intimate interactions in the photosymbiotic system.

How to cite: Takagi, H., Fujiki, T., and Kimoto, K.: Photosynthetic carbon assimilation and electron transport rate in two symbiont-bearing planktonic foraminifera, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13839, https://doi.org/10.5194/egusphere-egu21-13839, 2021.

EGU21-9692 | vPICO presentations | BG4.5

Reproduction strategies in a marine protist: A digital experiment

Manuel F. G. Weinkauf, Michael Siccha, and Agnes K. M. Weiner

Understanding the biology of reproduction is important for retracing key evolutionary processes (e.g. speciation and adaptation) in any group of organisms, yet gaining detailed insights often poses a major challenge. Planktonic Foraminifera are a group of globally distributed marine microbial eukaryotes that are important contributors to the global carbon cycle and, due to their fossil record, are widely used as model organisms to investigate the responses of plankton to past environmental changes. The extant biodiversity of planktonic Foraminifera shows restricted distribution patterns and local adaptations of some species, whereas others are cosmopolitan in the world ocean. Hypotheses on their diversification and population dynamics so far entirely rely on the assumption of a nearly exclusively sexual reproduction.

So far, reproduction in culture has not been successful under laboratory conditions, and thus details on their life cycle and its influence on the evolution of the group remain unknown. Only the production of flagellated gametes has been observed and is taken as an indication for sexual reproduction. Yet, sexual reproduction by spawning of gametes in the open ocean relies on sufficient gamete encounters to maintain viable populations. This represents a problem especially for unflagellated protists like planktonic Foraminifera, which lack the means of active propulsion and are characterized by low population densities in large areas of the world ocean.

To increase the sparse knowledge on the reproductive biology of planktonic Foraminifera, we applied a dynamic, individual-based modelling approach with parameters based on laboratory and field observations. We tested if random gamete encounters under commonly observed population densities are sufficient for maintaining viable populations or if alternative strategies, such as asexual reproduction or synchronization in depth and time, are indispensable to achieve reproduction success. Our results show that a strict synchronization of gamete release in time and/or space seems inevitable for a successful maintenance of populations. We further argue that planktonic Foraminifera optimized their individual reproductive success at the expense of community-wide gene flow, which may explain their high degree of diversity as well as hampered evolvability. Our modelling approach helps to illuminate the ecology and evolution of this important marine calcifier and to predict the existence of necessary reproduction strategies, which may be detectable in future field and laboratory experiments.

How to cite: Weinkauf, M. F. G., Siccha, M., and Weiner, A. K. M.: Reproduction strategies in a marine protist: A digital experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9692, https://doi.org/10.5194/egusphere-egu21-9692, 2021.

EGU21-16505 | vPICO presentations | BG4.5

Seascape ecological view as a new insight of benthic foraminiferal community

Hiroshi Kitazato

Foraminifers secrete various chemicals for chamber walls. They are calcium carbonates such as calcite, aragonite, Mg-calcite, organic compounds for agglutinated chambers and/or organic cemented test walls.  Foraminiferal test walls basically form according to genetic information.  However, same test group is tended to gather at specific microenvironments.  For instance, turf shaped algal microhabitat such as coralline algae at rocky shore is composed of both frond and thallus parts as microhabitat.  Frond part is open space where fresh seawater moves inbetween one frond and the other.  Elphidium crispum, Pararotalia nipponica and Patellina corrugate and other calcareous foraminifers dwell at frond surface.  In contrast, thallus part is muddy and high concentration of organic matters.  The thallus part shows less oxygenated than frondal part as the space is close.  Microbial cascades are developed at thallus part.  Minor elements such as Mg or Sr are relatively high in sediment.  Soft-shelled forms such as Allogromia, gromiid, agglutinated forms and miliolids groups with high magnesian calcite tests flourish at the thallus part.

Microhabitat segregation and microenvironmental differences may cause similar biomineralization of benthic foraminiferal tests.  I would like to stress that micro-seascape should be important to characterize benthic foraminiferal assemblages.

How to cite: Kitazato, H.: Seascape ecological view as a new insight of benthic foraminiferal community, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16505, https://doi.org/10.5194/egusphere-egu21-16505, 2021.

BG5.1 – Methane and its fate in the biosphere - origin, source and cycling

EGU21-11489 | vPICO presentations | BG5.1

Time Constraints on Seepage Through Fractured Regions on the Vestnesa Ridge off the W-Svalbard Coast

Hariharan Ramachandran, Andreia Plaza-Faverola, Hugh Daigle, and Stefan Buenz

Evidences of subsurface fluid flow-driven fractures (from seismic interpretation) are quite common at Vestnesa Ridge (around 79ºN in the Arctic Ocean), W-Svalbard margin. Ultimately, the fractured systems have led to the formation of pockmarks on the seafloor. At present day, the eastern segment of the ridge has active pockmarks with continuous methane seep observations in sonar data. The pockmarks in the western segment are considered inactive or to seep at a rate that is harder to identify. The ridge is at ~1200m water depth with the base of the gas hydrate stability zone (GHSZ) at ~200m below the seafloor. Considerable free gas zone is present below the hydrates. Besides the obvious concern of amount and rates of historic methane seeping into the ocean biosphere and its associated effects, significant gaps exist in the ability to model the processes of flow of methane through this faulted and fractured region. Our aim is to highlight the interactions between physical flow, geomechanics and geological control processes that govern the rates and timing of methane seepage.

For this purpose, we performed numerical fluid flow simulations. We integrate fundamental mass and component conservation equations with a phase equilibrium approach accounting for hydrate phase boundary effects to simulate the transport of gas from the base of the GHSZ through rock matrix and interconnected fractures until the seafloor. The relation between effective stress and fluid pressure is considered and fractures are activated once the effective stress exceeds the tensile limit. We use field data (seismic, oedometer tests on calypso cores, pore fluid pressure and temperature) to constrain the range of validity of various flow and geomechanical parameters in the simulation (such as vertical stress, porosity, permeability, saturations).

Preliminary results indicate fluid overpressure greater than 1.5 MPa is required to initiate fractures at the base of the gas hydrate stability zone for the investigated system. Focused fluid flow occurs through the narrow fracture networks and the gas reaches the seafloor within 1 day. The surrounding regions near the fracture network exhibit slower seepage towards the seafloor, but over a wider area. Advective flux through the less fractured surrounding regions, reaches the seafloor within 15 years and a diffusive flux reaches within 1200 years. These times are controlled by the permeability of the sediments and are retarded further due to considerable hydrate/carbonate formation during vertical migration. Next course of action includes constraining the methane availability at the base of the GHSZ and estimating its impact on seepage behavior.

How to cite: Ramachandran, H., Plaza-Faverola, A., Daigle, H., and Buenz, S.: Time Constraints on Seepage Through Fractured Regions on the Vestnesa Ridge off the W-Svalbard Coast, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11489, https://doi.org/10.5194/egusphere-egu21-11489, 2021.

EGU21-176 | vPICO presentations | BG5.1

Modeling methane production and emission from thawing sub‐sea permafrost on the warming Arctic Shelf

Emilia Ridolfi, Stiig Wilkenskjeld, Frederieke Miesner, Victor Brovkin, Paul Overduin, and Sandra Arndt

The Arctic shelf hosts a large, yet poorly quantified reservoir of relic permafrost. It has been suggested that global warming, which is amplified in polar regions, will accelerate the thawing of this subsea permafrost, thus potentially unlocking large stocks of comparably reactive organic matter (OM). The microbial degradation of OM in the thawing and generally anoxic permafrost layer has the potential of producing and, ultimately, releasing important fluxes of  CH4 to the atmosphere. Because CH4 is a potent greenhouse gas, such a release would further intensify global warming. However, the potential role of subsea permafrost thaw on microbial CH4 production and CH4 emissions from Arctic sediments currently remains unconstrained.
Here, we use a nested model approach to address this critical knowledge gap. We developed a pseudo-three-dimensional reaction-transport model for permafrost bearing sediments on the Arctic shelf to estimate the production, consumption, and, efflux of CH4 on the Arctic shelf in response to projected subsea permafrost thaw. The model accounts for the most pertinent biogeochemical processes affecting methane and sulfur cycling in permafrost bearing marine sediments.                                                                
It is initialized based on a published submarine permafrost map (SuPerMap, [1]) and forced by a range of projected thawing rate scenarios derived from the Max Planck Institute Earth System Model (MPI-ESM) simulation results for the period 1850-2100. Critical model parameters, such as permafrost OM content and its apparent reactivity are chosen based on a comprehensive analysis of published experimental data. Here, we present the output of this environmental scenario ensemble.                                                
Simulation results reveal that CH4 production rates are highly sensitive to changes in the apparent reactivity of permafrost OM. Although simulated CH4 production rates vary over a large range (0.001-130 PgC produced over 250 years), they generally highlight the potential for producing and, thus releasing large amounts of methane from thawing subsea permafrost on the warming Arctic Shelf.

[1] Overduin, P. P., Schneider von Deimling, T., Miesner, F., Grigoriev, M. N., Ruppel, C. D., Vasiliev, A., et al. (2019).
 Submarine permafrost map in the Arctic modeled using 1‐D transient heat flux (SuPerMAP). Journal of Geophysical Research: Oceans, 124, 3490–3507. https://doi.org/10.1029/2018JC014675

How to cite: Ridolfi, E., Wilkenskjeld, S., Miesner, F., Brovkin, V., Overduin, P., and Arndt, S.: Modeling methane production and emission from thawing sub‐sea permafrost on the warming Arctic Shelf, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-176, https://doi.org/10.5194/egusphere-egu21-176, 2021.

EGU21-16558 | vPICO presentations | BG5.1

Methane in frozen and thawed soils of the western sector of Russian Arctic

Nataliia Zadorozhnaia, Gleb Oblogov, Alexander Vasiliev, and Irina Streletskaya

Many researchers study the Earth's climate change and the impact of the greenhouse effect on this process. The large amount of methane (CH4) is preserved in permafrost. In this regard, scientists recently pay a great attention to the problem of methane emission during the permafrost degradation in the Arctic zone. Until now, the methane content in underground ice, frozen Quaternary sediments has been studied insufficiently. The methane content in the active layer is especially poorly studied.

The authors researched methane content in frozen grounds of the upper permafrost horizon (transition zone) and in thawed sediments of the active layer for different tundra landscapes near the Marre-Sale polar station on the western coast of the Yamal peninsula and for landscapes of the Pechora river estuary area (Russia).

More than 420 samples of gas from sediments in active and transient layer were collected in Marre-Sale and 36 samples in Pechora area. To determine the methane content, the samples were placed in syringes and degassed using the “head space” technique. CH4 measurements were carried out on a chromatograph with flame ionization detector (FID) Shimadzu GC-2014 (Japan) in the laboratory of Federal State Institution “VNIIOkeangeologiya” (Saint-Petersburg, Russia).

Methane content in the frozen and thawed sediments of different dominant landscapes of typical tundra on Yamal peninsula and landscapes of southern tundra on Pechora area is extremely variable. The greatest amount of methane is typical for the most wet landscapes with primarily of silt loam soils. In dry primarily sandy well-drained landscapes, the methane content is low. The highest methane content is measured within the low floodplain of river, water tracks, swampy depressions of polygonal relief, and lake basins landscapes (mean varied from 0.8 to 2.5 ml [CH4] / kg, with a maximum of 9.0 ml [CH4] / kg). For landscapes of the moist surface of typical tundra, the average values of methane content were approximately 0.4 ml [CH4] / kg (with a maximum of 3.4 ml [CH4] / kg). The lowest methane contents in soils were characteristic of the landscapes of well-drained tundra, and sand fields where the average values do not exceed 0.2 ml [CH4] / kg. Mean methane content in soils of Pechora river mouth landscapes varied from 0.05 to 4.5 ml [CH4] / kg, with a maximum of 15.8 ml [CH4] / kg.

Determined that methane contents in the frozen soils of the transition zone is 2 to 5 times higher than in the soils of the active layer. High content of methane in upper layers of permafrost should be considered as a significant source of methane, which can be involved in emission of greenhouse gases into the atmosphere during permafrost degradation.

How to cite: Zadorozhnaia, N., Oblogov, G., Vasiliev, A., and Streletskaya, I.: Methane in frozen and thawed soils of the western sector of Russian Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16558, https://doi.org/10.5194/egusphere-egu21-16558, 2021.

EGU21-3186 | vPICO presentations | BG5.1

Spatially explicit methane emissions from the largest wetland complex in North America: Past, present and future

Sheel Bansal, Max Post van der Burg, Rachel Lo, and Owen McKenna

Almost half of all biogenically-produced methane is emitted from small lakes and wetlands. The Prairie Pothole Region (PPR) is the largest wetland complex in North America (10th largest in the world), and contains 5–8 million wetlands and lakes, which can potentially influence continental and global methane budgets. However, there is considerable uncertainty of past, current and future emissions of methane from PPR wetlands due to a lack of landscape-scale models based on PPR-specific data. We used a bottom-up approach to develop a spatially explicit, temporally dynamic model of wetland and lake methane emissions from the PPR. Using a dataset of >20,000 static-chamber flux measurements, we first developed a chamber model to understand functional relationships between methane fluxes and covariates, and then upscaled to the landscape using GIS and remotely sensed proxies for each covariate. Covariates in the chamber model included water-filled pore space (WFPS), hydroperiod, soil temperature, wetland size, land cover, and normalized difference vegetation index (NDVI). Proxies for upscaling included the Dynamic Surface Water Extent (for WFPS, hydroperiod, and area) and NDVI based on Landsat imagery, ClimateNA (for soil temperature), and the North American Land Change Monitoring System (for land cover). Methane emissions increased nonlinearly with increasing WFPS, soil temperature and NDVI, and was greater in wetlands surrounded by grasslands compared to cropland due to low organic carbon substrates in sediment of cropped wetlands. Methane flux had a hump-shaped relationship with area, with the highest emissions in mid-sized wetlands (1-4 ha) that had relatively long hydroperiods and high vegetation cover, whereas methane flux from water bodies >10 ha was negligible due to their relatively high sulfate concentrations. Despite the potential for high total emission from the PPR as would indicate from global models, total emissions were relatively low (~5 and 100 Gg methane) per year during historic dry (1991) and current wet years (2011), respectively, with wetland extent is the primary driver of regional emissions. Future warmer temperature scenarios (under RCP 8.5) indicate that annual methane emissions from the PPR could double.

How to cite: Bansal, S., Post van der Burg, M., Lo, R., and McKenna, O.: Spatially explicit methane emissions from the largest wetland complex in North America: Past, present and future, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3186, https://doi.org/10.5194/egusphere-egu21-3186, 2021.

Gas hydrates are ice-like crystalline solids consisting of water and gas (predominantly methane). The methane gas bound in hydrate structures and their worldwide occurrence make them interesting not only as a potential energy source but also as a possible climate-relevant factor. Estimations predict that a certain amount of atmospheric CH4 may originate through dissociation of global gas hydrates, which may exacerbate global warming (Ruppel and Kessler, 2017). In turn, climate warming is not only directly affecting the hydrate distribution, but also perturbing the hydrate stability field, leading to the release of CH4 from hydrate-bearing sediments. Gas hydrates, particularly those associated within or below shallow permafrost, are likely to be affected by the climate processes. For instance, gas hydrates in Qilian Mountain permafrost (QMP) are found below thin permafrost layers at a shallow depth of around 133~396 m. They might be vulnerable to dissociation due to global warming resulting in a possible higher CH4 gas emission in this area. Considering the environmental effect, a proper understanding of hydrate dissociation behavior under specific conditions is important for the stability of natural gas hydrate deposits with respect to climate change.

This study focuses on the potential dissociation process of gas hydrates in QMP. Before the observation of hydrate dissociation, mixed gas hydrates are synthesized from pure water and gas mixtures containing CH4, C2H6, C3H8, CO2 at conditions close to those in QMP (3.0 MPa, 278 K) with respect to feed gas composition, pressure and temperature. Formed hydrate crystals are analyzed in x-y-z directions applying confocal in situ Raman spectroscopic measurements to identify structures and guest compositions. The dissociation process is based on the thermal conduction simulating global warming and the results are discussed under several isobaric conditions. The Raman spectra continuously record changes in the hydrate phase for each selected crystal over the whole dissociation period. Preliminary results show that the Raman peak intensities for all components start to decrease when the temperature approaches 287 K, indicating the release of gas from hydrate structures. Interestingly, the varying hydrate composition for the measured crystals suggests a heterogeneous dissociation behavior of each single crystal. The results indicate a faster release of CH4 molecules from the hydrate phase than other components. In addition, the Raman signals of CH4 gas molecules that trapped in large cages of sII hydrate disappear first during the dissociation process. After a limited time, mixed gas hydrates decompose completely without evidence of self-preservation effects. These results provide essential information for the estimation of possible methane release from this area in response to future climate warming.  

 

Ruppel, C. D., and J. D. Kessler (2017). The interaction of climate change and methane hydrates, Reviews of Geophysics, 55,126-168.

 

 

How to cite: Pan, M. and Schicks, J.: Experimental simulations of mixed gas hydrates dissociation in response to temperature changes in Qilian Mountain permafrost, China, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7791, https://doi.org/10.5194/egusphere-egu21-7791, 2021.

EGU21-3328 | vPICO presentations | BG5.1

Effects of saltwater intrusion on the methane-cycling microbial community of a freshwater rewetted coastal fen

Cordula Gutekunst, Anna-K. Jenner, Gerald Jurasinski, Michael E. Böttcher, Franziska Koebsch, Jens Kallmeyer, Klaus-Holger Knorr, Viktoria Unger, Sizhong Yang, and Susanne Liebner

Drainage of peatlands for intensive and long-term agricultural use leads to higher mineralization rates of the organic material and thus, increased carbon dioxide (CO2) emissions. However, when degraded peatlands are rewetted, high methane (CH4) emissions are frequently observed, that may offset the reductions in CO2 emissions. The created anaerobic conditions are favorable for methanogenic microorganisms and lead to the production of CH4. The presence of sulfate in marine waters typically inhibits methanogenesis because methanogens are outcompeted by sulfate reducers. Therefore, the rewetting of coastal peatlands with marine waters is assumed to keep CH4 emissions low. Flooding of coastal wetlands as a consequence of higher sea levels could strengthen the carbon sink function of these systems if the peatlands are able to grow their surface on par with the sea level. We used the January 2019 storm surge in the southern Baltic Sea to investigate the effects of brackish water intrusion on microbial abundance and community data along with CO2 and CH4 exchange data on a rewetted minerotrophic fen. Previous studies showed that despite the proximity to the Baltic Sea, the fen’s marine sulfate pool was substantially exhausted, and the microbial community was dominated by acetotrophic methanogens and high CH4 emission characteristic for freshwater environments. We took parallel soil cores to compare the microbial methane-cycling community to the former freshwater rewetted state from four locations along a brackish water gradient. We used high-throughput sequencing and quantitative polymerase chain reaction (qPCR) on pools of DNA and cDNA targeting total and putatively active bacteria and archaea (16S rRNA gene), methanogens (mcrA), methanotrophs (pmoA) and sulfate-reducing bacteria (dsrB). Greenhouse gas (GHG) fluxes along the salinity transect were measured locally with closed-chambers and in addition on the ecosystem level using the eddy covariance approach. Chamber measurements along the transect imply lower CH4 emissions at plots with higher salinity post-intrusion. This coincides with a drop in ecosystem CH4 fluxes and with shifts from methane-cycling to sulfate-reducing microorganisms. We expect that organisms involved in anaerobic CH4 oxidation with sulfate as terminal electron acceptor will be more prominent after the saltwater intrusion.

Moreover, the effect of rewetting with saltwater on GHG fluxes and microbial communities in degraded fens will be discussed relative to the effects of freshwater inundation and seasonal droughts which were assessed in the same location before.

How to cite: Gutekunst, C., Jenner, A.-K., Jurasinski, G., Böttcher, M. E., Koebsch, F., Kallmeyer, J., Knorr, K.-H., Unger, V., Yang, S., and Liebner, S.: Effects of saltwater intrusion on the methane-cycling microbial community of a freshwater rewetted coastal fen, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3328, https://doi.org/10.5194/egusphere-egu21-3328, 2021.

EGU21-15327 | vPICO presentations | BG5.1

The role of methane transport from the active layer in sustaining methane emissions and food chains in subarctic ponds

Carolina Olid, Alberto Zannella, and Danny C.P. Lau

Shallow groundwater flow from the seasonally thawed active layer is increasingly recognized as an important pathway for delivering methane (CH4) into Arctic lakes and streams, but its contribution to CH4 emissions from thaw ponds has not been evaluated. Furthermore, the potential influence of the shallow groundwater-derived CH4 on the trophic support and nutritional quality of thaw pond food chains remains unexplored. In this study, we used a radon-mass balance approach to quantify the CH4 transport from the active layer into thaw ponds in a sub-Arctic catchment. We analysed stable isotopes and fatty acids of pond macroinvertebrates to evaluate the potential effects of CH4 inputs through active layer groundwater flows on the aquatic food chains. Our results indicate that CH4 fluxes from the active layer can sustain CH4 emissions from the ponds. Consumers in ponds receiving greater CH4 inputs from the active layer had lower stable carbon isotope signatures that indicates a greater trophic reliance on methane oxidizing bacteria (MOB), and they had lower nutritional quality as indicated by their lower tissue concentrations of polyunsaturated fatty acids. Accurate predictions of CH4 release from small thaw ponds will thus require improved knowledge of the contributions from various processes including internal production, flow paths of active layer groundwater, and MOB-consumer interactions.

How to cite: Olid, C., Zannella, A., and Lau, D. C. P.: The role of methane transport from the active layer in sustaining methane emissions and food chains in subarctic ponds, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15327, https://doi.org/10.5194/egusphere-egu21-15327, 2021.

EGU21-10461 | vPICO presentations | BG5.1

Root exudates compounds and microbial community composition regulates CH4 dynamics in fire degraded tropical peatland

Massimo Lupascu, Hasan Akhtar, Aditya Bandla, Rahayu S Sukri, and Sanjay Swarup

Fires and drainage are common disturbance factors in tropical peatlands (TP) in Southeast Asia. These disturbances alter the hydrology, vegetation composition, and peat biogeochemistry; thereby affecting the microbiome where microbial communities reside. Studies from northern peatlands have well established the role of vegetation composition in regulating the labile C, in the form of plant root exudates, and microbial community composition affecting the peat decomposition; however, for tropics, it remains unexplored. Recent studies have also established how these fire-degraded TP areas become a hot spot of sedge-mediated CH4 emission. To further our understanding of control mechanisms regulating CH4 dynamics, we investigated the composition of plant root exudates (n=3 per plant species) from sedges (Scleria sumatrensis) and ferns (Blechnum indicum, Nephrolepis hirsutula), the most commonly occurring plant species at our fire-degraded tropical peatland site in Brunei, Northwest Borneo, as well as microbial community composition in plant (n=9 for S. sumatrensis, and B. indicum, and n=5 for N. hirsutula) rhizo-compartments (rhizosphere, rhizoplane, endosphere).

         Using a targeted analysis, we found that the root exudates compounds secreted from sedge (Scleria sumatrensis) and one species of fern (Blechnum indicum) were significantly different (p<0.05) and showed a similar ratio of 2:1 for sugars (glucose, fructose) and organic acids (acetate, formate, lactate, malate, oxalate, succinate, tartrate), which is in contrast to that secreted from trees in intact tropical peatlands (1:2). Further, using 16S rRNA gene amplicon sequencing, we found that the microbial community composition in rhizo-compartments of plant species showed significant differences (p<0.001). Interestingly, the sedge species harboured a relatively higher abundance of methanogens (Thermoplasmata) and lesser methanotrophs (Alphaproteobacteria, Gammaproteobacteria) across all three compartments compared to fern species, which further supports the higher sedge-mediated CH4 emissions from fire-degraded TP.

            Our results provide fresh insights into the effects of post-fire vegetation composition in regulating the labile C and microbial community composition, and hence affecting CH4 emissions from fire-degraded TP. Further, our results can form an important basis for future CH4 dynamics studies as the emissions might increase with the expansion of degraded TPs as a consequence of frequent fire episodes and flooding

How to cite: Lupascu, M., Akhtar, H., Bandla, A., Sukri, R. S., and Swarup, S.: Root exudates compounds and microbial community composition regulates CH4 dynamics in fire degraded tropical peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10461, https://doi.org/10.5194/egusphere-egu21-10461, 2021.

EGU21-12685 | vPICO presentations | BG5.1

Features of the diffusive methane emission measurements on lakes by chamber method

Liudmila Krivenok and Vladimir Kazantsev

Methane is one of the main greenhouse gases in the atmosphere. Lakes are the third-largest natural source of methane on a global scale [Kirschke et al., 2013]. Currently, the chamber method is quite often applied in the measurements of diffusive GHG emissions from natural ecosystems, especially in remote areas, due to low cost and mobility. In lakes, methane can be transported to the atmosphere not only by diffusion but also by bubbling, so during measurements, it is important to divide these two pathways. We have complemented customary floating chambers with plastic shields located underside not blocking diffusive transfer but preventing gas bubbles from entering into the chamber.

The study was conducted on August 19–20, 2019 in the vicinity of Vaskiny Dachi field station (68.8663° N, 70.3040° E, Central Yamal, Western Siberia, Russia). Measurements were carried out in the central part of the thermokarst lake with a depth of 1.6 m. To compare results of customary and modified chambers, samples were taken in parallel from chambers with and without shields (two chambers of each type) every two hours during the day. Sampling and flux calculations were conducted according to [Bastviken et al., 2010]. The methane concentrations in samples were determined in the laboratory by a Crystal 5000.2 gas chromatograph with a flame ionization detector.

According to the sign test for the 0.05 p-level, methane fluxes measured using chambers with and without shields differ statistically significant considering their diurnal dynamics. At the same time, within the group of fluxes measured by the same type of chambers, no statistically significant differences were found, and mean and median flux values are higher for chambers without shields. It appears that observed differences are not due to natural variability, but due to the contribution of bubble component to the fluxes measured by chambers without shields.

 

References

Bastviken D., Santoro A.L., Marotta H. et al. 2010. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. – Environmental Science & Technology, vol. 44, No. 14, pp. 5450–5455.

Kirschke S., Bousquet P., Ciais P. et al. 2013. Three decades of global methane sources and sinks. – Nature Geoscience, vol. 6, No. 10, pp. 813–823.

How to cite: Krivenok, L. and Kazantsev, V.: Features of the diffusive methane emission measurements on lakes by chamber method, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12685, https://doi.org/10.5194/egusphere-egu21-12685, 2021.

The results of passive seismic studies of subsurface fluid transport systems associated with mud volcanic phenomena in Northwestern Caucasus and the Taman mud-volcanic province are presented. Comparative analysis of results of geophysical cross-sections featuring the deep subsurface structures of several mud volcanoes obtained by means of passive microseismic sounding approach with respect to previous studies has demonstrated advantages of the ambient noise seismic prospecting. It has been shown that subvertical pathways of hydrocarbon migration and so feeding systems of mud volcanoes represent nearly-ideal case of local geological heterogeneities affecting the amplitudes of low-frequency microseismic noise. The analysis of the results was performed with respect to available geological as well as geomorphological data. At the same tine, results of past active seismic experiments with controlled vibroseismic sources were reanalyzed and followed by mathematical modeling of processes of hydrodynamic outflow under various mechanisms of mud volcanic eruptions. For several mud volcanoes there were outlined three-dimensional subvertical feeding structures in sedimentary layers and deeper in the crust, responsible for fluid migration and eruptive activity. Specific features of volcanic products (gas components and mineral inclusions in breccia) were analyzed with respect to the new geophysical data obtained.

How to cite: Puzich, I., Sobisevich, A., and Dudarov, Z.: Subsurface fluid migration associated with feeding systems of mud volcanoes in Northwestern Caucasus, results of passive seismic studies, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15054, https://doi.org/10.5194/egusphere-egu21-15054, 2021.

EGU21-6224 | vPICO presentations | BG5.1

Methane emissions from high-latitude peatlands during the Holocene from a synthesis of peatland records

Claire C. Treat, Miriam C. Jones, Laura S. Brosius, Guido Grosse, Katey Walter Anthony, and Steve Frolking

The sources of atmospheric methane (CH4) during the Holocene remain widely debated, including the role of high latitude wetland and peatland expansion and fen-to-bog transitions. We reconstructed CH4 emissions from northern peatlands from 13,000 before present (BP) to present using an empirical model based on observations of peat initiation (>3600 14C dates), peatland type (>250 peat cores), and contemporary CH4 emissions in order to explore the effects of changes in wetland type and peatland expansion on CH4 emissions over the end of the late glacial and the Holocene. We find that fen area increased steadily before 8000 BP as fens formed in major wetland complexes. After 8000 BP, new fen formation continued but widespread peatland succession (to bogs) and permafrost aggradation occurred. Reconstructed CH4 emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion. Emissions stabilized after 5000 BP at 42 ± 25 Tg CH4 y-1 as high-emitting fens transitioned to lower-emitting bogs and permafrost peatlands. Widespread permafrost formation in northern peatlands after 1000 BP led to drier and colder soils which decreased CH4 emissions by 20% to 34 ± 21 Tg y-1 by the present day.

 

How to cite: Treat, C. C., Jones, M. C., Brosius, L. S., Grosse, G., Walter Anthony, K., and Frolking, S.: Methane emissions from high-latitude peatlands during the Holocene from a synthesis of peatland records, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6224, https://doi.org/10.5194/egusphere-egu21-6224, 2021.

CC BY 4.0