Content:

CR – Cryospheric Sciences

CR1.1 – The Antarctic Ice Sheet: past, present and future contributions towards global sea level

EGU21-9256 | vPICO presentations | CR1.1

Antarctic ice dynamics amplified by Northern Hemisphere sea level forcing

Natalya Gomez, Michael Weber, Peter Clark, Jerry Mitrovica, and Holly Han

A longstanding hypothesis for near-synchronous evolution of global ice sheets over ice-age cycles invokes an interhemispheric sea-level forcing whereby sea-level rise due to ice loss in the Northern Hemisphere in response to insolation and greenhouse gas forcing causes grounding-line retreat of marine-based sectors of the Antarctic Ice Sheet (AIS). Recent studies have shown that the AIS experienced substantial millennial-scale variability during and after the last deglaciation, with several times of recorded increased iceberg flux and grounding line retreat coinciding, within uncertainty, with well documented global sea-level rise events, providing further evidence of this sea-level forcing. However, the sea level changes associated with ice sheet mass loss are strongly nonuniform due to gravitational, deformational and Earth rotational effects, suggesting that the response of the AIS to Northern Hemisphere sea-level forcing is more complicated than previously modelled.

We adopt an ice-sheet model coupled to a global sea-level model to show that a large or rapid Northern Hemisphere sea-level forcing enhances grounding-line advance and associated mass gain of the AIS during glaciation, and grounding-line retreat and AIS mass loss during deglaciation. Relative to models without these interactions, including the Northern Hemisphere sea-level forcing leads to a larger AIS volume during the Last Glacial Maximum (about 26,000 to 20,000 years ago), subsequent earlier grounding-line retreat and millennial-scale AIS variability throughout the last deglaciation. These findings are consistent with geologic reconstructions of the extent of the AIS during the Last Glacial Maximum and subsequent ice-sheet retreat, and with relative sea-level change in Antarctica. 

How to cite: Gomez, N., Weber, M., Clark, P., Mitrovica, J., and Han, H.: Antarctic ice dynamics amplified by Northern Hemisphere sea level forcing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9256, https://doi.org/10.5194/egusphere-egu21-9256, 2021.

EGU21-13669 | vPICO presentations | CR1.1 | Highlight

Redating the Global Abrupt Sea-Level Rise during Meltwater Pulse-1A and Implications for Global Ice Mass Loss

Christian Turney, Nicholas Golledge, Paula Reimer, Tim Heaton, Alan Hogg, Zoë Thomas, Lorena Belcerra-Valdivia, Maarten Blaauw, Haidee Cadd, Heather Haines, Matthew Harris, Christopher Marjo, and Jonathan Palmer
Model-based projections of ice-sheet thresholds and global sea-level rise are severely constrained by instrumental observations being only decadal to century-long. As we improve our understanding of these processes, projections just a few years old are now considered conservative, raising concerns about our ability to successfully plan for abrupt future change. Past periods of abrupt and extreme warming offer ‘process analogues’ that can provide new insights into the future rate of response of polar ice sheets to warming of the Earth system. The Last Termination (20,000-10,000 years ago or 20-10 ka BP) in the North Atlantic region was characterised by a series of abrupt climatic changes including rapid warming at 14.7 ka BP (the start of the “Bølling”, or GI-1 in the Greenland ice-core isotope stratigraphy) which was accompanied by an Antarctic Cold Reversal (ACR) in the south. Potentially important, during the onset of GI-1, warming persisted in the south for some 256±133 calendar years before the ACR, providing a period of time during which both polar regions experienced increasing temperatures. Sometime around the onset of GI-1 and the ACR, Meltwater Pulse 1A (MWP-1A) formed an abrupt sea level rise of ~15 metres, and was coincident with a period of enhanced iceberg flux in the Southern Ocean. It seems likely the majority of the sea level rise came from the Northern Hemisphere – up to 5-6 metres from the Laurentide Ice Sheet – though the timing remains uncertain. The contribution of Antarctic Ice Sheets (AIS) to global mean sea level (GMSL) rise during MWP-1A range from ‘high-end’ scenarios (>10 m contributing over half of the total GMSL rise), to ‘low-end’ (scenarios with little to no contribution). Here we report the results of a multidisciplinary study, with refined age and Antarctic ice-sheet modelling of the MWP-1A sea-level rise. With the recently released international radiocarbon calibration curve (IntCal20), our Bayesian age modelling of terrestrial ages from flooded mangrove swamps suggests global sea level rose across a mean age range of 14.58 ka BP to 14.42 ka BP, with a mean rate of sea-level rise of 0.94 metres per decade (14.97 metres over 160 years). Because the calibrated age range at 95% confidence overlaps in this age model, it is possible the 15 metre rise during MWP1A could have taken place essentially instantaneously. Even the most conservative age modelling we have undertaken indicates an extraordinary rapid rate of sea-level rise; two orders of magnitude larger than the mean rate of global sea level rise since 1993 (0.03±0.003 metres per decade). Our ice-sheet modelling suggests a substantial and rapid loss of Antarctic ice mass (mostly from the Weddell Sea Embayment and the Antarctic Peninsula), synchronous with warming and ice loss in the North Atlantic. The drivers and mechanisms of the observed near-synchronous interhemispheric changes will be discussed, with implications for the future.

How to cite: Turney, C., Golledge, N., Reimer, P., Heaton, T., Hogg, A., Thomas, Z., Belcerra-Valdivia, L., Blaauw, M., Cadd, H., Haines, H., Harris, M., Marjo, C., and Palmer, J.: Redating the Global Abrupt Sea-Level Rise during Meltwater Pulse-1A and Implications for Global Ice Mass Loss, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13669, https://doi.org/10.5194/egusphere-egu21-13669, 2021.

EGU21-9151 | vPICO presentations | CR1.1

U-Pb zircon geochronology of dropstones and IRD in the Amundsen Sea, applied to the question of bedrock provenance and Miocene-Pliocene ice sheet extent in West Antarctica

Christine Siddoway, Stuart Thomson, Sidney Hemming, Hannah Buchband, Cade Quigley, Heather Furlong, Robin Hilderman, Delaney Robinson, Connor Watkins, Stephen Cox, and Kathy Licht and the IODP Expedition 379 Scientists and Expedition 382 Scientists

IODP Expedition 379 to the Amundsen Sea continental rise recovered latest Miocene-Holocene sediments from two sites on a drift in water depths >3900m. Sediments are dominated by clay and silty clay with coarser-grained intervals and ice-rafted detritus (IRD) (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021). Cobble-sized dropstones appear as fall-in, in cores recovered from sediments >5.3 Ma.  We consider that abundant IRD and the sparse dropstones melted out of icebergs formed due to Antarctic ice-sheet calving events. We are using petrological and age characteristics of the clasts from the Exp379 sites to fingerprint their bedrock provenance. The results may aid in reconstruction of past changes in icesheet extent and extend knowledge of subglacial bedrock.

Mapped onshore geology shows pronounced distinctions in bedrock age between tectonic provinces of West or East Antarctica (e.g. Cox et al. 2020, doi:10.21420/7SH7-6K05; Jordan et al. 2020, doi.org/10.1038/s43017-019-0013-6). This allows us to use geochronology and thermochronology of rock clasts and minerals for tracing their provenance, and ascertain whether IRD deposited at IODP379 drillsites originated from proximal or distal Antarctic sources. We here report zircon and apatite U-Pb dates from four sand samples and five dropstones taken from latest Miocene, early Pliocene, and Plio-Pleistocene-boundary sediments. Additional Hf isotope data, and apatite fission track and 40Ar/39Ar Kfeldspar ages for some of the same samples help to strengthen provenance interpretations.

The study revealed three distinct zircon age populations at ca. 100, 175, and 250 Ma. Using Kolmogorov-Smirnov (K-S) statistical tests to compare our new igneous and detrital zircon (DZ) U-Pb results with previously published data, we found strong similarities to West Antarctic bedrock, but low correspondence to prospective sources in East Antarctica, implying a role for icebergs calved from the West Antarctic Ice Sheet (WAIS). The ~100 Ma age resembles plutonic ages from Marie Byrd Land and islands in Pine Island Bay.  The ~250 and 175 Ma populations match published mineral dates from shelf sediments in the eastern Amundsen Sea Embayment as well as granite ages from the Antarctic Peninsula and the Ellsworth-Whitmore Mountains (EWM). The different derivation of coarse sediment sources requires changes in iceberg origin through the latest Miocene, early Pliocene, and Plio/Pleistocene, likely the result of changes in WAIS extent.

One unique dropstone recovered from Exp379 Site U1533B is green quartz arenite, which yielded mostly 500-625 Ma detrital zircons. In visual appearance and dominant U-Pb age population, it resembles a sandstone dropstone recovered from Exp382 Site U1536 in the Scotia Sea (Hemming et al. 2020, https://gsa.confex.com/gsa/2020AM/meetingapp.cgi/Paper/357276). K-S tests yield high values (P ≥ 0.6), suggesting a common provenance for both dropstones recovered from late Miocene to Pliocene sediments, despite the 3270 km distance separating the sites. Comparisons to published data, in progress, narrow the group of potential on-land sources to exposures in the EWM or isolated ranges at far south latitudes in the Antarctic interior.  If both dropstones originated from the same source area, they could signify dramatic shifts in the WAIS grounding line position, and the possibility of the periodic opening of a seaway connecting the Amundsen and Weddell Seas.

How to cite: Siddoway, C., Thomson, S., Hemming, S., Buchband, H., Quigley, C., Furlong, H., Hilderman, R., Robinson, D., Watkins, C., Cox, S., and Licht, K. and the IODP Expedition 379 Scientists and Expedition 382 Scientists: U-Pb zircon geochronology of dropstones and IRD in the Amundsen Sea, applied to the question of bedrock provenance and Miocene-Pliocene ice sheet extent in West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9151, https://doi.org/10.5194/egusphere-egu21-9151, 2021.

EGU21-7680 | vPICO presentations | CR1.1

Simulating the contribution of the Antarctic ice sheet to Miocene benthic δ18O variability

Lennert B. Stap, Roderik S. W. van de Wal, Johannes Sutter, Gregor Knorr, and Gerrit Lohmann

Large benthic δ18O fluctuations, which are caused by deep-ocean temperature and ice-volume changes, are shown on multiple time scales during the early to mid-Miocene (23-14 Myr ago). To understand how these signals are related to orbital changes, it is necessary to disentangle them. Here, we approach this problem by simulating how the Antarctic ice sheet (AIS) responds to typical CO2 changes during this period. We use the 3D thermodynamical model PISM, forced by climate model output, to conduct both transient and steady-state experiments. Our results indicate that even if equilibrium differences are relatively large (~40 m.s.l.e.), transient AIS variability on orbital time scales (20-400 kyr) still has a much smaller amplitude due to the slow ice-volume response to climatic changes. We analyse our results further using a conceptual model, based on the notion that at any CO2 level an ice sheet will grow (shrink) by a specific rate towards its smaller (larger) equilibrium size. We show that phases of concurrent ice volume increase and rising CO2 levels are possible, even though the equilibrium ice volume decreases monotonically with CO2. When the AIS volume is out of equilibrium with the forcing climate, the ice sheet can still be adapting to a relatively large equilibrium size, although CO2 is rising after a phase of decrease. A delayed response of Antarctic ice volume to in-sync solar insolation and CO2 changes can cause discrepancies between Miocene solar insolation and benthic δ18O variability.

How to cite: Stap, L. B., van de Wal, R. S. W., Sutter, J., Knorr, G., and Lohmann, G.: Simulating the contribution of the Antarctic ice sheet to Miocene benthic δ18O variability, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7680, https://doi.org/10.5194/egusphere-egu21-7680, 2021.

EGU21-4076 | vPICO presentations | CR1.1

Sensitivity of the Antarctic ice sheets to the warming of MIS11c

Martim Mas e Braga, Jorge Bernales, Matthias Prange, Arjen P. Stroeven, and Irina Rogozhina

The Marine Isotope Substage 11c (MIS11c) interglacial (425 – 395 thousand years before present) is a useful analogue to climate conditions that can be expected in the near future, and can provide insights on the natural response of the Antarctic ice sheets to a moderate, yet long lasting warming period. However, its response to the warming of MIS11c and consequent contribution to global sea level rise still remains unclear. We explore the dynamics of the Antarctic ice sheets during this period using a numerical ice-sheet model forced by MIS11c climate conditions derived from climate model outputs scaled by three ice core and one sedimentary proxy records of ice volume. We identify a tipping point beyond which oceanic warming becomes the dominant forcing of ice-sheet retreat, and where collapse of the West Antarctic Ice Sheet is attained when a threshold of 0.4 oC oceanic warming relative to Pre-Industrial levels is sustained for at least 4 thousand years. Conversely, its eastern counterpart remains relatively stable, as it is mostly grounded above sea level. Our results suggest a total sea level contribution from the East and West Antarctic ice sheets of 4.0 – 8.2 m during MIS11c. In the case of a West Antarctic Ice Sheet collapse, which is the most probable scenario according to far-field sea-level reconstructions, this range is reduced to 6.7 – 8.2 m, and mostly reflects uncertainties regarding the initial configuration of the East Antarctic Ice Sheet.

How to cite: Mas e Braga, M., Bernales, J., Prange, M., Stroeven, A. P., and Rogozhina, I.: Sensitivity of the Antarctic ice sheets to the warming of MIS11c, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4076, https://doi.org/10.5194/egusphere-egu21-4076, 2021.

EGU21-1321 | vPICO presentations | CR1.1

The unique behavior of stable water isotopes profiles during interglacial periods at Talos Dome, Antarctica

Ilaria Crotti, Amaelle Landais, Barbara Stenni, Massimo Frezzotti, Aurélien Quiquet, Frédéric Prié, Bénédicte Minster, Giuliano Dreossi, and Carlo Barbante

The growth and decay of marine ice sheets act as important controls on regional and global climate, in particular, the behavior of the ice sheets is a key uncertainty in predicting sea-level rise during and beyond this century. The East Antarctic Ice Sheet (EAIS), which contains deep subglacial basins with reverse-sloping, is considered to be susceptible to ice loss caused by marine ice sheet instability. Sediment core offshore Wilkes Subglacial Basin reveals oscillations in the provenance of detrital sediment that have been interpreted to reflect an erosion of Wilkes Basin during interglacial periods MIS 5, MIS 7, and MIS 9 greater than Holocene period (Wilson et al., 2018). The aim of our study is to investigate past climate and environmental changes in the coastal area of the East Antarctic Ice Sheet during MIS 7.5 and 9.3 with the help of a new high-resolution water isotopes record of the TALDICE ice core.

Here we present new δ18O and δD high resolution (5 cm) records covering the oldest portion of the TALDICE ice core. MIS 7.5 and 9.3 isotopic signal reveals a unique feature, already observed for MIS 5.5, that has not been spotted in other Antarctic ice cores (Masson-Delmotte et al., 2011). Interglacial periods at TALDICE are characterized by a first peak, observed in correspondence to the culmination of the deglaciation event as for all Antarctic cores, followed by a less pronounced isotopic peak (for MIS 5.5 and 9.3) or a plateau (for MIS 7.5) prior to the glacial inception. Several factors might drive this peculiar behavior of the water stable isotopes record, as an increase in temperatures due to a drop in surface elevation or changes in moisture sources.

The new δ18O and δD high-resolution records for the TALDICE ice core reveal a unique pattern that characterizes interglacial periods at Talos Dome. Taking into account the coastal position of the core and its vicinity to the Wilkes Subglacial Basin we intend to investigate the possible decrease in surface elevation, through the application of the GRISLI ice sheet model (Quiquet et al., 2018), and changes in moisture sources, traceable from the d-excess record.

How to cite: Crotti, I., Landais, A., Stenni, B., Frezzotti, M., Quiquet, A., Prié, F., Minster, B., Dreossi, G., and Barbante, C.: The unique behavior of stable water isotopes profiles during interglacial periods at Talos Dome, Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1321, https://doi.org/10.5194/egusphere-egu21-1321, 2021.

EGU21-9957 | vPICO presentations | CR1.1

Post-Last Glacial Maximum ice thinning and glacier dynamics in the Hurd Peninsula ice cap (Livingston Island, South Shetland Islands, Antarctic Peninsula)

José M. Fernández-Fernández, Marc Oliva, David Palacios, Julia García-Oteyza, Francisco Navarro, and Irene Schimmelpfennig

In the Antarctic Peninsula (AP), the small ice caps distributed across its periphery and surrounding islands have recorded important ice volume changes since the end of the Last Glacial Cycle. These volume changes have occurred in the form of surface extent shrinking and ice thinning. The latter has been investigated only at a reduced number of locations. In this context, nunataks constitute key spots to assess the environmental evolution of deglaciated areas as they offer the opportunity to track the deglaciation history and reconstruct past ice losses by using Cosmic-Ray Exposure (CRE) dating. Indeed, nunataks are supposed to have played a prominent role in the vegetal and animal colonization of Antarctica.

The South Shetland Islands archipelago is one of the AP areas where past ice thinning has been least investigated, with only one study conducted in King George Island. In order to shed some light on the last deglaciation and its associated ice thinning, we apply 10Be CRE dating to vertical sequences of glacially polished outcrops on two palaeonunataks and one nunatak distributed across the ice-cap covering part of the Hurd Peninsula (SW of Livingston Island): Reina Sofía Peak (62°40'8" S, 60°22'51" W, 273 m a.s.l.), Moores Peak (62°41'21" S, 60°20'42" W, 407 m a.s.l.) and Napier Peak (62°40'18"S, 60°19'31" W, 382 m a.s.l.).

Most of the resulting exposure ages provided a logical chronological sequence and allowed reconstructing past vertical changes of the ice surface. The uppermost surfaces of the Moores and Reina Sofía peaks became deglaciated during the Last Glacial Maximum (LGM), between ~24 ka and ~20 ka. Following the LGM, between ~20 and ~14 ka (Termination-1), a massive deglaciation occurred. This trend was especially exacerbated at around ~14 ka, triggering the onset of the deglaciation at other nunataks, such as the Napier Peak, in good agreement with the coetaneous global melt-water pulse 1a. From our results, we infer that ice shrinking during the Holocene must have been very limited compared to the post-LGM period.

Nevertheless, some of the exposure ages were either anomalously old or inconsistent, such as those found at the summits of the Reina Sofía and Moores peaks or at the base of the Napier nunatak. These artifacts suggest the occurrence of nuclide inheritance and are indicative of the conservation of previously exposed surfaces. These ages allow to qualitatively infer cold-based regimes characterized by basal ice frozen to bed, with slow mobility and inefficient subglacial erosion due to the gentle slope gradient, not capable of removing inherited nuclides accumulated during former exposure periods. But, as a whole, the dataset adds valuable knowledge on the polythermal character of the Hurd Peninsula Ice cap.

 

This paper was supported by the project NUNANTAR (02/SAICT/2017 – 32002; Fundação para a Ciência e a Tecnologia, Portugal) and the College on Polar and Extreme Environments (University of Lisbon).

How to cite: Fernández-Fernández, J. M., Oliva, M., Palacios, D., García-Oteyza, J., Navarro, F., and Schimmelpfennig, I.: Post-Last Glacial Maximum ice thinning and glacier dynamics in the Hurd Peninsula ice cap (Livingston Island, South Shetland Islands, Antarctic Peninsula), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9957, https://doi.org/10.5194/egusphere-egu21-9957, 2021.

EGU21-3385 | vPICO presentations | CR1.1 | Highlight

Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation

Michael E. Weber, Nicholas R. Golledge, Christopher J. Fogwill, Chris S.M. Turney, and Zoë A. Thomas

Emerging evidence suggests retreat of the Antarctic Ice Sheet (AIS) can persist considerably longer than the duration of the forcing. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and responses on century and longer timescales. New data from Iceberg Alley identifies eight retreat phases after the last Ice Age that de-stabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently stabilized equally rapidly. New blue ice records and independent ice-sheet modeling demonstrate the dynamic response of the AIS included a step-wise retreat of up to 400 km across the Ross Sea, accompanied by ice elevation drawdown of the West Antarctic Ice Sheet (>600 m). Together, these long time series support studies that propose the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat, associated with substantial global sea level rise.

How to cite: Weber, M. E., Golledge, N. R., Fogwill, C. J., Turney, C. S. M., and Thomas, Z. A.: Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3385, https://doi.org/10.5194/egusphere-egu21-3385, 2021.

EGU21-11743 | vPICO presentations | CR1.1

Regional climate and ice shelf melt captured in an Antarctic Peninsula ice core

Daniel Emanuelsson and Elizabeth R. Thomas

In this study, we present the stable water isotope record (δ18O) from an ice core drilled in Palmer Land, the southern Antarctic Peninsula (AP). This unique record, records changes in eastern AP ice shelf melt on the Larsen ice shelves. We show that warm years recorded in the ice core δ18O record are associated northeasterly winds that pass over the peninsula and subsequently result in foehn-induced surface warming and melt events on the Larsen Ice shelves on the eastern coast. The recent strengthening of westerly winds that circumference Antarctica (positive trend in SAM) and the deepening of the Amundsen Sea Low drives these strong northeasterly winds. We reconstruct the number of yearly melt days on the Larsen B ice shelf using melt days estimates from the published QSCAT/ASCAT dataset. Our record shows that melting on the Larsen B ice shelf since the late 1990s was higher than at any time during the past 388 years. However, periods with a high number of melt days have occurred in the past during the latter parts of the 17th and 19th centuries, as well as more recently during the 1940s, which may indicate past foehn-induced ice shelf melting.

How to cite: Emanuelsson, D. and Thomas, E. R.: Regional climate and ice shelf melt captured in an Antarctic Peninsula ice core, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11743, https://doi.org/10.5194/egusphere-egu21-11743, 2021.

EGU21-9225 | vPICO presentations | CR1.1

Reconstructing atmospheric circulation and sea-ice extent in the West Antarctic over the past 200 years using data assimilation 

Quentin Dalaiden, Hugues Goosse, Jeanne Rezsohazy, and Elizabeth R. Thomas

Ocean and ice sheet in the West Antarctic sector have witnessed large climate changes during the second half of the 20th century including a strong and widespread continental warming, important regional changes in sea-ice extent and snow accumulation, as well as a major mass loss from the melting of some ice shelves. However, the potential links between those observed changes are still unclear and instrumental data do not allow determining if they are part of a long-term evolution or specific to the recent decades. In this study, we analyze the climate variability of the past two centuries in the West Antarctic sector by reconstructing the key atmospheric variables (atmospheric circulation, near-surface air temperature and snow accumulation) as well as the sea-ice extent at the annual timescale using a data assimilation approach. To this end, information from Antarctic ice core records (snow accumulation and δ18O) and tree-ring width sites located in the mid-latitudes of the Southern Hemisphere are combined with the physics of climate models using a data assimilation method. This ultimately provides a complete spatial reconstruction over the west Antarctic region. Our reconstruction reproduces well the main characteristics of the observed changes over the instrumental period. We show that the observed sea-ice reduction in the Bellingshausen-Amundsen Sea sector over the satellite era is part of a long-term trend, starting at around 1850 CE, while the sea-ice expansion in the Ross Sea sector has only started around 1950 CE. Furthermore, according to our reconstruction, the Amundsen Sea Low pressure (ASL) displays no significant linear trend in its strength or position over 1850-1950 CE but becomes stronger and shifts eastward afterwards. The year-to-year sea-ice variations in the Ross Sea sector are strongly related to the ASL variability over the past two centuries, including the recent trends. By contrast, the link between ASL and sea ice the Bellingshausen-Amundsen Sea sector changes with time, being stronger in recent decades than before, Our reconstruction also suggests that the continental response to the variability of the ASL may not be stationary over time, being significantly affected by modification of the mean circulation. Finally, we show that the widespread warming since 1958 CE in West Antarctica is unusual in the context of past 200 years and is explained by both the deeper ASL and the positive phase of the Southern Annular Mode.

How to cite: Dalaiden, Q., Goosse, H., Rezsohazy, J., and Thomas, E. R.: Reconstructing atmospheric circulation and sea-ice extent in the West Antarctic over the past 200 years using data assimilation , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9225, https://doi.org/10.5194/egusphere-egu21-9225, 2021.

EGU21-8714 | vPICO presentations | CR1.1

Antarctic Surface Mass Balance from 1980 to 2017

Nicolaj Hansen, Peter L. Langen, Fredrik Boberg, Rene Forsberg, Sebastian B. Simonsen, Peter Thejll, Baptiste Vandercrux, and Ruth Mottram

The regional climate model HIRHAM5 developed for Greenland ice sheet applications has now been updated to also simulate Antarctic conditions. The outputs of the Antarctic runs have been used to force an offline subsurface model, to give estimates of the Antarctic surface mass balance (SMB) from 1980 to 2017.  Here, we compare two different versions of this offline subsurface model and evaluate how they simulate the physical properties of the uppermost part of the Antarctic firn pack. We find that the total calculated SMB of Antarctica is sensitive to the subsurface model variant. One model version uses an Eulerian framework, meaning that mass is advected through layers of fixed mass. When snowfall occurs at the surface, it is added to the first layer and an equal mass from that layer is shifted to the underlying layer. The same goes for each layer in the model column, and vice versa for mass loss. The other model version uses a Lagrangian framework for the layer development. Layers evolve through splitting and merging dynamically based on a number of weighted criteria.

The model simulations are validated against in situ observations of firn temperature and subsurface density. We find a mean temperature bias of 0.42-0.52 ℃  and a mean bias in modelled density of -24.0±18.4 kg m⁻³ and  -8.2±15.3 kg m⁻³ for layers less than 550 kg m⁻³ for the Eulerian and Lagrangian framework, respectively. For layers with a density above 550 kg m⁻³ the bais is -31.7±23.4 kg m⁻³ and -35.0±23.7 kg m⁻³  for the Eulerian and Lagrangian framework, respectively. The modelling framework also  affects the resulting  SMB. The Lagrangian framework,  estimates a total SMB  of 2473.5±114.4 Gt yr⁻¹ while the Eulerian framework results in slightly higher modelled SMB of  2564.8±113.7 Gt yr⁻¹. The majority for this difference in modelled SMB is pinpointed to the  ice shelves (the SMB over grounded ice only  differs  30 Gt yr⁻¹) and  demonstrates the importance of firn modelling in areas with substantial melt. Both the Eulerian and the Lagrangian SMB estimates are within each other's uncertainties and within range of other SMB studies. However, the Lagrangian version has the best statistics for modelling the densities. Given the importance of precipitation to Antarctic SMB, climate models must accurately simulate regional circulation patterns that modulate precipitation rates. We therefore investigate the relationship between SMB in individual drainage basins and the southern annular mode (SAM),  using Monte Carlo simulations. This shows a robust relationship between SAM and SMB in half of the basins (13 out of 27). In general, when SAM is positive there is a lower SMB over the Plateau and a higher SMB on the westerly side of the Antarctic Peninsula, and vice versa when the SAM is negative.

How to cite: Hansen, N., Langen, P. L., Boberg, F., Forsberg, R., Simonsen, S. B., Thejll, P., Vandercrux, B., and Mottram, R.: Antarctic Surface Mass Balance from 1980 to 2017, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8714, https://doi.org/10.5194/egusphere-egu21-8714, 2021.

Input-Output method (IOM) is a common method for estimating ice sheet mass balance, which shows ice dynamics in mass loss to analyze the response of ice sheet to climate change. However, compared with the altimetry method and the gravity method, the mass balance estimation using IOM has relatively large uncertainty. Assessing the impact of the uncertainties of each component in IOM on the mass balance estimation is conducive to effectively lowering uncertainty in the Antarctic mass budget estimate but of which there has been little quantitative analysis. We assess the uncertainty in the mass balance due to methodological differences in IOM, compare the differences of surface mass balance (SMB, input) in diverse versions and at different spatial scales, and evaluate the uncertainty in ice discharge (FG, output) due to data uncertainty in ice thickness, ice velocity and grounding line. Results showed that the SMBs at different scales are more divergent than that in different versions, resulting in a variation of 216.7 Gt yr-1 in Antarctica, of which the Antarctic peninsula accounts for 55.1%, followed by East Antarctica. The largest variation in FG due to uncertainty in the location of the grounding line is observed, where a 1 km retreat and a 1 km advance of the Antarctic grounding line would respectively result in FG reductions of 82.8 Gt yr-1 and 272.7 Gt yr-1, which are significant in all regions, with the FG corresponding to a 1 km retreat of grounding line in the islands being closer to the multi-year average SMB of the islands. The difference in Antarctic FG due to different ice thickness products is 124.4 Gt yr-1, consistent with the trend in the thickness of ice shelves, and that due to different ice velocity products is only 18.7 Gt yr-1. Within the same margin of error, systematic errors in ice thickness and ice velocity result in an order of magnitude higher difference of FG than random errors.

How to cite: Lin, Y. and Liu, Y.: Uncertainties in Mass Balance Estimation of the Antarctic Ice Sheet Using Input-output Method, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5589, https://doi.org/10.5194/egusphere-egu21-5589, 2021.

EGU21-6252 | vPICO presentations | CR1.1

Towards investigating the race of two Marine Ice instabilities: Sheet vs. Cliff

Tanja Schlemm and Anders Levermann

Due to ocean warming in the Amundsen sea, pine island glacier and thwaites glacier could lose their buttressing ice shelves in the near future. This would lead to glacier retreat through the marine ice sheet instability and could be accelerated by additional cliff calving (marine ice cliff instability). Using the Parallel Ice Sheet Model (PISM-PIK) we investigate this in a regional setup of the West Antarctic Ice Sheet. We remove floating ice in the Amundsen sea and investigate the resulting glacier retreat without additional cliff calving and with cliff calving with a range of maximum calving rates. We find that without additional cliff calving, the removal of the ice shelves in the Amundsen sea leads to a glacier retreat that is equivalent to 0.4-0.6m of sea level rise in 100 years, consistent with earlier simulations of other models (ABUMIP and LARMIP-2). Cliff calving can more than double this number.

How to cite: Schlemm, T. and Levermann, A.: Towards investigating the race of two Marine Ice instabilities: Sheet vs. Cliff, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6252, https://doi.org/10.5194/egusphere-egu21-6252, 2021.

EGU21-5388 | vPICO presentations | CR1.1

The influence of the solid Earth on the contribution of marine sections of the Antarctic ice sheet to future sea level change

Maryam Yousefi, Jeannette Wang, Linda Pan, Natalya Gomez, Konstantin Latychev, Jerry Mitrovica, and David Pollard

The future retreat of marine-based sectors of the Antarctic Ice Sheet (AIS) and its consequent global mean sea level (GMSL) rise is driven by various climatic and non-climatic feedbacks between ice, ocean, atmosphere, and solid Earth. The primary mode of ice loss in marine sectors of the AIS is dynamic flow of ice across the grounding line into the ocean. The flux of ice across the grounding line is strongly sensitive to the thickness of ice there, which is in turn proportional to the water depth (sea level) such that sea level rise enhances ice loss and grounding line retreat while sea level fall acts to slow or stop migration of the grounding line. In response to the unloading from removal of ice mass, the underlying bedrock deforms isostatically leading to lower local sea surface which promotes stabilization of the grounding line. In addition to its effect on AIS evolution, solid Earth deformation also alters the shape and size of the ocean basin areas that are exposed as marine areas of ice retreat and influences the amount of meltwater that leaves Antarctica and contributes to global sea-level rise. The solid Earth deformational response to surface loading changes, in terms of both magnitude and timescales, depends on Earth rheology. Seismic tomography models indicate that the interior structure of the Earth is highly variable over the Antarctica with anomalously low shallow mantle viscosities across the western section of the AIS. An improved projection of the contribution from AIS to sea level change requires a consideration of this complexity in Earth structure. Here we adopt a state-of-the-art seismic velocity model to build a high-resolution 3D viscoelastic structure model beneath Antarctica. We incorporate this structure into a high spatiotemporal resolution sea-level model to simulate the influence of solid Earth deformation on contributions of the AIS evolution to future sea-level change. Our sea-level model is coupled with the dynamics of PSU ice sheet model and our calculations are based on a range of future climate forcings. We show that the influence of applying a spatially variable Earth structure is significant, particularly in the regions of West Antarctica where upper mantle viscosities are lower and the elastic lithosphere is thinned.

How to cite: Yousefi, M., Wang, J., Pan, L., Gomez, N., Latychev, K., Mitrovica, J., and Pollard, D.: The influence of the solid Earth on the contribution of marine sections of the Antarctic ice sheet to future sea level change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5388, https://doi.org/10.5194/egusphere-egu21-5388, 2021.

EGU21-6722 | vPICO presentations | CR1.1

ISMIP6-based projections of ocean-forced Antarctic ice loss using the Community Ice Sheet Model 

William Lipscomb, Gunter Leguy, Nicolas Jourdain, Xylar Asay-Davis, Hélène Seroussi, and Sophie Nowicki

The future retreat rate for marine-based regions of the Antarctic Ice Sheet is one of the largest uncertainties in sea-level projections. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) aims to improve projections and quantify uncertainties by running an ensemble of ice sheet models with forcing derived from global climate models. Here, the Community Ice Sheet Model (CISM) is used to run ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution. Using several combinations of sub-ice-shelf melt schemes, CISM is spun up to steady state over many millennia. During the spin-up, basal-friction and thermal-forcing parameters are adjusted to optimize agreement with the observed ice thickness. The model is then run forward to year 2500, applying ocean thermal forcing anomalies from six climate models. In all simulations, ocean warming triggers long-term retreat of the West Antarctic Ice Sheet, especially in the Filchner-Ronne and Ross sectors. The ocean-forced sea-level rise in 2500 varies from about 150 mm to 1300 mm, depending on the melt scheme and ocean forcing applied. Further experiments show relatively high sensitivity to the basal friction law, and moderate sensitivity to grid resolution and the prescribed collapse of small ice shelves. The Amundsen sector exhibits threshold behavior, with modest retreat under many parameter settings, but complete collapse under some combinations of low basal friction and high thermal-forcing anomalies. Large uncertainties remain, as a result of parameterized sub-shelf melt rates, simplified treatments of calving and basal friction, and the lack of ice–ocean coupling.

How to cite: Lipscomb, W., Leguy, G., Jourdain, N., Asay-Davis, X., Seroussi, H., and Nowicki, S.: ISMIP6-based projections of ocean-forced Antarctic ice loss using the Community Ice Sheet Model , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6722, https://doi.org/10.5194/egusphere-egu21-6722, 2021.

CR1.2 – Integrating models and observations for the estimation of ice sheet mass balance and sea level, incorporating ISMASS/ISMIP6

EGU21-3103 | vPICO presentations | CR1.2

Trends in ice sheet mass balance

Andrew Shepherd and Erik Ivins and the IMBIE Team

The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a community effort supported by ESA and NASA that aims to provide a consensus estimate of ice sheet mass balance. In its first phase, IMBIE showed that estimates of ice sheet mass balance derived from satellite gravimetry, altimetry and the mass budget method could be reconciled within their respective uncertainties. In its second phase, IMBIE showed that rates of ice loss from Antarctica and Greenland have increased by a factor 6 during the satellite era and are tracking the high-end (worst-case) projections reported in the IPCC’s fifth assessment report (AR5). The project now involves 96 individual participants based in 50 institutes from 13 nations and includes 26 satellite estimates of ice sheet mass balance, 11 models of glacial isostatic adjustment, and 10 models of surface mass balance. IMBIE has now begun its third phase, and the objectives are to (i) include measurements from new satellite missions, (ii) to report annual assessments, (iii) to partition changes in mass due to ice dynamics and surface mass balance, (iv) to produce regional assessments in areas of imbalance, and to (v) explore remaining biases between the various geodetic techniques involved. Participation is open to the full community, and the quality and consistency of submissions is regulated through a series of data standards and documentation requirements. This paper will introduce the objectives of IMBIE-3 and present the latest assessment of ice sheet mass balance. which has been updated for the IPCC's sixth assessment report.

How to cite: Shepherd, A. and Ivins, E. and the IMBIE Team: Trends in ice sheet mass balance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3103, https://doi.org/10.5194/egusphere-egu21-3103, 2021.

EGU21-12825 | vPICO presentations | CR1.2

Historic simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model

Ronja Reese, Adrian Jenkins, Christopher Bull, Hartmut Hellmer, and Ricarda Winkelmann

Large uncertainties in Antarctic sea level projections are related to ocean-driven melting (Seroussi et al., 2020; Jourdain et al., 2020; Reese et al., 2020; Edwards et al., in press) and the marine ice sheet instability (Robel et al., 2019). ‘Hindcasting’ simulations that follow the trajectory of the Antarctic Ice Sheet from pre-industrial conditions to present-day, are a useful tool to better constrain such uncertainties. We here perform historic simulations with the Parallel Ice Sheet Model. The simulations are forced by changes in the ocean and atmosphere from GCM output of CMIP5 as selected for ISMIP6 (Barthel et al., 2020). Sub-shelf melting is modeled using PICO (Olbers & Hellmer, 2010; Reese et al., 2018), with careful consideration of PICO’s parameters: the parameters for heat exchange across the ice ocean interface as well as the overturning strength are fitted with estimates of the melt sensitivity based on observations (Jenkins et al., 2018). Present-day observation of sub-shelf melting and mass loss inform parameter selection using an ensemble approach (Albrecht et al., 2020; Reese et al., 2020). The historic simulations provide an important basis to assess the future evolution and stability of Antarctic grounding lines. This work is done in the framework of the H2020 TiPACCs project.

How to cite: Reese, R., Jenkins, A., Bull, C., Hellmer, H., and Winkelmann, R.: Historic simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12825, https://doi.org/10.5194/egusphere-egu21-12825, 2021.

EGU21-7476 | vPICO presentations | CR1.2

Predicting the Antarctic sea level contribution to sea level rise with emulation

Fiona Turner and Tamsin Edwards and the ISMIP6 team and others

The Antarctic ice sheet has the potential to be a major contributor to future global sea level rise, but this has been difficult to predict, in part due to the combination of expected ice mass loss and snowfall accumulation. A great deal of uncertainty arises from the large variation of atmospheric and oceanic changes across climate models, and sensitivity to ocean changes across ice sheet models, but these uncertainties cannot be fully sampled because the models are too computationally expensive.

Here we make projections of Antarctica’s contribution to global sea level rise based on the simulations of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). Using a Gaussian process emulator, a statistical approximation of expensive computer models, we estimate probability distributions by sampling uncertainties in future climate and ice sheet sensitivity to ocean warming far more thoroughly than the original ISMIP6 ensemble could. We find a sea level contribution of 4 cm (5th-95th percentile range -5 to 14 cm) sea level equivalent by 2100 under current emissions policies, increasing to 21 cm (5th-95th percentile range 7 to 43 cm) if we use the subset of climate models, ice sheet models and ice sheet/ocean sensitivity values that lead to the highest sea level contributions.

We then compare the output from this emulator to a linear mixed model emulator, which  incorporates a random effect to represent the variation arising from different ice sheet models. We do this for all three Antarctic regions (West and East Antarctica, and the Peninsula) under two greenhouse emissions scenarios (SSP1-26 and SSP5-85). Both methods produce similar probability distributions of sea level contribution in 2100, demonstrating that differences in statistical models are not dominating the results.

How to cite: Turner, F. and Edwards, T. and the ISMIP6 team and others: Predicting the Antarctic sea level contribution to sea level rise with emulation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7476, https://doi.org/10.5194/egusphere-egu21-7476, 2021.

EGU21-11823 | vPICO presentations | CR1.2

Antarctic ice sheet response to upper-bound scenarios

Sainan Sun and Frank Pattyn

Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.

How to cite: Sun, S. and Pattyn, F.: Antarctic ice sheet response to upper-bound scenarios, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11823, https://doi.org/10.5194/egusphere-egu21-11823, 2021.

EGU21-2160 | vPICO presentations | CR1.2

Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet

Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thiery Fichefet, and Xavier Fettweis

The future surface mass balance (SMB) will influence the ice dynamics and the contribution of the Antarctic ice sheet (AIS) to the sea-level rise. Most of recent Antarctic SMB projections were based on the 5th phase of the Coupled Model Intercomparison Project (CMIP5). However, new CMIP6 results have revealed a +1.3°C higher mean Antarctic near-surface temperature than in CMIP5 at the end of the 21st century enabling estimations of future SMB in warmer climates. Here, we investigate the AIS sensitivity to different warmings with an ensemble of four simulations performed with the polar regional climate model MAR forced by two CMIP5 and two CMIP6 models over 1981--2100. Statistical extrapolation allows us to expand our results to the whole CMIP5 and CMIP6 ensembles. Our results highlight a contrasting effect on the future grounded ice sheet and the ice shelves. The SMB over grounded ice is projected to increase as a response to stronger snowfall, only partly offset by enhanced meltwater runoff. This leads to a cumulated sea-level rise mitigation (i.e. an increase in surface mass) of the grounded Antarctic surface by 5.1 ± 1.9 cm sea-level equivalent (SLE) in CMIP5-RCP8.5 and 6.3 ± 2.0 cm SLE in CMIP6-ssp585. Additionally, the CMIP6 low-emission ssp126 and intermediate-emission ssp245 scenarios project a stabilised surface mass gain resulting in a lower mitigation to sea-level rise than in ssp585. Over the ice shelves, the strong runoff increase associated with higher temperature is projected to lower the SMB with a stronger decrease in CMIP6-ssp585 compared to CMIP5-RCP8.5. Ice shelves are however predict to have a close-to-present-equilibrium stable SMB under CMIP6 ssp126 and ssp245 scenarios. Future uncertainties are mainly due to the sensitivity to anthropogenic forcing and the timing of the projected warming. Furthermore,  we compare the MAR projected SMB to the ISMIP6-derived SMB, revealing large local and integrated differences between MAR and the respective forcing ESM highlighting the need of additional projections relying on more models including both RCMs and ESMs. While ice shelves should remain at a close-to-equilibrium stable SMB under the Paris Agreements, MAR projects strong SMB decrease for an Antarctic near-surface warming above +2.5°C limiting the warming range before potential irreversible damages on the ice-shelves. Finally, our results reveal the existence of a potential threshold (+7.5°C) that leads to a lower grounded SMB increase. This however has to be confirmed in following studies using more extreme or longer future scenarios.

How to cite: Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., and Fettweis, X.: Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2160, https://doi.org/10.5194/egusphere-egu21-2160, 2021.

EGU21-13754 | vPICO presentations | CR1.2

Some future projections from coupling the U.K. Earth System Model to the Antarctic ice sheets

Antony Siahaan, Robin Smith, Paul Holland, Adrian Jenkins, and Colin Jones

A UKESM climate model which is coupled annually to the BISICLES ice sheet model to enable a two way interactions in Antarctica has been developed 
and run through a small ensemble of four SSP1-1.9 & SSP5-8.5 scenario members. Under the extreme anthropogenic forcing, all the initial condition 
ensemble members develop strong melting under the cold & large Ross and Filchner-Ronne ice-shelves, where it starts after the first half of simulation 
period for the former and in the last decade of the run for the latter. Despite that, during the 85 years timescale of these scenario runs, the stronger radiative forcing has positive effects on the ice-sheet mass gain through increasing precipitation on grounded ice regions which offsets the impact of basal melting in ice discharge across the grounding lines.

How to cite: Siahaan, A., Smith, R., Holland, P., Jenkins, A., and Jones, C.: Some future projections from coupling the U.K. Earth System Model to the Antarctic ice sheets, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13754, https://doi.org/10.5194/egusphere-egu21-13754, 2021.

EGU21-140 | vPICO presentations | CR1.2

Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach

Vincent Verjans, Amber Leeson, Malcolm McMillan, Max Stevens, Jan Melchior van Wessem, Willem Jan van de Berg, Michiel van den Broeke, Christoph Kittel, Charles Amory, Xavier Fettweis, Nicolaj Hansen, Fredrik Boberg, and Ruth Mottram

Mass balance assessments of the East Antarctic ice sheet are highly sensitive to changes in firn thickness resulting from variability in firn compaction rates and surface mass fluxes (snowfall, sublimation, melt). To better constrain uncertainty in firn thickness and in the underlying processes, we develop a model-based ensemble of firn evolution scenarios over 1992-2017. We combine statistical emulation of nine firn-densification models, climatic output from three regional climate models and different assumptions about surface snow density to generate a comprehensive set of 54 model scenarios. The ensemble agrees that firn thickness changes in the interior are minor, but there are pronounced thickening and thinning patterns in coastal areas.  At basin level, model uncertainty in firn thickness change ranges between 0.2–1.0 cm yr-1 (15–300%). Statistical analysis of the ensemble uncertainty demonstrates that climatic forcing is the primary contributor of model spread on firn thickness estimates. However, in basins characterised by warmer temperatures, high snowfall or increasing snowfall, the contributions of firn compaction and surface snow density can account for up to 46 and 28% of the spread, respectively.

By comparing the ensemble scenarios with satellite measurements of elevation changes over the same 1992-2017 period, we find that these estimates are consistent over a majority of basins. Nonetheless, we identify several basins where model estimates of firn thickness change do not match altimetry measurements. These discrepancies can be explained by different causes: (1) the model ensemble may fail to represent the real firn thickness change over our period of interest, (2) the uncertainty range associated with the altimetry data may not capture the true signal and (3) a component of the elevation change signal may be related to ice dynamical imbalance. As such, our analysis serves to highlight specific areas where further focus on potential sources of errors in model and altimetry results is needed in order to better constrain mass balance assessments in East Antarctica.

How to cite: Verjans, V., Leeson, A., McMillan, M., Stevens, M., van Wessem, J. M., van de Berg, W. J., van den Broeke, M., Kittel, C., Amory, C., Fettweis, X., Hansen, N., Boberg, F., and Mottram, R.: Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-140, https://doi.org/10.5194/egusphere-egu21-140, 2021.

Ice Sheet Models are a powerful tool to project the evolution of the Greenland and Antarctic Ice Sheets, and thus their future contribution to global sea-level changes. Probing the fitness of ice-sheet models to reproduce ongoing and past changes of the Greenland and Antarctic ice cover is a fundamental part of every modelling effort. However, benchmarking ice-sheet model data against real-world observations is a non-trivial process, as observational data comes with spatio-temporal gaps in coverage. Here, we present a new approach to assess the ability of ice-sheet models which makes use of the internal layering of the Antarctic Ice Sheet. We simulate observed isochrone elevations within the Antarctic Ice Sheet via passive Lagrangian tracers, highlighting that a good fit of the model to two dimensional datasets does not guarantee a good match against the three dimensional architecture of the ice-sheet and thus correct evolution over time. We show, that paleoclimate forcing schemes commonly used to drive ice-sheet models work well in the interior of the Antarctic Ice Sheet and especially along ice divides, but fail towards the ice-sheet margin. The comparison to isochronal horizons attempted here reveals, that simple heuristics of basal drag can lead to an overestimation of the vertical interior ice sheet flow especially over subglacial basins. Our model-observation intercomparison approach opens a new avenue to the improvement and tuning of current ice-sheet models via a more rigid constraint on model parameterisations and climate forcing which will benefit model-based estimates of future and past ice-sheet changes.

How to cite: Sutter, J., Fischer, H., and Eisen, O.: Investigating the internal structure of the Antarctic Ice Sheet: the utility of isochrones for spatio-temporal ice sheet model calibration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9446, https://doi.org/10.5194/egusphere-egu21-9446, 2021.

EGU21-2107 | vPICO presentations | CR1.2

Polarimetric radar-sounding to infer and quantify shear margin ice fabric anisotropy

Tun Jan Young, Thomas M Jordan, Carlos Martín, Dustin M Schroeder, Poul Christoffersen, Slawek M Tulaczyk, Riley Culberg, and Nicole L Bienert

Glaciers and ice streams channel the majority of ice mass discharge into the ocean, and are modulated by basal slip at the ice-bed interface, deformation within the ice interior, and lateral shear at the margins separating fast- and slow-moving ice. The anisotropy of glacier ice (i.e. ice that deforms preferentially in certain modes and directions) at shear margins greatly facilitates streaming ice, however it is still poorly understood due to a lack of in-situ measurements and is usually incorporated into models as a simple scalar enhancement factor. The resurgence of polarimetric radar techniques to detect bulk fabric anisotropy through exploiting the birefringence of ice crystals has greatly aided quantification of the ice crystal orientation fabric (COF) across the Antarctic Ice Sheet. In our study, we invert these techniques to infer the azimuthal fabric strength at the Eastern Shear Margin of Thwaites Glacier from non-polarimetric airborne radargrams collected during the 2018-19 field season. From these results, we infer the evolution of the crystal orientation fabric across the shear margin, where ice is subjected to varying levels of both pure and simple shear. Our findings suggest the potential of the upper reaches of the ESM having undergone recent inward migration. Together with compatible ground-based polarimetric radar experiments, our study highlights the potential of radar sounding to observe and infer variations in fabric strength from regions of complex flow at multiple spatial scales. Because the bulk COF of ice sheets records the past history of ice sheet deformation and influences present-day ice flow dynamics, accurate measurements of ice fabric strength and orientation not only places constraints on present and past ice flow history, but also aids in the incorporation of anisotropic rheology in ice flow models.

How to cite: Young, T. J., Jordan, T. M., Martín, C., Schroeder, D. M., Christoffersen, P., Tulaczyk, S. M., Culberg, R., and Bienert, N. L.: Polarimetric radar-sounding to infer and quantify shear margin ice fabric anisotropy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2107, https://doi.org/10.5194/egusphere-egu21-2107, 2021.

EGU21-3366 | vPICO presentations | CR1.2

Englacial stratigraphy in Ellsworth Subglacial Highlands, West Antarctica

Felipe Napoleoni, Neil Ross, Michael J. Bentley, Stewart S.R. Jamieson, Andrew M. Smith, José-Andrés Uribe, Rodrigo Zamora, and Alex M. Brisbourne

Airborne ice-penetrating radar surveys around the Ellsworth Subglacial Highlands (ESH) have mapped and dated englacial ice sheet layers, hereafter referred to as ‘Internal Reflection Horizons’ (IRHs). The geometry and internal structure of IRHs can reveal the cumulative effects of surface mass balance, strain, basal melt and ice dynamics, to improve understanding of the glacial history of West Antarctic Ice Sheet (WAIS). Despite the airborne-surveyed IRHs however, international efforts to develop a continental-wide scale coverage of IRHs (i.e. AntArchitecture), are limited by a lack of data in the critical regions between the upper reach of Pine Island Glacier (PIG), Rutford Ice Stream (RIS) and Institute Ice Stream (IIS). This region is important because any significant collapse of WAIS or reorganisation of ice flow would likely be felt in the ESH because it hosts deep subglacial troughs (Ellsworth Trough and CECs Trough), that represent a potential connection between the Weddell and Amundsen Seas. Using an extensive ground-based ice radar dataset acquired by Centro de Estudios Científicos (CECs) we bridge this regional gap by mapping IRHs across the Amundsen-Weddell divide of the WAIS. This work links airborne-derived IRH datasets across PIG and IIS, to develop an extensive layer characterisation across a large area of West Antarctica. We present the regional internal structure of the ice sheet, gridded paleo ice surfaces, and identify areas with complex IRH structures, and evaluate the possible glaciological processes responsible. We then compare our results with modelled outputs of ice sheet geometry and outline our current understanding of the past ice flow behaviour of the ESH, and the implications for WAIS glacial history. We consider our results in the context of the characterisation of ‘old-ice’ in WAIS and in relation to the upcoming plans for accessing subglacial Lake CECs in order to determine its history.

How to cite: Napoleoni, F., Ross, N., Bentley, M. J., Jamieson, S. S. R., Smith, A. M., Uribe, J.-A., Zamora, R., and Brisbourne, A. M.: Englacial stratigraphy in Ellsworth Subglacial Highlands, West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3366, https://doi.org/10.5194/egusphere-egu21-3366, 2021.

Dome A is the summit of the East Antarctic Ice Sheet (EAIS), underlain by the rugged Gamburtsev Subglacial Mountains (GSM).  The rugged basal topography produces a complex hydrological system featuring basal melt, water transport and storage, and freeze-on.  Here, we present the results of an inverse model used to infer the spatial distributions of geothermal heat flow (GHF) and accumulation rate that best fit a variety of observational constraints.  Our model agrees well with the observed water bodies and freeze-on structures, while also predicting a significant amount of unobserved water and suggesting a change in stratigraphic interpretation that reduces the volume of the freeze-on units.  Our model stratigraphy agrees well with observations, and we predict that there will be two distinct patches of ice up to 1.5 Ma suitable for ice coring underneath the divide.  Past divide migration could have interrupted stratigraphic continuity at the old ice patches, but various indirect lines of evidence suggest that the divide has been stable for about the last one and a half glacial cycles, which is a hopeful but by no means definitive sign for stability in the longer term.  Finally, our GHF estimate is higher than previous estimates for this region, but consistent with possible heterogeneity in crustal heat production.     

How to cite: Wolovick, M., Moore, J., and Zhao, L.: Joint Inversion for Surface Accumulation and Geothermal Heat Flow from Ice-Penetrating Radar Observations at Dome A, East Antarctica. , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13492, https://doi.org/10.5194/egusphere-egu21-13492, 2021.

The Greenland ice sheet (GrIS) is one of the largest contributors to global mean sea-level rise today and is expected to continue losing mass in the future under increasing Arctic warming. Mass loss in the future is caused by the thinning and retreat of marine-terminating outlet glaciers and to a larger extent by decreasing surface mass balance (SMB) due to increased surface meltwater runoff. In this paper we study the relative importance of changes in SMB and outlet glacier retreat by means of model simulations that have been performed as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). The effect of the two forcing mechanisms can be separated based on a comparison between full projections and single forcing experiments up to year 2100 for a number of ice sheet models, driving General Circulation Models and two forcing scenarios (RCP2.6 and RCP8.5). We can confirm earlier findings for the high forcing scenario that a compensation between the two processes renders the sea-level contribution from the full experiment lower than the sum of the single forcing experiments.

How to cite: Goelzer, H. and the The ISMIP6 team: Relative importance of surface mass balance and outlet glacier forcing in ISMIP6 Greenland ice sheet sea-level projections, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11177, https://doi.org/10.5194/egusphere-egu21-11177, 2021.

Mass loss from the Greenland Ice Sheet (GrIS) can be partitioned between surface mass balance (SMB) and discharge due to ice dynamics through its marine-terminating outlet glaciers. A perturbation to a glacier terminus (e.g. a calving event) results in an instantaneous response in velocity and mass loss, but also a diffusive response due to the evolution of ice thickness over time. This diffusive response means the total impact of a retreat event can take decades to be fully realised. Here we model the committed response of the GrIS to recent observed changes in terminus position, neglecting any future climate perturbations. Our simulations quantify the sea level contribution that is locked in due to the slow dynamic response of the ice. Using the Ice Sheet System Model (ISSM), we run forward simulations starting from an initial state representative of the 2007 ice sheet. We apply perturbations to the marine-terminating glacier termini that represent recent observed changes, and simulate the response over the 21st Century, holding the climate forcing constant. The sensitivity of the ice sheet response to model parameter uncertainty is explored with in an ensemble framework, and GRACE data is used to constrain the results. We find that terminus retreat observed between 2007 and 2015 results in approximately 6 mm of sea level rise by 2100, with retreat having a lasting impact on velocity and mass loss. Our results complement the ISMIP6 projections, which report the ice sheet response to future forcing, excluding the background committed response. In this way, we can obtain estimates of Greenland’s total contribution to sea level rise by 2100.

How to cite: Nias, I., Nowicki, S., and Felikson, D.: Recent retreat of Greenland's marine terminating glaciers has a lasting impact on velocity and mass loss during the 21st Century, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9908, https://doi.org/10.5194/egusphere-egu21-9908, 2021.

EGU21-444 | vPICO presentations | CR1.2

Long-term future projections for the Greenland and Antarctic ice sheets with the model SICOPOLIS

Ralf Greve, Christopher Chambers, Reinhard Calov, Takashi Obase, Fuyuki Saito, Kaho Harada, and Ayako Abe-Ouchi

The Coupled Model Intercomparison Project Phase 6 (CMIP6) is a major international climate modelling initiative. As part of it, the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) was devised to assess the likely sea-level-rise contribution from the Greenland and Antarctic ice sheets until the year 2100. This was achieved by defining a set of future climate scenarios by evaluating results of CMIP5 and CMIP6 global climate models (GCMs, including MIROC) over and surrounding the Greenland and Antarctic ice sheets. These scenarios were used as forcings for a variety of ice-sheet models operated by different working groups worldwide (Goelzer et al. 2020, doi: 10.5194/tc-14-3071-2020; Seroussi et al. 2020, doi: 10.5194/tc-14-3033-2020).

Here, we use the model SICOPOLIS to carry out extended versions of the ISMIP6 future climate experiments for the Greenland and Antarctic ice sheets until the year 3000. For the atmospheric forcing (anomalies of surface mass balance and temperature) beyond 2100, we sample randomly the ten-year interval 2091-2100, while the oceanic forcing beyond 2100 is kept fixed at 2100 conditions. We conduct experiments for the pessimistic, "business as usual" pathway RCP8.5 (CMIP5) / SSP5-8.5 (CMIP6), and for the optimistic RCP2.6 (CMIP5) / SSP1-2.6 (CMIP6) pathway that represents substantial emissions reductions. For the unforced, constant-climate control runs, both ice sheets are stable until the year 3000. For RCP8.5/SSP5-8.5, they suffer massive mass losses: For Greenland, ~1.7 m SLE (sea-level equivalent) for the 12-experiment mean, and ~3.5 m SLE for the most sensitive experiment. For Antarctica, ~3.3 m SLE for the 14-experiment mean, and ~5.3 m SLE for the most sensitive experiment. For RCP2.6/SSP1-2.6, the mass losses are limited to a two-experiment mean of ~0.26 m SLE for Greenland, and a three-experiment mean of ~0.25 m SLE for Antarctica. Climate-change mitigation during the next decades will therefore be an efficient means for limiting the contribution of the ice sheets to sea-level rise in the long term.

How to cite: Greve, R., Chambers, C., Calov, R., Obase, T., Saito, F., Harada, K., and Abe-Ouchi, A.: Long-term future projections for the Greenland and Antarctic ice sheets with the model SICOPOLIS, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-444, https://doi.org/10.5194/egusphere-egu21-444, 2021.

EGU21-9540 | vPICO presentations | CR1.2

Projecting 21st century GrIS surface melt using artificial neural networks

Raymond Sellevold and Miren Vizcaino

Accelerated surface melt of the Greenland ice sheet (GrIS) is currently a large contributor to sea level rise, and the primary process of GrIS mass loss. Projections of future GrIS melt are limited by the lack of explicit melt calculations within most global climate models and the high computational cost of dynamical downscaling with regional models. To translate global climate evolution to GrIS surface melt, we train artificial neural networks (ANNs) with the output of the explicit melt calculation of the Community Earth System Model 2.1 (CESM2). ANNs are well suited for this task, as they are capable of learning complex, non-linear relationships, and they are fast to run.

Our results show that the ANNs accurately project GrIS surface melt when evaluated against regional climate simulations. Further, the ANNs recognize patterns already established in litterature as important for surface melt, and use bases the projections on these patterns. Using the global climate simulations from the CMIP6 archive, the ANNs project a GrIS surface melt increase ranging from 414 Gt yr-1 to 1,378 Gt yr-1 by the end of the 21st century. The main source of projection uncertainty throughout the 21st century is due to the spread in the models’ climate sensitivity.

How to cite: Sellevold, R. and Vizcaino, M.: Projecting 21st century GrIS surface melt using artificial neural networks, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9540, https://doi.org/10.5194/egusphere-egu21-9540, 2021.

EGU21-15672 | vPICO presentations | CR1.2

Timing, thresholds and processes for complete future Greenland deglaciation

Miren Vizcaino, Michele Petrini, Raymond Sellevold, Sotiria Georgiou, Laura Muntjewerf, William Lipscomb, and Gunter Leguy

The Greenland ice sheet is currently losing mass at a rate of 0.8 mm of global mean sea level rise (SLR) per year. Here, we simulate its future evolution under an idealized scenario of high greenhouse gas forcing (1% increase per year until four times pre-industrial CO2).  To this end, we use the newly, bi-directionally coupled Community Earth System Model version 2 and Community Ice Sheet Model version 2 (CESM2-CISM2, Muntjewerf et al, GRL, 2020), that includes an advanced calculation of the surface mass balance in the land component with elevation classes downscaling to CISM. Deglaciation rates increase from 2 mm SLR per year by simulation year 140 (or time of CO2 stabilization) to 7 mm SLR per year two centuries later as the ablation areas expand and net solar radiation and turbulent (latent, sensible) heat fluxes become the dominant energy sources for melt. The ice sheet retreats to an ice cap in the interior of the northern half of Greenland, that melts completely by simulation year 1,700. We compare the Greenland climate evolution with a CESM2 simulation with fixed topography, and evaluate the role of vegetation, clouds, precipitation, and surface energy fluxes on the relatively fast decay of the ice sheet. In addition, we use a set of CISM2 simulations forced with CESM2 SMB to estimate the global warming/forcing threshold for complete deglaciation.

How to cite: Vizcaino, M., Petrini, M., Sellevold, R., Georgiou, S., Muntjewerf, L., Lipscomb, W., and Leguy, G.: Timing, thresholds and processes for complete future Greenland deglaciation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15672, https://doi.org/10.5194/egusphere-egu21-15672, 2021.

EGU21-5752 | vPICO presentations | CR1.2

Data assimilation and ensemble method applied to Upernavik Isstrom

Eliot Jager, Fabien Gillet-Chaulet, and Jérémie Mouginot

Lack of observation is one of the main limitations for improving model prediction in glaciology. However, over the past few years, the amount of observations from satellites has increased at a phenomenal rate. Hopefully, this amount of data will allow to validate the models and their parameterizations. In addition, data assimilation seems to be an optimal method to combine the model and these frequent observations, allowing to reduce the uncertainties of the model and thus potentially improve the projections. While inverse methods are now common in glaciology to infer uncertain parameters from observed surface velocities acquired at a given date, transient data assimilation algorithms are still under development. Recently, the performance of an Ensemble Kalman Filter has been studied on a synthetic case. Here, the goal of this study is to investigate the feasibility of applying this assimilation scheme on a real case : evolution of Upernavik Isstrøm since 1985 using the open source finite element software Elmer/Ice. To do so, we first need to generate an ensemble of simulations that sample the model uncertainties and to evaluate this ensemble against available observations.

We first assemble a set of observations that will serve for model setup and validation. In this sense, we have collected ice velocity measurements, from optical and radar source, surface elevation and bed topography, ice front position and surface mass balance that give us a fairly good a priori knowledge of the evolution of Upernavik Isstrøm between 1985 and 2020. These datasets are divided into two parts : one is used to better characterize and set up the initial state of the system, and the other is used to evaluate model outputs.

Uncertainties in the model comes from different sources: (i) the model parameters, (ii) the initial topography as the surface elevation in 1985 is only partially known, and (iii) the forcings (i.e. the surface mass balance, the ice front position).
For the model parameters we take into account uncertainties in the ice rheology by perturbing the Glen’s enhancement factor and by generating an ensemble of friction coefficients for different friction laws using a set of inversions that has been performed for the whole Greenland using present day observations. Using these perturbed parameters and a set of surface mass balance representative of the period we generate and evaluate an ensemble of initial topographies for 1985.


With this ensemble of initial states, we perform transient simulations where the position of glacier terminus and a set of perturbed SMB are prescribed each year. Each simulation is scored with specifically designed metrics in terms of dynamics and geometry using the observations described previously. This analysis allows to evaluate the impact of different sources of uncertainty on the transient simulation. Using the results of this study, we will discuss the capacity of Elmer/Ice to reconstruct the trend of the evolution of Upernavik Isstrøm and the possibility to perform transient data assimilation.

How to cite: Jager, E., Gillet-Chaulet, F., and Mouginot, J.: Data assimilation and ensemble method applied to Upernavik Isstrom, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5752, https://doi.org/10.5194/egusphere-egu21-5752, 2021.

EGU21-4672 | vPICO presentations | CR1.2

Modeling of the Russell glacier's basal conditions at seasonal time scale using the satellite observations of surface ice speed

Anna Derkacheva, Fabien Gillet-Chaulet, and Jeremie Mouginot

Greenland’s future response to climate change will be determined partly by various phenomena controlling ice flow. For the land-terminating sectors, the water lubricating the glacier's base is considered as a major control on the ice motion. For instance, the seasonal modulations of water input induced by summer melt can cause glacier speed-up up to +200-300% compared to the winter mean. Thus, a comprehensive understanding of variations in the basal conditions, which are at the origin of the glacier flow fluctuations, plays a key role for the climate projections.

While the in-situ measurements stay a local and hard approach to investigate the basal conditions, ice flow modeling offers the possibility to invert for them over the large area based on observations of surface glacier speed and topography. During the last decade, the number of available satellite observations has increased significantly, allowing for far more frequent measurements of the glacier speed and precise reconstruction of the seasonal fluctuations. Here, we investigate the possibility of applying this satellite-derived time-series of surface ice velocity to reconstruct the annual behavior of the basal conditions with 2 weeks temporal resolution using an ice flow model.

The area of this study is Russell glacier located on the southwest coast of Greenland. A time series of surface velocity dataset was created by merging measurements from Sentinel-1&2 and Landsat-8, covering an area up to 100 km inland with 150 m/pix spatial resolution and 2-weeks temporal resolution (Derkacheva et al. 2020). The 3D Full-Stokes ice flow model Elmer/Ice is used to invert for the effective basal friction coefficient for each time step.  Usage of a friction law that has been derived for hard beds (Gagliardini et al., 2007) allows to constrain the variation of the basal effective pressure. Overall, the results from the model inversions give access to the evolution of the basal ice speed, friction, effective and water pressure, floatation fraction throughout a complete year. The results are compared with in-situ measurements in terms of absolute values and show a good agreement. The impact of the flow model setup, regularization, assumptions for the ice rheology, and the impact of noise in the speed data are also examined and compared with in-situ measurements.

How to cite: Derkacheva, A., Gillet-Chaulet, F., and Mouginot, J.: Modeling of the Russell glacier's basal conditions at seasonal time scale using the satellite observations of surface ice speed, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4672, https://doi.org/10.5194/egusphere-egu21-4672, 2021.

EGU21-13450 | vPICO presentations | CR1.2

Heat flux and the North East Greenland Ice Stream

Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, and Yu Zhang

The prominent North East Greenland Ice Stream (NEGIS) is an exceptionally large ice stream in the Greenland Ice sheet. It is over 500 km long, originates almost at the central ice divide, and contributes significantly to overall ice drainage from the Greenland Ice sheet. Surface velocities in the inland part of the ice stream are several times higher inside NEGIS than in the adjacent ice sheet. Modelling NEGIS is still a challenge as it remains unclear what actually causes and controls the ice stream.

An elevated geothermal heat flux is one of the factors that are being considered to trigger or drive the fast flow inside NEGIS. Unfortunately, the geothermal heat flux below NEGIS and its upstream area is poorly constrained and estimates vary from close to the global average for continental crust (ca. 60 mW/m2) to values as high as almost 1000 mW/m2. The latter would cause about 10 cm/yr of melting at the base of the ice sheet.

We present a brief survey of global geothermal heat flux data, especially from known hotspots, such as Iceland and Yellowstone. Heat fluxes in these areas that are known to be among the hottest on Earth rarely, if ever, exceed 300 mW/m2. A plume hotspot or its trail can therefore not cause heat fluxes at the high end of the suggested range. Other potential factors, such as hydrothermal fluid flow and radiogenic heat, also cannot raise the heat flux significantly. We conclude that the heat flux at NEGIS is very unlikely to exceed 100-150 mW/m2, and future modelling studies on NEGIS should thus be mindful of implementing realistic geothermal heat flux values. If NEGIS is not the result of an exceptionally high heat flux, we are left with the exciting challenge to find the true trigger of this fascinating structure.

How to cite: Bons, P. D., de Riese, T., Franke, S., Llorens, M.-G., Sachau, T., Stoll, N., Weikusat, I., and Zhang, Y.: Heat flux and the North East Greenland Ice Stream, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13450, https://doi.org/10.5194/egusphere-egu21-13450, 2021.

EGU21-3506 | vPICO presentations | CR1.2

Assimilating sparse data in glaciological inverse problems

Daniel Shapero and Reuben Nixon-Hill

Most of the existing work on solving inverse problems in glaciology has assumed that the observational data used to constrain the model are spatially dense. This assumption is very convenient because it means that the model-data misfit term in the objective functional can be written as an integral. In many scenarios, however, the computational mesh can locally be much finer than the observational grid, or the observations can have large patches of missing data. Moreover, pretending as if the observations are a globally-defined continuous field obscures valuable information about the number of independent measurements we have. It is then impossible to apply a posteriori sanity checks on the expected model-data misfit from regression theory. Here we'll describe some recent work we've done on assimilating sparse point data into ice flow models and how this allows us to be more rigorous about the statistical interpretation of our results. For now we are focusing on the kinds of inverse problems that have been solved in the glaciology literature for a long time -- inferring rheology and basal friction from surface velocities. But these developments open up the possibility of assimilating new sources of data, such as measurements from strain gauges or ice cores.

How to cite: Shapero, D. and Nixon-Hill, R.: Assimilating sparse data in glaciological inverse problems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3506, https://doi.org/10.5194/egusphere-egu21-3506, 2021.

CR1.4 – Glaciers and Ice Caps under Climate Change

EGU21-1539 | vPICO presentations | CR1.4

Recent, rapid and profound changes to glacier morphology and dynamics, Juneau Icefield, Alaska

Bethan Davies, Jacob Bendle, Robert McNabb, Jonathan Carrivick, Christopher McNeil, Seth Campbell, and Mauri Pelto

The Alaskan region (comprising glaciers in Alaska, British Columbia and Yukon) contains the third largest ice volume outside of the Greenland and Antarctic ice sheets, and contributes more to global sea level rise than any other glacierised region defined by the Randolph Glacier Inventory. However, ice loss in this area is not linear, but in part controlled by glacier hypsometry as valley and outlet glaciers are at risk of becoming detached from their accumulation areas during thinning. Plateau icefields, such as Juneau Icefield in Alaska, are very sensitive to changes in Equilibrium Line Altitude (ELA) as this can result in rapidly shrinking accumulation areas. Here, we present detailed geomorphological mapping around Juneau Icefield and use this data to reconstruct the icefield during the “Little Ice Age”. We use topographic maps, archival aerial photographs, high-resolution satellite imagery and digital elevation models to map glacier lake and glacier area and volume change from the Little Ice Age to the present day (1770, 1948, 1979, 1990, 2005, 2015 and 2019 AD). Structural glaciological mapping (1979 and 2019) highlights structural and topographic controls on non-linear glacier recession.  Our data shows pronounced glacier thinning and recession in response to widespread detachment of outlet glaciers from their plateau accumulation areas. Glacier detachments became common after 2005, and occurred with increasing frequency since then. Total summed rates of area change increased eightfold from 1770-1948 (-6.14 km2 a-1) to 2015-2019 (-45.23 km2 a-1). Total rates of recession were consistent from 1770 to 1990 AD, and grew increasingly rapid after 2005, in line with regional warming.

How to cite: Davies, B., Bendle, J., McNabb, R., Carrivick, J., McNeil, C., Campbell, S., and Pelto, M.: Recent, rapid and profound changes to glacier morphology and dynamics, Juneau Icefield, Alaska, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1539, https://doi.org/10.5194/egusphere-egu21-1539, 2021.

EGU21-59 | vPICO presentations | CR1.4

Coupling the delta-h parametrization with melt beneath a supraglacial debris cover: an evaluation across 54 glaciers in the southern European Alps

Francesco Avanzi, Simone Gabellani, Edoardo Cremonese, Umberto Morra di Cella, and Matthias Huss

Glacier mass balance is an essential component of the water budget of high-elevation and high-latitude regions, and yet this process is rather oversimplified in most hydrological models. This oversimplification is particularly relevant when it comes to representing two mechanisms: ice flow dynamics and melt beneath a supraglacial debris cover. In 2010, Huss et al. proposed a parsimonious approach to account for  glacier dynamics in hydrological models without solving complex equations of three-dimensional ice flow, the so-called delta-h parametrization. On the other hand, accounting for melt of debris-covered ice is still challenging as  estimates of debris thickness are rare. 

Here, we leveraged a distributed dataset of glacier-thickness change to derive a glacier-specific delta-h parametrization for 54 glaciers across the Aosta Valley (Italy), as well as  develop a novel approach for modeling melt beneath supraglacial debris based on residuals between locally observed change in thickness and that expected by regional elevation gradients. This approach does not require any on-the-ground data on debris cover, and as such it is particularly suited for ungauged regions where remote sensing is the only, feasible source of information for modeling. 

We found an expected, significant variability in both the delta-h parametrization and residuals over debris-covered ice across glaciers, with somewhat steeper orographic gradients in the former compared to the curves originally proposed by Huss et al. for Swiss glaciers. At a regional scale, the glacier mass balance showed a clear transition between a regime dominated by active glacier flow above 2,300 m ASL and a debris-dominated regime below this elevation threshold, which makes accounting for melt in the debris-covered area essential to correctly capture the future fate of low-elevation glaciers. Implementing the delta-h parametrization and our proposed approach to melt beneath supraglacial debris into S3M, a distributed cryospheric model, yielded an improved realism in estimates of future changes in glacier geometry  compared to assuming non-dynamic downwasting.

How to cite: Avanzi, F., Gabellani, S., Cremonese, E., Morra di Cella, U., and Huss, M.: Coupling the delta-h parametrization with melt beneath a supraglacial debris cover: an evaluation across 54 glaciers in the southern European Alps, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-59, https://doi.org/10.5194/egusphere-egu21-59, 2021.

EGU21-9990 | vPICO presentations | CR1.4

Tree-ring and 14C dates of moraines of the Greater Azau Glacier (Baksan valley, Northern Caucasus)

Olga Solomina, Irina Bushueva, Ekaterina Dolgova, Natalya Volodicheva, Alexandr Alexandrovskiy, and Elya Zazovskaya

The age of moraines of the Greater Azau Glacier was identified by tree-ring analysis of more than 150 Scots pines, by historical and cartographic data, remote sensing, lichenometric and radiocarbon dating. We determined the limits of the area covered by the glacier tongue at the end of the 19th century. We also discuss the controversial issue of the position of the moraine of 1849 CE, which was described by H. Abich [1]. The highest and most clearly shaped lateral moraine, conventionally called the "17th century moraine", was formed earlier than the end of the 16th century (tree-ring minimum age). The oldest tree in the valley (1598 CE) was found at the "forested island" end moraine (2294 m asl). Judging by the size of the lichens Rhizocarpon geographicum (120-130 mm) on this surface the moraine may be several centuries older. We re-examined the trunk of a pine which was discovered in the 1960s buried in the fluvio-glacial sediments presumably formed in 1880s (historical descriptions). It was dated earlier by radiocarbon (140 +/- 75 BP [2] (calibrated date - 1650-1960 CE). According to the ring width cross-dating, the most probable dates of the buried tree are 1759-1883 CE, however, the second likely dates are 1826-1950 CE. Suppressions of pine growth at the forefields of the Greater Azau in the 1640s, 1710s, 1800s, 1840s-1860s CE are synchronous with the advances of the Bosson, Mer de Glace and Grindelwald glaciers in the Alps [2]. Three soil horizons buried in the moraine of the Greater Azau glacier were identified in the artificial outcrop on the left side of the valley (N43.26583, E42.4767, 2370 m asl). The uppermost horizon located 0.6 m below the surface of the moraine is a thin layer of loam developed in a short time interval (130±20 BP (IGAN ams - 6826) 1680-1939cal BP (charcoal). Two lower thicker horizons (buried 13 and 15 m below the surface) indicate longer periods of continuous soil formation lasting for about 720 years (between 774-89 CE and 1496-1641 CE) and for 1750 years (between ca 3 ka BP and 7-8 centuries CE), respectively. They both are well developed soils formed within the loam layers without detrital material, containing a thick dark humus horizon with a high content of soil organic matter, as well as fragments of charcoal and tree bark. During these three periods, the glacier was relatively small.

References

1. Abich H., Geologische Beobachtungen auf Reisen im Kaukasus um Jahre 1873. Moskau, 1875. 138 p.

2. Nussbaumer S., Zumbühl H. The Little Ice Age history of the Glacier des Bossons (Mont Blanc massif, France): A new high-resolution glacier length curve based on historical documents. Climatic Change, 111, 2012. 301-334 pp.

How to cite: Solomina, O., Bushueva, I., Dolgova, E., Volodicheva, N., Alexandrovskiy, A., and Zazovskaya, E.: Tree-ring and 14C dates of moraines of the Greater Azau Glacier (Baksan valley, Northern Caucasus), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9990, https://doi.org/10.5194/egusphere-egu21-9990, 2021.

EGU21-16020 | vPICO presentations | CR1.4

Surface velocity variations of glaciers on Kenai Peninsula, Alaska, 2014-2019

Ruitang Yang, Regine Hock, Shichang Kang, Donghui Shangguan, and Wanqin Guo

We characterize the spatiotemporal variations surface velocity of glaciers on the Kenai Peninsula, Alaska, using intensity offset tracking on a set of repeat-pass Sentinel-1 data and TerraSAR-X data. We derived 92 velocity fields and generated time-averaged annual and seasonal surface velocity maps for the period October 2014 to December 2019, as well as time series surface velocity profiles along centerlines for individual glaciers. We find considerable spatial and seasonal variations in surface velocity in the study area, especially a pronounced average spring speedup of 50% averagely compared to annual mean velocity. Ice velocities varied systematically between glaciers with different terminus types. Generally, the pixel-averaged velocity of tidewater and lake-terminating glaciers are up to 2 and 1.5 times greater than those of the land-terminating glaciers, respectively. For Bear glacier, with the analysis of surface velocity profile and the terminus change, we state this glacier retreat and accelerate. While the time-series result shows the velocity speed-up of the Bear glacier synchronizes well with the ice-damaged lake outburst flood (GLOF) events.

How to cite: Yang, R., Hock, R., Kang, S., Shangguan, D., and Guo, W.: Surface velocity variations of glaciers on Kenai Peninsula, Alaska, 2014-2019, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16020, https://doi.org/10.5194/egusphere-egu21-16020, 2021.

Proglacial lakes are becoming ubiquitous at the termini of many glaciers worldwide, leading to increased glacier mass loss and terminus retreat due to the influence such lakes are having upon ice dynamics. However, despite the highly dynamic nature and relative insensitivity to climate of many lake-terminating glaciers, an understanding of the key processes forcing their behaviour is lacking. As a result, it is difficult at present to accurately assess and predict the future response of these glaciers to continued warming. In addition, current methods of investigating lake-terminating glacier dynamics primarily involve the use of satellite remote sensing, which despite its clear importance in cryospheric studies does suffer from important limitations. A novel alternative is the use of repeat unmanned aerial vehicle (UAV) imagery, which can provide high resolution (cm-scale) imagery of the ice surface at varying spatial and temporal scales, depending on the needs of the researcher. As a result, this study utilised ultra-high resolution repeat UAV imagery to provide insights into the changing dynamics of Fjallsjökull, a lake-terminating glacier in southeast Iceland, over two periods during the 2019 summer melt season. The findings indicate that the overall dynamics of the glacier are controlled by the ~120 m deep subglacial channel under the study region, which is causing the glacier to flow faster as it enters deeper water, leading to increased ice acceleration, thinning and retreat. Such a correspondence between ice velocity and surface thinning suggests the implementation of the positive feedback mechanism “dynamic thinning” in this region of Fjallsjökull, with such heightened rates of surface thinning and frontal retreat continuing in future until the glacier recedes out of the subglacial channel into shallower water. Within this overall pattern, however, more localised, short-term changes in glacier dynamics are also observed which are likely to be forced primarily by subaqueous melting at the waterline, rather than being solely influenced by the basal topography. Although further work is required to add additional support to these findings, they clearly indicate the complex nature of the calving process and the dynamics of calving glaciers in general, highlighting the need for continued monitoring of lake-terminating glaciers at varying spatial and temporal scales.

How to cite: Baurley, N. and Hart, J.: Insights into the seasonal dynamics of the lake-terminating glacier Fjallsjökull, south-east Iceland, inferred using ultra-high resolution repeat UAV imagery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-677, https://doi.org/10.5194/egusphere-egu21-677, 2021.

EGU21-13311 | vPICO presentations | CR1.4

Proglacial Lakes Elevate Glacier Surface Velocities in the Himalayan Region

Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas Benn

Meltwater from Himalayan glaciers sustains the flow of rivers such as the Ganges and Brahmaputra on which over half a billion people depend for day-to-day needs. Upstream areas are likely to be affected substantially by climate change, and changes in the magnitude and timing of meltwater supply are likely to occur in coming decades. About 10 % of the Himalayan glacier population terminates into pro-glacial lakes and such lake-terminating glaciers are known to be capable of accelerating total mass losses. However, relatively little is known about the mechanisms driving exacerbated ice loss from lake-terminating glaciers in the Himalaya. Here we examine a 2017-2019 glacier surface velocity dataset, derived from Sentinel 2 imagery, covering most of the Central and Eastern Himalayan glaciers larger than 3 km2. We find that centre flow line velocities of lake-terminating glaciers are more than double those of land-terminating glaciers (18.8 vs 8.24 m yr-1) and show substantially more heterogeneity around glacier termini. We attribute this large heterogeneity to the varying influence of lakes on glacier dynamics, resulting in differential rates of dynamic thinning, which effects about half of the clean-ice lake-terminating glacier population. Also, numerical ice-flow model experiments suggest that changes at the frontal boundary condition can play a key role in accelerating the glacier flow at the front. With continued warming new lake development is likely to happen and will further accelerate future ice mass losses, a scenario not currently considered in regional projections. 

How to cite: Pronk, J. B., Bolch, T., King, O., Wouters, B., and Benn, D.: Proglacial Lakes Elevate Glacier Surface Velocities in the Himalayan Region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13311, https://doi.org/10.5194/egusphere-egu21-13311, 2021.

Glaciers are iconic features of mountain landscapes with significant cultural, environmental, scientific, and economic value. While we know that glaciers are sensitive to changes in their local climate, the extent to which cloud cover will amplify or reduce the melting of a glacier in response to future atmospheric warming is uncertain. Clouds alter the solar and infrared radiation available for glacier melt and can enhance or dampen the influence of surface meteorology, albedo feedbacks and subsurface processes (e.g. refreezing) on melt. How these processes interact in different mountain glacier environments and climate regimes has not been well established. To address this knowledge gap, published surface energy and mass balance datasets from 15 mountain glacier sites around the world have been collated and analysed in a common framework. The framework seeks to reveal how melt rate is altered by cloud cover in each environment and which processes are more important for determining how cloud cover modifies melt. For example, does a decrease in incoming solar radiation dominate the effect of clouds on melt, or does covariance between clouds and other meteorological forcing moderate this effect in different environments? By unravelling the interacting effects of clouds and other atmospheric processes on glacier melt in diverse mountain locations, we hope to add fundamental understanding of the processes determining mountain glacier response to climate change.

How to cite: Conway, J.: Cloud forcing of glacier surface energy balance in diverse mountain environments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6902, https://doi.org/10.5194/egusphere-egu21-6902, 2021.

Processes controlling the glacier wastage in the Himalaya are still poorly understood. In the present study, a surface energy-mass balance model is applied to reconstruct the long-term mass balances over 1979-2020 on two benchmark glaciers, Dokriani and Chhota Shigri, located in different climatic regimes. The model is forced with ERA5 reanalysis data and calibrated using field-observed point mass balances. The model is validated against available glacier-wide mass balances. Dokriani and Chhota Shigri glaciers show moderate wastage with a mean value of –0.28 and –0.34 m w.e. a-1, respectively over 1979-2020. The mean winter and summer glacier-wide mass balances are 0.44 and –0.72 m w.e. a-1 for Dokriani Glacier and 0.53 and –0.85 m w.e. a-1 for Chhota Shigri Glacier, respectively, showing a higher mass turn over on Chhota Shigri Glacier. Net radiation flux is the major component of surface energy balance followed by sensible and latent heat fluxes on both the glaciers. The losses through sublimation is around 10% to the total ablation. Surface albedo is one of the most important drivers controlling the annual mass balance of both Dokriani and Chhota Shigri glacier. Summer mass balance (0.76, p<0.05) mainly controls the annual glacier-wide mass balance on Dokriani Glacier whereas the summer (0.91, p<0.05) and winter (0.78, p<0.05) mass balances together control the annual glacier-wide mass balance on Chhota Shigri Glacier.

How to cite: Srivastava, S. and Azam, M. F.: Modelling mass changes of Dokriani (Central Himalaya) and Chhota Shigri (Western Himalaya) glaciers, India using energy balance approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15945, https://doi.org/10.5194/egusphere-egu21-15945, 2021.

EGU21-8663 | vPICO presentations | CR1.4

Combining distributed glacier mass balance and ice flow models to improve projections of mass change for debris-covered Khumbu Glacier, Nepal

Anya Schlich-Davies, Ann Rowan, Duncan Quincey, Andrew Ross, and David Egholm

Debris-covered glaciers in the Himalaya are losing mass more rapidly than expected. Quantifying and understanding the behaviour of these glaciers under climate change requires the use of numerical glacier models that represent the important feedbacks between debris transport, ice flow, and mass balance. However, these approaches have, so far, lacked a robust representation of the distributed mass balance forcing that is critical for making accurate simulations of ice volume change. This study forces a 3D higher-order ice flow model, with the outputs from an ensemble of distributed models of present day and future mass balance of Khumbu Glacier, Nepal. Distributed mass balance modelling, using the open access COupled Snowpack and Ice surface energy and mass balance model in PYthon (COSIPY) model (Sauter et al., 2020), was forced by three statistically downscaled climate models from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project.

Climate models were selected based on their ability to reproduce observed present-day seasonality and to account for several future climate and monsoon scenarios, the latter being of particular importance for these summer-accumulation type glaciers. Two emission scenarios, RCP4.5 and RCP8.5, were also chosen to simulate glacier change to 2100. Statistical downscaling involved Quantile Mapping and Generalized Analog Regression Downscaling, and the efficacy of these approaches was informed by present day mass balance sensitivity studies. Downscaled daily climate data were trained with data from two weather stations to aid disaggregation to an hourly resolution.

The integration of the mass balance and ice flow models posed some interesting challenges. The COSIPY model was run as if Khumbu Glacier were a clean-ice glacier (with no supraglacial debris) with sub-debris ablation resolved in the ice flow model. The value of using distributed mass balance forcing is seen in the simulated present-day velocities in the Khumbu icefall, which give a better fit to remote-sensing observations than previous simulations using a simple elevation-dependent mass balance forcing. The simulated present-day glacier extent is considerably smaller than the existing glacier outline. The debris-covered tongue, known to be losing mass at an accelerating rate, is virtually absent from these results, and is indicative of a stagnant tongue that is now or very soon to be dynamically disconnected from the active upper reaches of Khumbu Glacier.

How to cite: Schlich-Davies, A., Rowan, A., Quincey, D., Ross, A., and Egholm, D.: Combining distributed glacier mass balance and ice flow models to improve projections of mass change for debris-covered Khumbu Glacier, Nepal, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8663, https://doi.org/10.5194/egusphere-egu21-8663, 2021.

EGU21-10205 | vPICO presentations | CR1.4

Long-term mass balance and firn modelling for Abramov glacier, Pamir Alay

Marlene Kronenberg, Horst Machguth, Ward van Pelt, and Martin Hoelzle

The application of a coupled energy balance-subsurface model allows studying the mass balance evolution of mountain glaciers and thereby assessing the role of subsurface processes in the accumulation area. Such model simulations are scarce for glaciers in High Mountain Asia where meteorological and glaciological calibration data are poorly available. Uncertainties in mass balance estimates are therefore high and questions regarding changes in accumulation and ablation regimes remain open.

Here, we run a distributed energy balance model coupled to a multi-layer snow model for Abramov glacier (Pamir Alay, 39.60°N 71.55° E) over the time period 1968 to present. A unique set of meteorological and glaciological data measured from 1968-99 is used to forceand calibrate the coupled model. The modelling period is extended to present using gridded precipitation data and recent measurements from an automatic weather station installed in 2012. We use repeated firn profiles from the 1970s and 2018 to evaluate modelled evolution of snow and firn conditions.

Preliminary modelling results show that the mass balance of Abramov glacier has been predominantly negative since 1969. However, also periods with increasing mass balance trends have been found since then. For the period of historical measurements (1968-98), our results suggest an increase of net accumulation in the accumulation area. This result points towards a steepening of the mass balance gradient, which may cause increased dynamics.

How to cite: Kronenberg, M., Machguth, H., van Pelt, W., and Hoelzle, M.: Long-term mass balance and firn modelling for Abramov glacier, Pamir Alay, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10205, https://doi.org/10.5194/egusphere-egu21-10205, 2021.

EGU21-8686 | vPICO presentations | CR1.4

Eastern Alpine summit mass balances as complementary indicators of local climate change 

Andrea Fischer, Pascal Bohleber, and Martin Stocker-Waldhuber

Eastern Alpine Mountain Glaciers are threatened by current climate change, for which they are visible and prominent indicators. This makes them an important part of climate communication pushing our commitment for mitigation efforts. At the same time, this requires the scientific community to thoroughly understand and communicate the ongoing processes.

From a scientific viewpoint, the link between classical in-situ mass balance data and the climate and environmental records potentially preserved in the so-called cold “miniature ice caps” sparks novel research perspectives. Summit stake measurements and ice core drillings are both rare, although the comparison of today’s stake mass balance records with the variance of annual accumulation preserved in ice cores offers an intriguing hub to unravelling past processes.

We implemented summit stake mass balance measurements on two summits in the Austrian Alps, Weißseespitze (3500 m) in Ötztal Alps and Großvenediger (3600 m) in Hohe Tauern National Park. At Weißseespitze summit ice cap, two ice cores were drilled recently to bedrock and subsequently micro-radiocarbon dated. A stake network is complemented by a continuous monitoring of point thickness changes and a time lapse cam to monitor patterns of snow cover distribution. An energy balance station offers information on wind, air and ice temperatures and radiation.

The results from the first two years of monitoring at Weißseespitze indicate that the remaining ice cap of about 10 m thickness will be gone within two decades even under current conditions. In view of present melt rates of about 0.6 m/year, a dated ice core record could eventually shed light on the question if similar conditions as today have occurred earlier in the past 6000 years of glacier cover at the summit. Learning more about (sub)seasonal patterns of accumulation is extremely import for the interpretation of these ice cores, as main accumulation takes place during early and late accumulation season, whereas the accumulation during colder periods is lost by wind erosion. The so far rarely studied miniature ice caps therefore open windows to complementary climate information, different from summer temperatures and winter precipitation which are widely accepted to be represented in total glacier mass balances.

How to cite: Fischer, A., Bohleber, P., and Stocker-Waldhuber, M.: Eastern Alpine summit mass balances as complementary indicators of local climate change , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8686, https://doi.org/10.5194/egusphere-egu21-8686, 2021.

EGU21-3274 | vPICO presentations | CR1.4

Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach

Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle

Cold firn is progressively transitioning to a temperate state under a changing climate. This process is expected to affect ice core records and the mass balance of cold and polythermal glaciers. Thus there is a need to gain better understanding of this transition and develop quantitative, physical models, to predict cold firn evolution under a range of climate scenarios.

Here we present the application of a distributed, fully coupled energy balance and sub-surface model, to simulate high-alpine cold firn at Colle Gnifetti over the period 2003–2018. For the first time, we force such a model with high-resolution, long-term, quality-checked meteorological data measured in closest vicinity of the firn site, at the highest weather station in Europe (Capanna Margherita, 4560 m a.s.l.). The model includes the spatial variability of snow accumulation rates, and is calibrated using several, partly unpublished high-altitude measurements from the Monte Rosa area.

Overall, the simulated firn temperature profiles reach a very good agreement in comparison with a large archive of borehole measurements. Our results show a 20 m-depth firn warming rate of 0.44 °C per decade. Moreover, we find that surface melt over the glaciated saddle is increasing by 3–4 mm w.e. yr-2 (+29–36 % in 16 years) depending on the location, although with a large inter-annual variability. The simulation also indicates that atmospheric humidity is a prominent control over melt occurrence, with considerable amounts of sublimation taking place in dry conditions. Hourly-resolution analysis of the melt dynamics reveals a marked tendency towards frequent, small melt events (< 4 mm w.e.): these collectively represent a significant fraction of the total amounts.

How to cite: Mattea, E., Machguth, H., Kronenberg, M., van Pelt, W., Bassi, M., and Hoelzle, M.: Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3274, https://doi.org/10.5194/egusphere-egu21-3274, 2021.

EGU21-12879 | vPICO presentations | CR1.4

Spatio-temporal variability of snow accumulation on the Biafo and Hispar glaciers in the central Karakoram

Alexander Raphael Groos, Christoph Mayer, Astrid Lambrecht, Sabrina Erlwein, and Margit Schwikowski

The Karakoram is an extensively glacierised mountain range in the western part of High Mountain Asia and constitutes an important source of fresh water for millions of people in the Indus Basin. Over the last years, the Karakoram has attracted increasing attention due to an anomalous glacier stability, which contrasts the progressing ice mass loss across the Himalaya. Decreasing summer temperatures and increasing winter precipitation have been proposed as potential causes for the anomaly. However, the lack of snow accumulation studies and long-term meteorological measurements above 3,000 m a.s.l. hampers the corroboration of this hypothesis. To quantify the spatial and temporal variability of snow accumulation in the central Karakoram, we followed the track of a Canadian research expedition from 1986. We reinvestigated eight sites between ca. 4,400 and 5,200 m a.s.l. in the connected accumulation zone of the Biafo and Hispar glaciers in 2019. Density measurements were performed in each snow pit down to the summer horizon of the previous year to quantify the elevation-dependent amount of annually accumulated snow. In addition, snow samples were collected from three selected pits for the analysis of rare earth elements and stable water isotopes to constrain the origin and seasonality of the deposited snow. Finally, we compared our recent measurements with the 30-year-old results from the Canadian research expedition as well as independent meteorological data.  In doing so we aim to evaluate the hypothesised increase in winter precipitation in this region.

How to cite: Groos, A. R., Mayer, C., Lambrecht, A., Erlwein, S., and Schwikowski, M.: Spatio-temporal variability of snow accumulation on the Biafo and Hispar glaciers in the central Karakoram, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12879, https://doi.org/10.5194/egusphere-egu21-12879, 2021.

EGU21-14976 | vPICO presentations | CR1.4

Reconstructing the runoff and mass changes of a maritime Tibetan glacier since 1975

Achille Jouberton, Thomas E. Shaw, Evan Miles, Shaoting Ren, Wei Yang, Chuanxi Zhao, Michael McCarthy, Stefan Fugger, Amaury Dehecq, and Francesca Pellicciotti

Glaciers are key components of the water towers of Asia and as such are relied upon by large downstream communities for domestic, agricultural and industrial uses. They have experienced considerable shrinking over the last decades, with some of the highest rates of mass loss observed in the south-eastern part of the Tibetan Plateau, where mass loss is also accelerating.  Despite these rapid changes, Tibetan glaciers’ changing role in catchment hydrology remains largely unknown. Parlung No.4 Glacier is considered as a benchmark glacier in this region, since its meteorology, surface energy fluxes and mass-balance have been examined since 2006. It is a maritime glacier with a spring (April-May) accumulation regime , which is followed by a period of ablation during the Indian Summer Monsoon (typically June-September). Here, we conduct a glacio-hydrological study over a period of five decades (1978-2018) using a fully distributed model for glacier mass balance and runoff simulation (TOPKAPI-ETH). We force the model with ERA5-Land and China Meteorological Forcing Dataset (CMFD) climate reanalysis downscaled to a local weather station to reconstruct meteorological time series at an hourly resolution. TOPKAPI-ETH is calibrated and validated with automatic weather station data, discharge measurements, geodetic mass balance, stake measurements and snow cover data from MODIS. We find a very clear acceleration in mass loss from 2000 onwards, which is mostly explained by an increase in temperature. This influence however was initially compensated by an increase in precipitation until the 2000’s, which attenuated the negative trend. Our results also indicate that the increase in the liquid-solid precipitation ratio has reduced the amount of seasonal accumulation, exacerbating annual mass loss. We demonstrate that the southern westerlies and the associated spring precipitation have as much influence on the glacier mass balance and catchment discharge as the Indian Summer Monsoon, by controlling seasonal snowpack development, which simultaneously provides mass to the glacier and protects it from melting in the early stage of the monsoon.

How to cite: Jouberton, A., Shaw, T. E., Miles, E., Ren, S., Yang, W., Zhao, C., McCarthy, M., Fugger, S., Dehecq, A., and Pellicciotti, F.: Reconstructing the runoff and mass changes of a maritime Tibetan glacier since 1975, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14976, https://doi.org/10.5194/egusphere-egu21-14976, 2021.

EGU21-6422 | vPICO presentations | CR1.4

Future surface mass balance of the Elbrus Glacial Complex under climate change

Oleg Rybak, Taisya Dymova, Irina Korneva, Stanislav Kutuzov, Ivan Lavrentiev, Elena Rybak, and Pavel Toropov

The evolution of the Elbrus glacier complex, consisting of two dozen of glaciers, in the last two decades of the 20th century and at the beginning of the 21st century generally corresponded to the trend of a decrease in the glaciated area of ​​the whole Caucasus. Over the period 1960-2014, the area of ​​Elbrus glaciation decreased by approximately 15%, and over two decades 1997-2017 - by almost 11%. As of 2017, the area of ​​Elbrus glaciation was estimated to ca. 112 sq. km, its volume exceeded 5 cub. km. Elbrus glaciation contributes significantly to the formation of the hydrological regime in the region, and, therefore, may be considered as a major challenge ti the regional socio-economic development. The latter circumstance requires an accurate assessment of the glacial runoff, and, consequently, the calculation of the surface mass balance of the glacial complex. We use an energy balance model to calculate the current and future surface mass balance. The series of observations at the Terskol meteorological station, located fifteen kilometers from the southern spurs of Elbrus, and the Mestia meteorological station, located somewhat further, on the territory of Georgia on the southern slope of the Main Caucasian ridge, as well as data from automatic weather stations on Elbrus slopes and on Djankuat glacier a few tens of kilometers from Elbrus, were applied for model forcing to reproduce present surface mass balance. The modeling results were validated by comparison with the measured surfave mass balance components on Garabashi glacier, one of the glaciers on the southern slope of Elbrus. Climate projections until the end of the 21st century for the Elbrus region were composed on the basis of multi-model results of regional climate modeling within the CORDEX project for various scenarios.

We demonstrate that simultaneous surface air temperature and insolation growth accompanied by decrease in precipitation, predicted by multi-model regional climate modeling and downscaled to the Central Caucasus area, will cause essential lifting of the equilibrium line altitude and shrinking of accumulation area. As a result, we must expect an accelerated degradation of Elbrus glaciation in forthcoming decades.   

The reported study was funded by RFBR and RS, project number 21-55-100003

How to cite: Rybak, O., Dymova, T., Korneva, I., Kutuzov, S., Lavrentiev, I., Rybak, E., and Toropov, P.: Future surface mass balance of the Elbrus Glacial Complex under climate change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6422, https://doi.org/10.5194/egusphere-egu21-6422, 2021.

EGU21-15063 | vPICO presentations | CR1.4

Occurrence and impacts of heat waves events in a glacierized basin in the subtropical Andes

Claudio Bravo, Pablo Paredes, Nicolás Donoso, and Sebastián Cisternas

Subtropical Andean glaciers are losing mass in response to the long-term atmospheric warming and precipitation decrease. Extreme events as heat waves, however, seems to potentially play a key role in the sustained ice loss detected in the last decades. Increased frequency of heat wave events have been detected in the central valley of Chile, however, the occurrence and impact of these events on the Andean cryosphere remain unknown. The main reason is associated with the lack of meteorological observations at higher elevations in the Andes. 

In filling this gap, we present an assessment of the occurrence of heat waves in the glacierized Río Olivares basin (33°S), which comprise an elevation range between ~1500  and ~6000 m a.s.l. and where a strong ice loss has been detected during the last decades. The main aim is to analyse the correspondence of heat waves events occurred with those in the nearby city of Santiago located in the central valley of Chile and to assess the potential impacts of these events on the glaciers located in this basin. Using meteorological observations in Río Olivares basin and in Santiago between the years 2013 and 2020, heat wave events were determined. We estimated the heat wave events using the monthly 90th percentile and the adjustment of a harmonic function. An additional adjustment relative to the climate period 1981-2010 was also introduced. The results determined 66 events in the Río Olivares basin while in Santiago were 53 events. These results reveal high spatial variability in the occurrences of heat waves as only 49% of the events in Santiago were detected in the Río Olivares basin. Ongoing work is focused on analysing the impacts of these events over the glaciers of the basin. Here, through the use of the computed basin-scale 0°C isotherm, the relation between glacier area under melt (i.e. glacier area located below the 0°C isotherm) and the heat wave events will be shown. The findings of this works reinforce the need for more observational efforts over high elevations in the Andes in order to robustly assess and at a basin scale, the impact of extreme events on the Andean cryosphere.

How to cite: Bravo, C., Paredes, P., Donoso, N., and Cisternas, S.: Occurrence and impacts of heat waves events in a glacierized basin in the subtropical Andes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15063, https://doi.org/10.5194/egusphere-egu21-15063, 2021.

CR1.5 – Glaciation and climate change in the Andean Cordillera

EGU21-7633 | vPICO presentations | CR1.5

Environmental drivers of planform change in the glacially-fed Rio Chubut, Argentina (42°S)

Grace Skirrow, Rachel Smedley, Richard Chiverrell, and Janet Hooke

The eastern margin of the former Patagonian Ice Sheet was drained by large and dynamic river systems, which remain largely unstudied. New geomorphological mapping and luminescence chronology of the glacially-fed Rio Chubut reveal the preservation of large gravel outwash terraces up to 50 m above the modern river channel that previously acted as glacial spillways during the last glaciation. Also discovered is a gradual shift from a braided to a meandering planform between 12.3 ± 1.0 ka and 9.4 ± 0.8 ka, where the braided system experienced a decrease in energy and subsequent abandonment, transitioning into the meandering system that persists today. The coincidence of a new luminescence age from the innermost ice lobe in the Epuyen area (18.1 ± 2.2 ka), palaeoenvironmental records (Moreno et al. 2018, Whitlock et al. 2007, Iglesias et al. 2016) and the PATICE ice sheet reconstruction (Davies et al, 2020) suggest that the abandonment of the Rio Chubut braided planform was not a product of the river decoupling from the ice sheet. Alternatively, it was a response to the reduced water supply likely linked with the weakening and southward shift in the mid-latitude storm tracks and westerlies ~11.3 ka (Moreno et al. 2018). These findings contradict the widely reported process of planform change in glacially-fed river systems whereby a river decoupled from a glacier experiences a loss in sediment supply, which leads to incision and the river confining to a single channel. Here at the Rio Chubut, braiding is sustained in a paraglacial landscape for ~5 ka after the ice had retreated into the Andean mountains. A reduction in water supply related to precipitation changes in the early Holocene is identified as the key driver of planform change.

References

Davies, B.J., Darvill, C.M., Lovell, H., Bendle, J.M., Dowdeswell, J.A., Fabel, D., García, J.L., Geiger, A., Glasser, N.F., Gheorghiu, D.M. and Harrison, S., 2020. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Science Reviews, p.103152.

Iglesias, V., Markgraf, V. and Whitlock, C., 2016. 17,000 years of vegetation, fire and climate change in the eastern foothills of the Andes (lat. 44 S). Palaeogeography, Palaeoclimatology, Palaeoecology, 457, pp.195-208.

Moreno, P.I., Videla, J., Valero-Garcés, B., Alloway, B.V. and Heusser, L.E., 2018. A continuous record of vegetation, fire-regime and climatic changes in northwestern Patagonia spanning the last 25,000 years. Quaternary Science Reviews, 198, pp.15-36.

Whitlock, C., Moreno, P.I. and Bartlein, P., 2007. Climatic controls of Holocene fire patterns in southern South America. Quaternary Research, 68(1), pp.28-36.

How to cite: Skirrow, G., Smedley, R., Chiverrell, R., and Hooke, J.: Environmental drivers of planform change in the glacially-fed Rio Chubut, Argentina (42°S), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7633, https://doi.org/10.5194/egusphere-egu21-7633, 2021.

EGU21-2820 | vPICO presentations | CR1.5

A detailed Pleistocene cosmogenic nuclide chronology of Patagonian Ice-Sheet expansions in north-eastern Patagonia (43°S)

Tancrede Leger, Andrew Hein, Robert Bingham, Ángel Rodes, and Derek Fabel

The former Patagonian Ice Sheet was the most extensive Quaternary ice sheet of the southern hemisphere outside of Antarctica. Against a background of Northern Hemisphere-dominated ice volumes, it is essential to document how the Patagonian Ice Sheet and its outlet glaciers fluctuated throughout the Quaternary. This information can help us investigate the climate forcing mechanisms responsible for ice sheet fluctuations and provide insight on the causes of Quaternary glacial cycles at the southern mid-latitudes. Patagonia is part of the only continental landmass that fully intersects the precipitation-bearing Southern Westerly Winds and is thus uniquely positioned to study past climatic fluctuations in the southern mid-latitudes. While Patagonian palaeoglaciological investigations have increased, there remains few published studies investigating glacial deposits from the north-eastern sector of the former ice sheet, between latitudes 41°S and 46°S. Palaeoglaciological reconstructions from this region are required to understand the timing of Pleistocene glacial expansion and retreat, and to understand the causes behind potential latitudinal asynchronies in glacial advances throughout Patagonia. Here, we reconstruct the glacial history and chronology of a previously unstudied region of north-eastern Patagonia that formerly hosted the Río Corcovado (43°S, 71°W) palaeo ice-lobe. Here we present a new set of cosmogenic 10Be exposure ages from presumed pre-LGM moraine boulder and glaciofluvial outwash surface cobble samples, establishing for the first time a comprehensive chronology for pre-LGM glacial margins of the Río Corcovado palaeo-glacier. This new dataset completes our effort to date the entire preserved moraine record of the Río Corcovado valley: which captures at least seven distinct Pleistocene glacial events. Our results allow answering questions on the timing of the maximum local ice extent of the last glacial cycle as well as older, pre-last glacial cycle glaciations, for which few robust glacier chronologies exist in the Southern Hemisphere. The most informative cosmogenic nuclide-derived glacial chronologies with the capacity to resolve questions on interhemispheric phasing of climate change require unambiguous dating of glacial margins spanning the entirety of the last glacial cycle and ideally earlier glacial cycles. Therefore, our findings have significant implications for understanding past climate fluctuations at the southern mid-latitudes, former Southern Westerly Winds behaviour and interhemispheric climate linkages throughout the Pleistocene. They also provide further evidence supporting the proposed latitudinal asynchrony in the timing of Patagonian Ice Sheet expansion during the last glacial cycle and enable novel glacio-geomorphological interpretations for the studied region.

How to cite: Leger, T., Hein, A., Bingham, R., Rodes, Á., and Fabel, D.: A detailed Pleistocene cosmogenic nuclide chronology of Patagonian Ice-Sheet expansions in north-eastern Patagonia (43°S), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2820, https://doi.org/10.5194/egusphere-egu21-2820, 2021.

EGU21-13184 | vPICO presentations | CR1.5

The Glacial Geomorphology of central-Patagonia (44 – 46°S): glacier dynamics within and beyond the austral Andes

Emma-Louise Cooper, Varyl Thorndycraft, Bethan Davies, Adrian Palmer, and Juan-Luis García

The former Patagonian Ice Sheet (PIS, 38 – 56°S) was one of the largest ice masses to develop in the Southern Hemisphere. Its formation was uniquely influenced by the Southern Westerly Winds (SWWs) colliding with the Andean Cordillera, generating a marked West-East precipitation gradient. Variability in the strength and position of the SWWs is thought to have played a significant role in ice sheet dynamics. In particular, understanding of the timing of palaeo-glacier fluctuations is required to elucidate the role of these regional climate drivers on ice retreat. However, in order to fully understand the structure and pace of deglacial ice fluctuations, detailed glacial geomorphological reconstructions must be completed.

During deglaciation, as the PIS retreated from local Last Glacial Maxima positions, large proglacial lakes formed east of the austral Andes, ice-dammed by the Andean Cordillera. In central-Patagonia (44 – 46°S) during the final stages of deglaciation, these ice-dammed lakes drained to the west, through the Andean Cordillera, opening new drainage corridors towards the Pacific Ocean. As a result, the floors of these valleys are now exposed subaerially, preserving a complex suite of glacial and glaciolacustrine landform assemblages. Moreover, as most of the region is now ice-free, excluding smaller mountain ice caps such as Queulat (44.4°S, ~2000 m a.s.l) more recent Holocene geomorphology has also been exposed. These landforms possess the potential to yield new insights into the style and manner of regional ice retreat, during the transition from large terrestrial ice-lobes, to smaller mountain glaciers and ice caps.

We mapped seven terrestrial palaeo-ice lobes of the PIS: the Río Pico (~44.2°S), Río Cisnes (~44.6°S), Lago Plata-Fontana (~44.8°S), Río El Toqui (~45°S), Lago Coyt/Río Ñirehuao (~45.3°S), Simpson/Paso Coyhaique (~45.5°S) and Balmaceda (~46°S) lobes. Mapping was then extended west, into the Andean Cordillera. Landforms were mapped using ESRI™ DigitalGlobe World (1-2 m) and Sentinel-2 (10 m) imagery, verified with field surveys. These new data build on previous work in the area. To date, over 60,000 ice-marginal, ice-contact, subglacial, glaciolacustrine and glaciofluvial landforms have been mapped across a ~70,000km2 area of the Andean Cordillera and adjacent valleys. When combined with robust geochronological reconstructions, these data possess the potential to inform on the role of the SWWs, versus local topography, and ice-marginal processes in regulating the structure and rate of regional deglaciation.

How to cite: Cooper, E.-L., Thorndycraft, V., Davies, B., Palmer, A., and García, J.-L.: The Glacial Geomorphology of central-Patagonia (44 – 46°S): glacier dynamics within and beyond the austral Andes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13184, https://doi.org/10.5194/egusphere-egu21-13184, 2021.

EGU21-10973 | vPICO presentations | CR1.5

Projected increases in surface melt and ice loss and their potential feedbacks for the Northern and Southern Patagonian Icefields 

Claudio Bravo, Deniz Bozkurt, Andrew N. Ross, and Duncan J. Quincey

Patagonia (40°S-55°S) includes two large icefields, the Northern and Southern Patagonian Icefields (NPI and SPI). Most of the glaciers within these icefields are shrinking rapidly, raising concerns about their contribution to sea-level rise in the face of ongoing climatic change. This ice volume loss has led to rapid changes that remain imprinted on the Patagonia landscapes. In view of the local, regional and worldwide impacts of glacier retreat in Patagonia, an assessment of the potential future surface mass balance (SMB) and ice loss of the icefields, is critical. We seek to provide this assessment by modelling the SMB between 1976 and 2050 for both icefields, using regional climate model data (RegCM4.6) and a range of emission scenarios at a spatial resolution of 10 km. Additionally, using meteorological observations during strong drought conditions which occurred in Patagonia in 2016, key meteorological and glaciological characteristics are described, quantified and analysed in order to assess possible future conditions.

For the NPI, a reduction between 1.51 m w.e.  (RCP2.6) and 1.88 m w.e. (RCP8.5) was projected, suggesting that negative SMB will prevail well into future decades. For the SPI the projected reduction was within the range of 1.12 m w.e. (RCP2.6) to 1.45 m w.e. (RCP8.5), which implies positive SMB will dominate, albeit at a lower rate than the current observed. However, if it is assumed that the recent frontal ablation rates tend to continue into future decades, ice loss and sea-level contributions will increase for both Icefields. The trend towards lower SMB is explained by an increase in melt, and to a lesser extent by a reduction in snow accumulation.

Several mechanisms not accounted for our modelling approach could act as positive feedbacks in the magnitude of the ice loss. We summarise these feedbacks in a conceptual framework based on a combination of our own meteorological observations as well as on the recent research findings. This framework highlights the diversity of meteorological and glaciological conditions that can prevail even between nearby glaciers. Importantly, more frequent thermal inversion events and increased meltwater availability are likely to trigger ice dynamics changes and potential increases in ablation. Together, these plus other factors make the prediction of future glacier response and evolution in Patagonia a very complex and challenging task.

How to cite: Bravo, C., Bozkurt, D., Ross, A. N., and Quincey, D. J.: Projected increases in surface melt and ice loss and their potential feedbacks for the Northern and Southern Patagonian Icefields , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10973, https://doi.org/10.5194/egusphere-egu21-10973, 2021.

EGU21-6185 | vPICO presentations | CR1.5

Glacial isostatic adjustment near the center of the former Patagonian Ice Sheet (48°S) during the last 16.5 kyr

Matthias Troch, Sebastien Bertrand, Carina B. Lange, Paola Cardenas, Helge Arz, Ricardo De Pol-Holz, and Rolf Kilian

Our understanding of glacial isostatic rebound across Patagonia is highly limited, despite its importance to constrain past ice volume estimates and better comprehend relative sea-level variations. With this in mind, our research objective is to reconstruct the magnitude and rate of Late Glacial to Holocene glacial isostatic adjustment near the center of the former Patagonian Ice Sheet. We focus on Larenas Bay (48°S; 1.26 km2), which is connected to Baker Channel through a shallow (ca. 7.4 m) and narrow (ca. 150 m across) inlet, and hence has the potential to record periods of basin isolation and marine ingression. The paleoenvironmental evolution of the bay was investigated through a sedimentological analysis of a 9.2 m long, radiocarbon-dated, sediment core covering the last 16.8 cal. kyr BP. Salinity indicators, including diatom paleoecology, alkenone concentrations and CaCO3 content, were used to reconstruct the bay’s connectivity to the fjord. Results indicate that Larenas Bay was a marine environment before 16.5 cal. kyr BP and after 9.1 cal. kyr BP, but that it was disconnected from Baker Channel in-between. We infer that glacial isostatic adjustment outpaced global sea-level rise between 16.5 – 9.1 cal. kyr BP. During the Late Glacial - Holocene transition, the center of the former Patagonian Ice Sheet rose ca. 96 m, at an average rate of 1.30 cm/year. During the remainder of the Holocene, glacial isostatic adjustment continued (ca. 19.5 m), but at a slower average pace of 0.21 cm/year. Comparisons between multi-centennial variations in the salinity indicators and existing records of global sea-level rise suggest that the glacial isostatic adjustment rate fluctuated during these time intervals, in agreement with local glacier dynamics. More specifically, most of the glacial isostatic adjustment registered between 16.5 – 9.1 cal. kyr BP seems to have occurred before meltwater pulse 1A (14.5 – 14.0 kyr BP). Likewise, it appears that the highest Holocene glacial isostatic rebound rates occurred during the last 1.4 kyr, most likely in response to glacier recession from Neoglacial maxima. This implies a relatively rapid response of the local solid earth to ice unloading, which agrees with independent modelling studies investigating contemporary uplift. We conclude that the center of the former Patagonian Ice Sheet experienced a glacial isostatic adjustment of ca. 115 m over the last 16.5 kyr, and that >80% occurred during the Late Glacial and early Holocene.

How to cite: Troch, M., Bertrand, S., Lange, C. B., Cardenas, P., Arz, H., De Pol-Holz, R., and Kilian, R.: Glacial isostatic adjustment near the center of the former Patagonian Ice Sheet (48°S) during the last 16.5 kyr, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6185, https://doi.org/10.5194/egusphere-egu21-6185, 2021.

EGU21-10265 | vPICO presentations | CR1.5

Southern Patagonia Icefield freshwater calving glaciers recent collapses into deep lake waters 

Andres Rivera, Francisca Bown, Andres Castillo, Jonathan Oberreuter, María Gabriela Lenzano, and Luis Lenzano

The Patagonian Icefields are among the biggest worldwide glaciers contributors to sea level rise. In spite of ongoing deglaciation in Patagonia, climatic models are estimating that the icefields surface mass balances during at least the last 4 decades has been neutral or even positive. The main mass losses are therefore, mainly related to frontal ablation, namely surface ablation, calving and subaquatic melting. These are the predominant factors in almost every single calving glacier in the region, especially among the eastern glaciers of the Southern Patagonia Icefield that are ending into deep lakes. The only and most remarkable exception to this trend on the eastern side of the SPI is the well-known stable and even advancing state of glaciar Perito Moreno. In spite of the relatively benign surface mass balances modelled for the last 4 decades, during the 2010’s several freshwater calving glaciers experienced strong retreats, and in some cases, the collapse of the whole ice fronts with losses mounting several square kilometers of ice in single events or during a series of huge calving events.   In order to study the glacier-lake interactions in the area, a collaborative research program was initiated in 2013 by Chilean and Argentinean scientists allowing the installation of a network of Automatic Weather Stations, fixed photographic cameras, water level pressure sensors and GPS stations at both sides of the international border. Since 2013 several field campaigns were conducted to the area including the survey of lake waters nearby several retreating glaciers. In most of the studied cases were detected very deep bathymetries (up to 600 m in places), and in some cases, a vertical structure of the lake water indicating a highly stratified condition that we estimate is responsible for very low subaquatic melting favoring the presence of glacier foots extending tens or even few hundreds of meters beyond the subaerial ice walls. The most remarkable recent collapses took place at glaciares O’Higgins and Viedma, whilst the rest or our studied glaciers (Chico, Upsala and Dickson) also experienced retreats with smaller rates. In this presentation we will show novel data collected in the main freshwater calving glaciers of the SPI and will discuss the local conditions explaining the recent glacier behavior.

How to cite: Rivera, A., Bown, F., Castillo, A., Oberreuter, J., Lenzano, M. G., and Lenzano, L.: Southern Patagonia Icefield freshwater calving glaciers recent collapses into deep lake waters , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10265, https://doi.org/10.5194/egusphere-egu21-10265, 2021.

EGU21-4193 | vPICO presentations | CR1.5

Long-lasting impacts of a glacial lake outburst flood on the hydrology of a fjord-river system (Pascua River, Chilean Patagonia)

Loic Piret, Sebastien Bertrand, Nhut Nguyen, Jon Hawkings, Cristian Rodrigo, and Jemma Wadham

Glacial Lake Outburst Floods (GLOFs) are an increasing threat to Patagonian environments and communities. Here, we investigate the geomorphological and hydrological impact of a recent GLOF from Pascua River, which discharges at the head of Baker Fjord (Chile, 48°S). To do so, a sediment core was taken ~4 km offshore of the Pascua River mouth at a water depth of 248 m. The coring site is located on the flank of a submarine channel incised trough the subaquatic delta of Pascua River, 30 m above the bottom of the channel. The sediment physical and chemical properties were analysed at high resolution with X-ray CT, MSCL and XRF core scanning, in combination with lower resolution grain-size and bulk organic geochemistry measurements, and a core chronology was established using downcore variations in 137Cs activity. In addition, historical maps and satellite imagery of the past century were examined in combination with multibeam bathymetry of Baker Fjord to aid the interpretation of the sediment record.

Results show that the sediments are composed of two distinct units separated by a 5-cm thick event deposit dated 1945±9 CE. Below the event, the sediment consists of coarse silt and fine sand, likely representing sediment deposition from turbidity currents. Above it, it consists of very fine silts, likely representing settling from the surficial sediment plume. Historical evidence shows that the event deposit corresponds to a ~256 106 m3 GLOF from Bergues Lake, the proglacial lake of Lucia Glacier that discharges directly into Pascua River. Before 1945, historical information shows that Pascua River drained via two active river branches that were most likely connected to the two submarine channels visible in the bathymetry of the subaquatic delta. After 1945, only the western river branch appears active, which likely caused the abandonment of the eastern submarine channel near which the sediment core was taken. Therefore, we hypothesize that the 1945 Bergues Lake GLOF caused the abandonment of the eastern river branch and submarine channel, which explains the absence of coarse-grained sediments in our sediment record after 1945±9 CE.

This study provides the first report of a GLOF from the northeastern part of the Southern Patagonian Icefield, and it demonstrates that GLOFs can have long-term impacts on the hydrology of fjord-river systems.

How to cite: Piret, L., Bertrand, S., Nguyen, N., Hawkings, J., Rodrigo, C., and Wadham, J.: Long-lasting impacts of a glacial lake outburst flood on the hydrology of a fjord-river system (Pascua River, Chilean Patagonia), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4193, https://doi.org/10.5194/egusphere-egu21-4193, 2021.

EGU21-14687 | vPICO presentations | CR1.5

Neoglacial increase in high-magnitude Glacial Lake Outburst Flood frequency (Baker River, Patagonia, 47°S)

Sebastien Bertrand, Elke Vandekerkhove, Dmitri Mauquoy, Dave McWethy, Brian Reid, Sarah Stammen, Krystyna Saunders, and Fernando Torrejon

Glacial Lake Outburst Floods (GLOFs) constitute a major hazard in periglacial environments. Despite a recent increase in the size and number of glacial lakes worldwide, there is only limited evidence that climate change is affecting GLOF frequency. In Patagonia, GLOFs are particularly common in the Baker River watershed (47°S), where 21 GLOFs occurred between 2008 and 2017 due to the drainage of Cachet 2 Lake into the Colonia River, a tributary of the Baker River. During these GLOFs, the increased discharge from the Colonia River blocks the regular flow of the Baker River, resulting in the inundation of the Valle Grande floodplain, which is located approximately 4 km upstream of the confluence. To assess the possible long-term relationship between GLOF frequency, glacier behavior, and climate variability, four sediment cores collected in the Valle Grande floodplain were analyzed. Their geophysical and sedimentological properties were examined, and radiocarbon-based age-depth models were constructed. All cores consist of dense, fine-grained, organic-poor material alternating with low-density organic-rich deposits. The percentage of lithogenic particles, which were most likely deposited during high-magnitude GLOFs, was used to reconstruct the flood history of the last 2.75 kyr. Results show increased flood activity between 2.57 and 2.17 cal kyr BP, and between 0.75 and 0 cal kyr BP. These two periods coincide with glacier advances during the Neoglaciation. Our results suggest that GLOFs are not a new phenomenon in the region. Although rapid glacier retreat is likely responsible for high GLOF frequency in the 21st century, high-magnitude GLOFs seem to occur more frequently when glaciers are larger and thicker.

How to cite: Bertrand, S., Vandekerkhove, E., Mauquoy, D., McWethy, D., Reid, B., Stammen, S., Saunders, K., and Torrejon, F.: Neoglacial increase in high-magnitude Glacial Lake Outburst Flood frequency (Baker River, Patagonia, 47°S), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14687, https://doi.org/10.5194/egusphere-egu21-14687, 2021.

EGU21-12809 | vPICO presentations | CR1.5

Moisture control on high-altitude cooling during the Last Glacial Maximum

Guillaume Leduc, Etienne Legrain, Pierre-Henri Blard, and Julien Charreau

Reconstructing the spatial and temporal variabilities of the vertical atmospheric temperature gradient (lapse rate, LR) is key to predict the evolution of glaciers in a changing climate. Variations in this parameter may amplify or mitigate the future warming at high elevation, implying contrasted impacts on the stability of glaciers. Several regional studies suggested that the tropical LR was steeper than today during the last glacial maximum (LGM) (Loomis et al., 2017; Blard et al.,  2007), while another study concluded that the LGM lapse rate was similar than today (Tripati et al., 2014).

Here we combine published LGM sea surface temperatures (SSTs) data and LGM moraines dated by cosmogenic nuclides to reconstruct the lapse rate along the American Cordillera. To do so, we combined paleo-Equilibrium Line Altitudes (ELAs) of glaciers with independent precipitation proxies to derive high latitude atmospheric temperatures. The whole dataset includes 34 paleo-glaciated sites along a North-South transect in the American Cordillera, ranging in latitude from 40°N to 36°S. Our reconstruction indicates that the lapse rate (LR) was steeper than today in the tropical American Cordillera (20°N – 11°S). The average ΔLR (LGM – Modern) for this Tropical Andes region (20°N – 11°S) is ~-1.5 °C.km-1 (20 sites). At higher latitude, in both hemispheres (Central Andes, 15°S – 35°S (8 sites); Sierra Nevada and San Bernardino mountains (40°N – 34°N) (6 sites), the LR was constant during the LGM. 

 Our results show that a drier climate during the LGM is systematically associated with a steeper LR. Modification of LR during LGM was already observed from other tropical regions, in Hawaii-Central Pacific (Blard et al 2007), and in Eastern Africa (Loomis et al., 2017). Similarly, in these regions, precipitation did not increase during the LGM. With this multi-site exhaustive synthesis, we make a case that drier Tropical LGM conditions induce a steeper LR. This corresponds to an amplification of cooling at high altitude during the LGM. These results highlight the necessity to consider LR variations in modelling future climate. In a warmer and wetter Earth, temperature increase may be amplified at high elevation, due to smoother LR. If valid, this mechanism implies that tropical glaciers are more vulnerable than predicted by current climate modelling.

 

References

Blard, P.-H., Lavé, J., Pik, R., Wagnon, P., & Bourlès, D. (2007). Persistence of full glacial conditions in the central Pacific until 15,000 years ago. Nature, 449(7162), 591.

Loomis, S. E., Russell, J. M., Verschuren, D., Morrill, C., De Cort, G., Damsté, J. S. S., … & Kelly, M. A. (2017). The tropical lapse rate steepened during the Last Glacial Maximum. Science advances, 3(1), e1600815.

Tripati, A. K., Sahany, S., Pittman, D., Eagle, R. A., Neelin, J. D., Mitchell, J. L., & Beaufort, L. (2014). Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nature Geoscience, 7(3), 205.

How to cite: Leduc, G., Legrain, E., Blard, P.-H., and Charreau, J.: Moisture control on high-altitude cooling during the Last Glacial Maximum, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12809, https://doi.org/10.5194/egusphere-egu21-12809, 2021.

EGU21-13819 | vPICO presentations | CR1.5

Last Glacial Maximum to near present 10Be chronology of the Universidad glacier fluctuations in the Subtropical Chilean Andes (34° S): paleoclimate implications  

Hans Fernández, Juan-Luis García, Samuel U. Nussbaumer, Alessa Geiger, Isabelle Gärtner-Roer, Dmitry Tikhomirov, and Markus Egli

The geochronological and geomorphological reconstruction of glacier fluctuations is required to assess the timing and structure of climate changes of the last glacial cycle in the subtropical Andes of Chile. The scarcity of data in this region limits the knowledge related to the timing of glacial landscape changes during this long-term period. To provide a new framework to better understand the climate history of the semiarid Andes of Chile, we have reconstructed the glacial history of the Universidad glacier (34° S).

Our mapping shows the existence of four moraine belts (UNI I to UNI IV, from outer to inner) that are spatially unequally distributed along the 13 km of the valley between ~2500 and ~1400 m a.s.l. We applied 10Be cosmogenic surface exposure dating to 26 granodioritic boulders on moraines and determined the age of the associated glacial advances. UNI I moraine represents the distal glacier advance between 20.8±0.8 and 17.8±0.8 kyr ago (number of 10Be samples = 11). Other two significative glacier advances terminated one and four km up-valley from the UNI I moraine, respectively, formed 16.1±0.9 kyr (n=1) (UNI II) and 14.6±1 to 10±0.5 kyr ago (n=3) (UNI III). A sequence of six distinct and smaller moraine ridges has been identified in the proglacial area. They are part of last significative glacier advances labeled as UNI IV. The four distal ridges have been dated to between 645-150 years ago (n=11), while the most proximal moraines coincide with mid-20th century and 1997 aerial photographs.

The results indicate that the Universidad glacier advanced during the Last Glacial Maximum (LGM) (UNI I). Deglaciation was punctuated by glacier readvances during the Late Glacial when the UNI II and UNI III moraines were deposited. Finally, UNI IV moraine shows six glacier fluctuations developed between the 14th and 20th centuries.

Our data suggest that the glacier advances by the Universidad glacier were triggered by intensified southern westerly winds bringing colder and wetter conditions to subtropical latitudes in the SE Pacific. Moreover, our data indicate that more or less in-phase Late-Glacial advances along the tropical and extratropical Andes occurred. We discuss different climate forcings that explain these glacier changes. Finally, we illustrate the influence of the “Little Ice Age” in the Semiarid Andes.

How to cite: Fernández, H., García, J.-L., Nussbaumer, S. U., Geiger, A., Gärtner-Roer, I., Tikhomirov, D., and Egli, M.: Last Glacial Maximum to near present 10Be chronology of the Universidad glacier fluctuations in the Subtropical Chilean Andes (34° S): paleoclimate implications  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13819, https://doi.org/10.5194/egusphere-egu21-13819, 2021.

EGU21-6795 | vPICO presentations | CR1.5

Influence of Enso in Perú's Cordillera Blanca Glaciers

Lihan Del Rocio Hoyos Zarzosa, Ibeth Celia Rojas Macedo, Christian German Garcia Rojas, Luzmila Dávila Roller, and Pedro Tapia Ormeño

In areas located over 2000 m.a.s.l., the warm phase of ENSO (El Niño) is characterized by a decrease in precipitation and an increase in temperature which can reach values above the annual average, while in the cold phase of ENSO (La Niña), precipitation increases and temperature decreases compared to the annual average. In both cases ENSO has an influence on the glacier evolution of the Andes.

The objective of the present investigation is to determine the influence of ENSO in the Cordillera Blanca through satellite images (glacier coverage delimitation) and climatic proxy (ice core) in the Shallap and Artesonraju glaciers respectively for the hydrological years between 2009/2010 to 2018/2019.

The climate analysis in both glaciers showed higher annual temperatures and lower precipitation, revealing the influence of the 2015/2016 El Niño on the studied glaciers. There was a prominent reduction in glacier coverage in Shallap, which is supported by the ice core record extracted from Artesonraju, presenting an equivalent accumulated water decrease and an 18O enrichment for this period. These findings point out the influence of the 2015/2016 El Niño that significantly reduced the glacier coverage in both studied areas. On the other hand, the 2011/2012 La Niña event displayed the opposite effect, that is, colder temperatures, less glacier coverage reduction, an increase in the volume of accumulated water and an impoverishment of 18O.

Given the results, it can be affirmed that during an El Niño year the loss of glacier coverage is greater, causing less equivalent water accumulation and an enrichment of 18O; inversely for a La Niña year. These results support previous findings shown in research about glaciers in Peru.

How to cite: Hoyos Zarzosa, L. D. R., Rojas Macedo, I. C., Garcia Rojas, C. G., Dávila Roller, L., and Tapia Ormeño, P.: Influence of Enso in Perú's Cordillera Blanca Glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6795, https://doi.org/10.5194/egusphere-egu21-6795, 2021.

EGU21-7524 | vPICO presentations | CR1.5

Quantifying the controls of Peruvian glacier response to climate

Catriona L. Fyffe, Emily Potter, Stefan Fugger, Andrew Orr, Simone Fatichi, Katy Medina, Robert Å. Hellström, Thomas E. Shaw, Maud Bernat, Alan Llacza, Gerardo Jacome, Caroline Aubry-Wake, Wolfgang Gurgiser, L. Baker Perry, Wilson Suarez, Duncan J. Quincey, Edwin Loarte, and Francesca Pellicciotti

Peruvian glaciers are important contributors to dry season runoff for agriculture and hydropower, but they are at risk of disappearing due to climate warming. Their energy balance and ablation characteristics have previously been studied only for individual glaciers, with no comparisons between regions. We applied the physically-based, energy balance melt component of the model Tethys-Chloris at five on-glacier meteorological stations: three in the Cordillera Blanca near Huaraz (with glaciers above ~4300 m a.s.l.), and two in the Cordillera Vilcanota east of Cusco (with glaciers above ~ 4800 m). The climate of these regions is strongly seasonal, with an austral summer wet season and winter dry season. 

Our results revealed that at most sites the energy available for melt is greatest in the wet season. This is a consequence of the dry season energy losses from the latent heat flux and net longwave radiation which counter-balance the high dry season net shortwave radiation, which otherwise dominates the energy balance. The sensible heat flux is a relatively small contributor to melt energy in both seasons. Comparison of the five sites suggests that there is more energy available for melt at a given elevation in the Cordillera Vilcanota compared to the Cordillera Blanca. At three of the sites the wet season snowpack was discontinuous, forming and melting within a daily to weekly timescale. Albedo and melt are thus highly variable in the wet season and closely related to the precipitation dynamics. At the highest site, in the accumulation zone of the Quelccaya Ice Cap, 81% of ablation was from sublimation. Sublimation was less important at the lower sites, but it reduces dry season melt. 

Correlation of the NOAA Oceanic El Niño Index (ONI) to the outputs of the two sites with the longest records revealed that the warmer wet season temperatures characteristic of a positive ONI were associated with a decreased albedo, greater net shortwave radiation, a more positive sensible heat flux and increased melt rates.  Air temperature and precipitation inputs were also perturbed at all five sites to understand their sensitivity to climate change. Enhanced mass loss was predicted with a static increase of 2°C or more, even with a +30% precipitation increase, with the lower elevation Cordillera Blanca sites at risk of the greatest mass loss due to warming.

How to cite: Fyffe, C. L., Potter, E., Fugger, S., Orr, A., Fatichi, S., Medina, K., Hellström, R. Å., Shaw, T. E., Bernat, M., Llacza, A., Jacome, G., Aubry-Wake, C., Gurgiser, W., Perry, L. B., Suarez, W., Quincey, D. J., Loarte, E., and Pellicciotti, F.: Quantifying the controls of Peruvian glacier response to climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7524, https://doi.org/10.5194/egusphere-egu21-7524, 2021.

EGU21-7580 | vPICO presentations | CR1.5

Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru

Ethan Lee, Neil Ross, Andrew Henderson, Andrew Russell, Stewart Jamieson, and Derek Fabel

Palaeo-glaciological studies of former ice thickness and extent within the tropical Andes have tended to focus on locations where glaciers are currently present, or in high elevation locations where evidence exists of recently deglaciated cirques. Few studies have focussed on low elevation regions due to the presumption that glaciers could not have existed at such low altitudes within the tropics. A latitudinal ‘data gap’ exists between Ecuador and more central and southern Peru where evidence for former glaciation is abundant. To fill this gap we present rare evidence of past glaciation from the Las Huaringas region, northern Peru, located in a relatively low elevation massif (<3900 m).

Within Las Huaringas a large valley glacier existed, extending N-S ~12 km down valley to ~2900 m in elevation while glacial cirques existed exhibiting an E-W orientation on the western facing hillslope of the massif with pronounced moraine complexes and bedrock erosion. We used high-resolution remotely sensed imagery, a 30 m ALOS DEM, and preliminary field observations to identify and map an abundance of geomorphic evidence of glaciation. These include moraines at different stages of preservation and predominance, eroded bedrock surfaces, cirque landforms and overdeepened valleys to develop the first glacial geomorphological map of the region. We performed morphometric analysis (e.g. width, length, altitude, azimuth) of the mapped glacial landforms and cirques along with hypsometric analysis of the main valley of Laguna Shimbe, yielding a hypsometric maxima of 3250 m. Using the geomorphological map, we determine the former extent and thickness of palaeoglaciers in the area and use delineated glacial outlines of their furthest extent to reconstruct Equilibrium Line Altitudes (ELAs) of these ice masses using a combination of ELA estimation techniques.

Ongoing research aims to determine whether the palaeoglacial evidence is consistent with formation by valley glaciers or an icecap and whether the timing of the local Last Glacial Maximum (LGM) was synchronous with the global timing. A set of hypotheses for the timing and drivers of the reconstructed extent of former glaciers in the area will be presented. Our analysis confirms the presence of former glaciers in a low elevation and low latitude region of the tropical Andes. Our ongoing work aims to unveil the timing of the glacial events and the drivers of the glacial and climate history seen within this important region.

How to cite: Lee, E., Ross, N., Henderson, A., Russell, A., Jamieson, S., and Fabel, D.: Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7580, https://doi.org/10.5194/egusphere-egu21-7580, 2021.

EGU21-8669 | vPICO presentations | CR1.5

Multi-decadal past and future temperature and precipitation trends in the Peruvian Andes

Emily Potter, Andrew Orr, Catriona Fyffe, Duncan Quincey, Andrew Ross, Helen Burns, Robert Hellström, Katy Medina, Edwin Loarte, Alan Llacza, Gerardo Jacome, Scott Hosking, and Francesca Pellicciotti

The Peruvian Andes contain the vast majority of the world’s tropical glaciers. Warming temperatures due to climate change have caused a dramatic shrinking of these glaciers, posing a threat to water supplies. Two of the most heavily glacierised areas of Peru are the Cordillera Blanca,  which includes the Rio Santa River Basin to the north of Peru, and the Cordilleras Urubamba, Vilcabamba, and Vilcanota towards the south.

Due to the topographic and climatic complexity of the regions, spatial variations in precipitation and temperature are high, and spatially distributed high-resolution climate data can offer a crucial tool to understand those variations, in a way which is not possible from limited, individual ground stations. Here we present a new high-resolution climate dataset over both regions, created by bias-correcting Weather Research and Forecasting (WRF) model output at 4 km spatial resolution against observations. 

The spatial variation in precipitation differs over the two river basins. In the region of the Cordillera Blanca, precipitation mostly increases with elevation and distance upstream. Around the southern cordilleras, there are regions of greater precipitation near the mountains and glaciers which lie further downstream, but the high elevations of the cordillera Vilcanota, further upstream, are much drier. Analysis of the precipitation and temperature trends from 1980 to 2018 demonstrates a clear warming trend in both regions. The precipitation trends are less uniform, with the Rio Santa showing a general trend for increasing precipitation, but with a less clear trend over the higher, glacierised regions of the valley. Around the Cordilleras Urubamba, Vilcabamba and Vilcanota, there is no clear trend in precipitation over recent decades.

Using a range of CMIP5 models, the high-resolution precipitation and temperature datasets are statistically projected into the future, using quantile mapping. Future trends in precipitation and temperature are analysed over both regions, and the inter-model variability in the CMIP5 models is examined.

 

How to cite: Potter, E., Orr, A., Fyffe, C., Quincey, D., Ross, A., Burns, H., Hellström, R., Medina, K., Loarte, E., Llacza, A., Jacome, G., Hosking, S., and Pellicciotti, F.: Multi-decadal past and future temperature and precipitation trends in the Peruvian Andes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8669, https://doi.org/10.5194/egusphere-egu21-8669, 2021.

EGU21-12241 | vPICO presentations | CR1.5

What’s in a lake? Glacial Lake Outburst Floods in the Peruvian Andes.

Joanne Wood, Stephan Harrison, Ryan Wilson, Neil Glasser, John Reynolds, Alejandro Diaz Moreno, Adam Emmer, Simon Cool, Juan Carlos Torres, Adriana Caballero, Harrinson Jara, Christian Yarleque, Enver Melgarejo, Hilbert Villafane, Julia Araujo, Efrain Turpo, and Tito Tinoco

Climate change is resulting in mass loss and the retreat of glaciers in the Andes, exposing steep valley sides, over-deepened valley bottoms, and creating glacial lakes behind moraine dams. Glacial Lake Outburst Floods (GLOFs) present the biggest risk posed by glacier recession in Peru. Understanding the characteristics of lakes that have failed in the past will provide an aid to identifying those lakes that might fail in the future and narrow down which lakes are of greatest interest for reducing the risks to local vulnerable populations. 

Using a newly created lake inventory for the Peruvian Andes (Wood et al., in review) and a comprehensive GLOF inventory (unpublished) we investigate lakes from which GLOFs have occurred in the past. This is to establish which physical components of the glacial lake systems are common to those lakes that have failed previously and which can be identified remotely, easily and objectively, in order to improve existing methods of hazard assessment.

How to cite: Wood, J., Harrison, S., Wilson, R., Glasser, N., Reynolds, J., Diaz Moreno, A., Emmer, A., Cool, S., Torres, J. C., Caballero, A., Jara, H., Yarleque, C., Melgarejo, E., Villafane, H., Araujo, J., Turpo, E., and Tinoco, T.: What’s in a lake? Glacial Lake Outburst Floods in the Peruvian Andes., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12241, https://doi.org/10.5194/egusphere-egu21-12241, 2021.

EGU21-12951 | vPICO presentations | CR1.5

Antarctic-like temperature variations in the Tropical Andes recorded by glaciers and lake levels during the last deglaciation

Léo Martin, Pierre-Henri Blard, Jérôme Lavé, Vincent Jomelli, Maarten Lupker, Julien Charreau, and Thomas Condom

The climatic reorganizations that occurred in the Southern and Northern hemispheres during the last deglaciation are thought to have affected the continental tropical regions. However, the respective impact of North and Southern climatic changes in the Tropics are still poorly understood. In the Norhtern Tropical Andes, moraines records indicate that the Antarctic Cold Reversal (ACR, 14.3-12.9 ka BP) stage was more represented than the Younger Dryas (12.9-11.7 ka BP) (Jomelli et al., 2014). However, further South, in the Altiplano basin (Bolivia), two cold periods of the North Hemisphere (Heinrich Stadial 1a (16.5-14.5 ka) and Younger Dryas) are synchronous with (i) major advances or stillstands of paleo-glaciers and with (ii) the highstands of the giant palaeo-lakes Tauca and Coipasa (Martin et al., 2018). Therefore, additional geochronological records of paleoglaciers fluctuations are necessary to address the respective impacts of North and South Hemisphere on the glacial dynamics in the region.

We present new Cosmic Ray Exposure (CRE) ages from glacial landforms of the Bolivian Andes that extend pre-existing datasets for four different sites spreading from 16 to 21°S. We reconstruct the Equilibrium Line Altitudes (ELA) associated with each moraine with the AAR method and use them in an inverse algorithm that combines both the palaeo-glaciers and palaeo-lake budgets to derive temperature and precipitation reconstructions. Our temperature reconstruction (ΔT vs. Present) shows a consistent trend through the four glacial sites with a progressive warming from ΔT= -5°C (17 ka BP) to –2.5°C (15-14.5 ka BP, at the end of the Tauca highstand). This is followed by a return to colder conditions, around -4°C, during the ACR (15.5-12.9 ka BP). The Coipasa highstand is coeval with another warming trend followed by ΔT stabilization at the onset of the Holocene (circa 10 ka BP), around -3°C. Precipitation is mainly characterized by increases during the lake highstands, modulated by the distance from the glacial sites to the center of the paleolakes that are moisture sources (recycling processes).

These new results highlight the decorrelation of the glacier dynamics to the temperature signal in regions that are characterized by high precipitation variability. They also provide a theoretical frame to explain how both regional and global forcings can imprint the paleo-glacial records. Our results strongly suggest that during the last deglaciation (20 – 10 ka BP), in the Tropical Andes, atmospheric temperatures follow the Antarctic variability, while precipitation is driven by the changes occurring in the Northern Hemisphere.

References

Jomelli et al., Nature, 2014; Martin et al., Sc. Advances, 2018

How to cite: Martin, L., Blard, P.-H., Lavé, J., Jomelli, V., Lupker, M., Charreau, J., and Condom, T.: Antarctic-like temperature variations in the Tropical Andes recorded by glaciers and lake levels during the last deglaciation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12951, https://doi.org/10.5194/egusphere-egu21-12951, 2021.

CR2.1 – Remote sensing of the cryosphere

EGU21-14693 | vPICO presentations | CR2.1

Long-term spatio-temporal seasonal snow cover variability in the Hindu Kush Himalaya

Kathrin Naegeli, Nils Rietze, Jörg Franke, Martin Stengel, Christoph Neuhaus, Xiaodan Wu, Carlo Marin, Valentina Premier, Gabriele Schwaizer, and Stefan Wunderle

The Hindu Kush Himalaya (HKH), the worlds ‘water tower’, contains the largest volume of snow and ice outside of the polar ice sheets and is the headwater area of Asia’s largest rivers. Due to the complex topography and its great spatial extent the HKH is characterised by variable temperature and precipitation pattern and thus exhibits large heterogeneity in the presence of seasonal snow cover (SSC). Previous studies usually focused on regional studies of snow cover area percentage or the influence of snow melt on the local hydrological system. Here we present a systematic overview of spatio-temporal SSC variability of the entire HKH region on a climate relevant time scale (four decades).

Our results are based on Advanced Very High Resolution (AVHRR) data, collected onboard the polar orbiting satellites NOAA-7 to -19, providing daily, global imagery at a spatial resolution of 5 km since 1982 up to today. This unique dataset is exceptionally valuable to derive pixel-based SSC information using a Normalised Difference Snow Cover (NDSI) approach including additional thresholds related to topography and land cover, and developed in the frame of ESA CCI+ snow.  Calibrated and geocoded reflectance data and a consistent cloud mask, derived in the ESA CCI cloud project, are used. A temporal gap-filling was applied to mitigate the influence of clouds. Reference snow maps from high-resolution optical satellite data as well as in-situ station data were used to validate the time series.

The dataset allows analysis of the state and trends of SSC at regional and sub-regional level. We thus investigated spatio-temporal evolution and long-term variability of SSC for the entire HKH as well as for 14 hydrological basins. We find large spatial difference in the amount of SSC depending on the regional elevation and precipitation characteristics. Furthermore, we investigate SSC phenology, which is directly linked to climate change and thus of high relevance for seasonal water storage and mountain streamflow. Our analysis indicates a significant decline in snow cover area percentage (SCA %) during warm and dry summer month and a decreasing tendency from high winter through spring to early summer. At the hydrological basin level, no significant long-term trend was detected, however, both western and central basins indicate a decrease in SCA % and generally the latest years are strongly negative. Moreover, we examine SCA % anomalies at the highest available temporal frequency (daily information) and reveal an overall shortening of the SSC occurrence and a general decrease of SSC extent in the HKH region.

How to cite: Naegeli, K., Rietze, N., Franke, J., Stengel, M., Neuhaus, C., Wu, X., Marin, C., Premier, V., Schwaizer, G., and Wunderle, S.: Long-term spatio-temporal seasonal snow cover variability in the Hindu Kush Himalaya, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14693, https://doi.org/10.5194/egusphere-egu21-14693, 2021.

EGU21-6038 | vPICO presentations | CR2.1

An Alternative Machine Learning-Based Methodology for H-SAF H35 Fractional Snow Cover Product

Semih Kuter, Cansu Aksu, Kenan Bolat, and Zuhal Akyurek

The fractional snow cover (FSC) product H35 is a daily operational product based on multi-channel analysis of AVHRR onboard to NOAA and MetOp satellites. H35 is supplied by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (HSAF). The “traditional” H35 FSC product is generated at pixel resolution by exploiting the brightness intensity, which is the convolution of the snow signal and the fraction of snow within the pixel and the sampling is carried out at 1-km intervals. The product for flat/forested regions is generated by Finnish Meteorological Institute (FMI) and the product for mountainous areas is generated by Turkish State Meteorological Service (TSMS). Both products, thereafter, are merged at FMI. This presentation aims to represent the latest findings of our efforts in developing an “alternative” H35 FSC product for the mountainous part by using two data-driven machine learning methodologies, namely, multivariate adaptive regression splines (MARS) and random forests (RFs). In total, 332 Sentinel 2 images over Alps, Tatra Mountains and Turkey acquired between November 2018 and April 2019 are used in order to generate the necessary reference FSC maps for the training of the MARS and RF models. AVHRR bands 1-5, NDSI and NDVI are used as predictor variables. Binary classified Sentinel 2 snow maps, ERA5 snow depth and MODIS MOD10A1 NDSI data are employed in the validation of the models. The results show that both MARS- and RF-based H35 product are i) in good agreement with reference FSC maps (as indicated by low RMSE and relatively high R values) and ii) able to capture the spatial variability of the snow extend. However, MARS-based H35 is preferred for an operational FSC product generation due to the high computational cost required in RF model.

How to cite: Kuter, S., Aksu, C., Bolat, K., and Akyurek, Z.: An Alternative Machine Learning-Based Methodology for H-SAF H35 Fractional Snow Cover Product, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6038, https://doi.org/10.5194/egusphere-egu21-6038, 2021.

EGU21-2461 | vPICO presentations | CR2.1

Inventory of active rock glaciers in the western Nyainqêntanglha Range, Tibetan Plateau

Eike Reinosch, Markus Gerke, Björn Riedel, Antje Schwalb, Qinghua Ye, and Johannes Buckel

The western Nyainqêntanglha Range on the Tibetan Plateau (TP) reaches an elevation of 7162 m and is characterized by an extensive periglacial environment. Here, we present the first rock glacier inventory of the central TP containing 1433 rock glaciers over an area of 4622 km². The rock glaciers are identified based on their surface velocity. The surface velocity is derived from Sentinel-1 satellite data of 2016 to 2019 via InSAR time series analysis. 16.4 % of the inventoried rock glaciers are classified as active with a surface velocity above 10 cmyr-1 and 80.0 % are classified as transitional with 1 to 10 cmyr-1. The western Nyainqêntanglha Range forms a climate divide between the dry continental climate brought by the Westerlies from the north-west and the Indian Summer Monsoon to the south. 89.7 % of all active rock glaciers and 74 % of the free ice glacial area are located on the southern side. The higher moisture availability on the southern (windward) side of the mountain range is likely the cause of a higher rock glacier occurrence and the greater activity.

Manually identifying and outlining rock glaciers is time consuming and subjective. To ensure a high reliability and comparability of our inventory, we therefore combined a manual approach with an automated classification. Three analysts worked in tandem to generate the manual outlines according to the guidelines of the IPA action group on ‘Rock glacier inventories and kinematics’. A subset of these outlines acted as training areas for a pixel-based maximum likelihood classification. Both the manual and the automated classification were performed based on DEM parameters (elevation, slope etc.), optical datasets (Sentinel-2 and NDVI) and surface velocity (generated with InSAR). 87.8 % of all manually outlined rock glaciers were identified successfully at a true positive rate of 69.5 %. 18 additional rock glaciers were added to the inventory based on the automated classification. This combined approach is therefore beneficial to generate a complete inventory. The automated classification can, however, not replace the expertise of an analyst as it greatly overestimates the actual rock glacier area.

How to cite: Reinosch, E., Gerke, M., Riedel, B., Schwalb, A., Ye, Q., and Buckel, J.: Inventory of active rock glaciers in the western Nyainqêntanglha Range, Tibetan Plateau, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2461, https://doi.org/10.5194/egusphere-egu21-2461, 2021.

EGU21-15876 | vPICO presentations | CR2.1

The Multi-Pairwise Image Correlation (MPIC) processing chain, an end-to-end online service for ice motion monitoring using optical imagery

David Michea, Floriane Provost, Jean-Philippe Malet, Marie-Pierre Doin, Pascal Lacroix, Amaury Dehecq, Enguerran Boissier, Elisabeth Pointal, and Philippe Bally

Documenting ground deformation is important for a range of areas in Earth and environmental sci-
ences (such as earthquake, volcanoes, landslides and glaciers/ice sheets monitoring). In particular
monitoring the deformation of the cryosphere is key to understand its evolution in a context of
global changes, through the creation of long-term ice velocity datasets, but also possibly detect
failure onsets. The availability of optical satellite constellations with a frequent revisit time at medi-
um to high spatial resolution and an open access policy (e.g. Sentinel 2, Landsat 7/8) provides the
potential to contribute to ice monitoring on a global basis. However, this observational capability
also represents a challenge in term of storage capacity and computing resources which together
with the complexity of the tuning of the different parameters, may prevent users from exploiting the
data.


Here we propose a new version of the Multi-Pairwise Image Correlation for OPTical images
(MPIC-OPT) algorithm. The new version of the algorithm offers a complete chain to process optical
images including data download, image pairs creation and advanced analysis of the displacement
field. It offers the choice to compute the ground displacement associated to image pairs with two
correlation techniques (MicMac, developed by IGN; GéFolki developed by ONERA). Finally, the
Time-Series Inversion for Opical image (TIO) algorithm is integrated to provide displacement time
series.


The processing chain is accessible through the Geohazards Exploitation Platform (GEP) in the
framework of the Thematic Exploitation Platform initiative of the European Space Agency and the
runs are performed using the High Performance Computing facility at the A2S/Mesocentre of Uni-
versity of Strasbourg.


We present the results of the chain in various cryospheric areas: the European Alps glaciers
(France, Italy, Switzerland), the Astrolabe ice shelf (Antartica) and the Gangotri glacier (India). We
define some relevant strategies for an operational use of the service for regional monitoring of
land-ice from satellite images. We compare the results of the MPIC-OPT-ICE service to in-situ
dataset and/or results obtained with similar strategies (e.g. GoLive or ITS-LIVE products, etc.). We
discuss the influence of the pair network and the inversion strategy to retrieve short-term to long-
term kinematic regimes.

How to cite: Michea, D., Provost, F., Malet, J.-P., Doin, M.-P., Lacroix, P., Dehecq, A., Boissier, E., Pointal, E., and Bally, P.: The Multi-Pairwise Image Correlation (MPIC) processing chain, an end-to-end online service for ice motion monitoring using optical imagery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15876, https://doi.org/10.5194/egusphere-egu21-15876, 2021.

EGU21-15560 | vPICO presentations | CR2.1

Recent surge of the South Rimo Glacier, Karakoram: Dynamics Characterization using SAR data

Shiyi Li, Philipp Bernhard, Irena Hajnsek, and Silvan Leinss

Glacier surging is an unique dynamic pattern that involves a long term quiescent phase and a sudden surge phase. The surge causes abnormal glacier movement, such as high flow velocity, transportation of large amount of ice mass, and dramatic thickening and advancing of the glacier terminus. Glacier surge not only confound the understanding of regional glacier dynamics, but also pose threats to local residents by invoking glacier lake outburst floods. 

In this work, we reported the recent surge event of the South Rimo Glacier, one of the largest glaciers in Karakorum. The surge happened between 2018-2020 with very little terminus advancement, and thus it is difficult to interpret the dynamics of the event simply by visual inspections of satellite images. We studied both the topography evolution and the surface velocity change of the glacier before and during the surge. By differencing a series of digital elevation models (DEMs) produced from the TanDEM-x CoSSC data acquired between 2011 and 2017, we found that the South Rimo glacier started accumulating height in the middle stream since 2013. A bulge was built in the reservoir region since 2014 and reached its maximum height (27.51m higher than 2011) before the surge activation in 2017. Velocity maps between 2016-2020 were obtained from SAR offset tracking using Sentinel-1 images. It was shown that the surface velocity greatly increased in 2017 at areas around the bulge. The peak velocity was found in the mid of 2019 at about 10 m/day, which is of three magnitude higher than the velocity during the quiescent phase. Our work characterized the development of the recent surge of the South Rimo Glacier, and highlighted the value of high resolution DEM products and velocity maps in pre-identifying glacier surge and mitigating related hazards.

How to cite: Li, S., Bernhard, P., Hajnsek, I., and Leinss, S.: Recent surge of the South Rimo Glacier, Karakoram: Dynamics Characterization using SAR data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15560, https://doi.org/10.5194/egusphere-egu21-15560, 2021.

EGU21-2740 | vPICO presentations | CR2.1

RETREAT: A new freely available data set of  Sentinel-1 glacier velocities in regions outside the polar ice sheets

Peter Friedl, Thorsten Seehaus, and Matthias Braun

Climate induced glacier change has important implications for global sea level rise, freshwater availability and geomorphologic hazards. Changes in ice dynamics and mass flow can globally be observed by long- and short-term changes in ice surface velocity. Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modelling and glacier mass balance calculations. Therefore, glacier surface velocities have been identified as an Essential Climate Variable (ECV) that should be monitored on a regular and global scale. Since 2014, repeat-pass Synthetic Aperture Radar (SAR) data, acquired by the Sentinel-1 constellation as part of ESA’s (European Space Agency) Copernicus program, enable global, near real time-like and fully automatic processing of glacier velocity fields at up to 6-day temporal resolution, independent of weather conditions, season and daylight.

We present a new near-global data set of Sentinel-1 glacier velocities that comprises continuously updated image pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution, derived from applying intensity feature tracking on both archived and new acquisitions. The data set covers all major glaciated regions outside the polar ice sheets and is generated in an HPC (High Performance Computing) environment at the University of Erlangen-Nuremberg. By the beginning of January 2021, we processed more than 110.000 Sentinel-1 scenes, amounting to roughly 450 TB of data. The velocity products are freely accessible via an interactive web portal (http://retreat.geographie.uni-erlangen.de) that provides capabilities for download and simple online analyses. We give information on the procedures of data generation, as well as on how to access the data and demonstrate the capabilities of our products for velocity time series analyses at very high temporal resolution. We compare our data to velocity products generated from very high resolution TerraSAR-X SAR (Synthetic Aperture Radar) and Landsat-8 optical (ITS_LIVE, GoLIVE) data. For this comparison we selected Svalbard as an example region, as it includes glaciers of a broad variety of sizes, different velocitiy magnitudes and seasonal velocity patterns, as well as very fast flowing surging glaciers and almost featureless ice caps.

How to cite: Friedl, P., Seehaus, T., and Braun, M.: RETREAT: A new freely available data set of  Sentinel-1 glacier velocities in regions outside the polar ice sheets, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2740, https://doi.org/10.5194/egusphere-egu21-2740, 2021.

EGU21-8606 | vPICO presentations | CR2.1 | Highlight

Pan-arctic glaciers volume changes over 1975-2019

Amaury Dehecq, Alex Gardner, Romain Hugonnet, and Joaquin Belart

Glaciers retreat contributed to about 1/3 of the observed sea level rise since 1971 (IPCC). However, long term estimates of glaciers volume changes rely on sparse field observations and region-wide satellite observations are available mostly after 2000. The now declassified images from the American reconnaissance satellite series Hexagon (KH-9), that acquired 6 m resolution stereoscopic images from 1971 to 1986, open new possibilities for glaciers observation.

Based on recently published methodology (Dehecq et al., 2020, doi: 10.3389/feart.2020.566802), we process all available KH-9 images over the Arctic (Canadian arctic, Iceland, Svalbard, Russian arctic) to generate Digital Elevation Models (DEMs) and ortho-images for the period 1974-1980. We validate the KH-9 DEMs over Iceland against elevation derived from historical aerial images acquired within a month from the satellite acquisition.

Finally, we calculate the glacier elevation change between the historical DEMs and modern elevation obtained from a time series of ASTER stereo images and validated against ICESat-2 elevation. The geodetic glacier mass balance is calculated for all pan-Arctic regions and analyzed with reference to the last 20 years evolution.

How to cite: Dehecq, A., Gardner, A., Hugonnet, R., and Belart, J.: Pan-arctic glaciers volume changes over 1975-2019, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8606, https://doi.org/10.5194/egusphere-egu21-8606, 2021.

EGU21-2094 | vPICO presentations | CR2.1

Converting geodetic ice volume to mass change: a global-scale assessment

Matthias Huss, Romain Hugonnet, Loris Compagno, and Daniel Farinotti

The potential of surface altimetry and photogrammetry for assessing the volume change of glaciers is tremendous and the scope of available data sets is increasing at a rapid pace. Surface elevation changes are now available for all glaciers globally and the time periods that can be resolved by these data are becoming shorter. However, most glaciological and hydrological studies rely on glacier mass change instead of volume change, thus necessitating a conversion accounting for the density of the gained or lost ice, firn or snow. While glaciers gain or lose volume, their firn coverage simultaneously changes, both in terms of extent, thickness and density, complicating the estimation of the conversion factor. Often, geodetic studies use a density of volume change equal to 850 kg m-3 which has been found to be valid for a wide range of cases. Nevertheless, particular situations, e.g. changes in mass balance gradients related to abrupt accelerations or decelerations of local atmospheric warming might result in significant departures of the conversion factor from this reference value. This probably represents the most important uncertainty factor in regional to global-scale assessments of geodetic glacier mass change.

Here, we substantially update the assessment of the optimal conversion between volume and mass change by Huss (2013) and apply the same firn densification model to all roughly 200'000 glaciers globally. Local annual surface mass balance over the period 2000-2019 is prescribed by the global glacier model GloGEM. The model is driven by ERA5 climate re-analysis data, and cumulative modelled mass balance is constrained to match observations of geodetic elevation change for each individual glacier for 2000-2019. By comparing mass balance and computed glacier volume changes resulting from the firn density model, a volume-to-mass change conversion factor is derived for each glacier and any period over the last two decades. Our assessment thus accounts for local changes in climate and, hence, shifts in the properties of the firn coverage, as well as the observed changes of each individual glacier.

A considerable variance in the factors necessary to convert geodetic ice volume change to mass change is found, both at the regional scale but also for different time periods of the same region. For many regions, the estimate of 850±60 kg m-3 for the density of ice volume change is valid, encompassing most of the investigated periods within 2000-2019. However, for some - mostly high-latitude - regions significantly lower and higher conversion factors have been found, related to particular long-term changes in firn density and thickness. Various assumptions and simplifications are involved in this global-scale assessment. Nevertheless, we consider our results as a helpful guideline for estimating volume-to-mass conversion factors in geodetic studies around the world over arbitrary time periods.

How to cite: Huss, M., Hugonnet, R., Compagno, L., and Farinotti, D.: Converting geodetic ice volume to mass change: a global-scale assessment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2094, https://doi.org/10.5194/egusphere-egu21-2094, 2021.

EGU21-2136 | vPICO presentations | CR2.1

Mapping the aerodynamic roughness of the Greenland ice sheet surface using ICESat-2

Maurice van Tiggelen, Paul C.J.P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke

The roughness of a natural surface is an important parameter in atmospheric models, as it determines the intensity of turbulent transfer between the atmosphere and the surface. Unfortunately, this parameter is often poorly known, especially in remote areas where neither high-resolution elevation models nor eddy-covariance measurements are available.

In this study, we take advantage of the measurements of the ICESat-2 satellite laser altimeter. We use the geolocated photons product (ATL03) to retrieve a 1-m resolution surface elevation product over the K-transect (West Greenland ice sheet). In combination with a bulk drag partitioning model, the retrieved surface elevation is used to estimate the aerodynamic roughness length (z0m) of the surface.

We demonstrate the high precision of the retrieved ICESat-2 elevation using co-located UAV photogrammetry, and then evaluate the modelled aerodynamic roughness against multiple in situ eddy-covariance observations. The results point out the importance to use a bulk drag model over a more empirical formulation.

The currently available ATL03 geolocated photons are used to map the aerodynamic roughness along the K-transect (2018-2020). We find a considerable spatiotemporal variability in z0m, ranging between 10−4 m for a smooth snow surface to more than 10−1 m for rough crevassed areas, which confirms the need to incorporate a variable aerodynamic roughness in atmospheric models over ice sheets.

How to cite: van Tiggelen, M., Smeets, P. C. J. P., Reijmer, C. H., Wouters, B., Steiner, J. F., Nieuwstraten, E. J., Immerzeel, W. W., and van den Broeke, M. R.: Mapping the aerodynamic roughness of the Greenland ice sheet surface using ICESat-2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2136, https://doi.org/10.5194/egusphere-egu21-2136, 2021.

EGU21-7525 | vPICO presentations | CR2.1

A Novel Approach of the Modelling of Dynamics of the Ice Cover Applying Microsatellites Data

Magdalena Łukosz and Wojciech Witkowski

Keywords: ice cover; glacier dynamics; microsatellites; offset-tracking; climate changes

Radar images acquired by SAR satellites allow scientists to monitor the movements of glaciers in polar regions. Observation of these areas is significant as it provides information on the process of global warming. It also makes it possible to assess the amount of ice mass that is melting and, as a result, increasing the mean level of the global ocean. Due to high speeds and loss of consistency in glacial areas, the optimal technique for estimating glacier velocity is Offset-Tracking. Its accuracy depends on the size of the terrain pixel and can therefore increase the accuracy of the results obtained by using high-resolution images. Microsatellites open up new possibilities through high resolution imagery and short revisit time.

The study uses ICEYE products. The aim of the research was to investigate the influence of SAR image resolution on the accuracy of calculated movements in the Offset-Tracking method. Additionally, a comparison of obtained results with previous studies allowed to analyze changes in the dynamics of chosen areas. The research was carried out for 2 glaciers: Jakobshavn in Greenland and Thwaites in Antarctica. It made it possible to compare the quality of results in areas that are located in various parts of the world and moving at different dynamics. Additionally, calculations were made for Sentinel-1 SAR images for comparative analysis. 

As a result of research, velocities of glaciers and their directions in periods of several days were obtained. For Thwaites glacier, daily changes in dynamics were also analyzed. Moreover, by comparing results to earlier researches which were carried out in these areas, it was possible to estimate changes in ice cover during longer timespans. In the last step, the quality and accuracy of products obtained from ICEYE and Sentinel-1 satellites were compared. 

This research assesses the utility of microsatellite images for monitoring glacier movements and shows possibilities of their usage in future research.

How to cite: Łukosz, M. and Witkowski, W.: A Novel Approach of the Modelling of Dynamics of the Ice Cover Applying Microsatellites Data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7525, https://doi.org/10.5194/egusphere-egu21-7525, 2021.

EGU21-3393 | vPICO presentations | CR2.1

Integrating intensity and context for improved supervised river ice classification from dual-pol Sentinel-1 SAR data 

Sophie de Roda Husman, Joost J. van der Sanden, Stef Lhermitte, and Marieke A. Eleveld

River ice is a major contributor to flood risk in cold regions due to the physical impediment of flow caused by ice jamming. Although a variety of classifiers have been developed to distinguish ice types using HH or VV intensity of SAR data, mostly based on data from RADARSAT-1 and -2, these classifiers still experience problems with breakup classification, because meltwater development causes overlap in co-polarization backscatter intensities of open water and sheet ice pixels.

In this study, we develop a Random Forest classifier based on multiple features of Sentinel-1 data for three main classes generally present during breakup: rubble ice, sheet ice and open water, in a case study over the Athabasca River in Canada. For each ice stage, intensity of the VV and VH backscatter, pseudo-polarimetric decomposition parameters and Grey Level Co-occurrence Matrix texture features were computed for 70 verified sample areas. Several classifiers were developed, based on i) solely intensity features or on ii) a combination of intensity, pseudo-polarimetric and texture features and each classifier was evaluated based on Recursive Feature Elimination with Cross-Validation and pair-wise correlation of the studied features.

Results show improved classifier performance when including GLCM mean of VV intensity, and VH intensity features instead of the conventional classifier based solely on intensity. This highlights the importance of texture and intensity features when classifying river ice. GLCM mean incorporates spatial patterns of the co-polarized intensity and sensitivity to context, while VH intensity introduces cross-polarized surface and volume scattering signals, in contrast to the commonly used co-polarized intensity.

We conclude that the proposed method based on the combination of texture and intensity features is suitable for and performs well in physically complex situations such as breakup, which are hard to classify otherwise. This method has a high potential for classifying river ice operationally, also for data from other SAR missions. Since it is a generic approach, it also has potential to classify river ice along other rivers globally.  

How to cite: de Roda Husman, S., van der Sanden, J. J., Lhermitte, S., and Eleveld, M. A.: Integrating intensity and context for improved supervised river ice classification from dual-pol Sentinel-1 SAR data , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3393, https://doi.org/10.5194/egusphere-egu21-3393, 2021.

EGU21-10728 | vPICO presentations | CR2.1

The 4DGreenland project: Greenland hydrology assessment from remote sensing

Louise Sandberg Sørensen and the 4DGreenland team

The high latitudes of the Northern Hemisphere have experienced the largest regional warming over the last decades. On the Greenland ice sheet, rapid changes are observed in response to temperature increase, with the amount of liquid water at the surface particularly increasing. Understanding Greenland’s ice sheet hydrology is essential to assess  its contribution to global sea-level rise in a future warming climate.

With the objective of maximizing the use of Earth Observation (EO) data, the European Space Agency (ESA) has funded the 2-year project 4DGreenland (https://4dgreenland.eo4cryo.dk/) to assess and quantify the hydrology of the Greenland ice sheet. The project is focused on dynamic variations in the hydrological components of the ice sheet, and on quantifying the water fluxes between reservoirs including surface melt, supraglacial lakes and rivers, and subglacial melt and lakes. Efforts will focus on a thorough analysis of various components of the hydrological network in selected test regions and their impact on ice sheet flow. 4DGreenland started in September 2020. Here, we will present the project objectives, methods, and show initial results obtained within the project such as a comparison of supraglacial lake depths from optical imagery and ICESat-2 altimetry data, estimation of basal melt water production, and identification and mapping of surface meltwater presence and subglacial lakes from EO data.

 

How to cite: Sandberg Sørensen, L. and the 4DGreenland team: The 4DGreenland project: Greenland hydrology assessment from remote sensing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10728, https://doi.org/10.5194/egusphere-egu21-10728, 2021.

EGU21-3128 | vPICO presentations | CR2.1

Automation of Ice Fractures and Calving Events Monitoring Using Medical Imaging Ridge Detection Algorithms

Quentin Glaude, Stéphane Lizin, Christian Barbier, Frank Pattyn, and Anne Orban

Ice shelves, i.e. the floating extension of the AIS, are playing an active role in controlling ice loss from the Antarctic ice sheet. Laterally constraint in embayment or by ice rises, they are participating as regulators of the ice discharge, by exerting a back stress to the ice flow. When losing mass, these ice shelves lose their gatekeeper property, with potential local destabilization of the AIS. Losing mass from calving is a sophisticated process that is rarely coupled with observations in ice sheet models. However, calving and damages are visible in SAR remote sensing products. In this study, we built the hypothesis that state-of-the-heart ridge detection techniques from the medical imaging field can be transposed to the cryosphere field. Looking at the local Hessian matrix in SAR acquisitions, we analyzed the eigenvectors that indicate the presence of ridges. Over ice shelves, these edges correspond to the calving front of the ice shelf, or crevasses. Using time series, we can monitor the evolution of crack propagation and calving events. Results over Pine Island Glacier and the Brunt Ice Shelf show a precise delineation of calving events, as well as the damaged areas. These encouraging results support the idea of the integration of ice damage detection from SAR remote sensing into ice sheet models.

How to cite: Glaude, Q., Lizin, S., Barbier, C., Pattyn, F., and Orban, A.: Automation of Ice Fractures and Calving Events Monitoring Using Medical Imaging Ridge Detection Algorithms, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3128, https://doi.org/10.5194/egusphere-egu21-3128, 2021.

Amery Ice Shelf is  the largest ice shelf in East Antarctica. Large calving event occurs every thirty to forty years as recorded. The latest calving event happened in September 2019, leading to the birth of a giant tabular iceberg. We used satellite imagery and altimeter data from multiple sources to monitor the evolution of the iceberg from October 2019 to October 2020. The evolution of iceberg area is measured with Sentinel-1 images,  and the change of freeboards was derived from CryoSat-2, Sentinel-3 SRAL, and ICESat-2 profiles. Compared with topography of Amery Front before calving, we found the temporal freeboards of the iceberg show a trend of descending after calved from Amery Ice Shelf, which indicates overall basal melting process. While the freeboards of Amery Front remain stable within a year before calving. We also calculated the freeboard changes of  30 footstep intersections from different altimeter profiles on the iceberg. The results show different changing patterns of freeboards, varying from  4.72m to -3.1m, which indicates there is basal re-freezing process as well as basal melting at the bottom of the iceberg. Furthermore, we studied the correlation between freeboard change and sea surface temperature. This study reveals that the use of different remote sensing data can provide more detailed observations on Antarctic icebergs.

How to cite: Liu, X.: Observation of a giant tabular iceberg calved from Amery Ice shelf based on multiple remote sensing data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14121, https://doi.org/10.5194/egusphere-egu21-14121, 2021.

EGU21-16264 | vPICO presentations | CR2.1 | Highlight

Detecting Calving Events of Icebergs D-28 and B-49 using High Resolution Sentinel-1A SAR Data

Kavita Mitkari, Jayaprasad Pallipad, Deepak Putrevu, and Arundhati Misra

Detecting iceberg calving events and subsequently tracking their movement is important because large icebergs can create problem in shipping and navigation. This study discusses two calving events that took place at 1) Amery ice shelf (East Antarctica) in September 2019 and 2) Pine Island Glacier’s floating ice shelf (West Antarctica) in February 2020. Though the calving that occurred in September 2019 does not have any impact on climate change, it is considered to be the most significant calving event on Amery ice shelf since 1963-64. The gigantic tabular iceberg officially named D-28 measures more than 600 square-miles. On the other hand, Pine Island is considered as the fastest retreating glaciers in Antarctica. This calving event gave rise to smaller icebergs, the largest of which was 120 square-miles, big enough to earn it a name: B-49. Though ice calving is a normal phenomenon at the ice shelves, the front of the glacier is stable if the rate of calving is in synchronization with the glacier’s forward flow. But, at Pine Island, the rate of disintegration has increased more than the glacier's speed to push the inland ice into Pine Island Bay. On-screen digitization approach of analysing time series dataset of glacier front positions is conventional, time consuming and subjective. To track the movement of icebergs D-28 and B-49, present study has detected rifts using canny edge detection filter and textural measures. We have utilized the Sentinel 1A SAR C-band (GRD) EW mode (Resolution (Rg x Az): 93 x 87 m and pixel spacing 40 x 40 m) images pertaining to the Amery ice shelf for Sep 2020-Mar 2020 and Pine Island Glacier with Pine Island Bay for Dec 2019-Mar 2020. All the images were processed for calibration (sigma0), speckle filtering (refined Lee), terrain correction (Range Doppler) and dB conversion using SNAP tool. Terrain correction has been performed using RAMP v2 DEM (200 m) and all the images have been projected to WGS 84/Antarctic Polar Stereographic projection and converted into dB. Through image interpretation, it is revealed that as of Mar 2020, iceberg D-28 has rotated almost 90 degrees anti-clockwise and drifted slightly northward away from Cape Darnley. In case of iceberg B-49, it is observed that the western portion of the calved ice, including the largest iceberg, has rapidly rotated out into Pine Island Bay, whereas the eastern half, including many smaller shards of ice, is following in similar fashion.

How to cite: Mitkari, K., Pallipad, J., Putrevu, D., and Misra, A.: Detecting Calving Events of Icebergs D-28 and B-49 using High Resolution Sentinel-1A SAR Data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16264, https://doi.org/10.5194/egusphere-egu21-16264, 2021.

EGU21-4782 | vPICO presentations | CR2.1 | Highlight

Observing the disintegration of the Thwaites B30 Iceberg with CryoSat-2 and Satellite Imagery

Anne Braakmann-Folgmann, Andrew Shepherd, and Andy Ridout

Icebergs account for half of all ice loss from Antarctica and, once released, present a hazard to maritime operations. Their melting leads to a redistribution of cold fresh water around the Southern Ocean which, in turn, influences water circulation, promotes sea ice formation, and fosters primary production.

To quantify the total volume loss of icebergs both changes in area and in thickness have to be considered. In this study, we combine CryoSat-2 satellite altimetry with MODIS and Sentinel-1 satellite imagery to track changes in the area, freeboard, thickness, and volume of the B30 tabular iceberg between 2012 and 2018. Since it calved the iceberg’s area has decreased from 1500 +/- 60 to 426 +/- 27 km^2 , its mean freeboard has fallen from 49.0 +/- 4.6 to 38.8 +/- 2.2 m, and its mean thickness has reduced from 315 ± 36 to 198 ± 14 m. The combined loss amounts to an 80 +/- 16 % reduction in volume, two thirds (69 ± 14 %) of which is due to fragmentation and the remainder (31 ± 11 %) is due to basal melting.

The quantification of fresh water released from icebergs will help both the risk assessment of maritime operators and the improvement of ocean models by including a realistic – spatially and temporally variable - fresh water flux from iceberg melting in the Southern Ocean. Icebergs can also be used to study the reaction of glacial ice to warming environmental conditions, which they experience when they drift. These conditions might also become present at the ice shelf front in the future and therefore iceberg studies can inform the prediction of ice shelf response to warmer conditions.

How to cite: Braakmann-Folgmann, A., Shepherd, A., and Ridout, A.: Observing the disintegration of the Thwaites B30 Iceberg with CryoSat-2 and Satellite Imagery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4782, https://doi.org/10.5194/egusphere-egu21-4782, 2021.

EGU21-11149 | vPICO presentations | CR2.1

Point-to-point ICESat-2 vs CryoSat-2 comparison

Jan Haacker, Bert Wouters, and Cornelis Slobbe

EGU21-12320 | vPICO presentations | CR2.1 | Highlight

Global climate anomalies and their association with the mass balance of the Antarctic Ice Sheet

Athul Kaitheri, Anthony Mémin, and Frédérique Rémy

Nominal mass change patterns of the Antarctic Ice Sheet (AIS) are usually altered by climate anomalies. By alternating warm and cold conditions, El Niño Southern Oscillation (ENSO) alters moisture transport, sea surface temperature, precipitation, etc in and around the AIS and potentially produces such anomalies. Indices like the Southern Oscillation Index (SOI) and the Oceanic Niño Index (ONI) robustly represent the ENSO phenomenon and is used to evaluate the characteristics of an El Niño or a La Niña. Very few studies have taken place exploring the influence of climate anomalies on the AIS and only a vague estimate of its impact is available.

Changes to the ice sheet are quantified using observations from space-borne altimetric and gravimetric missions. We use data from missions like Envisat (2002 to 2010) and Gravity Recovery And Climate Experiment (GRACE) (2002 to 2016) to estimate monthly elevation changes and mass changes respectively. Similar estimates of the changes are made using weather variables (surface mass balance (SMB) and temperature) from a regional climate model (RACMO2.3p2) combined with a firn compaction (FC) model. Inter-annual height change patterns are then extracted using empirical mode decomposition and principal component analysis to investigate a possible influence of climate anomalies on the AIS.

Elevation changes estimated from different techniques are in good agreement with each other across AIS especially in West Antarctica, Antarctic Peninsula, and along the coasts of East Antarctica. Investigating the inter-annual signals in these regions revealed a sub-4-year periodic signal in the height change patterns. This periodic behavior in the height change patterns is altered in the Antarctic Pacific (AP) sector possibly by the influence of multiple climate drivers like the Amundsen Sea Low (ASL) and the Southern Annular Mode (SAM). Height change anomaly also appears to traverse eastwards from Coats Land to Pine Island Glacier (PIG) regions passing through Dronning Maud Land (DML)  and Wilkes Land (WL) in 7 to 8 years. This is indicative of climate anomaly traversal due to the Antarctic Circumpolar Wave (ACW). Altogether, variability in the SMB of the AIS is found to be modulated by multiple climate anomalies.

How to cite: Kaitheri, A., Mémin, A., and Rémy, F.: Global climate anomalies and their association with the mass balance of the Antarctic Ice Sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12320, https://doi.org/10.5194/egusphere-egu21-12320, 2021.

EGU21-2399 | vPICO presentations | CR2.1 | Highlight

Earth's ice imbalance

Thomas Slater, Isobel Lawrence, Inès Otosaka, Andrew Shepherd, Noel Gourmelen, Livia Jakob, Paul Tepes, Lin Gilbert, and Peter Nienow

Satellite observations are the best method for tracking ice loss, because the cryosphere is vast and remote. Using these, and some numerical models, we show that Earth lost 28 trillion tonnes of ice between 1994 and 2017. Arctic sea ice (7.6 trillion tonnes), Antarctic ice shelves (6.5 trillion tonnes), mountain glaciers (6.1 trillion tonnes), the Greenland ice sheet (3.8 trillion tonnes), the Antarctic ice sheet (2.5 trillion tonnes), and Southern Ocean sea ice (0.9 trillion tonnes) have all decreased in mass. Just over half (58 %) of the ice loss was from the northern hemisphere, and the remainder (42 %) was from the southern hemisphere. The rate of ice loss has risen by 57 % since the 1990s – from 0.8 to 1.2 trillion tonnes per year – owing to increased losses from mountain glaciers, Antarctica, Greenland, and from Antarctic ice shelves. During the same period, the loss of grounded ice from the Antarctic and Greenland ice sheets and mountain glaciers raised the global sea level by 34.6 ± 3.1 mm. The majority of all ice losses were driven by atmospheric melting (68 % from Arctic sea ice, mountain glaciers ice shelf calving and ice sheet surface mass balance), with the remaining losses (32 % from ice sheet discharge and ice shelf thinning) being driven by oceanic melting. Altogether, these elements of the cryosphere have taken up 3.2 % of the global energy imbalance.

How to cite: Slater, T., Lawrence, I., Otosaka, I., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L., and Nienow, P.: Earth's ice imbalance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2399, https://doi.org/10.5194/egusphere-egu21-2399, 2021.

EGU21-7558 | vPICO presentations | CR2.1

Lake Tarfala, Northern Sweden - Remote Sensing of Ice Phenology Using Sentinel-1 Backscatter and Coherence Time Series

Abhay Prakash, Saeed Aminjafari, Nina Kirchner, Tarmo Virtanen, Jan Weckström, Atte Korhola, and Fernando Jaramillo

Lake Tarfala is a small (~0.5 km2) glacier-proximal lake in the Kebnekaise Mountains in Northern Sweden, located at an altitude of 1162 meters above sea level, and close to Tarfala Research Station run by Stockholm University. Only very limited direct monitoring of lake ice phenology using ground observations is available so far, and, long polar nights and often persistent cloud cover at such altitude limit the use of optical remote sensing. However, active microwave radar signals illuminate the target and penetrate through the cloud cover allowing to monitor the lake independent of weather or time of day. In this study, we opt for the Level-1 GRD (Ground Range Detected) and SLC (Single Look Complex) products from the twin Sentinel-1 satellites which provide a coverage of Lake Tarfala at a very high spatial and temporal resolution. We aim to make use of a total of 60 scenes (June 2020 - May 2021) to create the backscatter and coherence time series. Further, we aim to associate the variation in intensity seen in the backscatter time series to the backscattering potential of the medium. It has been shown [1] that an increase in intensity is observed when transitioning from ice-free waters to the initial freeze-up (ice-on) stage. Around ice-on, the intensity would, however, be comparatively low as the ice cover would be very thin and not yet fully developed. The availability of in-situ high-resolution time-lapse imagery and air temperature data from a pilot project carried out during the fall of 2020 [2] will be exploited to assist in the detection of the initial ice formation and freeze-up. Over the course of winter, ice will continue to thicken and a subsequent increase in backscatter intensity is expected until it reaches a saturation point where it stabilises, until the onset of melt in the subsequent spring/summer, when finally, the detection of ice-off (water free of ice) can be characterised by low backscatter values. Furthermore, loss of interferometric coherence upon the onset of melt will aid the backscatter time series when it fails to show a clear signal. We expect to track and provide a complete timeline of the different ice-phenology stages, namely the onset of freezing and the date of complete ice-on, the ice-thickening, the onset of surface melt and the date of complete ice-off. We expect that this study will provide a basis for Arctic lake ice monitoring for various applications such as management of winter water resources, understanding the seasonal and inter-annual land-atmosphere greenhouse gases and energy flux exchanges and biological productivity.

References:

1. Morris, K., Jeffries, M.O., Weeks, W.F. Ice processes and growth history on Arctic and sub-Arctic lakes using ERS-1 SAR data. Polar Rec. 1995, 31, 115-128.


2. Weckström, J., Korhola, A. Kirchner, N., Virtanen, T., Schenk, F., Granebeck, A., Prakash, A. “Lake Thermal and Mixing Dynamics under Changing Climate” and “Towards a multi-approach detection and classification of ice phenology at Lake Tarfala”. Pilot projects funded by Arctic Avenue (a spearhead research project between the University of Helsinki and Stockholm University).

How to cite: Prakash, A., Aminjafari, S., Kirchner, N., Virtanen, T., Weckström, J., Korhola, A., and Jaramillo, F.: Lake Tarfala, Northern Sweden - Remote Sensing of Ice Phenology Using Sentinel-1 Backscatter and Coherence Time Series, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7558, https://doi.org/10.5194/egusphere-egu21-7558, 2021.

The frequent presence of cloud cover in polar regions limits the use of the Moderate-Resolution Imageing Spectroradiometer (MODIS) and similar instruments for the investigation and monitoring of sea-ice polynyas compared to passive-microwave-based sensors. The very low thermal contrast between present clouds and the sea-ice surface in combination with the lack of available visible and near-infrared channels during polar nighttime results in deficiencies in the MODIS cloud mask and dependent MODIS data products. This leads to frequent misclassifications of i) present clouds as sea ice/open water (false-negative) and ii) open-water/thin-ice areas as clouds (false-positive), which results in an underestimation of actual polynya area and subsequent derived information. Here, we present a novel machine-learning based approach using a deep neural network that is able to reliably discriminate between clouds, sea-ice, and open-water/thin-ice areas in a given swath solely from thermal-infrared MODIS channels and derived additional information. Compared to the reference MODIS sea-ice product for the year 2017, our data results in an overall increase of 20% in annual swath-based coverage for the Brunt Ice Shelf polynya, attributed to an improved cloud-cover discrimination and the reduction of false-positive classifications. At the same time, the mean annual polynya area decreases by 44% through the reduction of false-negative classifications of warm clouds as thin ice. Additionally, higher spatial coverage results in an overall better sub-daily representation of thin-ice conditions that cannot be reconstructed with current state-of-the-art cloud-cover compensation methods.

How to cite: Paul, S. and Huntemann, M.: Novel machine-learning based cloud mask and its application for Antarctic polynya monitoring using MODIS thermal-infrared imagery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9603, https://doi.org/10.5194/egusphere-egu21-9603, 2021.

EGU21-514 | vPICO presentations | CR2.1

Large-scale Arctic sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission

Stephen Howell, Mike Brady, and Alexander Komarov

As the Arctic’s sea ice extent continues to decline, remote sensing observations are becoming even more vital for the monitoring and understanding of this process.  Recently, the sea ice community has entered a new era of synthetic aperture radar (SAR) satellites operating at C-band with the launch of Sentinel-1A in 2014, Sentinel-1B in 2016 and the RADARSAT Constellation Mission (RCM) in 2019. These missions represent a collection of 5 spaceborne SAR sensors that together can routinely cover Arctic sea ice with a high spatial resolution (20-90 m) but also with a high temporal resolution (1-7 days) typically associated with passive microwave sensors. Here, we used ~28,000 SAR image pairs from Sentinel-1AB together with ~15,000 SAR images pairs from RCM to generate high spatiotemporal large-scale sea ice motion products across the pan-Arctic domain for 2020. The combined Sentinel-1AB and RCM sea ice motion product provides almost complete 7-day coverage over the entire pan-Arctic domain that also includes the pole-hole. Compared to the National Snow and Ice Data Center (NSIDC) Polar Pathfinder and Ocean and Sea Ice-Satellite Application Facility (OSI-SAF) sea ice motion products, ice speed was found to be faster with the Senintel-1AB and RCM product which is attributed to the higher spatial resolution of SAR imagery. More sea ice motion vectors were detected from the Sentinel-1AB and RCM product in during the summer months and within the narrow channels and inlets compared to the NSIDC Polar Pathfinder and OSI-SAF sea ice motion products. Overall, our results demonstrate that sea ice geophysical variables across the pan-Arctic domain can now be retrieved from multi-sensor SAR images at both high spatial and temporal resolution.

How to cite: Howell, S., Brady, M., and Komarov, A.: Large-scale Arctic sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-514, https://doi.org/10.5194/egusphere-egu21-514, 2021.

EGU21-7243 | vPICO presentations | CR2.1

Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer (CIMR) mission.

Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon

Across spatial and temporal scales, sea-ice motion has implications on ship navigation, the sea-ice thickness distribution, sea ice export to lower latitudes and re-circulation in the polar seas, among others. Satellite remote sensing is an effective way to monitor sea-ice drift globally and daily, especially using the wide swaths of passive microwave missions. Since the late 1990s, many algorithms and products have been developed for this task. Here, we investigate how processing sea-ice drift vectors from the intersection of individual swaths of the Advanced Microwave Scanning Radiometer 2 (AMSR2) mission compares to today’s status-quo (processing from daily averaged maps of brightness temperature).

We document that the “swath-to-swath” (S2S) approach results in many more (two orders of magnitude) sea-ice drift vectors than the “daily-maps” (DM) approach. These S2S vectors also validate better when compared to trajectories of on-ice drifters. For example, the RMSE of the 24 hour Arctic sea-ice drift is 0.9 km for S2S vectors, and 1.3 km for DM vectors from the 36.5 GHz imagery of AMSR2.

Through a series of experiments with actual AMSR2 data and simulated Copernicus Imaging Microwave Radiometer (CIMR) data, we study the impact that geo-location uncertainty and imaging resolution have on the accuracy of the sea-ice drift vectors. We conclude by recommending that a “swath-to-swath” approach is adopted for the future operational Level-2 sea-ice drift product of the CIMR mission. We outline some potential next steps towards further improving the algorithms, and making the user community ready to fully take advantage of such a product.

This work is currently under revision at EGU The Cryosphere as https://tc.copernicus.org/preprints/tc-2020-332/

How to cite: Lavergne, T., Piñol Solé, M., Down, E., and Donlon, C.: Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer (CIMR) mission., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7243, https://doi.org/10.5194/egusphere-egu21-7243, 2021.

Sea–ice concentration, the surface fraction of ice in a given area, is a key component of the Arctic climate system, governing for example the ocean–atmosphere heat exchange. Satellite–based remote sensing offers the possibility for large–scale monitoring of the sea–ice concentration. Using passive microwave measurements, it is possible to observe the sea–ice concentration all year long, almost independently of cloud coverage. The spatial resolution of these measurements is limited to 5 km and coarser. Data from the visible and thermal infrared spectrum offer finer resolutions of 250 m–1 km, but need clear–sky scenes and, in case of visible data, sunlight. In previous work, we developed and analysed a merged dataset of passive microwave and thermal infrared data, combining AMSR2 and MODIS satellite data at 1 km spatial resolution. It has benefits over passive microwave data in terms of the finer spatial resolution and an enhanced potential for lead detection. At the same time, it outperforms thermal infrared data due to its spatially continuous coverage and the statistical consistency with the extensively evaluated passive microwave data. Due to higher surface temperatures in summer, the thermal–infrared based retrieval is limited to winter and spring months. In this contribution, we present first results of extending the existing dataset to summer by using visible data instead of thermal infrared data. The reflectance contrast between ice and water is used for the sea–ice concentration retrieval and results of merging visible and microwave data at 1 km spatial resolution are presented. Difficulties for both, the microwave and visual, data are surface melt processes during summer, which make sea–ice concentration retrieval more challenging. The merged microwave, infrared and visual dataset opens the possibility for a year–long, spatially continuous sea ice concentration dataset at a spatial resolution of 1 km.

How to cite: Ludwig, V. and Spreen, G.: Sea–ice concentration at 1 km resolution in summer from merged visible and microwave radiometer observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12334, https://doi.org/10.5194/egusphere-egu21-12334, 2021.

EGU21-15897 | vPICO presentations | CR2.1

Mapping Arctic Sea Ice Surface Roughness with Multi-angle Imaging SpectroRadiometry

Thomas Johnson, Michel Tsamados, Jan-Peter Muller, and Julienne Stroeve

Surface roughness is a crucial parameter in climate and oceanographic studies, constraining momentum transfer between the atmosphere and ocean, providing preconditioning for summer melt pond extent, while also closely related to ice age. High resolution roughness estimates from airborne laser measurements are limited in spatial and temporal coverage while pan-Arctic satellite roughness have remained elusive and do not extended over multi-decadal time-scales. The MISR (Multi-angle Imaging SpectroRadiometer) instrument acquires optical imagery at 275m (red channel) and 1.1 km (all channels) resolutions from nine near-simultaneous camera view zenith angles sampling specular anisotropy, since 1999. Extending on previous work to model sea ice surface roughness from MISR angular reflectance signatures, a training dataset of cloud-free pixels and coincident roughness is generated. Surface roughness, defined as the standard deviation of the within-pixel elevations to a best-fit plane, is modelled using several techniques and Support Vector Regression with a Radial Basis Function kernel selected. Hyperparameters are tuned using grid optimisation, model performance is assessed using nested cross-validation, and product performance is assessed with independent validation. We present a derived sea ice roughness product at 1.1km resolution over a two-decade timespan (1999 – 2020) and a corresponding time series analysis by region. These show considerable promise in detecting newly formed smooth ice from polynyas, and detailed surface features such as ridges and leads.

How to cite: Johnson, T., Tsamados, M., Muller, J.-P., and Stroeve, J.: Mapping Arctic Sea Ice Surface Roughness with Multi-angle Imaging SpectroRadiometry, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15897, https://doi.org/10.5194/egusphere-egu21-15897, 2021.

EGU21-14851 | vPICO presentations | CR2.1

Sea Ice Classification and Altimetry using Grazing Angle Reflected GNSS Signals Measured by Spire’s Nanosatellite Constellation

Jessica Cartwright, Vu Nguyen, Philip Jales, Oleguer Nogues-Correig, Takayuki Yuasa, Vladimir Irisov, and Dallas Masters

Global Navigation Satellite Systems-Reflectometry (GNSS-R) offers novel observations over the cryosphere with the use of reflected navigation signals (eg. GPS or Galileo) as signals of opportunity. This technique has the potential for higher resolution measurements over sea ice than routinely acquired by passive microwave systems with a footprint of around 5 km2 and is much lower in power consumption, mass and therefore cost. Here we present sea ice classification and altimetry as observed at grazing angles by Spire’s Radio Occultation (RO) Satellite constellation, repurposed for GNSS-R.

The Spire RO constellation of 37 operational satellites (and growing) is relied upon to support critical numerical weather prediction and has been collecting GNSS signals as they refract through the atmosphere. The reprogramming of these satellites to receive signals reflected at grazing angle allows these signals to instead inform on Earth surface characteristics. From smooth surfaces, these signals are phase coherent at L-Band frequencies (~19 - 24 cm wavelength) and allow the detection of the roughness of the sea ice in addition to the height of the surface to several centimetres of precision. Three months of these operational sea ice detection and classification products are presented from Spring of 2020; with ice extent in agreement with external passive and active sources to around 98% in the Antarctic and 94% in the Arctic, and ice age classification (First Year/Multi-Year) agreeing in the Arctic to around 70%. First results are shown for the potential to detect other ice characteristics such as the Antarctic Marginal Ice Zone extent and floe size / type.

How to cite: Cartwright, J., Nguyen, V., Jales, P., Nogues-Correig, O., Yuasa, T., Irisov, V., and Masters, D.: Sea Ice Classification and Altimetry using Grazing Angle Reflected GNSS Signals Measured by Spire’s Nanosatellite Constellation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14851, https://doi.org/10.5194/egusphere-egu21-14851, 2021.

EGU21-2733 | vPICO presentations | CR2.1

Sea surface height anomaly of the ice-covered oceans from ICESat-2 and CryoSat-2

Marco Bagnardi, Nathan Kurtz, Alek Petty, and Ron Kwok

Rapid changes in Earth’s sea ice and land ice have caused significant disruption to the polar oceans in terms of fresh water storage, ocean circulation, and the overall energy balance. While we can routinely monitor, from space, the ocean surface at lower latitudes, measurements of sea surface in the ice-covered oceans remains challenging due to sampling deficiencies and the need to discriminate returns between sea ice and ocean.

The European Space Agency’s (ESA) CryoSat-2 satellite has been acquiring unfocussed synthetic aperture radar altimetry data over the polar regions since 2010, providing a key breakthrough in our ability to routintely monitor the ice-covered oceans. Since October 2018, NASA’s Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and its onboard Advanced Topographic Laser Altimeter (ATLAS) have provided new measurements of sea ice and sea surface elevations over similar polar regions. With over two years of overlapping data, we now have the opportunity to compare coincident sea surface height retrievals from the two missions and assess potential elevation differences over two entire freeze-melt cycles across both polar oceans .

Also, as of August 2020, CryoSat-2’s orbit has been modified as part of the CRYO2ICE campaign, such that every 19 orbits (20 orbits for ICESat-2) the two satellites align for hundreds of kilometers over the Arctic Ocean, acquiring data along coincident ground tracks with a time difference of approximately three hours.

In this work, we compare sea surface height anomaly (SSHA) retrievals from CryoSat-2 (Level 1b and Level 2 data) and  ICESat-2 (Level 3a data, ATL10). We apply a recently updated waveform fitting method to the CryoSat-2 waveform data (Level 1b) to determine the retracking corrections,  based on Kurtz et al. (2014). We apply the same mean sea surface adjustment used for ICESat-2 to CryoSat-2 data, and we apply similar geophysical and atmospheric corrections to both datasets.

While we find an overall good agreement between the two datasets, some discrepancies between CryoSat-2 and ICESat-2 SSHA estimates remain. In this work we explore the potential causes of these discrepancies, related to both lead finding/distribution, and range biases.

 

How to cite: Bagnardi, M., Kurtz, N., Petty, A., and Kwok, R.: Sea surface height anomaly of the ice-covered oceans from ICESat-2 and CryoSat-2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2733, https://doi.org/10.5194/egusphere-egu21-2733, 2021.

EGU21-15978 | vPICO presentations | CR2.1

CryoSat-2’s contribution to the complete sea level records from the Polar Oceans 

Stine Kildegaard Rose, Ole Baltazar Andersen, Sara Fleury, Carsten Ludwigsen, Michel Tsamados, Salvatore Dinardo, Jerome Bouffard, and Jerome Benveniste

The sea level of the Polar Oceans is an important climate indicator. The CryoSat-2 satellite has been measuring the polar oceans with great success, and has improved the sea level uncertainties remarkably . We present the DTU/TUM sea level record based on more tahn 15 years of ESA radar satellite altimetry data in the Arctic Ocean from the ERS2 (1995) to CryoSat-2 (present) satellites. The Arctic sea level record is part of the ESA CCI Sea level initiative and has been updated with a new and better CryoSat processing from the ESA GPOD processing. Furthermore, we present a sea level record from the Southern Ocean as part of the ESA CryoSat+ Antarctica project based on ten years of CryoSat-2 measurements. The changes in the sea level are temporal and spatial analyzed.

How to cite: Rose, S. K., Andersen, O. B., Fleury, S., Ludwigsen, C., Tsamados, M., Dinardo, S., Bouffard, J., and Benveniste, J.: CryoSat-2’s contribution to the complete sea level records from the Polar Oceans , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15978, https://doi.org/10.5194/egusphere-egu21-15978, 2021.

EGU21-7909 | vPICO presentations | CR2.1

Comparison of MODIS-based thin-ice thicknesses with ice draft measurements in the Laptev Sea & Chukchi Sea

Andreas Preußer, H. Jakob Belter, Yasushi Fukamachi, and Günther Heinemann

Acquiring information about the thickness of thin Arctic sea-ice is an important aspect of assessing atmosphere – sea-ice – ocean interactions, as the ice thickness directly relates to the magnitude of energy fluxes at the sea-ice interfaces. In winter, these fluxes are linked to sea-ice formation and hence accompanying processes such as physically induced upper-ocean convection and turbulent mixing of the lower atmospheric boundary layer. It remains a big challenge to validate satellite-derived thin-ice thicknesses, first and foremost due to the lack of suitable in-situ data in these remote areas.

In order to address this issue, we here present the first insight into a comparison between high-resolution (2km) MODIS thermal infrared satellite data (available for 2002/2003 to 2017/2018) and comprehensive time series of ice-draft data obtained from moored Ice Profiling Sonar (IPS) data. The IPS data set comprises winter-seasons 2009/2010 to 2011/2012 in the Chukchi Sea and winter-seasons 2013/2014 to 2014/2015 in the Laptev Sea. For the MODIS data set, a 1D energy balance model serves as the base for deriving thin-ice thicknesses (0 to 50 cm) from ice-surface temperature swath-data and ERA-Interim atmospheric reanalysis data. In order to facilitate the comparison, the 1Hz IPS ice-draft data is first empirically converted to ice thickness and afterwards resampled to 5-minute modal-values to find matching MODIS swath data.

It shows that the agreement between the MODIS and IPS ice-thickness data largely depends on the thickness of the ice sampled by the IPS. We found the highest agreement for ice thickness values below 20 cm, which tend to appear more frequently at the Chukchi Sea mooring location. More generally, we notice that MODIS seems to overestimate ice thicknesses up to approximately 40 cm. For thicker ice, the limitations of the MODIS ice-thickness retrieval result in an underestimation.

How to cite: Preußer, A., Belter, H. J., Fukamachi, Y., and Heinemann, G.: Comparison of MODIS-based thin-ice thicknesses with ice draft measurements in the Laptev Sea & Chukchi Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7909, https://doi.org/10.5194/egusphere-egu21-7909, 2021.

EGU21-12240 | vPICO presentations | CR2.1

The implications of selected processing methods on satellite altimetry derived sea ice thickness state and trends in the seasonal ice zone

Isolde Glissenaar, Jack Landy, Alek Petty, Nathan Kurtz, and Julienne Stroeve

The ice cover of the Arctic Ocean is increasingly becoming dominated by seasonal sea ice. It is important to focus on the processing of altimetry ice thickness data in thinner seasonal ice regions to understand seasonal sea ice behaviour better. This study focusses on Baffin Bay as a region of interest to study seasonal ice behaviour.

We aim to reconcile the spring sea ice thickness derived from multiple satellite altimetry sensors and sea ice charts in Baffin Bay and produce a robust long-term record (2003-2020) for analysing trends in sea ice thickness. We investigate the impact of choosing different snow depth products (the Warren climatology, a passive microwave snow depth product and modelled snow depth from reanalysis data) and snow redistribution methods (a sigmoidal function and an empirical piecewise function) to retrieve sea ice thickness from satellite altimetry sea ice freeboard data.

The choice of snow depth product and redistribution method results in an uncertainty envelope around the March mean sea ice thickness in Baffin Bay of 10%. Moreover, the sea ice thickness trend ranges from -15 cm/dec to 20 cm/dec depending on the applied snow depth product and redistribution method. Previous studies have shown a possible long-term asymmetrical trend in sea ice thinning in Baffin Bay. The present study shows that whether a significant long-term asymmetrical trend was found depends on the choice of snow depth product and redistribution method. The satellite altimetry sea ice thickness results with different snow depth products and snow redistribution methods show that different processing techniques can lead to different results and can influence conclusions on total and spatial sea ice thickness trends. Further processing work on the historic radar altimetry record is needed to create reliable sea ice thickness products in the marginal ice zone.

How to cite: Glissenaar, I., Landy, J., Petty, A., Kurtz, N., and Stroeve, J.: The implications of selected processing methods on satellite altimetry derived sea ice thickness state and trends in the seasonal ice zone, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12240, https://doi.org/10.5194/egusphere-egu21-12240, 2021.

EGU21-16088 | vPICO presentations | CR2.1

Snow depth on Antarctic sea ice: a Lagrangian model-based approach 

Isobel R. Lawrence, Andy Ridout, and Andrew Shepherd

Snow on Antarctic sea ice is an important yet poorly resolved component of the global climate system. Whilst much attention over the past few years has been dedicated to producing reanalysis-forced models of snow on sea ice in the Arctic, none currently exist for the Southern Hemisphere. Here we present a Lagrangian-framework model of snow depth on Antarctic sea ice, in which “parcels” of ice accumulate snow as they drift around the ocean according to daily ice motion vectors. Snow accumulates from two sources; (i) snowfall from ERA5 atmospheric reanalysis and (ii) snow blown off the Antarctic continent, which we estimate using the RACMO2 ice sheet mass balance model. Ice parcels lose snow via wind-redistribution into leads and through snow-ice formation. We validate our dynamic snow product against ship-based measurements from the ASPeCT data archive, and we compare our long-term climatology against estimates derived from passive microwave (AMSR-E/2) satellites. Finally, we assess regional trends in snow depth over the past four decades and investigate whether these are driven by changes in snowfall or divergence/convergence of the Antarctic sea ice pack. 

How to cite: Lawrence, I. R., Ridout, A., and Shepherd, A.: Snow depth on Antarctic sea ice: a Lagrangian model-based approach , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16088, https://doi.org/10.5194/egusphere-egu21-16088, 2021.

EGU21-15767 | vPICO presentations | CR2.1

Assessment of Ka-Ku Altimetric Snow Depth on Sea Ice during Arctic and Austral Winters

Florent Garnier, Sara Fleury, Michel Tsamados, Antoine Laforge, Marion Bocquet, and Frédérique Rémy

Snow depth on sea ice is a key parameter of climate change. For instance, it plays an isolating role which regulates sea ice growth and accelerates the melting. As it will be shown in this presentation, snow depth is mandatory to compute sea ice thickness (SIT). Nevertheless, there currently doesn't exist reliable snow depth products for sea ice. Nearly all SIT estimations in Arctic are computed using the Warren climatology (Warren et al, 1999) which has been constructed from in-situ data of the last century, prior to the first sensible impacts of the climate change. In addition, meteorological re-analyses have difficulties to faithfully reproduce snow falls in polar regions.
Recently, Guerreiro et al, 2016 has demonstrated the ability to retrieve the snow depth over sea ice from the difference of penetration between the CryoSat-2 Ku frequency radar, which reflects at the snow/ice interface and the Saral/AltiKa Ka frequency radar, which reflects on the top of the snow pack. Following this study, an Altimetric Snow Depth (ASD) product, covering the 2013-2019 winter periods in Arctic, is developed at the LEGOS as part of the ESA CryoSeaNice and Polar+ Snow on Sea Ice projects . The main objective of this presentation is to show and assess this dataset. In addition, in the context of the ESA Antarctica+ project, an equivalent snow depth product is also under process for the Austral sea ice. First results will be presented here.

In this presentation, the ASD data will be compared with 2 Advanced Microwave Scanning Radiometer 2 (AMSR-2) snow depth products. The first version (Meier et al, 2018) available on the NSIDC website () has the inconvenience of being only available over First Year Ice. The Bremen AMSR-2 v1.0 product (Rostosky et al, 2018) is calculated over Multi Year Ice but only for March and April (during the Operation Ice Bridge campaigns). In the southern hemisphere, only the NSIDC product is available. This data set covers the entire southern region considering all sea ice as First Year Ice around Antarctica.

We will also assess the relevancy of the ASD data compared to these 2 AMSR-2 products, the Warren W99 climatology and the PIOMAS v2.1 model reanalyze. For this purpose we will present extensive comparisons with: 1) several Operation Ice Bridge (OIB) campaigns, 2) the 2017 ESA-CRYOsat Validation EXperiment (CryoVex) campaign which includes the Ka band KAREN altimeter and 3) the Beaufort Gyre Exploration Project (BGEP) data. Finally, impact of the various dataset (ASD, PIOMAS, AMSR-2) on SIT estimations will be presented.

The results presented here will also underline the interest and relevance of the data that should be obtained during the future CRISTAL mission

How to cite: Garnier, F., Fleury, S., Tsamados, M., Laforge, A., Bocquet, M., and Rémy, F.: Assessment of Ka-Ku Altimetric Snow Depth on Sea Ice during Arctic and Austral Winters, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15767, https://doi.org/10.5194/egusphere-egu21-15767, 2021.

EGU21-12341 | vPICO presentations | CR2.1

Multi-Frequency Satellite Approaches for Snow on Sea Ice: first results from the POLAR+ Snow on Sea Ice ESA project

Michel Tsamados and the POLAR+ Snow of Sea Ice team

Abstract: We propose new methods for multi-frequency snow thickness retrievals building on the legacy of the Arctic+ Snow project where we developed two products: the dual-altimetry Snow Thickness (DuST) and the Snow on Drifting Sea Ice (SnoDSI). The primary objective of this project is to investigate multi-frequency approaches to retrieve snow thickness over all types of sea ice surfaces in the Arctic and provide a state-of-the-art snow product. Our approach follows ESA ITT recommendations to prioritise satellite-based products and will benefit from the recent ‘golden era in polar altimetry’ with the successful launch of the laser altimeter ICESat-2 in 2018 complementing data provided by the rich fleet of radar altimeters, CryoSat-2, Sentinel-3 A/B, AltiKa. Our primary objective is to produce an optimal snow product over the recent ‘operational‘ period. This will be complemented by additional snow products covering a longer periods of climate relevance and making use of historical altimeters (Envisat, ICESat-1) and passive microwave radiometers for comparison purposes (SMOS, AMSRE, AMSR-2). In addition to snow thickness, and as a secondary objective, we will explore other snow characteristics (snow density, snow metamorphism, scattering horizon, roughness, etc) and compare these results with in-situ, airborne and other snow on sea ice products including from model studies and reanalysis on drifting sea ice products. In preparation to future multi-frequency mission we will put an emphasis on uncertainty analysis of our snow product, the impact of the snow on the sea ice thickness retrieval, and on climate physics via model runs with snow initialisation and data assimilation. Finally, learning from past and present campaings (i.e. CryoVex, MOSAiC) we will propose methodologies for effective future snow and sea ice thickness airborne validation campaigns via innovative inverse modelling approaches and airborne retrackers.

 

How to cite: Tsamados, M. and the POLAR+ Snow of Sea Ice team: Multi-Frequency Satellite Approaches for Snow on Sea Ice: first results from the POLAR+ Snow on Sea Ice ESA project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12341, https://doi.org/10.5194/egusphere-egu21-12341, 2021.

EGU21-12871 | vPICO presentations | CR2.1

New Space Observation of the Global Cryosphere

Zhitong Yu, Luojia Hu, Yan Huang, Rong Ma, Peng Xiao, and Wei Yao

Quantifying changes in Earth’s ice sheets and identifying the climate drivers are central to improving sea level projections. But it is a pity that the future sea level is difficult to predicted. Space observation can provide global multiscale long-term continuous monitoring data. And it is very important for understanding intrinsic mechanisms, improve models and projections and analyze the impacts on human civilization.

Several satellites are applied for Global Cryosphere Watch, including sea ice extent and concentration, ice sheet elevation, glacier area and velocity. Although there are many variable can be measured by satellite sensors. But several variables need to improve the observing capability and developing new methods. Such as snow depth on ice, ice sheets thickness, and permafrost parameters. China has established high-resolution earth observation system to realize stereopsis and dynamic monitoring of the lands, the oceans and the atmosphere.

Currently, Qian Xuesen Laboratory working together with Sun Yat-sen University, is trying to design a new space observation system to support Three Poles Environment and Climate Changes project. We are conceptualizing two series satellites including FluxSats and BingSats for carbon/water cycle and cryosphere observations, respectively. To clarify the mechanism of the cryosphere carbon release and carbon sink effects of the oceans and ecosystems. We are developing a new lidar system for detecting the concentration and wind speed, and then atmospheric boundary layer flux exchange can be estimated. To understand the rapid change of the sea ice, such as drift, fragmentation and freeze. We need a short revisit and wide swath system capabilities. InSAR technology gives the digitial elevation of the ice surface. And temporal difference InSAR (DInSAR) shows the changes of elevation. BingSAT-Tomographic Observation of Polar Ice Sheets (TOPIS) achieves the tomographic observation of polar ice sheets with a wide swath and short revisit time. Over the polar regions, the CubeSats form a large cross-track baseline with the master satellite to realize the high two-dimensional spatial resolution with the along-track synthetic aperture. The MirrorSAR technology is utilized in BingSat-TOPIS to achieve time and phase synchronization more economically than the traditional bistatic radar. Sparse array and digital beamforming are also considered to significantly reduce the number of microsatellites, and achieve tomographic images of polar ice sheets.

How to cite: Yu, Z., Hu, L., Huang, Y., Ma, R., Xiao, P., and Yao, W.: New Space Observation of the Global Cryosphere, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12871, https://doi.org/10.5194/egusphere-egu21-12871, 2021.

EGU21-15862 | vPICO presentations | CR2.1

Observation of the cryosphere by altimetry: past, present and future contributions

Sara Fleury, Andrew Shepherd, Angelika Humbert, and Veit Helm

Thanks to the relatively high inclination (81.5°N/S) of the ERS2, Envisat, CryoSat-2, Saral and S3 space altimeters, the Polar Regions have been observed continuously by radar altimetry since the 1990s. We thus have time series over nearly 30 years of the topography of the polar ice caps and the thickness of the ice pack.  However, these measurements took a qualitative leap forward with the launch of CryoSat-2 in 2010, thanks to the advent of SAR/SARIN altimetry and a near-polar inclination of 88°N/S.

SAR/SARIN altimetry has led to considerable improvements in measurement accuracy thanks to better focusing (reducing the footprint by a factor of about 100) and better resolution (by a factor of about 2). The inclination of 88°N/S provides us with almost complete coverage of the Polar Regions, enabling us to carry out 10-year assessments of polar caps and sea-ice volume variations.

During this presentation, we will first show the many scientific advances made possible by polar altimetry and its various evolutions, including the high-precision lidar solution on board NASA's IceSat-2 satellite.

We will then present the HPCM CRISTAL mission, the only new polar altimetry mission planned to date.  We will see the technical advances proposed by this mission and its importance in monitoring the Polar Regions in the context of global warming.

How to cite: Fleury, S., Shepherd, A., Humbert, A., and Helm, V.: Observation of the cryosphere by altimetry: past, present and future contributions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15862, https://doi.org/10.5194/egusphere-egu21-15862, 2021.

EGU21-212 | vPICO presentations | CR2.1

Quality Status of the CryoSat Data Products

Erica Webb, Jenny Marsh, Laura Benzan Valette, Jerome Bouffard, Tommaso Parrinello, Steven Baker, David Brockley, Teresa Geminale, and Michele Scagliola

Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.

CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community.

Since May 2019, the CryoSat ice products have been generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). The Baseline-D reprocessing campaign completed in May 2020, and the full mission Baseline-D dataset is now available to users (July 2010 – present). The next major processor upgrade, Baseline-E, is already under development and following testing and refinement is anticipated to be operational in Q3 2021.

The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present). Preparations are underway for the next major processor upgrade, Baseline-D.

Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.

This poster provides an overview of the CryoSat data quality status and the QC activities performed by the IDEAS-QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.

How to cite: Webb, E., Marsh, J., Benzan Valette, L., Bouffard, J., Parrinello, T., Baker, S., Brockley, D., Geminale, T., and Scagliola, M.: Quality Status of the CryoSat Data Products, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-212, https://doi.org/10.5194/egusphere-egu21-212, 2021.

CR2.2 – Glacier Monitoring from In-situ and Remotely Sensed Observations

EGU21-7663 | vPICO presentations | CR2.2 | Highlight

Automated real-time ice ablation readings using in situ cameras and computer vision techniques

Leo Sold, Johannes Marian Landmann, Joël Borner, Aaron Cremona, Christophe Ogier, Matthias Huss, and Daniel Farinotti

Triggered by climate change, glaciers are retreating world-wide at alarming rates. Since glacier melt can contribute significant proportions to hydrological catchment runoff, it is important to know how much meltwater glaciers can still release under decreasing ice volumes. For a better water resources management, a near real-time mass balance estimate would thus be desirable. On short time scales, glacier mass balance models are usually uncertain though, and they rely heavily on field data for calibration and validation. Because acquiring field data is resource-intensive, most studies rely exclusively on annual or seasonal data sets.

To provide an improved data basis for near-real time analyses produced within the CRAMPON project (Cryospheric Monitoring and Prediction Online), we aim at measuring glacier point ablation automatically, remotely and with high temporal resolution. For this purpose, we have equipped nine ablation stakes on Rhonegletscher, Grosser Aletschgletscher, Findelengletscher and Glacier de la Plaine Morte, Switzerland, with an additional setup: attached to each ablation stake, another aluminum stake construction holds a solar-powered camera at about 1m distance. As the ice surface melts, the camera slides down the ablation stake, takes RGB images of the bottom 50cm at 20min intervals, and sends the images to a server. Colored tape markers of known width and spacing serve as a scale reference on the stake. The total sequence of markers using eight different colors is shuffled to allow for a unique identification of sub-sequences of four markers.

By means of computer vision, the distance of the ablation stake top from the ice surface is obtained automatically: the stake is identified by finding collinear points of high color saturation on an image, i.e. the tape markers. The base point at the ice surface is given, because it has a fixed relative position to the camera. Individual markers are identified by their color, while the color sub-sequences provide the total position on the stake. A pixel-to-metric scale is calculated for each image from the known marker tape width and spacing, which also accounts for the perspective skewness of the stake. A reading uncertainty estimate of 2mm is derived from noise in the scale calculation. This estimate includes the quality of the detected marker bounds, image pixel size and the precision of the actual marker positions as error sources. Images with bad weather conditions are rejected by the processing.

The so-obtained ice melt time series between subsequent image pairs is aggregated to daily values. The results show good agreement with manual readings. In addition to the suggested image processing, we discuss two alternative approaches: by detecting tape markers through a template matching and tracking their location on the images over time, the alternatives avoid the reconstruction of the stake top position while being more sensitive to longer data gaps. We conclude that the presented setup is well-suited to automatically and remotely determine real-time ablation rates with low effort.

How to cite: Sold, L., Landmann, J. M., Borner, J., Cremona, A., Ogier, C., Huss, M., and Farinotti, D.: Automated real-time ice ablation readings using in situ cameras and computer vision techniques, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7663, https://doi.org/10.5194/egusphere-egu21-7663, 2021.

EGU21-7792 | vPICO presentations | CR2.2

Using sub-daily timelapse imagery to investigate the behaviour of Narsap Sermia, SW Greenland.

Dominik Fahrner, James Lea, Stephen Brough, and Jakob Abermann

Greenland’s tidewater glaciers (TWG) have been retreating since the mid-1990s, contributing to mass loss from the Greenland Ice Sheet and sea level rise. Satellite imagery has been widely used to investigate TWG behaviour and determine the response of TWGs to climate. However, multi-day revisit times make it difficult to determine short-term processes such as calving and shorter-term velocity changes that may condition this. 

Here we present velocity, calving and proglacial plume data derived from hourly time-lapse images of Narsap Sermia, SW Greenland for the period July 2017 to June 2020 (n=13,513). Raw images were orthorectified using the Image GeoRectification And Feature Tracking toolbox (ImGRAFT; Messerli & Grinsted, 2015) using a smoothed ArcticDEM tile from 2016 (RMSE=44.4px). TWG flow velocities were determined using ImGRAFT feature tracking, with post-processing adjusting for varying time intervals between image acquisitions (if >1 hour) and removing outliers (>x2 mean). The high temporal resolution of the imagery also enabled the manual mapping of proglacial plume sizes from the orthorectified images and the recording of individual calving events by visually comparing images.

Results show a total retreat of approximately 700 m, with a general velocity increase from ~15 m/d to ~20 m/d over the investigated time period and highly variable hourly velocities (±12m/d). The number of calving events and plume sizes remain relatively stable from year to year throughout the observation period. However, later in the record plumes appear earlier in the year and the size of calved icebergs increases significantly, which suggests a change in calving behaviour. 

How to cite: Fahrner, D., Lea, J., Brough, S., and Abermann, J.: Using sub-daily timelapse imagery to investigate the behaviour of Narsap Sermia, SW Greenland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7792, https://doi.org/10.5194/egusphere-egu21-7792, 2021.

EGU21-10774 | vPICO presentations | CR2.2

Topographic elevation change through tracking shadow cast from mountain ridges. Showcasing Red Glacier, Mt. Iliamna.

Bas Altena, Francesco Nattino, Ou Ku, Meiert Grootes, Sonja Georgievska, Yifat Dzigan, and Bert Wouters

Continuous global monitoring of glacier elevation change over decadal timescales is difficult to establish. Dedicated stereoscopic satellite missions are scarce and had, up to recently, limited spatial coverage. By contrast, observations from monoscopic satellites providing continuous global coverage extending for several decades backwards in time, is readily available. Therefore, we explore the potential of this type of imagery for extracting elevation change. This is done through tracking of moving shadows, which is a new and simple technique we call photohypsometry. The known sun angles and clear shadow patterns on the glacier surface, establish a simple trigonometric relationship, enabling the extraction of elevation change. 

Here we showcase the methodology on Red Glacier, a glacier situated on the Eastern flank of Iliamna volcano, Alaska. A tributary of this glacier has fast surface speed in its snout, slightly shifting lateral moraines, but no known surge history. Shadow from neighboring mountain ridges cast on the accumulation region of this glacier, so a clear time-series can be constructed from Sentinel-2 imagery.

This example highlights the potential of this technique. While the coverage of topographic information does not cover the whole glacial basin, it can complement other data sources. It is especially suited for small mountain glaciers and thrives in brightly reflecting snow-covered accumulation areas.

How to cite: Altena, B., Nattino, F., Ku, O., Grootes, M., Georgievska, S., Dzigan, Y., and Wouters, B.: Topographic elevation change through tracking shadow cast from mountain ridges. Showcasing Red Glacier, Mt. Iliamna., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10774, https://doi.org/10.5194/egusphere-egu21-10774, 2021.

Glaciological phenomena can have a strong impact on human activities in terms of hazards and freshwater supply. Therefore, scientific observation and continuous monitoring are fundamental to investigate their current state and recent evolution. Strong efforts in this field have been spent in the Grandes Jorasses massif (Mont Blanc area), where several break-offs and avalanches from the Planpincieux Glacier and the Whymper Serac (Grandes Jorasses Massif) threatened the Planpincieux hamlet in the past. In the last decade, multiple close-range remote sensing surveys have been conducted to study the glaciers.

Two time-lapse cameras monitor the Planpincieux Glacier since 2013. Its surface kinematics is measured with digital image correlation. Image analysis techniques allowed at classifying different instability processes that cause break-offs and at estimating their volume. The investigation revealed possible break-off precursors and a monotonic relationship between glacier velocity and break-off volume, which might help for risk evaluation.

A robotised total station monitors the Whymper Serac since 2009. The extreme high-mountain conditions force to replace periodically the stakes of the prism network that are lost.

In addition to these permanent monitoring systems, five campaigns with different commercial terrestrial interferometric radars have been conducted between 2013 and 2019. In 2020, two terrestrial GBSAR were installed for the improvement of the monitoring network of both glaciers. The adopted monitoring network is also composed by a Doppler radar that controls the potential detachment of ice blocks from the frontal part of the Planpincieux glacier. Besides, helicopter-borne LiDAR, terrestrial laser scanner and structure from motion applied to photo mosaics acquired by helicopter and UAV provided a dense series of high-resolution DTMs. Finally, new helicopter ground-penetrating radar campaigns were conducted in 2020 to evaluate the Planpincieux and Grandes Jorasses glaciers' thickness.

The survey activity conducted in the Grandes Jorasses area in the last decade is probably one of the most variegated in the European Alps. Thereby, this area has become an open-air laboratory for experimenting with new technological or methodological solutions for glaciological close-range remote sensing monitoring which might be applicable in other contexts.

How to cite: Giordan, D. and Fabrizio, T.: The open-air laboratory of the Grandes Jorasses glaciers. An opportunity for developing close-range remote sensing monitoring systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10675, https://doi.org/10.5194/egusphere-egu21-10675, 2021.

EGU21-9843 | vPICO presentations | CR2.2

Geodetic point surface mass balances: A new approach to determine point surface mass balances on glaciers from remote sensing measurements

Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni

Mass balance observations are very useful to assess climate change in different regions of the world. As opposed to glacier-wide mass balances, which are influenced by the dynamic response of each glacier, point mass-balances provide a direct climatic signal that depends on surface accumulation and ablation only. Unfortunately, major efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach that determines point surface mass balances from remote sensing observations. We call this balance the geodetic point surface mass balance. From observations and modelling performed on Argentière and Mer de Glace glaciers over the last decade, we show that the vertical ice flow velocity changes are small in areas of low bedrock slope. Therefore, assuming constant vertical velocities in time for such areas and provided that the vertical velocities have been measured for at least one year in the past, our method can be used to reconstruct annual point surface mass balances from surface elevations and horizontal velocities alone. We demonstrate that the annual point surface mass balances can be reconstructed with an accuracy of about 0.3 m w.e. a-1 using the vertical velocities observed over the previous years and data from Unmanned Aerial Vehicle images. Given the recent improvements of satellite sensors, it should be possible to apply this method to high spatial resolution satellite images as well.

How to cite: Vincent, C., Cusicanqui, D., Jourdain, B., Laarman, O., Six, D., Gilbert, A., Walpersdorf, A., Rabatel, A., Piard, L., Gimbert, F., Gagliardini, O., Peyaud, V., Arnaud, L., Thibert, E., Brun, F., and Nanni, U.: Geodetic point surface mass balances: A new approach to determine point surface mass balances on glaciers from remote sensing measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9843, https://doi.org/10.5194/egusphere-egu21-9843, 2021.

EGU21-10401 | vPICO presentations | CR2.2

A New Database of Meteorological and Glaciological Observations: Tarija Glacier, Tropical Andes

Pablo Fuchs and Javier Mendoza

We present a numerical and geographical database for the Tarija Glacier in the Tropical Andes (68.2° W, 16.2° S, 4820-5380 m.a.s.l.). The database consists of meteorological data, mass balance observations, and variations in glacier front positions. Meteorological data was obtained by an automatic weather station (AWS) located on the glacier surface that includes the following variables: precipitation, temperature, incoming shortwave radiation, relative humidity, wind speed and wind direction. Mass balance for this glacier was observed on a monthly basis in an ablation stake network and annually in a snow pit at 5230 m.a.s.l. The glacier front topography was monitored annually using a DGPS survey. We set up the database using the relational database engine PostgreSQL which is capable of managing geospatial data through the PostGIS extension. The SAGA system was used for image analysis and mapping. Data quality control and further processing was carried out in the R environment which has interfaces to the PostgreSQL database system and SAGA, as well as several additional packages for statistical analyses and modelling. The database contains data spanning the 2011-2018 period and would be useful for multiple applications including environmental and ecological modeling, water resources assessment, and climate change studies.

How to cite: Fuchs, P. and Mendoza, J.: A New Database of Meteorological and Glaciological Observations: Tarija Glacier, Tropical Andes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10401, https://doi.org/10.5194/egusphere-egu21-10401, 2021.

EGU21-11598 | vPICO presentations | CR2.2

Interrelationships among mass balance, meteorology, discharge, and surface velocity on Chhota Shigri Glacier over 2002-2019 using in-situ measurements

Ramanathan Alagappan(AL), Arindan Mandal, Azam Farooq Mohd, Thupstan Angchuk, Soheb Mohd, Naveen Kumar, Jose George Pottakkal, Sarvagya Vatsal, Somdutta Mishra, and Virendra Bhadur singh

Interrelationships among mass balance, meteorology, discharge, and surface velocity on Chhota Shigri Glacier over 2002-2019 using in-situ measurements

 

 

Arindan MANDAL1, AL. RAMANATHAN1*, Mohd. Farooq AZAM2, Thupstan ANGCHUK1, Mohd. SOHEB1, Naveen KUMAR1, Jose George POTTAKKAL3, Sarvagya VATSAL1, Somdutta MISHRA1, Virendra Bahadur SINGH1,4

 

*Corresponding author email: alrjnu@gmail.com

The Himalayan glaciers contribute significantly to regional water resources. However, limited field observations restrict our understanding of glacier dynamics and behavior. Here, we investigated the long-term in-situ mass balance, meteorology, ice velocity, and discharge of the Chhota Shigri Glacier over the past two decades. With 17 years of uninterrupted glacier-wide mass balance datasets, Chhota Shigri Glacier is one of the most studied glaciers in the Hindu-Kush Himalayan region in terms of mass balance record. The mean annual glacier-wide mass balance was negative, -0.46±0.40 m w.e. a-1 during 2002-2019 corresponding to a cumulative wastage of about -8 m w.e. Mean winter mass balance was 1.15 m w.e. a-1 and summer mass balance was -1.35 m w.e. a-1 over 2009-2019. Surface ice velocity has decreased on average by 25-42% in the lower and middle ablation zone (below 4700 m a.s.l.) since 2003; however, no substantial change was observed at higher altitudes. The decrease in velocity suggests that the glacier is adjusting its flow in response to negative mass balance. The summer discharge begins to rise from May and peaks in July, with a contribution of 43%, followed by 38% and 19% in August and September, respectively. The discharge pattern closely follows the air temperature. The long-term observation on the Chhota Shigri — a benchmark — glacier, shows a mass wastage that corresponds to the glacier’s slowdown in the past two decades.

 

 

How to cite: Alagappan(AL), R., Mandal, A., Mohd, A. F., Angchuk, T., Mohd, S., Kumar, N., Pottakkal, J. G., Vatsal, S., Mishra, S., and singh, V. B.: Interrelationships among mass balance, meteorology, discharge, and surface velocity on Chhota Shigri Glacier over 2002-2019 using in-situ measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11598, https://doi.org/10.5194/egusphere-egu21-11598, 2021.

EGU21-13732 | vPICO presentations | CR2.2

Mass balance study of the Znosko glacier, Antarctica, using remote sensing and in situ measurements

Cinthya Bello, Wilson Suarez, Fabian Brondi, and Gilbert Gonzales

Glaciers are a key indicator of climate change. Since the second half of the 20th century several glaciers in Antarctica have retreated. In situ measurements of glacier mass balance in the Antarctic Peninsula and its surrounding islands are very scarce because this area is inaccessible due to rough terrain and inhospitable atmospheric conditions, but there is a necessity in study peripheral glaciers dynamics to know their future contribution to sea level rise. To fill this gap, remote sensing is an alternative tool to enable timely monitoring of dynamic glaciers and quantifying spatial-temporal changes. Here we combine remote sensing (satellite imaginary and aerial photos) and in situ measurements to calculate mass balance for the Znosko glacier (King George Island, Antarctic Peninsula) and compare the accuracy of this methods. Two field campaigns were carried out during the XXVI and XXVII Peruvian Antarctic Operation (austral summer 2018/19 and 2019/20). 19 stakes were fixed on the glacier surface, in situ mass balance data were collected from yearly stake measurements. Also, digital elevation models were generated through aerial photogrammetry and auxiliary data from the ICESat-2 mission were included into the analysis.  We find that mass balances estimated with these methods are consistent and confirm the mass loss (heterogeneous pattern between accumulation and ablation zone) and retreat of Znosko glacier. We illustrate how participatory mapping (interdisciplinary team) can complement initial remote sensing land cover classification and assist ground checks.

How to cite: Bello, C., Suarez, W., Brondi, F., and Gonzales, G.: Mass balance study of the Znosko glacier, Antarctica, using remote sensing and in situ measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13732, https://doi.org/10.5194/egusphere-egu21-13732, 2021.

EGU21-2758 | vPICO presentations | CR2.2

First geodetic mass balance estimate of the bulk of the South Shetland Islands ice caps

Kaian Shahateet, Thorsten Seehaus, Francisco Navarro, and Matthias Braun

The Antarctic Peninsula ice sheet is an important contributor to sea-level rise and the glaciers in its peripheral islands have a large potential to increase their contribution under a warming climate. This region has undergone a complex history of climate change during recent decades, which justifies a close monitoring of their glaciers. The South Shetland Islands (SSI) is one of the northernmost archipelagos in this region, but it is lacking a geodetic mass balance (GMB) calculation for the entire archipelago. We have estimated the GMB of the SSI over a 3-4 years period within 2013-2017 (depending on the data availability for each island). Our estimation is based on remotely-sensed multispectral and interferometric SAR data covering 96% of the glacierized areas of the islands considered in our study, and 73% of the total glacierized area of the SSI archipelago (Elephant, Clarence and Smith Islands were excluded due to overly large slopes for SAR or limited input data). Our Results show a close-to-balance overall status during the analyzed period, with specific mass balances ranging from -0.680±0.071 to 0.209±0.025 m w.e. a-1 on Low and Livingston islands, respectively. The average specific mass balance for the whole area is -0.064±0.015 m w.e. a-1, representing an ice mass loss of 0.144±0.035 Gt a-1. This result is consistent with the cooling trend observed in the region between 1998 and 2017, and with the mass balance estimates by the glaciological method performed in various glaciers in the AP region (and the SSI in particular).

How to cite: Shahateet, K., Seehaus, T., Navarro, F., and Braun, M.: First geodetic mass balance estimate of the bulk of the South Shetland Islands ice caps, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2758, https://doi.org/10.5194/egusphere-egu21-2758, 2021.

Knowing the ice thickness distribution of glaciers and ice caps is of critical importance for a number of studies. However, since measuring ice thickness directly is difficult and time consuming, the availability of such information is generally scarce. Here, we present results from the Second Phase of the Ice Thickness Models Intercomparison eXperiment (ITMIX2) which had a two-fold objective. First, it aimed at characterizing the capability of numerical models to use sparse thickness measurements to their advantage. Second, it aimed at identifying possible strategies for maximizing the information content gained through direct ice thickness surveys.

The experiment was designed around 23 test cases including both real-world and synthetic glaciers, and comprised a set of 16 different experiments per test case simulating different scenarios of data availability. Based on a total of 2,544 individual solutions submitted by 13 different models, our results show that for locations without direct measurements, the ice thickness can be predicted with typical deviations in the order of 16% of the mean ice thickness. Despite large scatter, even limited sets of ice thickness observations are found to be effective in constraining the glacier total volume, particularly when the thickest part of a glacier is surveyed. Other spatial distributions of the ice thickness observations have only a weak influence on the predicted thickness, although surveys restricted to the lowest glacier elevations often result in an underestimation of the glacier’s total volume. The response to the various scenarios of data availability is found to be specific to individual models, and while no single best approach emerges, an ensemble-approach based on a combination of models is shown to be beneficial in terms of accuracy and robustness.

How to cite: Farinotti, D. and the ITMIX2 consortium: Where shall we measure? Results from the second phase of the Ice Thickness Models Intercomparison eXperiment (ITMIX2), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3944, https://doi.org/10.5194/egusphere-egu21-3944, 2021.

EGU21-9402 | vPICO presentations | CR2.2 | Highlight

Clustering patterns of volume change to classify glacier states and fates

Lea Hartl, Kay Helfricht, Martin Stocker-Waldhuber, Bernd Seiser, and Andrea Fischer

Historically unprecedented glacier retreat rates are observed in mountain ranges all over the world. These high recession rates are expected to continue during the next decades. There is currently a window of opportunity to learn from the first vanishing Alpine glaciers and develop monitoring strategies to track the pace and extent of a deglaciation phase. 

Austria has a long history of in-situ mass balance monitoring at select glaciers, as well as a rich data basis of regional glacier inventories and multi-temporal digital terrain models from aerial surveys. As such, monitoring programs are in an ideal position to track the ongoing, rapid changes and place them in a historical context. With increasing rates of change it becomes all the more important to leverage the specific advantages of different data sets and combine them for a complete picture of regional changes and local processes.  

To this end, we compare long time series of annual mass balance data measured in-situ via the direct glaciological method at select monitoring sites in western Austria with results derived from remote sensing based digital terrain models. We use the latter to extract histograms of surface elevation change at hundreds of individual glaciers, over multiple time periods. This allows us to quantify the variability of surface elevation change and how it has changed in the past decades, and provides a basis for discussions of regional representativity of in-situ monitoring sites.  

Additionally, we use a self-organizing maps algorithm to cluster the individual “profiles” of surface elevation change into groups. This helps to visualize recurring patterns of change in specific geographic regions or elevation zones while preserving the characteristics of different, individual glaciers and their response to climatic forcing, and gives us a sense of the state of disequilibrium of certain mountain ranges. 

All available data indicates that recent years have been characterized by large area and volume losses, strongly negative mass balance values, and disintegration especially of low-lying glacier tongues. Firn cover has been strongly depleted so that some glaciers effectively no longer have accumulation zones. Variability of surface elevation change has generally increased at lower elevations and remained mostly constant at higher elevations, but this varies significantly between individual glaciers. The long-term in-situ monitoring sites skew to very large glaciers compared to the regional average.  Larger glaciers, including most of the monitoring sites, tend to exhibit a strong elevation gradient of surface change, with large losses at low elevations. Small glaciers typically have a less pronounced gradient, if any, and especially very small glaciers at lower elevations have significantly less negative elevation change values as large glaciers, in the same elevation zone. When clustering individual glaciers into types, we find a clear shift to surface change distribution curves that suggest processes of disintegration. This tendency is strongest in the most recent time period. At current rates of mass loss, glaciers are projected to retreat entirely to above 2800m in the Ötztal and Stubai ranges by 2050. 

How to cite: Hartl, L., Helfricht, K., Stocker-Waldhuber, M., Seiser, B., and Fischer, A.: Clustering patterns of volume change to classify glacier states and fates, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9402, https://doi.org/10.5194/egusphere-egu21-9402, 2021.

EGU21-5873 | vPICO presentations | CR2.2 | Highlight

The new Swiss Glacier Inventory SGI2016: a detailed cartographic representation of Swiss glacier extent and supraglacial debris-cover

Andreas Linsbauer, Matthias Huss, Elias Hodel, Andreas Bauder, Mauro Fischer, Yvo Weidmann, and Hans Bärtschi

With increasing anthropogenic greenhouse gas emissions and corresponding global warming, glaciers in Switzerland are shrinking rapidly as in many mountain ranges on Earth. Repeated glacier inventories are a key task to monitor such glacier changes and provide detailed information on the extent of glaciation, and important parameters such as area, elevation range, slope, aspect etc. for a given point or a period in time. Here we present the new Swiss Glacier Inventory (SGI2016) that has been acquired based on high-resolution aerial imagery and digital elevation models in cooperation with the Federal Office of Topography (swisstopo) and Glacier Monitoring in Switzerland (GLAMOS), bringing together topological and glaciological knowhow. We define the process, workflow and required glaciological adaptations to compile a highly accurate glacier inventory based on the digital Swiss topographic landscape model (swissTLM3D).

The SGI2016 provides glacier outlines (areas), supraglacial debris cover, ice divides and location points of all glaciers in Switzerland referring to the years 2013-2018, whereas most of the glacier outlines have been mapped based on aerial images acquired between 2015-2017 (75% in number and 87% in area), with the centre year 2016. The SGI2016 maps 1400 individual glacier entities with a total glacier surface area of 961 km2 (whereof 11% / 104 km2 are debris-covered) and constitutes the so far most detailed cartographic representation of glacier extent in Switzerland. Analysing the dependencies between topographic parameters and debris-cover fraction on the basis of individual glaciers reveals that short glaciers with a moderate mean slope and glaciers with a low median elevation tend to have high debris fractions. A change assessment between the SGI1973 and SGI2016 based on individual glacier entities affirms the largest relative area changes for small glaciers and for low-elevation glaciers, whereas the largest glaciers show small relative area changes, though large absolute changes. The analysis further indicates a tendency for glaciers with a high share of supraglacial debris to show larger relative area changes.

Despite of an observed strong glacier volume loss between 2010 and 2016, the total glacier surface area of the SGI2016 is somewhat larger than reported in the last Swiss glacier inventory SGI2010. Even though both inventories were created based on swisstopo aerial photographs, the additional data, tools, resources and methodologies used by the professional cartographers digitizing glacier outlines in 3D for the SGI2016, are able to explain the counter-intuitive difference between SGI2010 and SGI2016. A direct comparison of these two datasets is thus not meaningful, but an experiment where a representative glacier sample of the SGI2010 was re-assessed based on the approaches of the SGI2016 led to an upscaled total glacier surface area of 1010 km2 for the Swiss Alps around 2010. This indicates an area loss of 49 km2 between the two last Swiss glacier inventories. As swisstopo data products are and will be regularly updated, the SGI2016 is the first step towards a consistent and accurate data product of repeated glacier inventories in six-year time intervals that promises a high comparability for individual glaciers and glacier samples.

How to cite: Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y., and Bärtschi, H.: The new Swiss Glacier Inventory SGI2016: a detailed cartographic representation of Swiss glacier extent and supraglacial debris-cover, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5873, https://doi.org/10.5194/egusphere-egu21-5873, 2021.

EGU21-2959 | vPICO presentations | CR2.2 | Highlight

Data Rescue and Homogenization of Historic Mass Balance Measurements on Swiss Glaciers

Lea Geibel, Claudia Kurzböck, Matthias Huss, and Andreas Bauder

Long-term glacier monitoring in Switzerland has resulted in some of the longest and most complete data series globally. Point mass balance observations, starting in the 19th century, are the backbone of the monitoring as they represent the raw and original data demonstrating the response of surface accumulation and melt to changes in climate forcing. Some of these time series on Swiss glaciers provide over 100 years of continuous measurements.

In the past, the variety of sources of historic measurements has only been partially investigated and never been completely and systematically processed and documented. Therefore, a new format for a point mass balance database was developed that allows full traceability of all measurements back to their original source as well as indicators for the quality of the data and corresponding measuring uncertainties. All previously included data sources were transferred into the new data base format and the original sources were re-assessed to validate or correct the entries and identify metadata. Furthermore, newly investigated measurements were added to the data base. The sources of data include an extremely diverse field from over 140 years of measurements such as published reports or studies, unpublished documents from field projects, field notes, digital sources as well as metaknowledge of the observers. Currently, data series with complete metadata for about 60 individual glaciers are available, corresponding to almost 60.000 point observations, one third of which are newly added.

In addition to extending the data base, this project also allowed us to systematically and homogenously fill in missing information such as estimates of the surface elevation of the measurement points and snow/firn density.  In the past, these density values often had to be assumed without actual measurements but those assumptions could vary up to 20% within different projects and assumptions were rarely flagged as such. The newly added metadata now allows performing an analysis of all actually measured density values and a homogenous interpolation of missing values across all times series based on known values. Furthermore, a system to estimate uncertainties of the mass balance measurements based on the metadata was developed as the accuracy of measurements between different measuring techniques and projects with very differing scientific objectives over a time frame of 140 years can vary significantly and therefore needs to be assessed. This quality-checked and complete data base now permits the re-analysis of consistent time series of glacier-wide mass balance allowing further interpretation of the climate change impacts on Swiss glaciers.

How to cite: Geibel, L., Kurzböck, C., Huss, M., and Bauder, A.: Data Rescue and Homogenization of Historic Mass Balance Measurements on Swiss Glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2959, https://doi.org/10.5194/egusphere-egu21-2959, 2021.

EGU21-9294 | vPICO presentations | CR2.2

Volume drop of Pyrenean Glaciers from 2011 to 2020 observed with airborne techniques; LiDAR and SfM

Jesús Revuelto, Ixeia Vidaller-Gayán, Eñaut Izagirre, Francisco Eduardo Rojas-Heredia, Esteban Alonso-González, Ibai Rico, Simon Gascoin, Etienne Berthier, Pierre Rene, and Juan Ignacio López-Moreno

Pyrenean glaciers are one of the southernmost glaciers in Europe. These ice bodies have suffered a fast retreat in the last decades mainly caused by the temperature increase of the last century. Here, we use state of the art airborne techniques to present the most complete evaluation of glacier volume change from 2011 to 2020.

In 2011 the Spanish Geographical Institute covered the entire country with airborne LiDAR. The glacier topography on the Spanish side of the Pyrenees (and also several hundreds of meters beyond the French border) was retrieved between September and November, when snow cover was minimal. In autumn 2020, we used different Unmanned Aerial Vehicles to survey 17 out of the 19 Pyrenean glaciers. The images acquired in these flights were processed with Structure from Motion algorithms to reconstruct the Digital Surface Model (DSM) in 3D of the glacier surfaces and nearby terrain.

Differencing of the DSM in 2011 and 2020 reveals a drastic retreat and volume loss. The mean elevation drop is 7 m, some glaciers had losses of more than 12 m in average with a surface lowering of more than 20 m locally. The mean annual mass balance observed when considering the 2D projection of glaciers surface was -1.83 m w.e./yr. Taking into account the true glaciers extent from the 3D surface retrieved from the UAV observations, the annual mass balance decreases to -1.30 m w.e./yr. The difference between these mass balances highlights the impact that utilising close range remote sensing observations have, when compared to satellite acquisitions, to accurately observe glaciers evolution in steep mountain areas.

How to cite: Revuelto, J., Vidaller-Gayán, I., Izagirre, E., Rojas-Heredia, F. E., Alonso-González, E., Rico, I., Gascoin, S., Berthier, E., Rene, P., and López-Moreno, J. I.: Volume drop of Pyrenean Glaciers from 2011 to 2020 observed with airborne techniques; LiDAR and SfM, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9294, https://doi.org/10.5194/egusphere-egu21-9294, 2021.

EGU21-12009 | vPICO presentations | CR2.2 | Highlight

Decadal altitudinal glacier mass balance for the Maipo and Santa basins of South America

Florian von Ah, Evan Miles, Inés Dussaillant, Thomas E. Shaw, Peter Molnar, and Francesca Pellicciotti

Andean glaciers are an important part of the water cycle of high elevation catchments and supply fresh water to large populations downstreams, especially during dry periods. They are experiencing dramatic mass loss due to a warming climate, and their catchments are among the most vulnerable. However, relatively few glaciers are monitored systematically due to accessibility and cost, limiting our understanding of mass accumulation and ablation rates. In this study, we estimated the decadal altitudinal mass balance of glaciers in the Maipo River Basin in central Chile and the Rio Santa Basin in the Cordillera Blanca in Peru for the periods of 2000-2009 and 2009-2018. We accomplished this by 1) correcting current ice thickness estimates for recent thinning, 2) deriving glacier velocities from Landsat data using the Glacier Image Velocimetry (GIV) toolbox, and 3) modelling ice flux divergence using the continuity approach to correct observed glacier thinning for flow. We validated the altitudinally-resolved mass balance with the few available observational datasets, then determined each domain’s equilibrium line altitude, accumulation area ratio, and ablation balance ratio for each period, which identifies the portion of annual ablation that is compensated by accumulation.

Our results highlight the influence of the Chilean ‘Mega-drought’ (2010-present) on glacier health in the Maipo River Basin, causing a dramatic reduction in glacier mass balance (decrease of 0.5 m w.e. a-1) below 5000 m a.s.l., raising the regional equilibrium line altitude from 4210 m a.s.l. during 2000-2009 to 4470 m a.s.l. ± 15 m during 2009-2018, and lowering accumulation area ratios from 0.65 to 0.55. In contrast, the Santa Basin glaciers showed very similar altitudinal mass balance patterns for both decades, with equilibrium line altitudes at ~5100 m a.s.l. and accumulation area ratios of ~0.5, indicating a basin already out of balance prior to 2000. 

Large populations rely on glaciers’ water supply in both basins and the two basins’ glaciers contrast in terms of water supply sustainability. In the Maipo Basin, glaciers experienced little mass change in the first period (ablation balance ratio of 1.01) and experienced only slightly unsustainable mass loss in the second period (ablation balance ratio of 0.9) despite the Megadrought. The ablation balance ratio for the Santa Basin was lower for both periods (0.75) indicating that these glaciers are moderately unhealthy despite their recent retreat, and water managers should expect further reductions in glacier water supply. Our results will help to constrain glacier models to understand the timing of glacier change for this data-sparse region.

How to cite: von Ah, F., Miles, E., Dussaillant, I., Shaw, T. E., Molnar, P., and Pellicciotti, F.: Decadal altitudinal glacier mass balance for the Maipo and Santa basins of South America, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12009, https://doi.org/10.5194/egusphere-egu21-12009, 2021.

EGU21-14499 | vPICO presentations | CR2.2

A new glacier inventory for Svalbard from Sentinel-2 and Landsat 8 for improved calculation of climate change impacts

Frank Paul, Franz Goerlich, and Philipp Rastner

Svalbard is famous for its numerous surge-type glaciers as well as for the harsh weather conditions of a highly maritime Arctic island, making regular observations of its glaciers challenging. However, the rapid changes of glacier geometry require a frequent update of their extent to perform accurate glacier-specific calculations such as their mass balance or contribution to sea level. The last inventory for Svalbard has been compiled by Nuth et al. (2013) from about 40 satellite scenes acquired by three different sensors (ASTER, Landsat, SPOT) on 30 unique days over a period of 10 years. Accordingly, any change assessment or other time dependent calculations are difficult to perform and a temporarily more consistent dataset is urgently required.

In this study we present the results of a new glacier inventory for Svalbard that has been derived from two Sentinel-2 swaths acquired for the main island within 3 days of 2017 and on 1 day in 2016 from Landsat 8 for Nordaustlandet. The images had overall very good snow conditions but in some regions late seasonal snow was hiding glaciers. Glacier mapping under local clouds in the very north and south could be performed by using further scenes from 2017 processed with GEE. We applied a simple red/SWIR band ratio to map clean ice and corrected wrong classifications (sea ice, lakes) or missing parts (debris cover) manually. New drainage divides and topographic parameters were derived from the ArcticDEM.

The new inventory counts 3136 glaciers >0.01 km2 covering an area of 32,948 km2. Of these, glaciers < 1 km2 cover 1.3% of the area but nearly 44% of the number whereas glac-iers >10 km2 cover 91% of the area and 10% by number. Compared to the previous inventory we have 1468 glaciers more and 2.5% area less. However, when excluding the 2025 glaciers <1 km2, we only identified 1111 glaciers, i.e. 557 less than in the previous inventory. The differences are mostly due to newly considered entities, different drainage divides, glacier retreat and advance/surging. By excluding surge-type glaciers, a more meaningful determination of climate-related area changes can be performed. The presentation will discuss the differences of the new inventory to the RGI dataset, the specific glacier mapping challenges and our approach to solve them.

How to cite: Paul, F., Goerlich, F., and Rastner, P.: A new glacier inventory for Svalbard from Sentinel-2 and Landsat 8 for improved calculation of climate change impacts, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14499, https://doi.org/10.5194/egusphere-egu21-14499, 2021.

EGU21-10236 | vPICO presentations | CR2.2

Current state and recent changes in glacial systems in Russia

Tatiana Khromova, Gennady Nosenko, Andrey Glazovsky, Anton Muraviev, Stanislav Nikitin, and Ivan lavrentiev

The new glacier inventory created recently at the Institute of Geography of the Russian Academy of Sciences made it possible to study the current state and recent changes of glacial systems in Russia, where now there are 22 glacial systems. The total area of ​​glaciation on this territory is 54,531 km2 based on Sentinel 2 images obtained mainly in 2016-2019. This area is occupied by 7478 glaciers. The largest glacial system in area is located on the Novaya Zemlya archipelago (22,241.37 km2). It is followed by Severnaya Zemlya (16491.81 km2) and Franz Josef Land (12530.03 km2). The next largest glacial systems are locate on the Caucasus Mountains (1067.13 km2), Kamchatka (682.8 km2) and Altai (523.14 km2). The area of ​​glaciers on the Arctic island of Ushakov (283, 09 km2), in the Suntar Khayata mountains (132, 97 km2) and the Koryak Upland (254.1 km2) occupies a range from 100 to 300 km2.

The largest group is small glacial systems, the area of ​​which does not exceed 100 km2. They are located in different glaciological zones: the De Long Islands (65, 2 km2),  the Urals (10.45 km2), the Putorana Plateau (11.36 km2), the Byranga Mountains (29.94 km2), the Chersky Ridge (86.37 km2), the Chukotka Upland (15.98 km2). Northeast of the Koryak highlands (42.19 km2), Kodar Ridge (16.22 km2), Eastern Sayan (12.88 km2).

The remaining four regions are characterized by the smallest glacial systems. These are the Orulgan ridge (9.82km2) and the Kolyma Upland (6.62 km2), the Kuznetsk Alatau (3.42km2), the Barguzinsky (0.09) and Baikalsky ( 0.65km2) ridges. Despite their small size, these glacial systems are important from indicative point of view, fixing the zone of spatial distribution of glaciation. They indicate the growth points in the event of a change in climatic conditions according to a scenario favorable for glaciers.

The glacier area has decreased since the compilation of the USSR glacier Inventory (1965-1982) by 5603.9 km2 or 9.3%. The area of ​​polar glaciers has decreased less than glaciers in mountainous regions. Values ​​range from 5.44% (Novaya Zemlya) to 19.11% (De Longa Islands). Small glaciers were not found in the Khibiny. Glaciers in the Urals have reduced their area by 63%. The subpolar glacier systems of the Orulgan (46.6%), Chersky (44.4%), and Suntar-Khayata (34%) ridges reduced the area a little less. Reduction in the area of ​​glacial systems in the temperate belt ranges from 57% (Eastern Sayan) to 13% (Kodar). The largest glacial systems in the Caucasus, Kamchatka and Altai have reduced their areas by 25, 22 and 39 percent, respectively.

The results of our studies confirm the tendencies for the reduction of the glacier area throughout Russia. The exception is the glaciers of the volcanic regions of Kamchatka, which increased their size or remained stationary. The magnitude and rate of changes depend on the local climatic and orographic features.

The presentation includes the results obtained in the framework of the following research projects: № 0148-2019-0004 of the Research Plan of the Institute of Geography of RAS, № 18-05-60067 supported by RFBR.

How to cite: Khromova, T., Nosenko, G., Glazovsky, A., Muraviev, A., Nikitin, S., and lavrentiev, I.: Current state and recent changes in glacial systems in Russia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10236, https://doi.org/10.5194/egusphere-egu21-10236, 2021.

EGU21-14634 | vPICO presentations | CR2.2 | Highlight

Global glacier monitoring with TanDEM-X remote sensing – advances, challenges and requirements from the perspective of a multi-decadal approach        

Philipp Malz, Christian Sommer, David Farias, Thorsten Seehaus, and Matthias Braun

Mountain glaciers are key indicators of the changing climate conditions worldwide. Observations in recent decades suggest that their immediate atmospheric environment is changing more rapidly than it does elsewhere. Therefore, in addition to a network for measuring climatic parameters, a continuous investigation of glacier changes is indispensable.

The Terra SAR-Add-on for Digital Elevation Measurement (TanDEM-X) mission has achieved two complete space-borne surveys of the Earth's surface and thus of all existing glaciers during its mission lifetime. This study exhibits the methodological and technical findings generated over the period 2011-2019 for multi-temporal investigations – and culminates in a recommendation map for the ongoing and follow-up bi-static SAR acquisitions.

The opportunities which TanDEM-X datasets open up for glacier monitoring are demonstrated: high spatial resolution of up to ~10 m, independence of cloud cover and daylight, smooth and homogenous elevation change fields. This enables wide spatial coverage of the observations throughout climatic and altitudinal zones. However, there are also challenges and limitations to multi-temporal glacier change monitoring. We provide initial conclusions from our repeat studies in Patagonia, the tropical Andes, the Alps and Himalaya/Karakoram. Influences such as seasonality, terrain and latitude on measurement accuracy are being investigated.

The results of this work highlight the capabilities of TanDEM-X data with our current processing strategy: We show where major uncertainties arise from, where our products complement other methods, and where they surpass them. Our analysis forms a contribution to the Regional Assessments of Glacier Mass Change (RAGMAC) initiative for a better understanding of observation disparities and collaboration potentials in glacier monitoring by remote sensing techniques. Based on our findings we will point to research needs and propose strategies for a continuous global acquisition and to partially overcome some of the deficiencies, where possible.

How to cite: Malz, P., Sommer, C., Farias, D., Seehaus, T., and Braun, M.: Global glacier monitoring with TanDEM-X remote sensing – advances, challenges and requirements from the perspective of a multi-decadal approach        , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14634, https://doi.org/10.5194/egusphere-egu21-14634, 2021.

CR2.4 – Geophysical and in-situ methods for snow and ice studies

EGU21-7778 | vPICO presentations | CR2.4

Quasi in-situ snow and sea ice interface microstructure measured by micro-computed tomography

Amy R. Macfarlane, Ruzica Dadic, Stefan Hämmerle, David N. Wagner, and Martin Schneebeli

The sea ice / snow interface in the high Arctic can no longer be thought of as simply black and white, but more complex than previously estimated. Our understanding of this interface is crucial for remote sensing, snow, brine and ice mass distribution, thermal conductivity and therefore ice growth and ice melt. To better understand the snow microstructure, we installed a micro-computed tomograph (micro-CT) in a cold laboratory on board Polarstern and measured a full annual cycle of the Arctic snow cover during the MOSAiC expedition. We discovered two large uncertainties when looking at the boundary between sea ice and snow boundary during the year.

1) Large temperature gradients of 100 K m-1 (compared to Alps (20 K m-1) specific to the high Arctic cause extreme metamorphism within the snowpack. This transports ice grains from the salty first year sea ice (FYI), across the interface up into the snowpack, producing snow with brine pockets on FYI. 10-30% of snow grains on FYI are affected by vapour migration from the sea ice, and can  now be thought of as  a mix of ocean and atmospheric sourced particles, which can be distinguished by oxygen isotope analysis. Brine in the snow structure has large implications for remote sensing backscatter and possibly mass balance.

2) Multi-year ice (MYI) also has large uncertainties, because the interface has a hard impenetrable layer- because of the porous summer ice surface, known as the surface scattering layer (SSL) after refreezing. In summer, this SSL  is thought of as an ocean water snow layer, with a density of <500 kg m-3. After refreezing in autumn, this layer produces a dense, icy 2-10 cm deep layer at the snow/ice interface and occasionally occupies up to 50% of the snow profile on MYI in winter.. This layer, which has previously not been observed, may, depending on the state of metamorphism and hardness,influence snow water equivalent and snow depth measurements.

This study uses a combination of micro-Computed Tomography measurements to determine geometrical snow properties combined with oxygen isotope analysis to understand the ice origin (atmospheric or marine). We aim to better understand processes at the snow/ice interface on Arctic sea ice and as a result, the infiltration of brine into snow on FYI.

How to cite: Macfarlane, A. R., Dadic, R., Hämmerle, S., Wagner, D. N., and Schneebeli, M.: Quasi in-situ snow and sea ice interface microstructure measured by micro-computed tomography, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7778, https://doi.org/10.5194/egusphere-egu21-7778, 2021.

EGU21-10109 | vPICO presentations | CR2.4

Recovering and monitoring the thickness and elastic properties of sea ice from one month of seismic noise in Svalbard

Agathe Serripierri, Ludovic Moreau, Pierre Boue, and Jérôme Weiss

The decline of Arctic sea ice extent is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that was not anticipated by climate models. To improve these models, relying on comprehensive and accurate sea ice thickness and mechanical properties is essential. However, there is a trade-off between accuracy comprehensiveness. On the one hand, estimations from in situ acquisitions such as ice drillings or SONAR surveys are very accurate, but they remain rare and at a local scale. On the other hand, satellite observations allow an average ice thickness estimation at the global scale from the measurement of freeboard, but it remains of poor accuracy. Seismic methods have been known to provide very accurate estimations of both sea ice thickness and mechanical properties since the 1950s, but due to the hostile environment and complicated logistics in the Arctic, such methods have not been given much interest. However, thanks to the rapid technological and methodological progresses of the last 10 years, they have known a regain of interest. In particular, passive seismology has proved very promising for the continuous and autonomous monitoring of sea ice.

 

This paper introduces a methodological approach for passive monitoring of both sea ice thickness and mechanical properties. To prove this concept, we use data from a seismic experiment where an array of 247 geophones was deployed on sea ice, in a fjord at Svalbard, between 1 and 26 March 2019. From the continuous recording of the ambient seismic field, the empirical Green's function of the seismic waves guided in the ice layer was recovered via the so-called noise correlation function (NCF). By comparing the NCF with recordings from active sources, we demonstrate that it converges towards the Green's function of the ice sheet with a temporal resolution of a few hours. Using specific array processing, the multimodal dispersion curves of the ice layer were calculated from the NCF, and then inverted for the thickness and elastic properties of sea ice via Bayesian inference. The evolution of sea ice properties was monitored for 26 days, and values are consistent with literature, as well as with measurements made directly in the field.

How to cite: Serripierri, A., Moreau, L., Boue, P., and Weiss, J.: Recovering and monitoring the thickness and elastic properties of sea ice from one month of seismic noise in Svalbard, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10109, https://doi.org/10.5194/egusphere-egu21-10109, 2021.

EGU21-10214 | vPICO presentations | CR2.4 | Highlight

Estimating melt pond bathymetry from aerial images using photogrammetry

Niels Fuchs, Marcel König, and Gerit Birnbaum

Melt ponds play a key role for the summery energy budget of the Arctic sea-ice surface. Observational data that enable an integrated understanding and improved formulation of the thermodynamic and hydrological pond system in global climate models are spatially and temporally limited.

Previous studies of shallow water bathymetry of riverbeds and lakes, experimental studies above sea ice and increasing availability of high-resolution aerial sea ice imagery motivated us to investigate the possibilities to derive pond bathymetry from photogrammetric multi-view reconstruction of the summery ice surface topography.

Based on dedicated flight grids and simple assumptions we were able to obtain pond depth with a mean deviation of 3.5 cm compared to manual in situ observations. The method is independent of pond color and sky conditions, which is an advantage over recently developed radiometric retrieval methods.

We present the retrieval algorithm, including requirements to the data recording and survey planning, and a correction method for refraction at the air— pond interface. In addition, we show how the retrieved elevation model synergize with the initial image data to retrieve the water level of each individual pond from the visually determined pond exterior.

The study points out the great potential to derive geometric and radiometric properties of the sea-ice surface emerging from the increasingly available image data recorded from UAVs or aircraft.

How to cite: Fuchs, N., König, M., and Birnbaum, G.: Estimating melt pond bathymetry from aerial images using photogrammetry, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10214, https://doi.org/10.5194/egusphere-egu21-10214, 2021.

EGU21-3334 | vPICO presentations | CR2.4

Ground-based radar interferometry of sea ice dynamics

Dyre Oliver Dammann, Emily Fedders, Andrew Mahoney, Mark Johnson, Franz Meyer, and Mark Fahnestock

Arctic sea ice has retreated significantly over recent years. This ongoing sea ice decline has major implications for Arctic warming which motivates efforts to improve modeling capabilities. Human activities are also affected as sea ice is becoming less stable making ice roads, on-ice operations, and subsistence activities challenging in certain regions. To enhance modelling capabilities, ice use, and safety near sea ice, it is crucial to understand how sea ice deforms and fractures on the km-scale. Satellite remote sensing provides important insight into the mechanisms of large-scale sea ice deformation. However, analysis is frequently hampered by suboptimal data availability and lacks the spatiotemporal resolution necessary to resolve key processes.

We examine ground-based radar interferometry as a tool to bridge the gap between spaceborne remote sensing and sea ice lab and in-situ measurements during two field campaigns. We deployed a Gamma portable radar interferometer (GPRI) during a drifting ice camp in the Beaufort Sea during spring 2020. Based on this data, we demonstrate the ability to derive km-scale 2-dimensional strain/stress fields through inverse modeling. This analysis also highlights the ability to resolve mm-scale variations in dynamic behavior between different ice regimes. We also deployed a GPRI at a fixed reference point on shore in Utqiaġvik, Alaska. This enabled the tracking of absolute motion over several hours revealing near uni-axial elastic divergence in response to offshore wind.

Our analysis included efforts to remove signals from continuous antenna tilt due to ice motion when stationed on ice. We also needed to take steps to remove atmospheric phase contributions from the data obtained in Utqiaġvik during late spring. Overall, ground-based radar interferometry shows promise as a tool to track mm-scale sea ice dynamics. This may enable new insight into rheological behavior of sea ice and potentially the monitoring of dynamic precursors to fracture, which may improve safety near ice operations.

How to cite: Dammann, D. O., Fedders, E., Mahoney, A., Johnson, M., Meyer, F., and Fahnestock, M.: Ground-based radar interferometry of sea ice dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3334, https://doi.org/10.5194/egusphere-egu21-3334, 2021.

EGU21-13036 | vPICO presentations | CR2.4

Surface reflectivity in polar regions retrieved from TDS-1 mission data

Frederik Kreß, Maximilian Semmling, Estel Cardellach, Weiqiang Li, Mainul Hoque, and Jens Wickert

In current times of a changing global climate, a special interest is focused on the
large-scale recording of sea ice. Among the existing remote sensing methods, bi-
statically reflected signals of Global Navigation Satellite Systems (GNSS) could
play an important role in fulfilling the task. Within this project, sensitivity of
GNSS signal reflections to sea ice properties like its occurrence, sea ice thick-
ness (SIT) and sea concentration (SIC) is evaluated. When getting older, sea
ice tends go get thicker. Because of decreasing salinity, i.e. less permittivity,
as well as relatively higher surface roughness of older ice, it can be assumed
that reflected signal strength decreases with increasing SIT. The reflection data
used were recorded in the years 2015 and 2016 by the TechDemoSat-1 (TDS-1)
satellite over the Arctic and Antarctic. It includes a down-looking antenna for
the reflected as well as an up-looking antenna dedicated to receive the direct sig-
nal. The raw data, provided by the manufacturer SSTL, were pre-processed by
IEEC/ICE-CSIC to derive georeferenced signal power values. The reflectivity
was estimated by comparing the power of the up- and down-looking links. The
project focuses on the signal link budget to apply necessary corrections. For this
reason, the receiver antenna gain as well as the Free-Space Path Loss (FSPL)
were calculated and applied for reflectivity correction. Differences of nadir and
zenith antenna FSPL and gain show influence of up to 6 dB and −9 dB to 9 dB
respectively on the recorded signal strength. All retrieved reflectivity values are
compared to model predictions based on Fresnel coefficients but also to avail-
able ancillary truth data of other remote sensing missions to identify possible
patterns: SIT relations are investigated using Level-2 data of the Soil Moisture
and Ocean Salinity (SMOS) satellite. The SIC comparison was done with an
AMSR-2 product. The results show sensitivity of the reflectivity value to both
SIT and SIC simultaneously, whereby the surface roughness is also likely to
have an influence. This on-going study aims at the consolidation of retrieval
algorithms for sea-ice observation. The resolution of different ice types and the
retrieval of SIT and SIC based on satellite data is a challenge for future work
in this respect.

How to cite: Kreß, F., Semmling, M., Cardellach, E., Li, W., Hoque, M., and Wickert, J.: Surface reflectivity in polar regions retrieved from TDS-1 mission data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13036, https://doi.org/10.5194/egusphere-egu21-13036, 2021.

EGU21-7507 | vPICO presentations | CR2.4 | Highlight

Measuring changes in snowpack SWE continuously on a landscape scale using lake water pressure 

Hamish Pritchard, Daniel Farinotti, and Steven Colwell

The seasonal snowpack is a globally important water resource that is notoriously difficult to measure. Existing instruments make measurements of falling or accumulating snow water equivalent (SWE) that are susceptible to bias, and most can represent only a point in the landscape. Furthermore the global array of SWE sensors is too sparse and too poorly distributed to be an adequate constraint on snow in weather and climate models. We present a new approach to monitoring snowpack SWE from time series of lake water pressure. We tested our method in the lowland Finnish Arctic and in an alpine valley and high-mountain cirque in Switzerland, and found that we could measure changes in SWE and their uncertainty through snowfalls with little bias and with an uncertainty comparable to or better than that achievable by other instruments. More importantly, our method inherently senses change over the whole lake surface which can be several square kilometres, or hundreds of million of times larger than the aperture of a pluviometer. This large scale makes our measurements directly comparable to the grid cells of weather and climate models. We find, for example, snowfall biases of up to 100% in operational forecast models AROME-Arctic and COSMO-1. Seasonally-frozen lakes are widely distributed at high latitudes and are particularly common in mountain ranges, hence our new method is particularly well suited to the widespread, autonomous monitoring of snow-water resources in remote areas that are largely unmonitored today. This is potentially transformative in reducing uncertainty in regional precipitation and runoff in seasonally-cold climates.

How to cite: Pritchard, H., Farinotti, D., and Colwell, S.: Measuring changes in snowpack SWE continuously on a landscape scale using lake water pressure , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7507, https://doi.org/10.5194/egusphere-egu21-7507, 2021.

EGU21-6467 | vPICO presentations | CR2.4

Impact of the spaciotemporal variability of the snowpack conditions on internal liquid water fluxes

Eole Valence and Michel Baraër

In cold regions, the seasonal snowpack plays an important hydrological role. By storing and releasing solid precipitation, the snowpack gives shape to the yearly hygrogram. In addition, by modulating liquid water pathway and residence time, snowpack internal conditions have a strong implication on the partitioning of meltwater among streamflow, groundwater recharge and soil moisture storage. During rain on snow (ROS) events, snowpack conditions influence timing and amount of liquid water inflow to the surface drainage system, with winter floods and ice jams as potential consequences.

Recent observations and projections show an increase in ROS frequency in many cold regions of the world. This trend raises concern about a possible increase in winter floods and ice jams events with climate change. In order to better anticipate the hydrological consequences of the increasing ROS phenomenon, a good understanding of the processes and conditions influencing liquid water release from the snowpack is required. 

The present study articulates around a multimethod approach to characterize liquid water storage and movement in a snowpack in a non-mountainous environment. By combining drone-based high frequency GPR, NIR photogrammetry, time domain reflectometry, stable isotopes of water and other manual measurements throughout a winter season, we aim monitoring the spatiotemporal evolution of the snowpack liquid water content as well as the water fluxes at the snowpack margins.

Preliminary results show that, combining the selected methods allows tracking liquid water storage and movements in the snowpack throughout an entire season.

How to cite: Valence, E. and Baraër, M.: Impact of the spaciotemporal variability of the snowpack conditions on internal liquid water fluxes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6467, https://doi.org/10.5194/egusphere-egu21-6467, 2021.

EGU21-2747 | vPICO presentations | CR2.4

94 GHz radar mapping of terrestrial snow cover

William D. Harcourt, Duncan Robertson, David Macfarlane, Brice Rea, Michael James, Blair Fyffe, and Mark Diggins

Terrestrial snow cover is a perennial feature throughout the global cryosphere, taking the form of individual snow patches during summer and becoming more spatially continuous in winter. The characteristics and conditions of these snowpacks can be altered by rapid changes in temperature and precipitation, significantly impacting local ecosystems, upland hydrology and snow avalanche risks. In Scotland, for example, monitoring the hazards associated with snowpack alterations is a central focus of the Scottish Avalanche Information Service (SAIS) and is essential to ensuring the safety of local communities, hill walkers and mountaineers. In this context, the development of new remote sensing techniques for snow monitoring will help the SAIS develop avalanche forecasts and potentially without the need to undertake arduous and dangerous fieldwork. Here, we aim to develop the utility of millimetre-wave radar at 94 GHz as a new remote sensing tool for monitoring snowpacks. We use a ground-based 94 GHz, real-aperture system called AVTIS2 which mechanically scans across a scene of interest to generate radar backscatter images and 3D Digital Elevation Models (DEMs). AVTIS2 uses a narrow beamwidth of 0.35° (i.e. a spot size of 6 m per km) and has a maximum range of ~6 km, enabling kilometre-scale mapping at high angular resolution. This radar system has previously been successful in monitoring the topographic changes of volcanic lava domes, measuring the dynamics of active lava flows and quantifying 94 GHz radar backscatter from glacier ice. We aim to deploy the AVTIS2 millimetre-wave radar in the Cairngorms National Park, Scotland, in January/February 2021 and validate our measurements with a co-located Terrestrial Laser Scanner (TLS). Additionally, we will acquire in situ observations of snow properties to gain a better understanding of how 94 GHz radar signals interact with the snowpack. Overall, we will report on the following: (1) the radar backscatter characteristics from a variety of snow surface conditions at millimetre wavelengths; (2) point cloud and DEM differences between AVTIS2 and TLS measurements over snow-covered terrain; and (3) the effect of snowpack properties on radar backscatter and how this can be used to understand snow-associated hazards.

How to cite: Harcourt, W. D., Robertson, D., Macfarlane, D., Rea, B., James, M., Fyffe, B., and Diggins, M.: 94 GHz radar mapping of terrestrial snow cover, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2747, https://doi.org/10.5194/egusphere-egu21-2747, 2021.

EGU21-7556 | vPICO presentations | CR2.4

Seismic quality factor measured for compressional and shear waves in the firn column of Korff Ice Rise, West Antarctica

Ronan Agnew, Roger Clark, Adam Booth, and Alex Brisbourne

Comprehensive descriptions of the seismic properties of glaciers and ice masses require that both compressional (P-) and shear (S-) wave components are considered. Among these properties is the seismic attenuation, expressed by the Quality Factor (Q). Q is valuable for two reasons: first, to correct measurements of seismic amplitude for wavelet propagation effects, as in reflection amplitude-versus-angle (AVA) studies. Second, Q is an indicator of ice properties such as temperature and impurity content, and laboratory/field studies of soils and geological materials suggests that the ratio of the compressional- and shear-wave quality factors, Qp/Qs, may indicate fluid saturation (particularly when considered jointly with the velocity ratio Vp/Vs). Thus, a measurement of Qp/Qs could usefully inform the hydrological structure of the firn and indicate variations in the density of the firn column.

Despite its importance, few studies appear to have measured Qp in firn columns and none appear to have measured Qs in firn. Doing so for either compressional- or shear-wave arrivals is challenging, due to the ray paths followed by the diving wave first arrivals and their accurate representation in attenuation measurement methods. In preparation for an AVA study of bed properties at Korff Ice Rise, West Antarctica, we have used spectra of diving wave first arrivals and a modified spectral-ratio method to measure Qp and Qs as a function of depth in the firn column. Shot gathers with vertically oriented geophones at offsets of 2.5 - 1000m were used to measure Qp. For detecting the shear component, the geophones were oriented horizontally; in this configuration, diving and reflected shear phases were recorded with high signal-to-noise ratios. The variation of Q with depth is represented as discrete constant-Q layers with thicknesses between 6 and 27 m. Qp shows progressive increases in depth from 21 ± 3 in the uppermost 20 m (where Vp < 3000 m/s), to 246 ± 30 between 74 and 80 m depth (3750 m/s < Vp < 3770 m/s). Qs increases from 14 ± 4 in the uppermost 20m, to 80 ± 6 between 80 and 90m depth. The ratio Qp/Qs varies throughout the depths measured, from Qp/Qs ~ 1.5 at the surface, to Qp/Qs ~ 3 at 80 m. This is broadly consistent with previously quoted values, but the variation may imply that Qp/Qs is influenced by firn structure.

Similar measurements at a variety of sites could help to inform a relationship between Qp, Qs and firn properties. In the immediate future, the measurement of Q in the firn will aid measurements of bed reflectivity, and help to determine the material properties of the ice-bed interface.

How to cite: Agnew, R., Clark, R., Booth, A., and Brisbourne, A.: Seismic quality factor measured for compressional and shear waves in the firn column of Korff Ice Rise, West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7556, https://doi.org/10.5194/egusphere-egu21-7556, 2021.

EGU21-916 | vPICO presentations | CR2.4

Full Waveform Inversion (FWI) for glaciological seismic data –Improving the seismic characterisation of glacier firn

Emma Pearce, Adam Booth, Sebastian Rost, Paul Sava, Alex Brisbourne, Ian Jones, and Bryn Hubbard

Full Waveform Inversion (FWI) is a well-established seismic imaging technique used in the exploration industry to acquire high resolution, high precision velocity models of the subsurface from seismic data. Although FWI is computationally expensive and requires customized data acquisition, the technique has the potential to improve subsurface glaciological imaging.

Firn is formed as an intermediate material (of density ~400 – 810 kg m-3) as snow is compressed into ice (~810 – 917 kg m-3). Variations in surface conditions and periods of surface melting commonly lead to the presence of discrete layers and lenses of refrozen (‘infiltration’) ice within the firn column; layers that can be from millimetres to several tens of metres thick. Therefore, firn characteristics provide a tool for reconstructing climate conditions relating to the amount of snow accumulation, melt, temperature conditions and subsequent snow preservation. Given the complexity of these relationships, it has not been possible to develop a theoretical model that predicts accurately variations in firn properties or density with depth. Consequently, seismic techniques, which are logistically less demanding than extracting firn cores, are typically used to reconstruct these physical properties of the firn column.

Firn seismic velocity is often derived from seismic data using the Herglotz-Wiechert (HW) inversion. A velocity trend would be expected to increase from ~400 m s-1 in snow through to ~3,800 m s-1 in ice. Thus, the presence of infiltration ice within the firn column results in anomalously high velocity intervals at shallow depths. HW inversion can be limited by the accuracy of first-break picking (specifically in the near offset, where a small error in the travel time pick gives the greatest variability to the HW velocity output), and it cannot recover the velocity inversion below a refrozen ice layer without elastodynamic redatumming. Importantly, FWI has the capacity to mitigate issues such as these, and thereby potentially offers a new standard for glaciological seismic modelling.

Using seismic datasets obtained from Pine Island Glacier, Antarctica, and synthetic data that simulate firn columns that include substantial thicknesses of infiltration ice (‘ice slabs’, up to 100 m thick and from 5-80 m deep), we show how FWI improves on current seismic techniques in terms of identifying the velocity variations associated with both included ice layers and the firn underlying them. We present a best practice methodology for the use of FWI with glaciological data, including (i) the extraction of a source wavelet from the data for the use with modelling, (ii) the steps needed to ensure a consistent waveform, (iii) the appropriate offset-to-depth ratio, and (iv) the requirement of a constraint for the uppermost part of the velocity model. Finally, we evaluate the robustness of the FWI approach by comparing it with well-established HW methods for building velocity models.

How to cite: Pearce, E., Booth, A., Rost, S., Sava, P., Brisbourne, A., Jones, I., and Hubbard, B.: Full Waveform Inversion (FWI) for glaciological seismic data –Improving the seismic characterisation of glacier firn, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-916, https://doi.org/10.5194/egusphere-egu21-916, 2021.

EGU21-11803 | vPICO presentations | CR2.4

Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica

Alex Brisbourne, Mike Kendall, Sofia Kufner, Thomas Hudson, and Andrew Smith

Antarctic ice sheet history is imprinted in the structure and fabric of the ice column. At ice rises, the signature of ice flow history is preserved due to the low strain rates inherent at these independent ice flow centres. We present results from a distributed acoustic sensing (DAS) experiment at Skytrain Ice Rise in the Weddell Sea Sector of West Antarctica, aimed at delineating the englacial fabric to improve our understanding of ice sheet history in the region. This pilot experiment demonstrates the feasibility of an innovative technique to delineate ice rise structure. Both direct and reflected P- and S-wave energy, as well as surface wave energy, are observed using a range of source offsets, i.e., a walkaway vertical seismic profile (VSP), recorded using fibre optic cable. Significant noise, which results from the cable hanging untethered in the borehole, is modelled and suppressed at the processing stage. At greater depth, where the cable is suspended in drilling fluid, seismic interval velocities and attenuation are measured. Vertical P-wave velocities are high (VINT = 4029 ± 244 m s-1) and consistent with a strong vertical cluster fabric. Seismic attenuation is high (QINT = 75 ± 12) and contrary to observations in ice sheets over this temperature range. The signal level is too low, and the noise level too high, to undertake analysis of englacial fabric variability. However, modelling of P- and S-wave traveltimes and amplitudes with a range of fabric geometries, combined with these measurements, demonstrates the capacity of the DAS method to discriminate englacial fabric distribution. From this pilot study we make a number of recommendations for future experiments aimed at quantifying englacial fabric to improve our understanding of recent ice sheet history.

 

How to cite: Brisbourne, A., Kendall, M., Kufner, S., Hudson, T., and Smith, A.: Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11803, https://doi.org/10.5194/egusphere-egu21-11803, 2021.

EGU21-7448 | vPICO presentations | CR2.4

Application of machine learning methods to identify englacial seismicity in a Distributed Acoustic Sensing dataset from Store Glacier, West Greenland

Andrew Pretorius, Emma Smith, Adam Booth, Poul Christofferson, Andy Nowacki, Sjoerd de Ridder, Charlotte Schoonman, Andy Clarke, Bryn Hubbard, Thomas Chudley, Robert Law, Samuel Doyle, and Athena Chalari

Seismic surveys are widely used to study the properties of glaciers, basal material and conditions, ice temperature and crystal orientation fabric. The emerging technology of Distributed Acoustic Sensing (DAS) uses fibre optic cables as pseudo-seismic receivers,
reconstructing seismic measurements at a higher spatial and temporal resolution than is possible using traditional geophone deployments. DAS generates large volumes of data, especially in passive mode, which can be costly in time and cumbersome to analyse. Machine learning tools provide an effective means of automatically identifying events within these records, avoiding a bottleneck in the data analysis process. Here we present initial trials of machine learning for a borehole-deployed DAS system on Store Glacier, West Greenland. Data were acquired in July 2019, using a Silixa iDAS interrogator and a BRUsens fibre optic cable installed in a 1043 m-deep borehole. The interrogator sampled at 4000 Hz, recording both controlled-source Vertical Seismic Profiles (VSPs), made with hammer-and-plate source, and a 3-day passive record of cryoseismicity.

We used a Convolutional Neural Network (CNN) to identify seismic events within the seismic record. A CNN is a deep learning algorithm that uses a series of convolutional filters to extract features from a 2-dimensional matrix of values. These features are then used to train a model
that can recognise objects or patterns within the dataset. CNNs are a powerful classification tool, widely applied to the analysis of both images and time series data. Previous research has demonstrated the ability of CNNs to recognise seismic phases in time series data for long-range
earthquake detection, even when the phases are masked by a low signal-to-noise ratio. For the Store Glacier data, initial results were obtained using a CNN trained on hand-labelled, uniformly-sized windows. At present, these windows have been targeted around high signal-to-noise ratio seismic events in the controlled-source VSPs only. Once trained, the CNN achieved accuracy of 90% in recognising whether new windows contained coherent seismic
energy.

The next phase of analysis will be to assess the performance of the CNN when trained and tested on large passive DAS datasets. The method will then be used for the identification and flagging of seismic events within the passive record for interpretation and event location. The identified signals will be used to provide information on the glacier’s seismic velocity structure, ice temperature and ice crystal orientation fabric and anisotropy. Basal reflections were identified and will be used to provide information on subglacial material properties and conditions of Store Glacier. The efficiency of the CNN allows detailed insight to be made into the origins and style of glacier seismicity, facilitating further advantages of passive DAS instrumentation.

How to cite: Pretorius, A., Smith, E., Booth, A., Christofferson, P., Nowacki, A., de Ridder, S., Schoonman, C., Clarke, A., Hubbard, B., Chudley, T., Law, R., Doyle, S., and Chalari, A.: Application of machine learning methods to identify englacial seismicity in a Distributed Acoustic Sensing dataset from Store Glacier, West Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7448, https://doi.org/10.5194/egusphere-egu21-7448, 2021.

EGU21-15794 | vPICO presentations | CR2.4

Ice shelf internal reflection horizons reveal ice provenance, dynamics, surface accumulation and oceanic melt

Inka Koch, Reinhard Drews, Daniela Jansen, Steven Franke, Vjeran Visnjevic, Olaf Eisen, Falk Oraschewski, and Frank Pattyn

Ice shelves are widely known to slow the transfer of Antarctic grounded ice to the ocean, especially if their flow is decelerated by local pinning points. Their longevity is influenced by variations in ice dynamics, surface accumulation and oceanic conditions in the ice shelf cavity. This is reflected in the ice shelf structure, which can be characterized by the shape of internal radar reflection horizons.

We aim to map the internal ice shelf stratigraphy of ice shelves, starting with the narrow belt of ice-shelves in the Dronning Maud Land area. The final goal will be to evaluate these as a spatiotemporal archive of ice provenance and ice dynamics. The bulk of the data presented here were collected with AWI’s airborne multi frequency ultra-wideband radar and we combine these new observations with airborne and ground-based radar surveys from previous years. We present a consistent set of internal radar isochrones on a catchment scale for the Roi Baudoin area including the Ragnhild ice streams, the grounding-zone, the iceshelf and multiple ice rises.  Using pattern matching technique we can link isochrones across different ice rises in the area, and hence provide first observational constraints on how ice rises jointly react to changes in atmospheric and oceanographic forcings. We also find a number of interesting features including dynamically induced dips in shear zones, truncating layers at the ice-shelf base, and the development of a meteoric ice layer distinguishing advected from newly accumulated ice in the iceshelf. The time series provided by radar observations over the last 10 years also offers the potential to map temporal changes. We use ice-flow modelling to provide age constraints for some internal layers and delineate portions within the shelf as a function of their advection history, hence marking areas of differing rheologies within the shelf. Taken together, this case study on a catchment scale is a primer to unravel the information stored in the isochronal stratigraphy of coastal Antarctica and contributes to international efforts (e.g., SCAR AntArchitecture)  of mapping stratigraphy on ice sheet scales.

How to cite: Koch, I., Drews, R., Jansen, D., Franke, S., Visnjevic, V., Eisen, O., Oraschewski, F., and Pattyn, F.: Ice shelf internal reflection horizons reveal ice provenance, dynamics, surface accumulation and oceanic melt, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15794, https://doi.org/10.5194/egusphere-egu21-15794, 2021.

EGU21-15382 | vPICO presentations | CR2.4

Interior of an ice stream: 3-D geometry of distorted radar stratigraphy of upstream NEGIS and vicinity.

Daniela Jansen, Steven Franke, Tobias Binder, Paul Bons, Dorthe Dahl-Jensen, Olaf Eisen, Heinrich Miller, John Paden, and Ilka Weikusat

The North East Greenland Ice Stream clearly stands out in the surface velocity field of the ice flow of Greenland, with its sharp and narrow shear margins visible in the flow field almost up to the central divide. While the current extent and strength of the streaming can be determined from remotely sensed velocities of the ice surface, it is less known how the ice stream is affecting the deeper layers of ice in its catchment area, and how it may have evolved over time. The deformation of the ice due to streaming can be made visible by mapping the distortion of the isochronous stratigraphy of the ice. This has been done by an airborne radar survey centering on the location of the EGRIP drilling camp, carried out with the ultra wide band  radar system (AWI UWB). The dense grid of profiles arranged mainly perpendicular to the ice flow reveals the imprint that the strong shearing leaves within the layering of the ice. Although the layers are tightly folded and distorted within the shear zones, it is possible to continuously trace reflections within the upper half of the ice column throughout the entire survey area. It can be shown that the intensity of the folding is linked to the strain rate field derived from the surface velocities, and that the deformation history of the ice is preserved in the folded layers, even after it is no longer affected by high strain rates.  The advection patterns of the mapped stratigraphic features reveal how the streaming of the ice and the resulting local changes of surface topography may have affected the inflow into the stream and the position of the shear margins over time.

How to cite: Jansen, D., Franke, S., Binder, T., Bons, P., Dahl-Jensen, D., Eisen, O., Miller, H., Paden, J., and Weikusat, I.: Interior of an ice stream: 3-D geometry of distorted radar stratigraphy of upstream NEGIS and vicinity., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15382, https://doi.org/10.5194/egusphere-egu21-15382, 2021.

EGU21-1207 | vPICO presentations | CR2.4

Fabric beats in radar data across the NEGIS ice stream

Olaf Eisen, Steven Franke, Daniela Jansen, John Paden, Reinhard Drews, Mohammad Reza Ershadi, Daniel Steinhage, David Lilien, Jie Yan, Ilka Weikusat, Frank Wilhelms, Dorthe Dahl-Jensen, Aslak Grindsted, Christine Hvidberg, and Heinrich Miller

Crystal anisotropy of ice causes slight birefringence for electromagnetic waves. At the same time, the mechanical anisotropy amounts to several orders of magnitude, thus making fabric properties highly-relevant for internal deformation. To date, bulk anisotropy of glaciers and ice sheets can be determined by geophysical methods, such as polarimetric radar, or direct sampling from ice cores. A shortcoming has been so far that changes of bulk anisotropy could mainly be inferred at single point observations, but less so as continuous profiles. Here, we exploit the effect of birefringence caused by bulk anisotropy in co-polarized airborne radar data to determine the horizontal anisotropy across the North-East Greenland Ice Stream. We base our analysis on the fact that birefringence causes a second-order effect on radar amplitudes, which leads to a beat frequency in the low and medium frequency range (O(100 kHz)), which is proportional to the horizontal anisotropy. Complementing our radar analysis with direct fabric and dielectric property observations we can constrain the range of all three fabric eigenvalues as a function of space across and along the ice stream. Finally, we assess the effect of the inferred fabric distribution on the overall ice rheology in the context of ice stream dynamics. Our overall approach has the advantage that it can be applied to co-polarized radar systems, as commonly used in profiling surveys, and does not require dedicated cross-polarized radar set-up. This provides the opportunity to revisit older data, especially from Greenland and Antarctica, to map fabric anisotropy in ice-dynamically interesting regions.

How to cite: Eisen, O., Franke, S., Jansen, D., Paden, J., Drews, R., Ershadi, M. R., Steinhage, D., Lilien, D., Yan, J., Weikusat, I., Wilhelms, F., Dahl-Jensen, D., Grindsted, A., Hvidberg, C., and Miller, H.: Fabric beats in radar data across the NEGIS ice stream, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1207, https://doi.org/10.5194/egusphere-egu21-1207, 2021.

EGU21-9964 | vPICO presentations | CR2.4

Investigating seismic properties of the NEGIS onset region using ice-drilling noise as a seismic source

Charlotte Schoonman, Olaf Eisen, Coen Hofstede, Nicolas Stoll, Steven Franke, and Emma C. Smith

Investigating the physical conditions underlying and enabling fast glacier flow is crucial to understanding the future stability of ice sheets, as well as their impact on future sea-level rise. Seismic surveys have been widely used to measure material properties of the ice and substrate, including seismic velocity structure, anisotropy, and bed properties. While traditional seismic surveys rely on natural seismicity or man-made sources such as explosives, anthropogenic noise generated through ice-core drilling can also be used as a seismic source. Placing geophones around an ice-core drilling site therefore presents an exciting opportunity to complement and extend measurements from ice cores to the surrounding area.

Here, we present preliminary results from a seismic investigation conducted using noise generated by ice-core drilling activities at the East Greenland Ice Core Project (EGRIP) site. The EGRIP site is located near the onset region of the Northeast Greenland Ice Stream (NEGIS), which drains over 10% of the Greenland Ice Sheet. The ice-core drilling process creates a variety of semi-continuous (e.g., generator-induced) and impulsive (e.g., core break) seismic source signals. As drilling progresses through the ice column, the corresponding variation in seismic signals can be used to generate a vertical profile of seismic properties. In the summer of 2019, nine 3-component surface geophones were deployed at 0, 300, 750, 1500 and 3000 m distance from the drill site along two lines corresponding to the along- and cross-flow directions of the ice stream. The network recorded at a sampling frequency of 400 Hz for 28 days, during which drilling progressed between 1920 and 2110 m depth below the surface. Both continuous and impulsive sources related to the drilling process were recorded at all stations. Impulsive arrivals were identified using STA/LTA phase-picking across multiple components and stations. Because the depth of the drill head at any given time is known, the move-out of each event could then be used to determine the integrated seismic velocity structure along the source-receiver ray path.

Additionally, sporadic passive microseismic signals resulting from ice stream motion over the bed were observed at all stations. Both individually distinguishable icequakes and 3-5 minute-long “gliding” tremors were recorded, indicative of stick-slip motion at the bed of NEGIS. Further work will concentrate on modelling these tremors to resolve the shear modulus of the substrate, and on incorporating continuous drill-generated noise into our overall analysis. Our approach demonstrates the added value of opportunistic seismic networks as a complement to ice drilling operations.

How to cite: Schoonman, C., Eisen, O., Hofstede, C., Stoll, N., Franke, S., and Smith, E. C.: Investigating seismic properties of the NEGIS onset region using ice-drilling noise as a seismic source, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9964, https://doi.org/10.5194/egusphere-egu21-9964, 2021.

EGU21-6100 | vPICO presentations | CR2.4

Ultrasonic velocity experiments on ice cores to complement fabric measurements

Sebastian Hellmann, Johanna Kerch, Melchior Grab, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer

The ice crystal structure and in particular the crystal orientation fabrics (COF) provide valuable information about the deformation history of ice sheets and glaciers. Therefore, COF analysis has been among the standard measurement techniques for most deep ice core drilling projects in the last three decades. The analysis depends on carefully prepared thin sections of ice that are measured with cross-polarised light microscopy or electron backscattering and diffraction (EBSD). The preparation of thin sections is labour-intensive and therefore only a discrete number of samples along the ice core is usually analysed. Geophysical methods such as ultrasonic sounding along the ice core could be employed to complement the discrete fabric data by providing data to fill the gaps. A suitable method needs to be reasonably fast, ideally non-invasive and provides unambiguous information in combination with the established methods.

In our study, we demonstrate the feasibility of such ultrasonic experiments applied to an ice core to support the approved cross-polarised light microscopy method. Point-contact transducers transmitted ultrasonic waves into ice core samples from a temperate glacier. X-ray computer tomography measurements provide the required information to consider the effect of a two-phase medium (ice and air bubbles) in a porosity correction of the velocity. We determined the azimuthal variation of the seismic velocity. This variation is a result of seismic anisotropy due to the crystal orientation within the ice core volume. The measurements can be acquired within minutes and do not require an extensive preparation of ice samples.

In addition, the COF of adjacent ice core samples was measured with cross-polarised light spectroscopy. From this, we derived the elasticity tensor and finally calculated the associated seismic velocities for the same azimuth and inclination angle as for the ultrasonic experiments. We compare these two velocity profiles and discover a significant discrepancy in presence of large ice grains. However, with an increasing number of ice grains both methods provide similar results. Although the ultrasonic measurements reveal some ambiguities, these can be resolved when considering the information derived from the standard analysis.

We conclude that ultrasonic measurements along the ice core are suitable to support the established COF analysis for sufficiently small grains as found in polar cores. We recommend further exploration of the potential of the presented technique as it provides both the chance to obtain a continuous fabric profile and a direct link to large-scale seismic measurements in the vicinity of ice core drilling sites.

How to cite: Hellmann, S., Kerch, J., Grab, M., Löwe, H., Bauder, A., Weikusat, I., and Maurer, H.: Ultrasonic velocity experiments on ice cores to complement fabric measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6100, https://doi.org/10.5194/egusphere-egu21-6100, 2021.

EGU21-13230 | vPICO presentations | CR2.4

Three-dimensional surface velocity variations of the Argentière glacier (French Alps) monitored with a high-resolution continuous GNSS network

Anuar Togaibekov, Andrea Walpersdorf, Florent Gimbert, Christian Vincent, Agnès Helmstetter, Delphine Six, Luc Moreau, Juan Pedro Roldan-Blasco, Laurent Ott, Stéphane Mercier, Olivier Laarman, Luc Piard, Ugo Nanni, Marguerite Matthey, Benoit Urruty, Christian Sue, Jean-Noël Bouvier, Mathilde Radiguet, Olivier Romeyer, and Jean-Louis Mugnier

Glacier dynamics exhibits a strong variability in response to climate forcing. To better understand the effects of this forcing, it is essential to provide continuous deformation measurements that must be long-term (over a full or several melt seasons) and high-resolution (from daily to sub-daily). GNSS monitoring represents a valuable mean to better apprehend mechanisms of basal sliding and provide high-resolution 3D constraints on physical models of glacier flow. In this study, we investigate motions and deformations of the Argentière Glacier in the French Alps at 2400 m altitude, derived from up to 12 permanent GNSS stations continuously operating since April 2019, covering two melting seasons. The Argentière glacier is particularly interesting due to (i) its long-term subglacial observatory measuring basal sliding velocity and subglacial discharge, and (ii) the wide range of complementary observations currently being acquired there, which give access to internal ice deformation thanks to tiltmeters in boreholes, and to basal stick-slip and englacial fracturing thanks to seismic observations. We present the results (i) over relatively long timescales (days to months) using the fast static positioning approach to evaluate mean variations and compare to the independent measurements mentioned above, and (ii) kinematic approach to focus on high temporal resolution velocity variations during specific short-term events that cannot be seen from the static processing. The horizontal surface velocities on daily time scales reveal spring acceleration due to meltwater followed by steadily high velocities over the summer, and significant episodic accelerations in the fall in response to the storm events. We quantify strain rates and their evolution in time that can be related to the vertical surface motions. We combine the GNSS with the englacial tiltmeters results to deduce the basal speed variations. The GNSS confrontation with other independent observations also allows analyzing the surface motions that combine horizontal speed-ups with uplift due to bed separation of the ice sheet. We will further search for evidence for surface motions that might occur in daily cycles in summer, as hinted at by the basal sliding measurements. But before analyzing daily cycles of glacier motions, it is critical to remove positioning artefacts due to multipath effects with a repeat period close to 24 hours. These effects are enhanced on the Argentière Glacier by the limited number of visible satellites in the narrow valley. Moreover, it evolves with the dynamically changing environment (snow accumulation and snowmelt that create variations in ground reflectivity properties). A multi-GNSS analysis combining GPS and GLONASS data helps overcome the lack of satellite data and increase the time resolution on a sub-daily scale. If daily cycles are resolvable from the improved GNSS analysis, their phase offsets with respect to meteorological, hydrological and seismic observations can give us indices of eventual mechanisms of sliding at the bedrock interface.

How to cite: Togaibekov, A., Walpersdorf, A., Gimbert, F., Vincent, C., Helmstetter, A., Six, D., Moreau, L., Roldan-Blasco, J. P., Ott, L., Mercier, S., Laarman, O., Piard, L., Nanni, U., Matthey, M., Urruty, B., Sue, C., Bouvier, J.-N., Radiguet, M., Romeyer, O., and Mugnier, J.-L.: Three-dimensional surface velocity variations of the Argentière glacier (French Alps) monitored with a high-resolution continuous GNSS network, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13230, https://doi.org/10.5194/egusphere-egu21-13230, 2021.

EGU21-13815 | vPICO presentations | CR2.4 | Highlight

Decennial multi-approach monitoring of thermo-hydro-mechanical processes, Kammstollen outdoor laboratory, Zugspitze (Germany)

Riccardo Scandroglio, Till Rehm, Jonas K. Limbrock, Andreas Kemna, Markus Heinze, Roland Pail, and Michael Krautblatter

The warming of alpine bedrock permafrost in the last three decades and consequent reduction of frozen areas has been well documented. Its consequences like slope stability reduction put humans and infrastructures at high risk. 2020 in particular was the warmest year on record at 3000m a.s.l. embedded in the warmest decade.

Recently, the development of electrical resistivity tomography (ERT) as standard technique for quantitative permafrost investigation allows extended monitoring of this hazard even allowing including quantitative 4D monitoring strategies (Scandroglio et al., in review). Nevertheless thermo-hydro-mechanical dynamics of steep bedrock slopes cannot be totally explained by a single measurement technique and therefore multi-approach setups are necessary in the field to record external forcing and improve the deciphering of internal responses.

The Zugspitze Kammstollen is a 850m long tunnel located between 2660 and 2780m a.s.l., a few decameters under the mountain ridge. First ERT monitoring was conducted in 2007 (Krautblatter et al., 2010) and has been followed by more than one decade of intensive field work. This has led to the collection of a unique multi-approach data set of still unpublished data. Continuous logging of environmental parameters such as rock/air temperatures and water infiltration through joints as well as a dedicated thermal model (Schröder and Krautblatter, in review) provide important additional knowledge on bedrock internal dynamics. Summer ERT and seismic refraction tomography surveys with manual and automated joints’ displacement measurements on the ridge offer information on external controls, complemented by three weather stations and a 44m long borehole within 1km from the tunnel.

Year-round access to the area enables uninterrupted monitoring and maintenance of instruments for reliable data collection. “Precisely controlled natural conditions”, restricted access for researchers only and logistical support by Environmental Research Station Schneefernerhaus, make this tunnel particularly attractive for developing benchmark experiments. Some examples are the design of induced polarization monitoring, the analysis of tunnel spring water for isotopes investigation, and the multi-annual mass monitoring by means of relative gravimetry.

Here, we present the recently modernized layout of the outdoor laboratory with the latest monitoring results, opening a discussion on further possible approaches of this extensive multi-approach data set, aiming at understanding not only permafrost thermal evolution but also the connected thermo-hydro-mechanical processes.

 

 

Krautblatter, M. et al. (2010) ‘Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps)’, Journal of Geophysical Research: Earth Surface, 115(2), pp. 1–15. doi: 10.1029/2008JF001209.

Scandroglio, R. et al. (in review) ‘4D-Quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated ERT approach (in review)’, Near Surface Geophysics.

Schröder, T. and Krautblatter, M. (in review) ‘A high-resolution multi-phase thermo-geophysical model to verify long-term electrical resistivity tomography monitoring in alpine permafrost rock walls (Zugspitze, German/Austrian Alps) (submitted)’, Earth Surface Processes and Landforms.

How to cite: Scandroglio, R., Rehm, T., Limbrock, J. K., Kemna, A., Heinze, M., Pail, R., and Krautblatter, M.: Decennial multi-approach monitoring of thermo-hydro-mechanical processes, Kammstollen outdoor laboratory, Zugspitze (Germany), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13815, https://doi.org/10.5194/egusphere-egu21-13815, 2021.

EGU21-2206 | vPICO presentations | CR2.4

Surprisingly thick active layer of permafrost in the mountain slope in the SW Svalbard

Mariusz Majdanski, Artur Marciniak, Bartosz Owoc, Wojciech Dobiński, Tomasz Wawrzyniak, Marzena Osuch, Adam Nawrot, and Michał Glazer

Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost along inclined profile between the coast and the mountain slope in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with continuous temperature monitoring in shallow boreholes.

Joint interpretation of seismic data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the permafrost where apparent P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. Independent refraction seismic analysis in two seasons shows in average 10 m thick sedimentary layer on top of compacted bedrock. In sediments P wave velocity is changing from 1500 m/s to 4000 m/s between seasons. Velocities in the bedrock are also changing from 4000 m/s to 5500 m/s. Moreover, tomographic interpretation shows that significant change in P wave velocities is observed down to 30 meters.

Such unusual active layer behavior is confirmed in in-situ thermal observations with above 0C temperatures at the depth of 19m. Those observations can be explained with strong underground flow during the frozen period confirmed with borehole. 

 

Acknowledgements               

This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.

How to cite: Majdanski, M., Marciniak, A., Owoc, B., Dobiński, W., Wawrzyniak, T., Osuch, M., Nawrot, A., and Glazer, M.: Surprisingly thick active layer of permafrost in the mountain slope in the SW Svalbard, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2206, https://doi.org/10.5194/egusphere-egu21-2206, 2021.

EGU21-8617 | vPICO presentations | CR2.4

Frost quakes – the sound of a dynamic cryosphere and a convenient source for passive surface wave imaging of permafrost

Rowan Romeyn, Alfred Hanssen, Andreas Köhler, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen

A class of short-duration seismic events were recorded on dense, temporary geophone arrays deployed in Adventdalen, Svalbard in spring and autumn 2019. A similar class of events have also been detected in seismic records from the SPITS seismic array located on Janssonhaugen in Adventdalen, that has been in continuous operation since the 1990’s. In both cases, estimated source positions are dominantly local and cluster around frost polygon, ice-wedge geomorphologies. Correlation with periods of rapidly cooling air temperature and consequent thermal stress build-up in the near surface are also observed. These events are consequently interpreted as frost quakes, a class of cryoseism. The dense, temporary arrays allowed high quality surface-wave dispersion images to be generated, that show potential to monitor structure and change in permafrost through passive seismic deployments. While the lower wavenumber resolution of the sparser SPITS array is less suited to imaging the near-surface in detail, the long continuous recording period gives us a unique insight into the temporal occurrence of frost quakes. This allows us, for example, to better understand the dynamic processes leasing to frost quakes by correlating temporal occurrence with models of thermal stress in the ground, constrained by thermistor temperature measurements from a nearby borehole.

How to cite: Romeyn, R., Hanssen, A., Köhler, A., Ruud, B. O., Stemland, H. M., and Johansen, T. A.: Frost quakes – the sound of a dynamic cryosphere and a convenient source for passive surface wave imaging of permafrost, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8617, https://doi.org/10.5194/egusphere-egu21-8617, 2021.

CR2.5 – Data Science and machine learning for Cryosphere and Climate

EGU21-166 | vPICO presentations | CR2.5

Using the coupled machine learning-evolutionary optimization algorithms and climate change projection models to assess the distribution of groundwater-origin aufeis in the North-East of Northern Hemisphere and their dynamic in a changing climate

Olga Makarieva, Aiding Kornejady, Andrey Shikhov, Esmaeil Silakhori, Nataliia Nesterova, Abbas Goli Jirandeh, Andrey Ostashov, Hadi Alizadeh, and Anastasiya Zemlyanskova

EGU21-908 | vPICO presentations | CR2.5

Estimating Surface Melt on the Larsen Ice Shelf Using a Deep Neural Network: Opportunities and Challenges

Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke

Presently, surface melt over Antarctica is estimated using climate modeling or remote sensing. However, accurately estimating surface melt remains challenging. Both climate modeling and remote sensing have limitations, particularly in the most crucial areas with intense surface melt.  The motivation of our study is to investigate the opportunities and challenges in improving the accuracy of surface melt estimation using a deep neural network. The trained deep neural network uses meteorological observations from automatic weather stations (AWS) and surface albedo observations from satellite imagery to improve surface melt simulations from the regional atmospheric climate model version 2.3p2 (RACMO2). Based on observations from three AWS at the Larsen B and C Ice Shelves, cross-validation shows a high accuracy (root mean square error = 0.898 mm.w.e.d−1, mean absolute error = 0.429 mm.w.e.d−1, and coefficient of determination = 0.958). The deep neural network also outperforms conventional machine learning models (e.g., random forest regression, XGBoost) and a shallow neural network. To compute surface melt for the entire Larsen Ice Shelf, the deep neural network is applied to RACMO2 simulations. The resulting, corrected surface melt shows a better correlation with the AWS observations in AWS 14 and 17, but not in AWS 18. Also, the spatial pattern of the surface melt is improved compared to the original RACMO2 simulation. A possible explanation for the mismatch at AWS 18 is its complex geophysical setting. Even though our study shows an opportunity to improve surface melt simulations using a deep neural network, further study is needed to refine the method, especially for complicated, heterogeneous terrain.

How to cite: Hu, Z., Kuipers Munneke, P., Lhermitte, S., Izeboud, M., and van den Broeke, M.: Estimating Surface Melt on the Larsen Ice Shelf Using a Deep Neural Network: Opportunities and Challenges, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-908, https://doi.org/10.5194/egusphere-egu21-908, 2021.

EGU21-4366 | vPICO presentations | CR2.5

Rapidly detecting icebergs using ArcticDEM and Google Earth Engine

Connor Shiggins, James Lea, Dominik Fahrner, and Stephen Brough

High resolution digital elevation models (DEMs) allow for the detection of icebergs and their size distribution, potentially giving insights into spatial and temporal changes in calving dynamics and iceberg cover. Here we present a fully automated tool for iceberg detection in glaciated fjords, utilising timestamped ArcticDEM tile data within the Google Earth Engine cloud computing platform. The automated tool requires only definition of a region of interest (ROI) through the following workflow:

1. Automatically filter timestamped ArcticDEM tiles to obtain only high-quality images with high data coverage within a ROI

2. Apply elevation correction to account for the geoid and tidal state, ensuring sea level is the equivalent to 0 m elevation

3. Apply an iceberg detection elevation threshold (any object at/or above 0.9 m)

4. Automatically delineate icebergs based on elevations above this threshold

5. Iceberg area, volume (total, below and above surface), freeboard height, mass and the ArcticDEM acquisition date are appended to each iceberg

This workflow allows for rapid, fully automated analysis of all available ArcticDEM tiles within a given ROI. The workflow does not require manual supervision, and can be easily related back to the original ArcticDEM data through Google Earth Engine. As an example, we apply our workflow to a 33 km2 ROI at Nuup Kangerlua (Godthåbsfjorden), southwest Greenland, detecting a total of 57,735 icebergs from 6 images with an execution time of 19 minutes. This workflow will provide a user-friendly platform for users of any coding ability requiring a large data set of icebergs with an area size greater than approximately 40 m2. Results obtained from these data will be utilised to identify potential seasonal to multi-annual timescale changes in calving behaviour, though is dependent on ArcticDEM data availability. 

How to cite: Shiggins, C., Lea, J., Fahrner, D., and Brough, S.: Rapidly detecting icebergs using ArcticDEM and Google Earth Engine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4366, https://doi.org/10.5194/egusphere-egu21-4366, 2021.

EGU21-4528 | vPICO presentations | CR2.5

Automated extraction of calving front locations from multi-spectral satellite imagery using deep learning: methodology and application to Greenland outlet glaciers

Erik Loebel, Mirko Scheinert, Julia Christmann, Konrad Heidler, Martin Horwath, and Angelika Humbert

The calving of tidewater glaciers has a strong impact on the stresses of outlet glaciers and their discharge. However, it is still underrepresented in current ice-sheet models incorporating the dynamics of marine-terminating glaciers. This has an impact on simulation results when projecting future sea-level contributions of the Greenland ice sheet. The increasing availability and quality of remote sensing imagery enable us to realize a continuous and precise mapping of relevant parameters such as calving front locations. However, the huge amount of data also accentuates the necessity for intelligent analysis strategies.

In this contribution, we apply an automated workflow to extract calving front positions from multi-spectral Landsat-8 imagery utilizing deep learning. The core of the proposed workflow comprises a convolutional neural network (CNN) for image segmentation exploiting the full range of Landsat-8 multi-spectral capabilities, a statistical textural feature analysis performed on the high-resolution panchromatic band as well as topography model data. The proposed method is evaluated by an independent set of diverse test images as well as by comparing with already available ESA-CCI, MEaSUREs and PROMICE data products. With an estimated prediction error of fewer than two pixels (which equals a spatial resolution of 60 m), automatically extracted calving front locations show very small or even non-distinguishable differences to manually delineated locations. The importance of multi-spectral, textural and topographic features used as input for the CNN is estimated by a permute-and-relearn approach emphasizing their benefit, especially in challenging ice-melange, cloud, and illumination conditions. Jointly with the proposed methodology we present an exceedingly dense dataset for 20 of the most important Greenlandic outlet glaciers for the period from 2013 to 2021.

Eventually, the derived calving front positions are incorporated into the Ice Sheet and Sea-Level System Model (ISSM). For this, we engage a level set method. This method allows deriving a continuous function in time and space from discrete information at satellite acquisition time steps. As the satellite data is mainly available for fast-flowing outlet glaciers, we use simulated front positions for all remaining ice margins. An alpha-shape method seamlessly links the temporal changing calving fronts to the Greenlandic ice sheet.

How to cite: Loebel, E., Scheinert, M., Christmann, J., Heidler, K., Horwath, M., and Humbert, A.: Automated extraction of calving front locations from multi-spectral satellite imagery using deep learning: methodology and application to Greenland outlet glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4528, https://doi.org/10.5194/egusphere-egu21-4528, 2021.

EGU21-4625 | vPICO presentations | CR2.5

Spatial downscaling method of glacier surface albedo based on deep learning

Fuming Xie, Shiyin Liu, Yu Zhu, Yongpeng Gao, Kunpeng Wu, and Miaomiao Qi

Heat exchange in glacier region is strongly affected by the interaction between solar radiation and glacial surface, and albedo is an important index to quantitatively describe energy balance in this interaction process. Under the background of global warming, the observation and modeling of albedo are of great significance in the aspects including identification of snow and ice darkening or pollution, reconstruction of glacier mass balance and inversion of supraglacial debris expansion. However, insufficient observations, coupled with low spatial resolution of satellite derived products (250-1000m), make it difficult to analyze spatial changes at the glacier scale. A convolution neural network (CNN) contains one or more of the convolution layer, in which inputs are neighborhoods of pixels, resulting in a network that is not fully-connected, has great potential to the image segmentation but is also suited to identifying spatial patterns. Therefore, in this study, a CNN model—U-NET was trained to improve the spatial resolution of albedo products. In the U-NET, we took the shortwave black-sky albedo derived from moderate resolution imaging spectroradiometer (MODIS) boarded on Terra/Aqua satellite with a spatial resolution of 500m as response variable, and raw spectral information, band ratios, and color-to-grayscale conversion from Landsat 8 optical satellite imagery and the topographical components derived from SRTM DEM products as feature variables. The predicted albedo has been validated using observations form radiometer mounted on an automatic weather station at Yazgil glacier in Hunza valley, Karakoram. The results show that the accuracy of U-NET predicted albedo (RMSE = 0.071) is similar to that of MODIS albedo (RMSE = 0.074), which proved that U-NET has great application potential. The high spatial resolution albedo estimated by the model enhances its use in the analysis of spatial changes at the glacier scale, especially for small glaciers, but the optimization of its temporal resolution needs to be further studied.

How to cite: Xie, F., Liu, S., Zhu, Y., Gao, Y., Wu, K., and Qi, M.: Spatial downscaling method of glacier surface albedo based on deep learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4625, https://doi.org/10.5194/egusphere-egu21-4625, 2021.

EGU21-4892 | vPICO presentations | CR2.5

Regional Climate Model Inter-Comparison for Antarctica within a Data Science Framework

Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and Melchior van Wessem

Understanding the surface climatology of the Antarctic ice sheet is essential if we are to adequately predict its response to future climate change. This includes both primary impacts such as increased ice melting and secondary impacts such as ice shelf collapse events. Given its size, and inhospitable environment, weather stations on Antarctica are sparse. Thus, we rely on regional climate models to 1) develop our understanding of how the climate of Antarctica varies in both time and space and 2) provide data to use as context for remote sensing studies and forcing for dynamical process models. Given that there are a number of different regional climate models available that explicitly simulate Antarctic climate, understanding inter- and intra model variability is important.

Here, inter- and intra-model variability in Antarctic-wide regional climate model output is assessed for: snowfall; rainfall; snowmelt and near-surface air temperature within a cloud-based virtual lab framework. State-of-the-art regional climate model runs from the Antarctic-CORDEX project using the RACMO, MAR and MetUM models are used, together with the ERA5 and ERA-Interim reanalyses products. Multiple simulations using the same model and domain boundary but run at either different spatial resolutions or with different driving data are used. Traditional analysis techniques are exploited and the question of potential added value from more modern and involved methods such as the use of Gaussian Processes is investigated. The advantages of using a virtual lab in a cloud based environment for increasing transparency and reproducibility, are demonstrated, with a view to ultimately make the code and methods used widely available for other research groups.

How to cite: Carter, J., Leeson, A., Orr, A., Kittel, C., and van Wessem, M.: Regional Climate Model Inter-Comparison for Antarctica within a Data Science Framework, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4892, https://doi.org/10.5194/egusphere-egu21-4892, 2021.

EGU21-5000 | vPICO presentations | CR2.5

A Bayesian approach to infer ice sheet temperature in Antarctica from satellite observations

Marion Leduc-Leballeur, Catherine Ritz, Giovanni Macelloni, and Ghislain Picard

The actual temperature profile is a determinant of ice rheology, which controls ice deformation and flow, and sliding over the underlying bedrock. Importantly, the ice flow in turn affects its temperature profile through strain heating, which makes observed temperature profiles a powerful input for ice sheet model validation.

Up to now temperature profile was available in few boreholes or from glaciological models. Recently, Macelloni et al. (2016) opened up new opportunities for probing ice temperature from space with the low-frequency passive sensors. Indeed, at L-band frequency, the very low absorption of ice and the low scattering by particles (grain size, bubbles in ice) allow a large penetration in the dry snow and ice (several hundreds of meters). Macelloni et al. (2019) performed the first retrieval of the ice sheet temperature in Antarctica by using the European Space Agency (ESA)’s Soil Moisture and Ocean Salinity (SMOS) L-band observations. They used the minimization of the difference between SMOS brightness temperature and microwave emission model simulations that includes a glaciological model.

Here, in the framework of the ESA 4D-Antarctica project, we propose a new method based on a Bayesian approach in order to improve the accuracy of the retrieved ice temperature and to provide an uncertainty estimation along the profiles. As a first step, a one-dimensional ice temperature profile model (Robin 1955) is used, which limits the retrieval to the Antarctic Plateau. Then, the new temperature emulator based on the three-dimensional glaciological GRISLI (Quiquet et al., 2018) will be used to enable retrievals over the entire continent (cf. Ritz’s presentation in this session for the GRISLI emulator description).

The Bayesian inference takes as free parameters: ice thickness, surface ice temperature, snow accumulation and geothermal heat flux (GHF). Their prior probability distribution is defined as normal, centered around a priori values taken from literature, and truncated to stay in a realistic range. The observed brightness temperature distribution is normal and a normal likelihood function is used to quantify the matching between the observed and simulated brightness temperature. The parameter space investigation is achieved through a Markov Chain Monte Carlo (MCMC) method. Here, the differential evolution adaptive Metropolis (DREAM) algorithm is used, which runs multiple different Markov chains in parallel and uses a discrete proposal distribution to evolve the sampler to the posterior distribution (Laloy and Vrugt, 2012).

For each SMOS brightness temperature observation, 1000 iterations are run on 5 parallel chains. The 2500 first iterations are discarded (aka. burn-in) and only the last 2500 are used for the final ice temperature profile estimation. The posterior probability distribution captures the most likely parameter set (i.e. a surface temperature, snow accumulation and GHF combination), and so, the most likely ice temperature profiles associated to this SMOS observation. It also provides the standard deviation which is an accurate estimate of the temperature uncertainty along the depth obtained with the method.

How to cite: Leduc-Leballeur, M., Ritz, C., Macelloni, G., and Picard, G.: A Bayesian approach to infer ice sheet temperature in Antarctica from satellite observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5000, https://doi.org/10.5194/egusphere-egu21-5000, 2021.

EGU21-5151 | vPICO presentations | CR2.5

Eigen-glaciers: elucidating hidden features in the flow of Sermeq Kujalleq (Jakobshavn Glacier), Greenland.

David Ashmore, Douglas Mair, Jonathan Higham, Stephen Brough, James Lea, and Isabel Nias

The increasing volume and spatio-temporal resolution of satellite-derived ice velocity data has created new exploratory opportunities for the quantitative analysis of glacier dynamics. One potential technique, Proper Orthogonal Decomposition (POD), also known as Empirical Orthogonal Functions, has proven to be a powerful and flexible technique for revealing coherent structures in a wide variety of environmental flows: mapping hydraulic vortex shedding patterns, the dynamics of fluidised granular beds, and the magnetohydrodynamics of sunspots.

POD exactly describes a series of snapshots from a flow field with the product of ranked spatially orthogonal Eigenfunctions, or “modes” of spatial weighting, and one-dimensional “temporal” coefficients (Eigenvectors). In many cases the variance of the flow field is well described by just a few dominant modes. The orthogonal nature of each mode, by definition, means that the relative contribution of independent forcing mechanisms on the flow can, in theory, be separated.

In this study we investigate the applicability of POD to freely available TanDEM-X/TerraSAR-X derived ice velocity datasets of Sermeq Kujalleq (Jakobshavn Glacier), Greenland. We outline the POD procedure using the singular value decomposition of a rearranged and resampled velocity matrix and investigate the factors responsible for the dominant modes. We find dominant modes interpreted as relating to the stress-reconfiguration at the glacier terminus and the development of the glacier hydrological system, but also find that the POD is sensitive to data resampling and quality. With the proliferation of publicly available optical and radar derived velocity products (e.g. MEaSUREs/ESA CCI) we suggest POD, and potentially other modal decomposition techniques, will become increasingly useful in future studies of ice dynamics.

How to cite: Ashmore, D., Mair, D., Higham, J., Brough, S., Lea, J., and Nias, I.: Eigen-glaciers: elucidating hidden features in the flow of Sermeq Kujalleq (Jakobshavn Glacier), Greenland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5151, https://doi.org/10.5194/egusphere-egu21-5151, 2021.

EGU21-5344 | vPICO presentations | CR2.5

Two decades of Antarctic coastal-change revealed by satellite imagery and deep learning

Celia A. Baumhoer, Andreas Dietz, Mariel Dirscherl, and Claudia Kuenzer

Antarctica’s coastline is constantly changing by moving glacier and ice shelf fronts. The extent of glaciers and ice shelves influences the ice discharge and sea level contribution of the Antarctic Ice Sheet. Therefore, it is crucial to assess where ice shelf areas with strong buttressing forces are lost. So far, those changes have not been assessed for entire Antarctica within comparable time frames.

We present a framework for circum-Antarctic coastline extraction based on a U-Net architecture. Antarctic coastal-change is calculated by using a deep learning derived coastline for the year 2018 in combination with earlier manual derived coastlines of 1997 and 2009. For the first time, this allows to compare circum-Antarctic changes in glacier and ice shelf front position for the last two decades. We found that the Antarctic Ice Sheet area decreased by -29,618±1,193 km2 in extent between 1997-2008 and gained an area of 7,108±1,029km2 between 2009 and 2018. Retreat dominated for the Antarctic Peninsula and West Antarctica and advance for the East Antarctic Ice Sheet over the entire investigation period. The only exception in East Antarctica was Wilkes Land experiencing simultaneous calving front retreat of several glaciers between 2009-2018. Biggest tabular iceberg calving events occurred at Ronne and Ross Ice Shelf within their natural calving cycle between 1997-2008. Future work includes the continuous mapping of Antarctica’s coastal-change on a more frequent temporal scale.  

How to cite: Baumhoer, C. A., Dietz, A., Dirscherl, M., and Kuenzer, C.: Two decades of Antarctic coastal-change revealed by satellite imagery and deep learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5344, https://doi.org/10.5194/egusphere-egu21-5344, 2021.

EGU21-6029 | vPICO presentations | CR2.5 | Highlight

Developing an emulator to calculate present temperature field in the Antarctic Ice Sheet

Catherine Ritz, Christophe Dumas, Marion Leduc-Leballeur, Giovanni Macelloni, Ghislain Picard, and Aurélien Quiquet

Ice temperature within the ice is a crucial characteristic to understand the Antarctic ice sheet evolution because temperature is coupled to ice flow. Since temperature is only measured at few locations in deep boreholes, we only rely on numerical modelling to assess ice sheet-wide temperature. However, the design of such models leads to a number of challenges. One important difficulty is that the temperature field strongly depends on the geothermal flux which is still poorly known (see White paper by Burton-Johnson and others,2020 ). Another point is that up to now there is no fully suitable model, especially for inverse approaches: i) analytical solutions are only valid in slowly flowing regions; ii) models solving only the heat equation by prescribing geometry and ice flow do not take into account the past changes in ice thickness and ice flow and do not couple ice flow and temperature. Conversely, 3D thermomechanical models that simulate the evolution of the ice sheet take into account all the relevant processes but they are too computationally expensive to be used in inverse approaches. Moreover, they do not provide a perfect fit between observed and simulated geometry (ice thickness, surface elevation) for the present-day ice sheets and this affects the simulated temperature field.

GRISLI (Quiquet et al. 2018), belongs to this family of thermomechanically coupled ice sheet models An emulator, based on deep neural network (DNN), has been developed in order to speed-up the simulation of present-day ice temperature. We use GRISLI outputs that come from 4 simulations, each covers 900000 years (8 glacial-interglacial cycles) to get rid of the initial configuration influence. The simulations differ by the geothermal flux map used as boundary condition. Finally a database is built where each ice column for each simulation is a sample used to train the DNN. For each sample, the input layer (precursor) is a vector of the present-day characteristics: ice thickness, surface temperature, geothermal flux, accumulation rate, surface velocity and surface slope. The predicted output (output layer) is the vertical profile of temperature. In the training, the weights of the network are optimized by comparison with the GRISLI temperature.

The first results are very encouraging with a RMSE of ~ 0.6 °C (calculated from the difference between the emulated temperatures and GRISLI temperatures over all the samples and all the depths). Once trained, the computational time of GRISLI-DNN for generating temperature field of whole Antarctica (16000 columns) is about 20 s.

The first application (in the framework of the ESA project 4D-Antarctica, see Leduc-Leballeur presentation in this session) will be to use this emulator associated with SMOS satellite observations to infer the 3D temperature field and improve our knowledge of geothermal flux. Indeed, it has been shown that SMOS data, coupled with glaciological and electromagnetic models, give an indication of temperature in the upper 1000 m of the ice sheet. Our emulator could also be used for initialization of computationally expensive ice sheet models.

How to cite: Ritz, C., Dumas, C., Leduc-Leballeur, M., Macelloni, G., Picard, G., and Quiquet, A.: Developing an emulator to calculate present temperature field in the Antarctic Ice Sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6029, https://doi.org/10.5194/egusphere-egu21-6029, 2021.

EGU21-7866 | vPICO presentations | CR2.5 | Highlight

Automated mapping of supraglacial hydrology using Machine Learning

Diarmuid Corr, Amber Leeson, Malcolm McMillan, and Ce Zhang

Mass loss from Greenlandic and Antarctic ice sheets are predicted to be the dominant contribution to global sea level rise in coming years. Supraglacial lakes and channels are thought to play a significant role in ice sheet mass balance by causing the speed-up of grounded ice and weakening, floating ice shelves to the point of collapse. Identifying the location, distribution and life cycle of these hydrological features on both the Greenland and Antarctic ice sheets is therefore important in understanding their present and future contribution to global sea level rise. Supraglacial hydrological features can be easily identified by eye in optical satellite imagery. However, given that there are many thousands of these features, and they appear in many hundreds of satellite images, automated approaches to mapping these features in such images are urgently needed.

 

Current automated approaches in mapping supraglacial hydrology tend to have high false positive and false negative rates, which are often followed by manual corrections and quality control processes. Given the scale of the data however, methods such as those that require manual post-processing are not feasible for repeat monitoring of surface hydrology at continental scale. Here, we present initial results from our work conducted as part of the 4D Greenland and 4D Antarctica projects, which increases the accuracy of supraglacial lake and channel delineation using Sentinel-2 and Landsat-7/8 imagery, while reducing the need for manual intervention. We use Machine Learning approaches including a Random Forest algorithm trained to recognise water, ice, cloud, rock, shadow, blue-ice and crevassed regions. Both labelled optical imagery and auxiliary data (e.g. digital elevation models) are used in our approach. Our methods are trained and validated using data covering a range of glaciological and climatological conditions, including images of both ice sheets and those acquired at different points during the melt-season. The workflow, developed under Google Cloud Platform, which hosts the entire archive of Sentinel-2 and Landsat-8 data, allows for large-scale application over Greenlandic and Antarctic ice sheets, and is intended for repeated use throughout future melt-seasons.

How to cite: Corr, D., Leeson, A., McMillan, M., and Zhang, C.: Automated mapping of supraglacial hydrology using Machine Learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7866, https://doi.org/10.5194/egusphere-egu21-7866, 2021.

EGU21-7958 | vPICO presentations | CR2.5 | Highlight

ArcticDEM in Google Earth Engine: tools for rapid analysis of multi-temporal data covering glacial environments

James Lea, Connor Shiggins, Stephen Brough, Stephen Livingstone, and Robert McNabb

ArcticDEM data products include timestamped high spatial resolution (2 and 10 m) digital elevations models (DEMs) covering the period 2009-2017, offering the potential for monitoring ice surface change, structural evolution, geomorphological and proglacial change. However, their varying quality, spatial and temporal data coverage, large file size and requirement for co-registration provide challenges to user accessibility and interrogation of these datasets. Inclusion of these data in the cloud computing based Google Earth Engine (GEE) platform provides opportunities for rapid analysis, though poses its own barriers to access for users through the necessity for familiarity with either JavaScript or Python coding environments. Here we present tools that allow ArcticDEM data to be rapidly queried by users with no coding background through an intuitive graphical user interface, with the aim of improving the accessibility of these datasets for the glacial and earth surface process communities.

 

The tools are intended to provide a means for users to perform basic data extraction from available DEMs of a given area. These include the extraction of elevation changes occurring along user defined transects, and simple DEM differencing of areas of interest. As part of data pre-processing in GEE, tiles are co-registered using dX, dY and dZ corrections provided within the ArcticDEM metadata, while areas of poor data quality are automatically detected and masked out. A full range of metadata associated with each DEM are also appended to outputs, that will allow users to undertake post-processing of results where needed. While provisional results indicate that the tools perform well, due to inaccuracies in co-registration metadata they are not yet suitable for applications where high levels of precision are required (e.g. snow depth) and in areas of very steep terrain (e.g. rock face changes). We hope to address these issues in the future, though it should be noted that such modifications are likely to significantly increase computation time.

How to cite: Lea, J., Shiggins, C., Brough, S., Livingstone, S., and McNabb, R.: ArcticDEM in Google Earth Engine: tools for rapid analysis of multi-temporal data covering glacial environments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7958, https://doi.org/10.5194/egusphere-egu21-7958, 2021.

Supraglacial lakes (SGLs) are a major component of Greenland’s surface hydrology and mass balance. Monitoring their evolution at multi-day to sub-daily timescales has traditionally been performed by relatively low-resolution sensors such as MODIS Terra, though opportunities exist for using higher spatial resolution sensors at high latitudes.

In this study, we take advantage of frequent orbital crossovers of Sentinel 2 and Landsat 8 imagery at high latitudes to monitor lakes at multi-day to sub-day temporal resolution, and spatial resolutions up to/over an order of magnitude higher than MODIS Terra (10 m to 30 m, compared to ~250 m for MODIS Terra). Through leveraging the cloud computing resources of Google Earth Engine (GEE), we have developed a workflow to track the evolution of lakes for all available Sentinel 2 and Landsat 8 images over a melt season.

Our workflow builds on the approach of Moussavi et al. (2020) that was developed for Antarctica, implementing it within GEE to explore its sensitivity and suitability for application to the catchment of the North East Greenland Ice Stream (NEGIS) for the 2019 melt season. To improve the efficiency of analysis, we analyse 282 large lakes (>0.125 km^2) that were previously identified through analysis of MODIS Terra imagery. All lake outlines are appended with image ID and lake area metadata to facilitate subsequent analysis, and allow each lake outline to be traced back to the original image that it was derived from. Our approach is able to monitor lake growth and drainage at unprecedented spatial and temporal resolutions over a large area, allowing the widespread characterization of seasonal lake evolution.

How to cite: Li, Q., Lea, J., and Brough, S.: Identifying multi-day to sub-daily supraglacial lake change in Greenland from Sentinel 2 and Landsat 8 imagery using Google Earth Engine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7965, https://doi.org/10.5194/egusphere-egu21-7965, 2021.

EGU21-8813 | vPICO presentations | CR2.5

Sharing transferable methods in environmental data science: A Fuzzy changepoint approach to numerical model evaluation over Greenland.

Michael Hollaway, Peter Henrys, Rebecca Killick, Amber Leeson, and John Watkins

     Numerical models are essential tools for understanding the complex and dynamic nature of the natural environment and how it will respond to a changing climate. With ever increasing volumes of environmental data and increased availability of high powered computing, these models are becoming more complex and detailed in nature. Therefore the ability of these models to represent reality is critical in their use and future development. This has presented a number of challenges, including providing research platforms for collaborating scientists to explore big data, develop and share new methods, and communicate their results to stakeholders and decision makers. This work presents an example of a cloud-based research platform known as DataLabs and how it can be used to simplify access to advanced statistical methods (in this case changepoint analysis) for environmental science applications.

     A combination of changepoint analysis and fuzzy logic is used to assess the ability of numerical models to capture local scale temporal events seen in observations. The fuzzy union based metric factors in uncertainty of the changepoint location to calculate individual similarity scores between the numerical model and reality for each changepoint in the observed record. The application of the method is demonstrated through a case study on a high resolution model dataset which was able to pick up observed changepoints in temperature records over Greenland to varying degrees of success. The case study is presented using the DataLabs framework, demonstrating how the method can be shared with other users of the platform and the results visualised and communicated to users of different areas of expertise.

How to cite: Hollaway, M., Henrys, P., Killick, R., Leeson, A., and Watkins, J.: Sharing transferable methods in environmental data science: A Fuzzy changepoint approach to numerical model evaluation over Greenland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8813, https://doi.org/10.5194/egusphere-egu21-8813, 2021.

Current sea ice prediction systems exhibit significant room for improvement compared to idealized estimates of sea ice predictability, a gap that could be closed by improving the initial conditions provided to prognostic models. Sea ice volume, the area-weighted integral of sea ice thickness (SIT), in particular, demonstrates long initial value predictability; in other words, accurate forecasting of Arctic sea ice requires highly accurate SIT initial conditions. Continuous records of SIT are, unfortunately, few and far between. To address this conundrum, we have explored applications of the Data Assimilation Research Testbed (DART) to constrain the Los Alamos Sea Ice Model (CICE5) within the Community Earth System Model using satellite-derived SIT observations from 2003 to present day. Our data assimilation system has been fine-tuned using new and highly accurate freeboard measurements from NASA’s ICESat-2 mission. Using SIT information alone, we generate two assimilation products: the first using DART with CICE5 and the second with an offline assimilation method. We compare these products to one another and to the community standard SIT record, PIOMAS. Future work will introduce multivariate assimilation of SIT with other sea ice variables, including sea ice concentration, sea ice skin temperature, and sea surface temperature.

How to cite: Wieringa, M. and Bitz, C.: A data assimilation application for improving estimates of Arctic sea ice thickness variability and change since the turn of the 21st century, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8952, https://doi.org/10.5194/egusphere-egu21-8952, 2021.

EGU21-9530 | vPICO presentations | CR2.5

A data-driven approach in the search for Antarctic meteorites

Veronica Tollenaar, Harry Zekollari, Stef Lhermitte, David Tax, Vinciane Debaille, Steven Goderis, Philippe Claeys, and Frank Pattyn

Meteorites provide an unparalleled view on the origin and evolution of the solar system. Antarctica is the most productive region for collecting meteorites, as the visually contrasting meteorites are easily detectable and tend to concentrate at specific areas exposing blue ice. Blue ice areas act as meteorite stranding zones if the flow of the ice sheet and specific geographical and climatological settings combine favorably. Previously, possible meteorite stranding zones were identified by chance or through visual examination of remote sensing data, which limits the discovery of new locations for future meteorite searching campaigns.

In this study, various state-of-the-art datasets are combined in a machine learning approach to estimate the likeliness of a blue ice area to be a meteorite stranding zone. Input data for a generative classifier consists of ca. 13,000 reprojected meteorite finding locations (positive observations) and 2,000,000 unlabeled observations, for which the presence of meteorites is unknown. Four features have been selected, representing the typical conditions in which meteorites are found: exposure of blue ice (radar backscatter), cold surface conditions and negative surface mass balance (surface temperature and surface slope), and almost stagnant ice flow (surface velocities). With these features, the probability of the presence of meteorites is computed for each unlabeled observation at blue ice areas. These probabilities are computed by evaluating the multidimensional density distributions of the observations on the unlabeled observations and combining these with the prior probabilities of the two classes (positive and unlabeled). As the set of training data does contain only positive and unlabeled observations, the prior probabilities are scaled. The amount of scaling is decided by maximizing the harmonic mean between precision and sensitivity, which are estimated in a cross-validation using negative observations of sites known to be absent of meteorites. In the post-processing, the pixels that likely contain meteorites are clustered, resulting in several hundreds of meteorite stranding zones.

Results show that the first continent-wide meteorite stranding zone classification is ca. 70-80% accurate (first estimate, based on independent test data). The post-processed results reveal the existence of major unexplored meteorite stranding zones, some of which are in close proximity to existing research stations. The quest to collect the meteorites remaining at the surface of the ice sheet, the number of which is estimated to exceed those already collected to date, will greatly benefit from our newly provided meteorite map.

How to cite: Tollenaar, V., Zekollari, H., Lhermitte, S., Tax, D., Debaille, V., Goderis, S., Claeys, P., and Pattyn, F.: A data-driven approach in the search for Antarctic meteorites, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9530, https://doi.org/10.5194/egusphere-egu21-9530, 2021.

EGU21-10852 | vPICO presentations | CR2.5

Glacier Clusters identification across Chilean Andes using Topo-Climatic variables

Alexis Caro, Fernando Gimeno, Antoine Rabatel, Thomas Condom, and Jean Carlos Ruiz

This study presents a glacier clustering for the Chilean Andes (17.6-55.4°S) realized with the Partitioning Around Medoids (PAM) algorithm and using topographic and climatic variables over the 1980-2019 period. We classified ~24,000 glaciers inside thirteen different clusters (C1 to C13). These clusters show specific conditions in terms of annual and monthly amounts of precipitation, temperature, and solar radiation. In the Northern part of Chile, the Dry Andes (17-36°S) gather five clusters (C1-C5) that display mean annual precipitation and temperature differences up to 400 mm/yr and 8°C, respectively, and a mean elevation difference reaching 1800 m between glaciers in C1 and C5 clusters. In the Wet Andes (36-56°S) the highest differences were observed at the Southern Patagonia Icefield (50°S), with mean annual values for precipitation above 3700 mm/yr (C12, maritime conditions) and below 1000 mm/yr in the east of Southern Patagonia Icefield (C10), and with a difference in mean annual temperature near 4°C and mean elevation contrast of 500 m.

This classification confirms that Chilean glaciers cannot be grouped only latitudinally as it has been commonly considered, hence contributing to a better understanding of recent glacier volume changes at regional and watershed scales. An example of this was observed in the Maipo watershed (33°S), where the Echaurren Norte glacier is located, which is the reference glacier for Chile and WGMS because it has the oldest time series of mass balance monitoring in the Andes, followed by the Piloto Este glacier, since the 70's. Indeed, we identified that Echaurren Norte glacier only has similarities with 5% of the glacierized surface area of the Maipo watershed. Echaurren Norte glacier is within a glacier cluster that presents warmer and wetter climate conditions (3.1°C, 574 mm/yr) than the average of the watershed, a cluster that contains also 68% of the glacierized surface composed of rock glaciers.

How to cite: Caro, A., Gimeno, F., Rabatel, A., Condom, T., and Ruiz, J. C.: Glacier Clusters identification across Chilean Andes using Topo-Climatic variables, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10852, https://doi.org/10.5194/egusphere-egu21-10852, 2021.

EGU21-11280 | vPICO presentations | CR2.5

Tapping the Potential of Earth Observation - Calving Front Detection in SAR Images using Deep Learning Techniques

Nora Gourmelon, Thorsten Seehaus, AmirAbbas Davari, Matthias Braun, Andreas Maier, and Vincent Christlein

The calving fronts of lake or marine terminating glaciers provide information about the state of glaciers. A change in its position can affect the flow of the entire glacier system, and the loss of ice mass as icebergs calve-off and discharge into the ocean has a multi-scale impact on the global hydrological cycle. The calving fronts can be manually delineated in Synthetic Aperture Radar (SAR) images. However, this is a time-consuming, tedious and expensive task. As deep learning approaches have achieved tremendous success in various disciplines, such as medical image processing and computer vision, the project Tapping the Potential of Earth Observation (TAPE) is amongst other things dedicated to applying deep learning techniques to calving front detection. So far, all our experiments have employed U-Net based architectures, as the U-Net is state-of-the-art in semantic image segmentation. A major challenge of front detection is the class imbalance: The front has significantly fewer pixels than the remaining parts of the SAR image. Hence, we developed variants of the U-Net specifically addressing this challenge including an Attention U-Net, a probabilistic Bayesian U-Net, as well as a U-Net with a distance map-based binary cross-entropy (BCE) loss function and a Mathews correlation coefficient (MCC) as early stopping criterion. In future work, we plan to investigate multi-task learning and a segmentation of the SAR image into different classes (i.e. ocean, glacier and rocks) to enhance the quality and efficiency of the front detection.

How to cite: Gourmelon, N., Seehaus, T., Davari, A., Braun, M., Maier, A., and Christlein, V.: Tapping the Potential of Earth Observation - Calving Front Detection in SAR Images using Deep Learning Techniques, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11280, https://doi.org/10.5194/egusphere-egu21-11280, 2021.

EGU21-11462 | vPICO presentations | CR2.5

A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations

William Gregory, Isobel Lawrence, and Michel Tsamados

Observations of sea ice freeboard from satellite radar altimeters are crucial in the derivation of sea ice thicknessestimates, which in turn inform on sea ice forecasts, volume budgets, and productivity rates. Current spatio-temporalresolution of radar freeboard is limited as 30 days are required in order to generate pan-Arctic coverage fromCryoSat-2, or 27 days from Sentinel-3 satellites. This therefore hinders our ability to understand physical processesthat drive sea ice thickness variability on sub-monthly time scales. In this study we exploit the consistency betweenCryoSat-2, Sentinel-3A and Sentinel-3B radar freeboards in order to produce daily gridded pan-Arctic freeboardestimates between December 2018 and April 2019. We use the Bayesian inference approach of Gaussian Process Regressionto learn functional mappings between radar freeboard observations in space and time, and to subsequently retrievepan-Arctic freeboard, as well as uncertainty estimates. The estimated daily fields are, on average across the 2018-2019season, equivalent to CryoSat-2 and Sentinel-3 freeboards to within 2 mm, and cross-validation experiments show thaterrors in predictions are, on average, within 3 mm across the same period. This method presents as a robust frameworkwhich can be used to model a wide range of statistical problems, from interpolation of altimetry data sets, to timeseries forecasting.

How to cite: Gregory, W., Lawrence, I., and Tsamados, M.: A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11462, https://doi.org/10.5194/egusphere-egu21-11462, 2021.

Excess ice can be found in the form of massive ice and within icy sediments and is an important variable to quantify as it strongly influences the geomorphic response of landscapes to permafrost thaw. The melting of excess ice in the Western Canadian Arctic has led to thaw subsidence and an increase in the number and size of thaw slumps observed across the Northwest Territories which cause issues to Northern infrastructure and affect fluvial and lacustrine watersheds. The Inuvik-Tuktoyaktuk Highway (ITH) is the first all-weather road to reach the Canadian Arctic Coast and its planning and construction has resulted in a significant cryostratigraphic dataset of 566 boreholes, which forms the basis of this contribution. Although visible ice is often recorded in boreholes, it is not a reliable measure of excess ice content on its own and there is currently no reliable method to estimate the excess ice content of boreholes based on commonly available geotechnical data. In this study, a 16-borehole subset of the ITH dataset for which samples were processed for volumetric excess ice content is used to train a beta regression model that predicts the excess ice content of stratigraphic intervals in the study area based on interval depth, visible ice content, surficial geology, and material types. The resulting predictions are compared to recorded massive ice intervals in the same boreholes and show that excess ice within icy sediments can significantly contribute to potential thaw strain and should be considered alongside massive ice when making thaw strain estimates.

How to cite: Castagner, A., Gruber, S., and Brenning, A.: Vertical distribution of excess ice in icy sediments and its statistical estimation from geotechnical data (Tuktoyaktuk Coastlands, Northwest Territories), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14048, https://doi.org/10.5194/egusphere-egu21-14048, 2021.

EGU21-14245 | vPICO presentations | CR2.5

Data-Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics-Informed Neural Networks

Bryan Riel, Brent Minchew, and Tobias Bischoff

Reliable projections of sea level rise depend on accurate representations of how fast-flowing glaciers slip along their beds. Specifically, ice sheet models require a quantitative sliding law that relates basal drag to sliding velocity and glacier geometry, yet the proper form of the law remains uncertain. Here, we present a novel deep learning-based framework for learning the time evolution of basal drag from time-dependent ice surface velocity and elevation observations. We train a pair of probabilistic neural networks through a combination of time-dependent surface observations, governing equations for ice flow, and known physical constraints. Neural network outputs are stochastic predictions of time-varying basal drag that do not require any prior assumptions on the form of the sliding law. This training strategy is well-suited to large volumes of remote sensing data while providing a natural way to integrate our existing understanding of the physics of ice flow into the learning process.

We test this framework on 1D and 2D ice flow simulations and demonstrate that, under certain stress conditions, recovery of the underlying sliding law parameters and their uncertainties can be derived from the stochastic predictions of time-varying basal drag. We also apply these methods to Rutford Ice Stream and Pine Island Glacier in Antarctica to investigate subglacial hydrological effects for the former and evidence for regularized Coulomb sliding for the latter.

How to cite: Riel, B., Minchew, B., and Bischoff, T.: Data-Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics-Informed Neural Networks, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14245, https://doi.org/10.5194/egusphere-egu21-14245, 2021.

EGU21-14317 | vPICO presentations | CR2.5

Calibration of sea ice drift forecasts using random forest algorithms

Cyril Palerme and Malte Müller

There is a growing demand for accurate sea-ice forecasts in the Arctic due to increasing maritime traffic. Although the capabilities of numerical models steadily improve, sea-ice forecasts produced by numerical prediction systems are affected by biases. In order to reduce forecast errors, statistical methods can be used for calibration.

In this study, two calibration methods have been developed for calibrating sea-ice drift forecasts from an operational prediction system (TOPAZ4) in the Arctic. These methods are based on random forest algorithms, a machine learning technique suitable for assessing non-linear relationships between a set of predictors and a target variable. While all the algorithms developed in this study use the same set of predictors, two set of algorithms have been developed using either buoy or synthetic-aperture radar (SAR) observations for the target variable. Furthermore, different algorithms have been developed for predicting the direction and the speed of sea-ice drift, as well as for different lead times. The random forest algorithms use predictor variables from sea-ice concentration observations during the initialization of the forecasts, sea-ice forecasts from the TOPAZ4 prediction system, wind forecasts from the European Centre for Medium-Range Weather Forecasts, and some geographical information.

The performances of the calibrated forecasts have been evaluated and compared to those from the TOPAZ4 forecasts using buoy observations from the International Arctic Buoy Programme. Depending on the calibration method, the mean absolute error is reduced, on average, between 5.9 % and 8.1 % for the direction, and between 7.1 % and 9.6 % for the speed of sea-ice drift. However, there is a large spatial variability in the performances of these algorithms, and the random forest algorithms have particularly poor performances in the Canadian Archipelago, an area characterized by narrow channels and the presence of landfast ice.

How to cite: Palerme, C. and Müller, M.: Calibration of sea ice drift forecasts using random forest algorithms, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14317, https://doi.org/10.5194/egusphere-egu21-14317, 2021.

EGU21-14561 | vPICO presentations | CR2.5 | Highlight

Gaussian Process emulation of multi-model ice sheet and glacier projections

Tamsin Edwards and the ISMIP6 and GlacierMIP projects and friends

The land ice contribution to global mean sea level rise has not yet been predicted with ice sheet and glacier models for the latest set of socio-economic scenarios (SSPs), nor with coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects (ISMIP6 and GlacierMIP) generated a large suite of projections using multiple models, but mostly used previous generation scenarios and climate models, and could not fully explore known uncertainties.

Here we estimate probability distributions for these projections for the SSPs using Gaussian Process emulation of the ice sheet and glacier model ensembles. We model the sea level contribution as a function of global mean surface air temperature forcing and (for the ice sheets) model parameters, with the 'nugget' allowing for multi-model structural uncertainty. Approximate independence of ice sheet and glacier models is assumed, because a given model responds very differently under different setups (such as initialisation).

We find that limiting global warming to 1.5°C would halve the land ice contribution to 21st century sea level rise, relative to current emissions pledges: the median decreases from 25 to 13 cm sea level equivalent (SLE) by 2100. However, the Antarctic contribution does not show a clear response to emissions scenario, due to competing processes of increasing ice loss and snowfall accumulation in a warming climate.

However, under risk-averse (pessimistic) assumptions for climate and Antarctic ice sheet model selection and ice sheet model parameter values, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 cm SLE under current policies and pledges, with the 95th percentile exceeding half a metre even under 1.5°C warming.

Gaussian Process emulation can therefore be a powerful tool for estimating probability density functions from multi-model ensembles and testing the sensitivity of the results to assumptions.

How to cite: Edwards, T. and the ISMIP6 and GlacierMIP projects and friends: Gaussian Process emulation of multi-model ice sheet and glacier projections, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14561, https://doi.org/10.5194/egusphere-egu21-14561, 2021.

EGU21-14968 | vPICO presentations | CR2.5

Collocated OLCI optical imagery and SAR radar altimetry from Sentinel3 for enhanced sea ice surface classification

Dorsa Nasrollahi Shirazi, Michel Tsamados, Isobel Lawrence, Sanggyun Lee, Thomas Johnson, Claude De Rijke-Thomas, Jack Landy, David Brockley, and Ryan Nichol

The Copernicus operational Sentinel-3A since February 2016 and Sentinel-3B since April 2018 build on the CryoSat-2 legacy in terms of their synthetic aperture radar (SAR) mode altimetry providing high-resolution radar freeboard elevation data over the polar regions up to 81N. This technology combined with the Ocean and Land Colour Instrument (OLCI) imaging spectrometer offers the first space-time collocated optical imagery and radar altimetry dataset. We use these joint datasets for validation of several existing surface classification algorithms based on Sentinel-3 altimeter echo shapes. We also explore the potential for novel AI techniques such as convolutional neural networks (CNN) for winter and summer sea ice surface classification (i.e. melt pond fraction, lead fraction, sea ice roughness). For lead surface classification we analyse the winters of 2018/19 and 2019/20 and for summer sea ice feature classification we focus on the Sentinel-3A &3B tandem phase of the summer 2018. We compare our CNN models with other existing surface classification algorithms.

How to cite: Nasrollahi Shirazi, D., Tsamados, M., Lawrence, I., Lee, S., Johnson, T., De Rijke-Thomas, C., Landy, J., Brockley, D., and Nichol, R.: Collocated OLCI optical imagery and SAR radar altimetry from Sentinel3 for enhanced sea ice surface classification, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14968, https://doi.org/10.5194/egusphere-egu21-14968, 2021.

EGU21-15039 | vPICO presentations | CR2.5 | Highlight

Dense Glacial Termini Time Series Analysis: Insights from Calving Front Machine (CALFIN)

Daniel Cheng, Eric Larour, and Wayne Hayes

Sea level contributions from the Greenland Ice Sheet are influenced by the rapid changes in glacial terminus positions. While manual delineation is labor intensive, recent developments in the field of automated calving front extraction have allowed for high spatio-temporal resolution analysis of Greenlandic glaciers. Specifically, we analyze new developments and results from the Calving Front Machine (CALFIN). CALFIN uses machine learning in the form of deep neural networks to automatically generate 25,000+ calving front positions from 1972 to 2020 across 80+ Greenlandic basins, using Landsat and Sentinel-1 imagery. With this data, we perform a correlative analysis between area changes, centerline length changes, discharge, thickness, bed topography, and temperature, among others. Trends on the local and regional scales are examined for insights in conjunction with existing studies in the field. Ultimately, the current implementation offers a new opportunity to explore trends on the extent of Greenland's margins, and supplies new constraints for simulations of the evolution of the mass balance of the Greenland Ice Sheet and its contributions to future sea level rise. We welcome any critiques, suggestions, or questions regarding the dataset and/or our methods. This work was conducted as a collaboration between NASA’s Jet Propulsion Laboratory and the University of California, Irvine.

How to cite: Cheng, D., Larour, E., and Hayes, W.: Dense Glacial Termini Time Series Analysis: Insights from Calving Front Machine (CALFIN), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15039, https://doi.org/10.5194/egusphere-egu21-15039, 2021.

EGU21-15046 | vPICO presentations | CR2.5

Statistical modelling of extreme temperatures on the Greenland Ice Sheet

Daniel Clarkson, Emma Eastoe, and Amber Leeson

The Greenland ice sheet has experienced significant melt over the past 6 decades, with extreme melt events covering large areas of the ice sheet. Melt events are typically analysed using summary statistics, but the nature and characteristics of the events themselves are less frequently analysed. Our work aims to examine melt events from a statistical perspective by modelling 20 years of MODIS surface temperature data with a Spatial Conditional Extremes model. We use a Gaussian mixture model for the distribution of temperatures at each location with separate model components for ice and meltwater temperatures. This is used as a marginal model in the full spatial model and gives a more location-specific threshold to define melt at each location. The fitted model allows us to simulate melt events given that we observe an extreme temperature at a particular location, allowing us to analyse the size and magnitude of melt events across the ice sheet.

How to cite: Clarkson, D., Eastoe, E., and Leeson, A.: Statistical modelling of extreme temperatures on the Greenland Ice Sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15046, https://doi.org/10.5194/egusphere-egu21-15046, 2021.

EGU21-15193 | vPICO presentations | CR2.5

Convolutional Neural Networks for Sea Ice Concentration Charting for Maritime Navigation in the Arctic

Andreas Stokholm, Leif Pedersen, René Forsberg, and Sine Hvidegaard

In recent years the Arctic has seen renewed political and economic interest, increased maritime traffic and desire for improved sea ice navigational tools. Despite a rise in digital technology, maps of sea ice concentration used for Arctic maritime operations are still today created by humans manually interpreting radar images. This process is slow with low map release frequency, uncertainties up to 20 % and discrepancies up to 60 %. Utilizing emerging AI Convolutional Neural Network (CNN) semantic image segmentation techniques to automate this process is drastically changing navigation in the Arctic seas, with better resolution, accuracy, release frequency and coverage. Automatic Arctic sea ice products may contribute to enabling the disruptive Northern Sea Route connecting North East Asia to Europe via the Arctic oceans.

The AI4Arctic/ASIP V2 data set, that combines 466 Sentinel-1 HH and HV SAR images from Greenland, Passive Microwave Radiometry from the AMSR2 instrument, and an equivalent sea ice concentration chart produced by ice analysts at the Danish Meteorological Institute, have been used to train a CNN U-Net Architecture model. The model shows robust capabilities in producing highly detailed sea ice concentration maps with open water, intermediate sea ice concentrations as well as full sea ice cover, which resemble those created by professional sea ice analysts. Often cited obstacles in automatic sea ice concentration models are wind-roughened sea ambiguities resembling sea ice. Final inference scenes show robustness towards such ambiguities.

How to cite: Stokholm, A., Pedersen, L., Forsberg, R., and Hvidegaard, S.: Convolutional Neural Networks for Sea Ice Concentration Charting for Maritime Navigation in the Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15193, https://doi.org/10.5194/egusphere-egu21-15193, 2021.

EGU21-15637 | vPICO presentations | CR2.5

A Comparison of Machine Learning Algorithms for the Segmentation and Classification of Snow Micro Penetrometer Profiles on Arctic Sea Ice

Julia Kaltenborn, Viviane Clay, Amy R. Macfarlane, Joshua Michael Lloyd King, and Martin Schneebeli

Snow-layer classification is an essential diagnostic task for a wide variety of cryospheric science and climate research applications. Traditionally, these measurements are made in snow pits, requiring trained operators and a substantial time commitment. The SnowMicroPen (SMP), a portable high-resolution snow penetrometer, has been demonstrated as a capable tool for rapid snow grain classification and layer type segmentation through statistical inversion of its mechanical signal. The manual classification of the SMP profiles requires time and training and becomes infeasible for large datasets.

Here, we introduce a novel set of SMP measurements collected during the MOSAiC expedition and apply Machine Learning (ML) algorithms to automatically classify and segment SMP profiles of snow on Arctic sea ice. To this end, different supervised and unsupervised ML methods, including Random Forests, Support Vector Machines, Artificial Neural Networks, and k-means Clustering, are compared. A subsequent segmentation of the classified data results in distinct layers and snow grain markers for the SMP profiles. The models are trained with the dataset by King et al. (2020) and the MOSAiC SMP dataset. The MOSAiC dataset is a unique and extensive dataset characterizing seasonal and spatial variation of snow on the central Arctic sea-ice.

We will test and compare the different algorithms and evaluate the algorithms’ effectiveness based on the need for initial dataset labeling, execution speed, and ease of implementation. In particular, we will compare supervised to unsupervised methods, which are distinguished by their need for labeled training data.

The implementation of different ML algorithms for SMP profile classification could provide a fast and automatic grain type classification and snow layer segmentation. Based on the gained knowledge from the algorithms’ comparison, a tool can be built to provide scientists from different fields with an immediate SMP profile classification and segmentation. 

 

King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., & Beckers, J. (2020). Local-scale variability of snow density on Arctic sea ice. The Cryosphere, 14(12), 4323-4339, https://doi.org/10.5194/tc-14-4323-2020.

How to cite: Kaltenborn, J., Clay, V., Macfarlane, A. R., King, J. M. L., and Schneebeli, M.: A Comparison of Machine Learning Algorithms for the Segmentation and Classification of Snow Micro Penetrometer Profiles on Arctic Sea Ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15637, https://doi.org/10.5194/egusphere-egu21-15637, 2021.

EGU21-15914 | vPICO presentations | CR2.5

Deep learning based F-Mask alternative for Sentinel-2 images in polar regions

Thorsten Seehaus, Kamal Gopikrishnan Nambiar, Veniamin Morgenshtern, Philipp Hochreuther, and Matthias Braun
Screening clouds, cloud shadows, and snow is a critical pre-processing step that needs to be performed before any meaningful analysis can be done on satellite image data. The state of the art 'F-Mask' algorithm, which is based on multiple pixel-level threshold tests, segments the image into clear land, cloud, cloud shadow, snow, and water classes. However, we observe that the results of this algorithm are not very accurate in polar and tundra regions. The unavailability of labeled Sentinel-2 training datasets with these classes makes the traditional supervised machine learning techniques difficult to implement. Experiments with large, noisy training data on standard deep learning classification tasks like CIFAR-10 and ImageNet have shown neural networks learn clean labels faster than noisy labels. 
We present a multi-level self-learning approach that trains a model to perform semantic segmentation on Sentinel-2 L1C images. We use a large dataset with labels annotated using the F-mask algorithm for the training, and a small human-labeled dataset for validation. The validation dataset contains numerous examples where the F-mask classification would have given incorrect labels. At the first step, a deep neural network with a modified U-Net architecture is trained using a dataset automatically labeled with the F-mask algorithm. The performance on the validation dataset is used to select the best model from the step, which would then be used to generate more training labels from previously unseen data. In each of the subsequent steps, a new model is trained using the labels generated using the model from the previous step. The amount of data used for training increases with each step and the application of techniques like data augmentation and dropout improves the generalization of the trained model. We show that the final model from our approach can outperform its teacher, i.e. F-Mask algorithm. 

How to cite: Seehaus, T., Gopikrishnan Nambiar, K., Morgenshtern, V., Hochreuther, P., and Braun, M.: Deep learning based F-Mask alternative for Sentinel-2 images in polar regions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15914, https://doi.org/10.5194/egusphere-egu21-15914, 2021.

EGU21-15981 | vPICO presentations | CR2.5 | Highlight

A daily to seasonal Arctic sea ice forecasting AI

Tom R. Andersson, J. Scott Hosking, Eleanor Krige, Maria Pérez-Ortiz, Brooks Paige, Andrew Elliott, Chris Russell, Stephen Law, Daniel C. Jones, Jeremy Wilkinson, Tony Phillips, Steffen Tietsche, Beena Balan Sarojini, Ed Blanchard-Wrigglesworth, Yevgeny Aksenov, and Rod Downie

Arctic sea ice forecasting is a major scientific effort with fundamental challenges at play. To address such challenges, we have developed a physics-informed, data-driven sea ice forecasting system, IceNet, which outperformed a leading dynamical model (ECMWF SEAS5) in monthly-averaged forecasts of pan-Arctic sea ice concentration. IceNet adopted a U-Net deep learning architecture and was trained on over 2,000 years of CMIP6 climate simulation data. Despite its state-of-the-art seasonal forecasting skill at lead times of 2-6 months, IceNet has two main limitations. First, it could not outperform the dynamical model in short-range (1-month) forecasts. This is partly caused by IceNet operating on monthly-averages, which smears the initial conditions and weather phenomena that can dominate predictability at short time scales. Second, IceNet is afflicted by the ‘spring predictability barrier’ that affects all long range forecasts of summer. This predictability barrier arises primarily due to the importance of melt-season ice thickness conditions on summer sea ice. Here we present our early findings from IceNet2, which attempts to alleviate these issues by operating on daily-averages and including sea ice thickness as an input variable. IceNet2 paves the way for our efforts to aid the Arctic conservation community by developing the first public, operational sea ice forecasting AI.

How to cite: Andersson, T. R., Hosking, J. S., Krige, E., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., and Downie, R.: A daily to seasonal Arctic sea ice forecasting AI, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15981, https://doi.org/10.5194/egusphere-egu21-15981, 2021.

CR3.1 – Ice-sheet and climate interactions

EGU21-8134 | vPICO presentations | CR3.1

The response of North American ice sheets to the Younger Dryas (12.9 ka to 11.7 ka) climate event

April S Dalton and Martin Margold

The response of continental ice sheets to late glacial climate fluctuations (Bølling warming, Younger Dryas cooling) offers key insight into the interconnectedness between ice sheets and climate. The Younger Dryas was an abrupt climate cooling event that occurred between 12.9 ka and 11.7 ka, as the Northern Hemisphere was undergoing progressive deglaciation from the last glacial maximum (~25 ka). Ice sheets in Northern Europe (Fennoscandian Ice Sheet) underwent a significant re-advance at that time. However, the reaction of North American ice sheets (Laurentide, Cordilleran, Innuitian; which comprise the largest ice mass in the Northern Hemisphere at the time) to Younger Dryas cooling is not well understood. Some localized studies have shown evidence of ice re-advance or stagnation corresponding to the Younger Dryas; however, no large-scale, unifying study of the impact of Younger Dryas cooling on North American ice sheets has been attempted. Here, we present preliminary maps showing the response of North American ice sheets to the Younger Dryas climate event in key regions. To delineate changes in the ice margin, we integrate a geochronological dataset consisting of calibrated radiocarbon ages and cosmogenic nuclide ages, with mapping of glacial features (ie. moraines) and an extensive literature review. Results suggest a highly variable response of North American ice sheets to Younger Dryas cooling, notably a re-advance of remnant ice lobes in eastern Canada, and stagnation of the ice margin at more western sites.

How to cite: Dalton, A. S. and Margold, M.: The response of North American ice sheets to the Younger Dryas (12.9 ka to 11.7 ka) climate event, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8134, https://doi.org/10.5194/egusphere-egu21-8134, 2021.

EGU21-7211 | vPICO presentations | CR3.1

The Barents-Kara Ice Sheet response to the CMIP6-PMIP4 simulations for the LGM climate

Victor van Aalderen, Sylvie Charbit, Christophe Dumas, and Masa Kageyama

Recent observations show an acceleration of the glacier outflow in the West Antarctic ice sheet (WAIS) since the mid-1990s and an increase in calving events. Compared to the 1979-1990 period, mass loss from WAIS has been increased by a factor six between 2009 and 2017. The reduced buttressing effect from ice-shelf breakup may favour the ice flow from outlet glaciers and in turn the sea-level rise with potential noticeable consequences on human societies. However, despite continuous model improvements, large uncertainties are still present on the representation future evolution of the WAIS. The large panel of different results in the projections of the future sea-level rise stands, in part, to our misunderstanding of the process responsible for the marine ice sheet evolution. A possible approach to better constrain these processes, is to investigate past marine ice sheets, such as the Barents-Kara ice sheet (BKIS) at the Last Glacial Maximum (LGM), which can be considered, to a certain extent, as an analogue of the WAIS. Our objective is to study the processes responsible for the collapse of the BKIS during the last deglaciation. To simulate the evolution of the BKIS, we use the GRISLI ice-sheet model (20 km x 20 km) forced by different CMIP5/PMIP3 and CMIP6/PMIP4 models. We will present the response of the ice sheet to different types of atmospheric and oceanic forcing at the LGM coming from the PMIP models. This study represents a first step before studying more in depth the respective role of each climatic field but also the role of sea level rise coming from other LGM ice sheets in triggering the retreat of the BKIS at the beginning of the last deglaciation and the impacts of the dynamical processes.

How to cite: van Aalderen, V., Charbit, S., Dumas, C., and Kageyama, M.: The Barents-Kara Ice Sheet response to the CMIP6-PMIP4 simulations for the LGM climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7211, https://doi.org/10.5194/egusphere-egu21-7211, 2021.

EGU21-10208 | vPICO presentations | CR3.1

Physically-based oscillations of the Laurentide Ice Sheet under glacial conditions

Daniel Moreno, Jorge Alvarez-Solas, Alexander Robinson, Javier Blasco, Ilaria Tabone, and Marisa Montoya

The climate during the last glacial period was far from stable. Evidence has shown the presence of layers of ice-rafted debris (IRD) in deep-sea sediments, which have been interpreted to reflect quasi-periodic episodes of massive iceberg calving from the Laurentide Ice Sheet (LIS). Several mechanisms have been proposed, yet the ultimate cause of these events is still under debate. From the point of view of ice dynamics, one of the main sources of uncertainty and diversity in model response is the choice of basal friction law. Therefore, it is essential to determine the impact of basal friction in glacial transport and erosion, deposition of sediments and ice streams. Here we study the effect of a wide range of basal friction parameters and laws under glacial conditions over the LIS by running ensembles of simulations using a higher-order ice-sheet model. Importantly, the potential feedbacks between basal hydrology and thermodynamics are also considered to shed light on the behaviour of the ice flow. Our aim is to determine under what conditions, if any, physically-based oscillations are possible in the LIS with constant boundary conditions. Increasing our understanding of both basal friction laws and basal hydrology will improve not only reconstructions of paleo ice dynamics but also help to constrain the potential future evolution of current ice sheets.

How to cite: Moreno, D., Alvarez-Solas, J., Robinson, A., Blasco, J., Tabone, I., and Montoya, M.: Physically-based oscillations of the Laurentide Ice Sheet under glacial conditions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10208, https://doi.org/10.5194/egusphere-egu21-10208, 2021.

EGU21-13538 | vPICO presentations | CR3.1

Impact of mid-glacial ice sheets on deep ocean circulation and global climate

Sam Sherriff-Tadano, Ayako Abe-Ouchi, and Akira Oka

This study explores the effect of southward expansion of Northern Hemisphere (American) mid-glacial ice sheets on the global climate and the Atlantic Meridional Overturning Circulation (AMOC), as well as the processes by which the ice sheets modify the AMOC. For this purpose, simulations of Marine Isotope Stage (MIS) 3 (36ka) and 5a (80ka) are performed with an atmosphere-ocean general circulation model. In the MIS3 and MIS5a simulations, the global average temperature decreases by 5.0 °C and 2.2 °C, respectively, compared with the preindustrial climate simulation. The AMOC weakens by 3% in MIS3, whereas it strengthens by 16% in MIS5a, both of which are consistent with an estimate based on 231Pa/230Th. Sensitivity experiments extracting the effect of the southward expansion of glacial ice sheets from MIS5a to MIS3 show a global cooling of 1.1 °C, contributing to about 40% of the total surface cooling from MIS5a to MIS3. These experiments also demonstrate that the ice sheet expansion leads to a surface cooling of 2 °C over the Southern Ocean as a result of colder North Atlantic deep water. We find that the southward expansion of the mid-glacial ice sheet exerts a small impact on the AMOC. Partially coupled experiments reveal that the global surface cooling by the glacial ice sheet tends to reduce the AMOC by increasing the sea ice at both poles, and hence compensates for the strengthening effect of the enhanced surface wind over the North Atlantic. Our results show that the total effect of glacial ice sheets on the AMOC is determined by the two competing effects, surface wind and surface cooling. The relative strength of surface wind and surface cooling effects depends on the ice sheet configuration, and the strength of the surface cooling can be comparable to that of surface wind when changes in the extent of ice sheet are prominent.

How to cite: Sherriff-Tadano, S., Abe-Ouchi, A., and Oka, A.: Impact of mid-glacial ice sheets on deep ocean circulation and global climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13538, https://doi.org/10.5194/egusphere-egu21-13538, 2021.

EGU21-4051 | vPICO presentations | CR3.1

Identifying drivers controlling the synchronicity of Heinrich-type ice sheet surges from the European and North American ice sheets

Clemens Schannwell, Marie-Luise Kapsch, Uwe Mikolajewicz, and Florian Ziemen

Heinrich-type ice sheet surge events are among the most prominent signals in the paleoclimate data records. Even though these events have previously been intensely studied, it still remains an open question whether the cyclic ice sheet surges are triggered by internal ice dynamics, climate forcing, or a combination of the two. In simulations of the last deglaciation using the fully-coupled Max Planck Institute Earth System Model, surges from the European and North American ice sheets often occur in synchronicity. This model behaviour is in agreement with observations from sediment cores that find a similar pattern in the isotopic fingerprint of the deposited ice-rafted detritus. The synchronicity indicates that climate forcing is playing an important role in initiating ice sheet surges. In this study, we use the coupled ice-sheet-solid earth model PISM-VILMA in a northern hemispheric setup to investigate the modelled synchronicity of the surge events. More specifically, we perform an ensemble of simulations to study if the modelled synchronicity is a direct result of one of the surge locations causing other surge locations to be a activated as well. Moreover, we aim to investigate whether previously suggested trigger mechanisms such as regional changes in sea level or ocean temperatures are indeed key processes in controlling the synchronicity of these surge events.

How to cite: Schannwell, C., Kapsch, M.-L., Mikolajewicz, U., and Ziemen, F.: Identifying drivers controlling the synchronicity of Heinrich-type ice sheet surges from the European and North American ice sheets, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4051, https://doi.org/10.5194/egusphere-egu21-4051, 2021.

EGU21-12910 | vPICO presentations | CR3.1

Geochemical evidence of a floating Arctic ice sheet and underlying freshwater in the Arctic Mediterranean in glacial periods

Walter Geibert, Jens Matthiessen, Ingrid Stimac, Jutta Wollenburg, and Ruediger Stein

Numerous studies have addressed the possible existence of large floating ice sheets in the glacial Arctic Ocean from theoretical, modelling, or seafloor morphology perspectives. Here, we add evidence from the sediment record that support the existence of such freshwater ice caps in certain intervals, and we discuss their implications for possible non-linear and rapid behaviour of such a system in the high latitudes.

We present sedimentary activities of 230Th together with 234U/238U ratios, the concentrations of manganese, sulphur and calcium in the context of lithological information and records of microfossils and their isotope composition. New analyses (PS51/038, PS72/396) and a re-analysis of existing marine sediment records (PS1533, PS1235, PS2185, PS2200, amongst others) in view of the naturally occurring radionuclide 230Thex and, where available, 10Be from the Arctic Ocean and the Nordic Seas reveal the widespread occurrence of intervals with a specific geochemical signature. The pattern of these parameters in a pan-Arctic view can best be explained when assuming the repeated presence of freshwater in frozen and liquid form across large parts of the Arctic Ocean and the Nordic Seas.

Based on the sedimentary evidence and known environmental constraints at the time, we develop a glacial scenario that explains how these ice sheets, together with eustatic sea-level changes, may have affected the past oceanography of the Arctic Ocean in a fundamental way that must have led to a drastic and non-linear response to external forcing.

This concept offers a possibility to explain and to some extent reconcile contrasting age models for the Late Pleistocene in the Arctic Ocean. Our view, if adopted, offers a coherent dating approach across the Arctic Ocean and the Nordic Seas, linked to events outside the Arctic.

How to cite: Geibert, W., Matthiessen, J., Stimac, I., Wollenburg, J., and Stein, R.: Geochemical evidence of a floating Arctic ice sheet and underlying freshwater in the Arctic Mediterranean in glacial periods, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12910, https://doi.org/10.5194/egusphere-egu21-12910, 2021.

EGU21-8237 | vPICO presentations | CR3.1

Are Cryosphere-Driven Feedbacks a Requisite for Abrupt Climate Events? (Site U610, DSDP Leg. 94)

Dakota Holmes, David De Vleeschouwer, and Audrey Morley

Abrupt climate events are important features of glacial climate scales on centennial and millennial timescales. These events' mechanistic trigger is often ascribed to either ice sheet-related feedback mechanisms or large freshwater pulses. In both cases, amplification occurs when these triggers bear upon the Atlantic Meridional Overturning Circulation (AMOC). However, the focus on glacial climate states in abrupt climate change research has led to an underrepresentation of research into interglacial periods. It thus remains unclear whether high-magnitude climate variability requires large cryosphere-driven feedbacks or whether it can also occur under low ice conditions. Using sediment core DSDP U610B (53°13.297N, 18°53.213W) located in the Rockall Trough, we present a high-resolution analysis of surface and deep water components of the AMOC spanning the transition from Marine Isotope Stage (MIS) 19.3 to 19.1 to test if orbital boundary conditions similar to our current Holocene can accommodate abrupt climate events. Above the core site, the dominant oceanographic feature is the North Atlantic Current and at 2417-m water depth, U610 is influenced by Wyville Thomson Overflow Water flowing southwards. We utilise a multiproxy approach including paired grain size analysis, planktic foraminifera assemblage counts, and ice-rafted debris counts within the same samples allowing us to resolve the timing between both surface and bottom components of the AMOC and their response to abrupt climate events during MIS-19 in the eastern subpolar gyre. We also present for the first time a new splice and composite depth scale for Site U610. Based on preliminary results, rapid shifts in both deep overflow and surface climate characterise this period.

How to cite: Holmes, D., De Vleeschouwer, D., and Morley, A.: Are Cryosphere-Driven Feedbacks a Requisite for Abrupt Climate Events? (Site U610, DSDP Leg. 94), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8237, https://doi.org/10.5194/egusphere-egu21-8237, 2021.

EGU21-9846 | vPICO presentations | CR3.1

Modelled Holocene thinning in Greenland improved by new developed transient past climatologies.

Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, Javier Blasco, Daniel Moreno, and Marisa Montoya

Reconstructions of Greenland Summit elevation changes indicate at least 150 m of surface thinning since the onset of the Holocene. Even higher thinning values are found at locations closer to the ice-sheet margin, where the influence of higher ablation rates and ocean-induced retreat is greater. Interestingly, the performance of 3D ice-sheet models in representing such elevation changes is generally poor, even though they can reasonably reproduce the state of the ice sheet at different times, such as the last glacial maximum (LGM) or the present day. The reasons behind this data-model mismatch are still unclear. Here we use a recently developed 3D ice-sheet-shelf model to test the impact of different model parameters and of boundary conditions on simulating the Greenland ice sheet evolution through the last deglaciation to today. Specifically, we investigate the role of past climatologies in reproducing the elevation changes at ice core sites when used to force the ice-sheet model. By applying recently developed transient deglacial climatologies we can investigate the ice-sheet deglaciation with exceptional detail. Results support the need of additional transient climatologies to be released to ensure a robust description of the Greenland retreat history throughout the Holocene. 

How to cite: Tabone, I., Robinson, A., Alvarez-Solas, J., Blasco, J., Moreno, D., and Montoya, M.: Modelled Holocene thinning in Greenland improved by new developed transient past climatologies., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9846, https://doi.org/10.5194/egusphere-egu21-9846, 2021.

EGU21-1367 | vPICO presentations | CR3.1

An assessment of basal melting parameterisations for Antarctic ice shelves

Clara Burgard and Nicolas Jourdain

Ocean-induced melting at the base of ice shelves is one of the main drivers of the currently observed mass loss of the Antarctic Ice Sheet. A good understanding of the interaction between ice and ocean at the base of the ice shelves is therefore crucial to understand and project the Antarctic contribution to global sea-level rise. 

Due to the high difficulty to monitor these regions, our understanding of the processes at work beneath ice shelves is limited. Still, several parameterisations of varying complexity have been developed in past decades to describe the ocean-induced sub-shelf melting. These parameterisations can be implemented into standalone ice-sheet models, for example when conducting long-term projections forced with climate model output.

An assessment of the performance of these parameterisations was conducted in an idealised setup (Favier et al, 2019). However, the application of the better-performing parameterisations in a more realistic setup (e.g. Jourdain et al., 2020) has shown that individual adjustments and corrections are needed for each ice shelf.

In this study, we revisit the assessment of the parameterisations, this time in a more realistic setup than previous studies. To do so, we apply the different parameterisations on several ice shelves around Antarctica and compare the resulting melt rates to satellite and oceanographic estimates. Based on this comparison, we will refine the parameters and propose an approach to reduce uncertainties in long-term sub-shelf melting projections.

References
- Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. 
- Jourdain, N. C., Asay-Davis, X., Hattermann, T., Straneo, F., Seroussi, H., Little, C. M., and Nowicki, S.: A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, 2020. 

How to cite: Burgard, C. and Jourdain, N.: An assessment of basal melting parameterisations for Antarctic ice shelves, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1367, https://doi.org/10.5194/egusphere-egu21-1367, 2021.

EGU21-2084 | vPICO presentations | CR3.1

Greenland land-terminating glaciers velocity trends during the last two decades

Paul Halas, Jeremie Mouginot, Basile de Fleurian, and Petra Langebroek

Ice losses from the Greenland Ice Sheet have been increasing in the last two decades, leading to a larger contribution to the global sea level rise. Roughly 40% of the contribution comes from ice-sheet dynamics, mainly regulated by basal sliding. The sliding component of glaciers has been observed to be strongly related to surface melting, as water can eventually reach the bed and impact the subglacial water pressure, affecting the basal sliding.  

The link between ice velocities and surface melt on multi-annual time scale is still not totally understood even though it is of major importance with expected increasing surface melting. Several studies showed some correlation between an increase in surface melt and a slowdown in velocities, but there is no consensus on those trends. Moreover those investigations only presented results in a limited area over Southwest Greenland.  

Here we present the ice motion over many land-terminating glaciers on the Greenland Ice Sheet for the period 2000 - 2020. This type of glacier is ideal for studying processes at the interface between the bed and the ice since they are exempted from interactions with the sea while still being relevant for all glaciers since they share the same basal friction laws. The velocity data was obtained using optical Landsat 7 & 8 imagery and feature-tracking algorithm. We attached importance keeping the starting date of our image pairs similar, and avoided stacking pairs starting before and after melt seasons, resulting in multiple velocity products for each year.  

Our results show similar velocity trends for previously studied areas with a slowdown until 2012 followed by an acceleration. This trend however does not seem to be observed on the whole ice sheet and is probably specific to this region’s climate forcing. 

Moreover comparison between ice velocities from different parts of Greenland allows us to observe the impact of different climatic trends on ice dynamics.

How to cite: Halas, P., Mouginot, J., de Fleurian, B., and Langebroek, P.: Greenland land-terminating glaciers velocity trends during the last two decades, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2084, https://doi.org/10.5194/egusphere-egu21-2084, 2021.

EGU21-9686 | vPICO presentations | CR3.1

Stability of current Antarctica grounding lines

Benoît Urruty, Olivier Gagliardini, and Fabien Gillet-Chaulet

Global warming has a huge impact on the different climatic components. In Antarctica, small changes on the ice-sheet or the ocean may drive the continent to some large instabilities. At a certain threshold, a tipping point might be crossed and the ice-sheet might retreat faster and irreversibly. The TiPACCs (Tipping Points in Antarctic Climate Components) project aims to a better understanding of the tipping points of Antarctica, both in the ocean and in the glaciers.  3 different ice-flow models (Elmer/Ice, PISM, and Ua) are used in the project.  This study is focusing on the Elmer/Ice model to determine and characterize tipping points for its grounding lines. In this presentation, the most famous instability of Antarctica, the Marine Ice-Sheet Instability (MISI), will be investigated. The goal is to define the stability regime of the current Antarctic ice-sheet. For this purpose, multiple initial states have been created.  The Elmer/Ice model uses the inverse method as it has been done in InitMIP-Antarctica (Seroussi et al. 2019) to define initial states. A common initial state for the three TiPACCs models has been defined by the use of common datasets and parameters. The melt at the base of the ice-shelf is defined by the PICO parametrization (Reese, 2016) which permits to define the melting per basins with a box model. Then, perturbations of basalt melt are be applied by modifying the ocean far-field temperature and salinity. The stability of the current grounding line is evaluated by calculating the grounding line migration for the different ice-shelf. The experiments are driven by a small but numerically significant perturbation to observe a retreat of the grounding line. If the grounding line is moving backward when removing the perturbation, then we can conclude that it is stable. Otherwise, if the grounding line is continuing its retreat then it is unstable.

 

How to cite: Urruty, B., Gagliardini, O., and Gillet-Chaulet, F.: Stability of current Antarctica grounding lines, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9686, https://doi.org/10.5194/egusphere-egu21-9686, 2021.

EGU21-12958 | vPICO presentations | CR3.1

Multi-millennial response of the Greenland Ice Sheet to anthropogenic warming 

Michele Petrini, Miren Vizcaino, Raymond Sellevold, Laura Muntjewerf, Sotiria Georgiou, Meike D.W. Scherrenberg, William Lipscomb, and Gunter Leguy

Previous coupled climate-ice sheet modeling studies indicate that the warming threshold leading to multi-millennial, large-scale deglaciation of the Greenland Ice Sheet (GrIS) is in the range of 1.6-3.0 K above the pre-industrial climate. These studies either used an intermediate complexity RCM (Robinson et al. 2012) or a low resolution GCM (Gregory et al., 2020) coupled to a zero-order ISM. Here, we investigate the warming threshold and long-term response time of the GrIS using the higher-order Community Ice Sheet Model version 2 (CISM2, Lipscomb et al. 2019), forced with surface mass balance (SMB) calculated with the Community Earth System Model version 2 (CESM2, Danabasoglu et al. 2020). We use different forcing climatologies from a coupled CESM2/CISM2 simulation under high greenhouse gas forcing (Muntjewerf et al. 2020), where each climatology corresponds to a different global warming level in the range of 1-8.5 K above the pre-industrial climate. The SMB, which is calculated in CESM2 using an advanced energy balance scheme at multiple elevation classes (Muntjewerf et al. 2020), is downscaled during runtime to CISM2, thus allowing to account for the surface elevation feedback. In all the simulations the forcing is cycled until the ice sheet is fully deglaciated or has reached a new equilibrium. In a first set of simulations, we find that for a warming level higher than 5.2 K above pre-industrial the ice sheet will disappear, with the timing ranging between 2000 (+8.5 K) and 6000 years (+5.2 K). At a warming level of 2.8 K above pre-industrial, the ice loss does not exceed 2 m SLE, and most of the retreat occurs in the first 10,000 years in the south-west and central-west basins. In contrast, with a higher warming level of 3.6 K above pre-industrial as much as 7 m SLE of ice are loss in 20,000 years, with primary contributions from the western, northern and north-eastern basins. We will conclude by showing preliminary results from a second set of simulations focusing on the 2.8-3.6 K warming above pre-industrial interval.

How to cite: Petrini, M., Vizcaino, M., Sellevold, R., Muntjewerf, L., Georgiou, S., Scherrenberg, M. D. W., Lipscomb, W., and Leguy, G.: Multi-millennial response of the Greenland Ice Sheet to anthropogenic warming , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12958, https://doi.org/10.5194/egusphere-egu21-12958, 2021.

EGU21-12603 | vPICO presentations | CR3.1

Greenland mass balance by 2100 using a coupled atmospheric (MAR) and ice sheet (PISM) models

Alison Delhasse, Johanna Beckmann, and Xavier Fettweis

The Greenland ice sheet (GrIS) is a key contributor to see level rise. By melting in surface, ice sheet is thinning and reaches higher temperature which accelerate the melting processes coming from Global Warming. The main goal of our research is to improve the representation of melt-elevation feedback, which is crucial to determine how and when GrIS will melt and will involve in a near future, by coupling two kind of numerical models. The difficulty to model this feedback relies on the fact that ice-sheet models (ISMs) can reproduce the dynamic of the ice sheet and thus provide an evolution of the surface elevation, whereas (regional) climate models (RCMs) can represent the ice/snow and atmosphere interactions trough the surface mass balance (SMB). A coupling between these models appears as a solution and has already been accomplished. However, ISMs responses to a same forcing field may be quite different, while SMB from different RCMs are relatively more similar with the same forcing. Coupling could therefore be dependent of which ISMs are used. To avoid a coupling, costly in computing time, SMB vertical gradient as a function of local elevation variations could be used by ISMs to correct SMB. Nonetheless, these SMB gradients are computed with a RCM using a fixed topography, which could introduce biases if the surface elevation vary significantly. Here we decide to full couple the RCM MAR, specifically developed for polar climate and forced at his lateral boundaries by CESM2 (a CMIP6 model, scenario ssp585), with the ISM PISM. The coupling means that, each year, we exchange ice thickness from PISM to update the topography and ice mask of MAR, and SMB from MAR to update forcing fields of PISM. First of all the aim is to analyze what became the GrIS in 2100 with this extreme scenario. Then we want to define a coupling time threshold to determine after how much years an update of the topography in MAR is needed by varying the time step (from 1 to 5, 10, 20, 30 and 50 years) of the coupling. The final aim is to determine until when the MAR based SMB gradients are valid for a same topography in MAR.

How to cite: Delhasse, A., Beckmann, J., and Fettweis, X.: Greenland mass balance by 2100 using a coupled atmospheric (MAR) and ice sheet (PISM) models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12603, https://doi.org/10.5194/egusphere-egu21-12603, 2021.

EGU21-10213 | vPICO presentations | CR3.1

Sources of Uncertainty in Greenland Surface Mass Balance in the 21st century.

Katharina Meike Holube, Tobias Zolles, and Andreas Born

The surface mass balance (SMB) of the Greenland Ice Sheet is subject to considerable uncertainties that complicate predictions of sea-level rise caused by climate change.
We examine the SMB of the Greenland Ice Sheet and its uncertainty in the 21st century using a wide ensemble of simulations with the surface energy and mass balance model "BErgen Snow SImulator" (BESSI). We conduct simulations for four greenhouse gas emission scenarios using the output of 26 climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to force BESSI. In addition, the uncertainty of the SMB simulation is estimated by using 16 different parameter sets in our SMB model. The median SMB across climate models, integrated over the ice sheet, decreases for every emission scenario and every parameter set. As expected, the decrease in SMB is stronger for higher greenhouse gas emissions. The uncertainty range in SMB is considerably greater in our ensemble than in other studies that used fewer climate models as forcing. An analysis of the different sources of uncertainty shows that the differences between climate models are the main reason for SMB uncertainty, exceeding even the uncertainty due to the choice of climate scenario. In comparison, the uncertainty caused by the snow model parameters is negligible. The differences between the climate models are most pronounced in the north of Greenland and in the area around the equilibrium line, whereas the ensemble of simulations agrees that the SMB decrease is greatest in the west of Greenland. 

How to cite: Holube, K. M., Zolles, T., and Born, A.: Sources of Uncertainty in Greenland Surface Mass Balance in the 21st century., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10213, https://doi.org/10.5194/egusphere-egu21-10213, 2021.

EGU21-12822 | vPICO presentations | CR3.1

Quantifying uncertainty in future projections of ice loss from the Filchner-Ronne basin, Antarctica

Emily Hill, Sebastian Rosier, Hilmar Gudmundsson, and Matthew Collins

The future of the Antarctic Ice Sheet under climate warming is one of the largest sources of uncertainty for changes in global mean sea level (GMSL). Accelerated ice loss in recent decades has been concentrated in regions where warm circumpolar deep water forces high rates of sub-shelf melt. It is unclear how ice shelves currently surrounded by cold ocean waters with low melt rates will respond to changes in ocean conditions in future. For example, previous studies have shown that if warm water were to infiltrate beneath the Filchner-Ronne ice shelf, it could drastically increase sub-shelf melt rates. However, the inland ice-sheet response to climate-ocean changes remains uncertain. Here, we set out to quantify uncertainties in projections of GMSL from the Filchner-Ronne region of Antarctica over the next two centuries. To do this we take a large random sample from a probabilistic input parameter space and evaluate these parameter sets in the ice-sheet model Úa under four RCP forcing scenarios. We then use this training sample to generate a statistical surrogate model to capture the parameter to projection relationship from our ice-sheet model. Finally, we use sensitivity analysis to identify which parameters drive the majority of uncertainty in our projections.

Our results suggest that accumulation expected with warming is capable of suppressing increases in ice discharge associated with increased ocean-driven sub-shelf melt rates. This could allow the Filcher-Ronne basin to have a negative contribution to GMSL. However, parameters controlling mass accumulation and sub-shelf melting are highly uncertain. Crucially, there is potential within our input parameter space for major collapse and retreat of ice streams feeding the Filchner-Ronne ice shelf and a positive contribution to sea level rise. Further improvements in the representation of accumulation and sub-shelf melt under climate warming in ice-sheet models will help determine the sign of GMSL projections from this region of the ice sheet.

How to cite: Hill, E., Rosier, S., Gudmundsson, H., and Collins, M.: Quantifying uncertainty in future projections of ice loss from the Filchner-Ronne basin, Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12822, https://doi.org/10.5194/egusphere-egu21-12822, 2021.

CR3.2 – Modelling ice sheets and glaciers

EGU21-14778 | vPICO presentations | CR3.2

The Utrecht Finite Volume Ice-Sheet Model: UFEMISM

Tijn Berends, Roderik van de Wal, and Heiko Goelzer

Improving our confidence in future projections of sea-level rise requires models that can simulate ice-sheet evolution both in the future and in the geological past. A physically accurate treatment of large changes in ice-sheet geometry requires a proper treatment of processes near the margin, like grounding line dynamics, which in turn requires a high spatial resolution in that specific region. This leads to a demand for computationally efficient models, where such a high resolution can be feasibly applied in simulations of 105 – 107 yr in duration. To solve this, we developed UFEMISM, a new ice-sheet model that solves the hybrid SIA/SSA approximation of the stress balance on a fully adaptive, unstructured triangular mesh. This strongly reduces the number of grid points where the equations need to be solved, making the model much faster than the square-grid models that are typically used in paleo-ice-sheet research. We will discuss some of the difficulties in developing such a model, and the solutions we came up with. We will show that the model successfully performs several common schematic benchmark experiments for ice-sheet models, and we will take a look at some preliminary results of realistic experiments.

How to cite: Berends, T., van de Wal, R., and Goelzer, H.: The Utrecht Finite Volume Ice-Sheet Model: UFEMISM, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14778, https://doi.org/10.5194/egusphere-egu21-14778, 2021.

EGU21-6608 | vPICO presentations | CR3.2

Marine ice-sheet experiments with the Community Ice Sheet Model using the MISMIP+ experimental framework. 

Gunter Leguy, William Lipscomb, and Xylar Asay-Davis

Ice sheet models differ in their numerical treatment of dynamical processes. Simulations of marine-based ice are sensitive to the choice of Stokes flow approximation and basal friction law, and to the treatment of stresses and melt rates near the grounding line. We present the effects of these numerical choices on marine ice-sheet dynamics in the Community Ice Sheet Model (CISM). In the experimental framework of the Marine Ice Sheet Model Intercomparison Project (MISMIP+), we compare different treatments of sub-shelf melting near the grounding line. In contrast to recent studies arguing that melting should not be applied in partly grounded cells, it is usually beneficial in CISM simulations to apply some melting in these cells. This suggests that the optimal treatment of melting near the grounding line can depend on ice-sheet geometry, forcing, or model numerics. In the MISMIP+ framework, the ice flow is also sensitive to the choice of basal friction law. To study this sensitivity, we evaluate friction laws that vary the connectivity between the basal hydrological system and the ocean near the grounding line. CISM yields accurate results in steady-state and perturbation experiments at a resolution of ∼2 km (arguably 4 km) when the connectivity is low or moderate, and ∼1 km (arguably 2 km) when the connectivity is strong.

How to cite: Leguy, G., Lipscomb, W., and Asay-Davis, X.: Marine ice-sheet experiments with the Community Ice Sheet Model using the MISMIP+ experimental framework. , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6608, https://doi.org/10.5194/egusphere-egu21-6608, 2021.

EGU21-6854 | vPICO presentations | CR3.2

Implementation of higher-order advection schemes in a numerical ice-sheet model for ice-core studies

Fuyuki Saito, Ayako Abe-Ouchi, and Takashi Obase

Computation of temperature and age fields by numerical ice-sheet models is an important issue for ice-core related studies.  Generally the evolution of temperature and/or age in an ice-sheet model is formulated using an advection equation.  There are many variation of the formulation, which differ in numerical aspects such as stability, accuracy, numerical diffusivity, conservation and/or computational costs.  Saito et al (2020, GMD) implement Rational Constrained Interpolation Profile (RCIP) scheme on vertical 1-d age computation of ice sheet, and demonstrate its efficiency, in particular, to preserve surface mass balance properties recorded at the deposit in terms of annual layer thickness.  Successively, we have been extending the development using RCIP or similar higher-order advection schemes on 3-d age or temperature computation.  In this study, we demonstrate 1-d temperature computation by various numerical schemes including classical upwind schemes and compare the accuracy of those schemes.

How to cite: Saito, F., Abe-Ouchi, A., and Obase, T.: Implementation of higher-order advection schemes in a numerical ice-sheet model for ice-core studies, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6854, https://doi.org/10.5194/egusphere-egu21-6854, 2021.

EGU21-2549 | vPICO presentations | CR3.2

On the speed and numerical stability of ice-dynamics approximations

Alexander Robinson, William Lipscomb, Daniel Goldberg, and Jorge Alvarez-Solas

The Stokes solution to ice dynamics is computationally expensive, and in many cases unnecessary. Many approximations have been developed that reduce the complexity of the problem and thus reduce computational cost. Most approximations can generally be tuned to give reasonable solutions to ice-dynamics problems, depending on the domain and scale being simulated. However, the inherent numerical stability of time-stepping with different solvers has not been studied in detail. Here we investigate how different approximations lead to limits on the maximum timestep in mass conservation calculations for both idealized and realistic geometries. The ice-sheet models Yelmo and CISM are used to compare the following approximations: the shallow-ice approximation (SIA), the shallow-shelf approximation (SSA), the SIA+SSA approximation (Hybrid) and two variants of the L1L2 solver, namely one that reduces to SIA in the case of no-sliding (dubbed L1L2-SIA here) and the so-called depth-integrated viscosity approximation (DIVA). We find that these approaches vary significantly with respect to numerical stability. The extreme dependence on the local surface gradient of the SIA-based approximations (SIA, Hybrid, L1L2-SIA) leads to an amplified local velocity response and greater potential for instability, especially as grid resolution increases. In contrast, the SSA and DIVA approximations allow for longer time steps, because numerical oscillations in ice thickness are damped with increasing resolution. Given its high fidelity to the Stokes solution and its favorable stability properties, we demonstrate the strong case for using the DIVA approximation in many contexts.

How to cite: Robinson, A., Lipscomb, W., Goldberg, D., and Alvarez-Solas, J.: On the speed and numerical stability of ice-dynamics approximations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2549, https://doi.org/10.5194/egusphere-egu21-2549, 2021.

EGU21-2568 | vPICO presentations | CR3.2

Consistent comparison of full-Stokes and higher-order approximation in the central North East Greenland Ice Stream

Martin Rückamp, Thomas Kleiner, and Angelika Humbert

Modelling ice sheet flow is at best modelled using the full-Stokes (FS) equations. However, it rarely sees application even in recent years due to its high computational demand and problems in numerical convergence due to the thin aspect ratio of ice sheets. For this reason, the modelling community has relied on simplified mathematical models, such as the three-dimensional Higher-Order (HO) approximation which neglects horizontal gradients of vertical velocities and bridging effects. Here, we conduct an analysis of the difference in stresses and velocity fields solving the FS system of equation and using two different types of HO approximations equivalent to LMLa (known as Blatter-Pattyn type) and LTSML according to Hindmarsh (2004). Our intention was to avoid any bias from a difference in discretization or implementation, therefore we implemented it in a single ice sheet model to avoid effects arising from discretization and implementation. We selected a subset of the North East Greenland Ice Stream (NEGIS) as investigation area. As differences between FS and HO emerge in regions with steep bedrock gradients or high aspect ratios, we step-wise increase spatial resolution from 12.8 km down to 0.1 km. Our analysis reveals that surface velocity differences between the FS and HO solution emerge below 1km horizontal resolution and increase with resolution. Compared to the absolute ice flow velocity, the relative error between FS and HO remains small. We present an in-depth analysis, that reveals that different factors are affected by the approximation, such as basal drag and rheology

References:
Hindmarsh, R. C. A.: A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling, Journal of Geophysical Research: Earth Surface, 109, https://doi.org/10.1029/2003JF000065, 2004

How to cite: Rückamp, M., Kleiner, T., and Humbert, A.: Consistent comparison of full-Stokes and higher-order approximation in the central North East Greenland Ice Stream, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2568, https://doi.org/10.5194/egusphere-egu21-2568, 2021.

EGU21-5796 | vPICO presentations | CR3.2

A numerical method for subglacial cavitation posed as a variational inequality

Gonzalo Gonzalez de Diego, Patrick Farrell, and Ian Hewitt

Subglacial cavitation is a phenomenon that occurs at the base of an ice sheet or a glacier where the ice detaches from the bedrock at high water pressures. The process is recognised as an essential mechanism in glacial sliding. A mathematical description of subglacial cavitation involves a free boundary equation and a Stokes equation with contact boundary conditions. These contact boundary conditions model the process of detachment from the bed at each instant in time. 

In this talk we show that the problem can be written as a variational inequality and present a novel approach to solving the equations with finite element methods that exploit the structure of the variational inequality. In particular, we present a formulation involving Lagrange multipliers, which allows us to solve the discrete contact conditions exactly. Thanks to this latter property, the Stokes equations can be solved together with the free boundary equations in a robust and stable manner. A similar method should also prove useful for improving grounding-line calculations.

With this numerical method, we compute a friction law (the relation between sliding velocity and shear stress) for ice flowing over a periodic bed.  We recover existing results for the case when the cavities are in a steady state for a given effective pressure. We extend these results to consider time-varying cavitation driven by changes in subglacial water pressure.

How to cite: Gonzalez de Diego, G., Farrell, P., and Hewitt, I.: A numerical method for subglacial cavitation posed as a variational inequality, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5796, https://doi.org/10.5194/egusphere-egu21-5796, 2021.

EGU21-14043 | vPICO presentations | CR3.2

Ice stream formation

Christian Schoof and Elisa Mantelli
Ice streams are the arteries through which a large fraction of the ice lost from Antarctica is discharged. With the introduction of "higher order" mechanics, the representation of ice streams in ice sheet models appears to have become more robust, eliminating previously ubiquitous grid effects. The detailed processes that control ice stream formation --- and the minimal ingredients that a model requires to represent them faithfully --- remain incompletely explored. Here we focus on "pure" ice streams, not confined to topographic troughs. We study two mechanisms that can cause their formation through feedbacks between enhanced dissipation and faster sliding, and study the minimal model capable of reproducing both mechanisms. In the first mechanism, increased dissipation raises basal temperature before the melting point is reached, and subtemperate sliding is in turn facilitated by these higher temperatures, leading to yet more dissipation. This mechanism has received very limited attention in the literature, and is not fully incorporated in at least some commonly used ice sheet model. The second, better-studied mechanism involves basal effective pressure rather than temperature as the degree of freedom that creates a positive feedback: increased dissipation produces additional meltwater. Draining that excess water requires a lower effective pressure in typical "distributed" draiange ssytems. Reduced effective pressure in turn leads to faster sliding, and yet more dissipation. The two mechanisms are distinct and one can operate in the absence of the other, but both can cause the formation of ice streams whose trunks have very similar features. Using a novel, hybrid `shallow/"full Stokes" flow' model derived from first principles, we show how accelerated flow due to either feedback leads to advection of cold ice to the bed, and demonstrate that this is the key negative feedback that controls ice steam formation due to its role in cooling the bed. Downward advection occurs both along the axis of the incipient ice stream, and in the transverse plane. There, a significant secondary flow towards the ice stream centre develops, which is of equal importance to along-flow advection in controlling heat transport. Our model is unique in its ability to fully resolve that secondary flow while still using the "shallowness" of the flow to simplify computations of ice stream physics. The formation of ice streams can be understood as "spatial" instabilities in which small-scale structure is amplified in the downflow direction, for which we derive an analytical criterion. Our model self-consistently predicts the formation of a sharply-defined ice stream margin and very cold-bedded ice ridges over a relatively short downstream distance from the onset of patterning for both mechanisms. The model also shows how basal dissipation in the margin leads to appreciable stream widening in the downstream direction, while englacial dissipation in combination with advection can lead to a pronounced peak in basal water supply some distance inside the margins. We demonstrate additionally that the emergent patterns can be unstable in time, and identify the properties required of a model that can handle such temporal instabilities.

How to cite: Schoof, C. and Mantelli, E.: Ice stream formation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14043, https://doi.org/10.5194/egusphere-egu21-14043, 2021.

EGU21-5990 | vPICO presentations | CR3.2

From steady streaming to oscillations: the role of subglacial drainage and temperate ice in ice-stream dynamics

Marianne Haseloff, Ian Hewitt, and Richard Katz

The majority of Antarctic ice is discharged through fast-flowing ice streams. Some of these ice streams exhibit variations in velocities and ice stream discharge on decadal to centennial time scales, but the factors controlling these variations are still insufficiently understood.  Using computational models of ice flow and hydrology, we predict the existence of two dynamical regimes: stable ice streaming associated with high hydraulic permeability of the bed, and ‘binge-purge’ oscillations associated with low permeability.

Observations indicate that the fast-flow of ice streams is enabled by meltwater lubricating the ice stream bed, and models suggest that this lubrication is the result of a positive feedback between fast flow, heat dissipation at the ice stream bed and meltwater production within the ice. In particular, recent studies have highlighted that heat dissipation in temperate ice stream margins, which are regions of high lateral strain, can contribute significantly to the subglacial water balance. However, the role of this meltwater flux in ice stream dynamics remains unclear. Here, we investigate the roles of subglacial drainage and feedbacks between fast flow and heat dissipation in ice-stream evolution. 

The ice is modelled as a vertically uniform plug flow. Water flow at the bed is modelled as a Darcian system whose hydraulic transmissivity increases with decreasing effective pressure. Dynamical feedbacks in the energy balance include both frictional heating along the bed and lateral shear heating. Within our model, two distinct dynamic regimes can be identified: if the hydraulic permeability of the bed is sufficiently high to evacuate all meltwater produced at the ice stream bed and in its margins, a moderately-fast steady ice stream forms. Conversely,`binge-purge’ oscillations between fast and stagnant flow emerge when the hydraulic permeability of the bed is too low to evacuate the meltwater produced within the ice stream. Topographic controls can suppress this oscillatory behaviour, while the formation of temperate ice in ice stream margins amplifies it.

How to cite: Haseloff, M., Hewitt, I., and Katz, R.: From steady streaming to oscillations: the role of subglacial drainage and temperate ice in ice-stream dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5990, https://doi.org/10.5194/egusphere-egu21-5990, 2021.

EGU21-8460 | vPICO presentations | CR3.2

3D modelling of Isbræ-type glaciers and temperate-zone processes 

Robert Law, Poul Christoffersen, Samuel Cook, Emma MacKie, and Marianne Haseloff

The majority of Greenland’s outlet glaciers are Isbræ-type, with high driving stresses, steep surface slopes, flow through deep channels, and with a basal layer of temperate ice theorised to thicken towards the coastal margin. Understanding the formation processes and thermodynamic influence of this temperate ice is important as limited laboratory testing indicates temperate ice has a viscosity 5-10 times lower than cold ice with no liquid phase. Furthermore, limited field data suggests lower rates of deformation within basal temperate ice than in the cold ice directly overlying it, which is presently unexplained. Here, we present preliminary results from a 3D finite-element model of an idealised Isbrae-type glacier built with Elmer/Ice, incorporating water-content-dependent ice viscosity, basal melting, and a parameterization of basal crevassing, and use it to investigate the formation and thermodynamic behaviour of temperate ice in response to varying bedforms and model parameters. We find that the observed decrease in strain in temperate ice close to the glacier base can be explained by a high strain area close to the cold-temperate transition zone. We further compare our model results to temperate ice variability observed at Sermeq Kujalleq (Store Glacier) to determine key temperate ice parameters requiring further investigation. These results provide a more complete understanding of the heterogeneous ice deformation behind the fast movement of Greenland’s Isbræ-type glaciers and can therefore help to improve predictions of future glacier flow.

How to cite: Law, R., Christoffersen, P., Cook, S., MacKie, E., and Haseloff, M.: 3D modelling of Isbræ-type glaciers and temperate-zone processes , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8460, https://doi.org/10.5194/egusphere-egu21-8460, 2021.

EGU21-7758 | vPICO presentations | CR3.2

On the relation between ice thickness changes and glacier speed-up, with application to Pine Island Glacier in West Antarctica 

Jan De Rydt, Ronja Reese, Fernando Paolo, and G Hilmar Gudmundsson

Pine Island Glacier in West Antarctica is among the fastest changing glaciers worldwide. Much of its fast-flowing central trunk is thinning and accelerating, a process thought to have been triggered by ocean-induced changes in ice-shelf buttressing. The measured acceleration in response to perturbations in ice thickness is a non-trivial manifestation of several poorly-understood physical processes, including the transmission of stresses between the ice and underlying bed. To enable robust projections of future ice flow, it is imperative that numerical models include an accurate representation of these processes. Here we combine the latest data with analytical and numerical solutions of SSA ice flow to show that the recent increase in flow speed of Pine Island Glacier is only compatible with observed patterns of thinning if a spatially distributed, predominantly plastic bed underlies large parts of the central glacier and its upstream tributaries.

How to cite: De Rydt, J., Reese, R., Paolo, F., and Gudmundsson, G. H.: On the relation between ice thickness changes and glacier speed-up, with application to Pine Island Glacier in West Antarctica , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7758, https://doi.org/10.5194/egusphere-egu21-7758, 2021.

EGU21-1413 | vPICO presentations | CR3.2

The effects of bed topography and strength on stability of marine ice sheets

Olga Sergienko and Duncan Wingham

The "marine ice-sheet instability hypothesis", which states that unconfined marine ice sheets are unconditionally unstable on retrograde slopes, was developed under assumptions of negligible bed slopes. Realistic ice sheets, however, flow over beds which topographies have a wide range of bed slopes (for example, Thwaites Glacier in the Amundsen Sea sector, West Antarctica). Reexamining the original model of marine ice sheets proposed by Schoof (2007), and relaxing an assumption of negligible bed slopes, we find that a steady-state ice flux at the grounding line is an implicit function of the grounding-line ice thickness, bed slope and accumulation rate. Depending on the sliding conditions, the magnitudes of the ice flux at the grounding line differ by one-to-three orders of magnitudes from that computed with a power-law expression derived by Schoof (2007) under assumptions of the negligible bed slopes. Non-negligible bed slopes also result in conditions of stability of the grounding line that are significantly more complex than those associated with the "marine ice sheet instability hypothesis". Bed slopes are no longer the sole determinant of whether the grounding line is stable or unstable. We find that the grounding line can be stable on beds with retrograde slopes and unstable on beds with prograde slopes. 

How to cite: Sergienko, O. and Wingham, D.: The effects of bed topography and strength on stability of marine ice sheets, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1413, https://doi.org/10.5194/egusphere-egu21-1413, 2021.

EGU21-8476 | vPICO presentations | CR3.2

A coupled model of rapidly-evolving subglacial hydrology with ice dynamics

Michael McPhail and Ian Hewitt

The presence of subglacial water can have a significant effect on the motion of an ice sheet. The rate at which the ice slides over the bedrock is mediated by subglacial water pressure. Meltwater on the surface of the sheet can drain through cracks and moulins; drastically increasing the amount of water under the sheet. This source of water fluctuates seasonally and diurnally, much faster than the timescale associated with large-scale glacier evolution. We are interested in the effect that this short-term variation in the subglacial hydrology, and therefore water pressure, has on the long-term behaviour of the ice sheet.  In particular, we are interested in how important it is to resolve the short-timescale variations in ice sliding speed.

 

We use a mathematical model to study the response of the subglacial drainage system to time-varying surface melt input. By coupling this subglacial hydrology through an effective-pressure-dependent sliding law to the momentum equation for the overlying ice sheet, we study the impact of short-term meltwater fluctuations on the ice velocity.  We study these interactions using a one-dimensional (1D) flowline model representing a confined glacier, allowing us to explore a range of couplings between the ice flow and hydrology.  This enables us to assess the influence of the fluctuating meltwater input on the long-term behaviour of the ice sheet. We find that using a time-averaged effective pressure with an asynchronous coupling to the momentum equation gives a reasonable estimate for the time-averaged ice-sheet velocity, despite the nonlinearity of the governing equations. We use the results to suggest how hydrological coupling might be achieved in larger-scale models where resolving the short-term fluctuations is likely to be infeasible.  

How to cite: McPhail, M. and Hewitt, I.: A coupled model of rapidly-evolving subglacial hydrology with ice dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8476, https://doi.org/10.5194/egusphere-egu21-8476, 2021.

EGU21-8766 | vPICO presentations | CR3.2

Time-dependent soft-bedded sliding laws

Katarzyna Warburton, Duncan Hewitt, and Jerome Neufeld

The dynamics of soft-bedded glacial sliding over saturated till are poorly constrained and difficult to realistically capture in large scale models. While experiments characterise till as a plastic material with a pressure dependent yield stress, large scale models rely on a viscous or power-law description of the subglacial environment to efficiently constrain the basal sliding rate of the ice. Further, the subglacial water pressure may fluctuate on timescales from annual to daily, leading to transient adjustment of the till.

We construct a continuum two-phase model of coupled fluid and solid flows, using Darcy flow for the fluid phase and a recently described saturated granular model for the solid. After verifying our model against the steady-state experiments, we force the model with a fluctuating effective pressure at the ice-till interface and infer the resulting relationships between basal traction, porosity, rate of deformation, and till flux. Shear dilation introduces internal pressure variations, leading to hysteretic behaviour in low-permeability materials, resulting in a time-dependent effective sliding law.

How to cite: Warburton, K., Hewitt, D., and Neufeld, J.: Time-dependent soft-bedded sliding laws, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8766, https://doi.org/10.5194/egusphere-egu21-8766, 2021.

EGU21-11898 | vPICO presentations | CR3.2

Towards a description of stick-slip motion using a viscoelastic Full Stokes model 

Cristina Gerli, Sebastian Rosier, and Hilmar Gudmundsson

EGU21-4964 | vPICO presentations | CR3.2

Ice flow localisation enhanced by composite ice rheology 

Ludovic Räss and Thibault Duretz

Ice’s predominantly viscous rheology exhibits a significant temperature and strain-rate dependence, commonly captured as a single deformation mechanism by Glen's flow law. However, Glen’s power-law relationship may fail to capture accurate stress levels at low and elevated strain-rates ultimately leading to velocity over- and under-estimates, respectively. Alternative more complex flow laws such as Goldsby rheology combine various creep mechanisms better accounting for micro-scale observations resulting in enhanced localisation of ice flow at glacier scales and internal sliding.

The challenge in implementing Goldsby rheology arises with the need of computing an accurate partitioning of the total strain-rate among the active creep mechanisms. Some of these mechanisms exhibit grain-size evolution sensitivity potentially impacting the larger scale ice dynamics.

We here present a consistent way to compute the effective viscosity of the ice using Goldsby rheology for temperature and strain-rate ranges relevant to ice flow. We implement a local iteration procedure to ensure accurate implicit partitioning of the total strain-rate among the active creep mechanisms including grain-size evolution. We discuss the composite deformation maps and compare the results against Glen's flow law. We incorporate our implicit rheology solver into an implicit 2D thermo-mechanical ice flow solver to investigate localisation of ice flow over variable topography and in shear margin configurations. We quantify discrepancies  in surface velocity patterns when using Goldsby rheology instead of Glen's flow law.

How to cite: Räss, L. and Duretz, T.: Ice flow localisation enhanced by composite ice rheology , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4964, https://doi.org/10.5194/egusphere-egu21-4964, 2021.

EGU21-13125 | vPICO presentations | CR3.2

Optimising a regional Antarctic Ice Sheet model to investigate basal conditions and initialise transient experiments

Rupert Gladstone, Yufang Zhang, Thomas Zwinger, Fabien Gillet-Chaulet, Michael Wolovick, John Moore, Chen Zhao, Yu Wang, and Mauro Werder

Computer models for ice sheet dynamics are the primary tools for making future predictions of ice sheet behaviour, marine ice sheet instability, and ice sheet contributions to sea level change.  Such modelling studies face a number of challenges, and we consider here two examples.  The dominant mode of flow for ice streams is sliding at the bed, and the physical processes that control sliding are hard to observe. Ice sheet models often prescribe basal resistance as a function of sliding velocity.  But laboratory experiments and real-world observations indicate that basal resistance is also dependent on the water pressure in the sub-glacial hydrologic system, a property that is hard to constrain.  Initialising an ice sheet model for future projections is usually implemented either by a multi-millennial spin up or else by optimisation simulations, both of which have significant drawbacks.  In particular, long spin-up simulations cannot easily ensure a close match to present-day ice geometry, and optimisations cannot easily ensure an overall ice sheet mass balance that matches the present-day mass balance.

Using a 3D Stokes-flow ice dynamic model, we carry out optimisations for two Antarctic catchments: The Pine Island Glacier (PIG) in West Antarctica and the Lambert-Amery Glacier System (LAGS) in East Antarctica.  We optimise both the basal resistance and flow enhancement in order to minimise discrepancy between modelled and observed (from satellite) horizontal velocities at the ice upper surface.  We use these optimised model configurations to estimate the transient mass trend and also look at the 3D velocity field, its sensitivity to choice of boundary conditions in the normal direction at upper and lower surfaces, and its implications for the 3D temperature structure.  These simulations provide an estimate of the present-day thermo-mechanical state of the PIG and LAGS.

We demonstrate that constraining only horizontal velocity in the optimisations can lead to unrealistic normal velocities at the upper surface.  We show that this can, in turn, strongly impact on the catchment’s total mass budget (through locally unconstrained thinning/thickening rates) and lead to a large-scale bias in temperatures simulated using the optimised model with the steady state assumption, due to unphysical advection of heat through the ice upper surface.

We employ the optimised model to estimate basal melt, due mainly to friction heat, and drive a subglacial hydrology model beneath the PIG, providing a model-based estimate of the distribution of basal water pressure.  We use this, along with simulated sliding velocity and basal resistance, to evaluate some commonly used sliding relations.

How to cite: Gladstone, R., Zhang, Y., Zwinger, T., Gillet-Chaulet, F., Wolovick, M., Moore, J., Zhao, C., Wang, Y., and Werder, M.: Optimising a regional Antarctic Ice Sheet model to investigate basal conditions and initialise transient experiments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13125, https://doi.org/10.5194/egusphere-egu21-13125, 2021.

EGU21-105 | vPICO presentations | CR3.2

2D sequential data assimilation in Elmer/Ice with Stokes

Samuel Cook and Fabien Gillet-Chaulet

Providing suitable initial states is a long-standing problem in numerical modelling of glaciers and ice sheets. Models often require lengthy relaxation periods to dissipate incompatibilities between input datasets gathered over different timeframes, which may lead to the modelled initial state diverging significantly from the real state of the glacier, with consequent effects on the accuracy of the simulation. Sequential data assimilation offers one possibility for resolving this issue: by running the model over a period for which various observational datasets are available and loading observations into the model at the time they were gathered, the model state can be brought into good agreement with the real glacier state at the end of the observational window. This assimilated model state can then be used to initialise prognostic runs without introducing model artefacts or a distorted picture of the actual glacier.

In this study, we present a framework for conducting sequential data assimilation in a 2D, flowline setting of the open-source, finite-element glacier flow model, Elmer/Ice, and solving the Stokes equations rather than using the shallow shelf approximation. Assimilation is undertaken using the open-source PDAF library developed at the Alfred Wegener Institute. We demonstrate that the set-up allows us to accurately retrieve the bed of a synthetic glacier and present our progress in extending it to a full 3D simulation.

How to cite: Cook, S. and Gillet-Chaulet, F.: 2D sequential data assimilation in Elmer/Ice with Stokes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-105, https://doi.org/10.5194/egusphere-egu21-105, 2021.

EGU21-15304 | vPICO presentations | CR3.2

Exploring parameter uncertainty in a model of the Antarctic Ice Sheet

Steven Phipps, Jason Roberts, and Matt King

Physical processes within ice sheet models are sometimes described by simplified schemes known as parameterisations. The values of the parameters within these schemes can be poorly constrained by theory or observation. Uncertainty in the parameter values translates into uncertainty in the outputs of the models. Proper quantification of the uncertainty in model predictions therefore requires a systematic approach for sampling parameter space. We demonstrate a simple and efficient approach to identify regions of multi-dimensional parameter space that are consistent with observations. Using the Parallel Ice Sheet Model to simulate the present-day state of the Antarctic Ice Sheet, we find that co-dependencies between parameters preclude the identification of a single optimal set of parameter values. Approaches such as large ensemble modelling are therefore required in order to generate model predictions, such as projections of future global sea level rise, that incorporate proper quantification of the uncertainty arising from the parameterisation of physical processes.

How to cite: Phipps, S., Roberts, J., and King, M.: Exploring parameter uncertainty in a model of the Antarctic Ice Sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15304, https://doi.org/10.5194/egusphere-egu21-15304, 2021.

EGU21-8915 | vPICO presentations | CR3.2

Modelling the source of glacial earthquakes

Pauline Bonnet, Vladislav Yastrebov, Anne Mangeney, Olivier Castelnau, Alban Leroyer, Patrick Queutey, Martin Rueckamp, Eleonore Stutzmann, Jean-Paul Montagner, and Amandine Sergeant

One current concern in Climate Sciences is the estimation of the annual amount of ice lost by glaciers and the corresponding rate of sea level rise. Greenland ice sheet contribution is significant with about 30% to the global ice mass losses. Ice loss in Greenland is distributed approximately equally between loss in land by surface melting and loss at the front of marine-terminating glaciers that is modulated by dynamic processes. Dynamic mass loss includes both submarine melting and iceberg calving. The processes that control ablation at tidewater glacier termini, glacier retreat and calving are complex, setting the limits to the estimation of dynamic mass loss and the relation to glacier dynamics. It involves interactions between bedrock – glacier – icebergs – ice-mélange – water – atmosphere. Moreover, the capsize of cubic kilometer scale icebergs close to a glacier front can destabilize the glacier, generate tsunami waves, and induce mixing of the water column which can impact both the local fauna and flora.

We aim to improve the physical understanding of the response of glacier front to the force of a capsizing iceberg against the terminus. For this, we use a mechanical model of iceberg capsize against the mobile glacier interacting with the solid earth through a frictional contact and we constrain it with measured surface displacements and seismic waves that are recorded at teleseismic distances. Our strategy is to construct a solid dynamics model, using a finite element solver, involving a deformable glacier, basal contact and friction, and simplified iceberg-water interactions. We fine-tune the parameters of these hydrodynamic effects on an iceberg capsizing in free ocean with the help of reference direct numerical simulations of fluid-structure interactions involving full resolution of Navier-Stokes equations. We simulate the response of a visco-elastic near-grounded glacier to the capsize of an iceberg close to the terminus. We assess the influence of the glacier geometry, the type of capsize, the ice properties and the basal friction on the glacier dynamic and the observed surface displacements. The surface displacements simulated with our model are then compared with measured displacements for well documented events. 

How to cite: Bonnet, P., Yastrebov, V., Mangeney, A., Castelnau, O., Leroyer, A., Queutey, P., Rueckamp, M., Stutzmann, E., Montagner, J.-P., and Sergeant, A.: Modelling the source of glacial earthquakes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8915, https://doi.org/10.5194/egusphere-egu21-8915, 2021.

EGU21-15890 | vPICO presentations | CR3.2

A 3-D Model of Antarctic Ice Shelf Surface Hydrology

Sammie Buzzard and Alex Robel

The formation of surface meltwater has been linked with the disintegration of many ice shelves in the Antarctic Peninsula over the last several decades. Despite the importance of surface meltwater production and transport to ice shelf stability, knowledge of these processes is still lacking. Understanding the surface hydrology of ice shelves is an essential first step to reliably project future sea level rise from ice sheet melt.

In order to better understand the processes driving meltwater distribution on ice shelves, we present results from case studies using a new 3-D model of surface hydrology for Antarctic ice shelves. It is the first comprehensive model of surface hydrology to be developed for Antarctic ice shelves, enabling us to incorporate key processes such as the lateral transport of surface meltwater. Recent observations suggest that surface hydrology processes on ice shelves are more complex than previously thought, and that processes such as lateral routing of meltwater across ice shelves, ice shelf flexure and surface debris all play a role in the location and influence of meltwater. Our model allows us to account for these and is calibrated and validated through both remote sensing and field observations. Here we present results from in depth studies from selected ice shelves with significant surface melt features.

This community-driven, open-access model has been developed with input from observations, and allows us to provide new insights into surface meltwater distribution on Antarctica’s ice shelves. This enables us to answer key questions about their past and future evolution under changing atmospheric conditions and vulnerability to meltwater driven hydrofracture and collapse.

How to cite: Buzzard, S. and Robel, A.: A 3-D Model of Antarctic Ice Shelf Surface Hydrology, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15890, https://doi.org/10.5194/egusphere-egu21-15890, 2021.

CR3.3 – Subglacial Environments of Ice Sheets and Glaciers

EGU21-535 | vPICO presentations | CR3.3

Temperate Alpine glacier surface dynamics linked to collapsing subglacial conduits

Pascal Egli, Stuart Lane, James Irving, and Bruno Belotti

If tongues of temperate Alpine glaciers are subjected to high temperatures their topography may change rapidly due to the effects of differential melt related to aspect and debris cover. Independent of local surface melt, the position of subglacial conduits may have an important influence on ice creep and so on changes in topography at the ice surface. This reflects analyses that suggest that subglacial conduits at glacier margins may not be permanently pressurised; and that creep closure rates are insufficient to close subglacial conduits completely. Rapid climate warming may exacerbate this process, due both to surface-melt driven glacier thinning and over-enlargement of conduits due to high upstream melt rates. Over-enlarged conduits that are not permanently pressurised would lead to the development of structural weaknesses and eventual collapse of the ice surface into the conduits. We hypothesise that this collapse mechanism could represent an important and alternative driver of rapid glacier retreat.

In this paper we combine: (1) an extensive survey of glacier margin collapse in the Swiss Alps with (2) intensive monitoring of the dynamics of such collapse at the Otemma Glacier in the south-western Swiss Alps. Daily UAV surveys were undertaken at a high spatial resolution and with precise and accurate ground control. These datasets were used to generate surface change information using SfM-MVS photogrammetry. Surfaces of difference showed surface loss that could not be related to ablation alone. Combining them with three-dimensional ground-penetrating radar (GPR) surveys in the same zone showed that the surface loss was coincident spatially with the positions of sub-glacial conduits, for ice thicknesses between 20 m and 50 m. We show that this form of subglacial conduit collapse is also happening for several other glaciers in the Swiss Alps, and that this mechanism of snout collapse and glacier retreat has become more common than has hitherto been the case. It also leads to temporal patterns of glacier margin retreat that differ from those that might be expected due to glacier mass balance and ice mass flux effects alone.

How to cite: Egli, P., Lane, S., Irving, J., and Belotti, B.: Temperate Alpine glacier surface dynamics linked to collapsing subglacial conduits, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-535, https://doi.org/10.5194/egusphere-egu21-535, 2021.

EGU21-1080 | vPICO presentations | CR3.3

Global synthesis of subglacial lakes and their changing role in a warming climate

Stephen Livingstone, Helgi Björnsson, Jade Bowling, Winnie Chu, Christine Dow, Helen Fricker, Yan Li, Malcolm McMillan, Jill Mikucki, Felix Ng, Neil Ross, Anja Rutishauser, Rebecca Sanderson, Martin Siegert, Matthew Siegfried, Andrew Sole, and Kate Winter

Subglacial lakes provide habitats for life and can modulate ice flow, basal hydrology, biogeochemical fluxes and geomorphic activity. They have been identified widely beneath the ice sheets of Antarctica and Greenland, and detected beneath the ice caps on Devon Island and Iceland, and beneath small valley glaciers. Past investigations focussed on lakes beneath individual ice masses. A scientific synthesis of different lake populations has not been made, so a unified understanding of the mechanisms controlling subglacial lake formation, dynamics, and interaction with other parts of the Earth system is lacking. Here, we integrate existing, often disparate data into a global database of subglacial lakes, enabling subglacial lake characteristics and dynamics to be classified. We use this assessment to evaluate how subglacial lakes shape microbial ecosystems and influence ice flow, subglacial drainage, sediment transport and biogeochemical fluxes. Through our global perspective, we examine how subglacial lake characteristics and function depend on the hydrologic, dynamic and mass balance regime of the ice mass beneath which they are located. By applying this synoptic understanding and perspective, we propose a conceptual model for how subglacial lakes and their impacts on the broader environment will change in a warming world. 

How to cite: Livingstone, S., Björnsson, H., Bowling, J., Chu, W., Dow, C., Fricker, H., Li, Y., McMillan, M., Mikucki, J., Ng, F., Ross, N., Rutishauser, A., Sanderson, R., Siegert, M., Siegfried, M., Sole, A., and Winter, K.: Global synthesis of subglacial lakes and their changing role in a warming climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1080, https://doi.org/10.5194/egusphere-egu21-1080, 2021.

EGU21-1099 | vPICO presentations | CR3.3

The meltwater feedbacks on ice dynamics, influence of melt amplitude, duration and extent.

Basile de Fleurian, Petra M. Langebroeke, and Richard Davy

In recent years, temperatures over the Greenland ice sheet have been rising, leading to an increase in surface melt. This increase however can not be reduced to a simple number. Throughout the recent years we have seen some extreme melt seasons with melt extending over the whole surface of the ice sheet (2012) or melt seasons of lower amplitudes but with a longer duration (2010). The effect of those variations on the subglacial system and hence on ice dynamic are poorly understood and are still mainly deduced from studies based on mountain glaciers.

Here we apply the Ice-sheet and Sea-level System Model (ISSM) to a synthetic glacier with a geometry similar to a Greenland ice sheet land terminating glacier. The forcing is designed such that it allows to investigate different characteristics of the melt season: its length, intensity or the spatial extension of the melt. Subglacial hydrology and ice dynamics are coupled within ISSM is coupled to a subglacial hydrology model, allowing to study the response of the system in terms of subglacial water pressure and the final impact on ice dynamics. Of particular interest is the evolution of the distribution of the efficient and inefficient component of the subglacial drainage system which directly impacts the water pressure evolution at the base of the glacier.

We note that the initiation of the melt season and the intensity of the melt at this period is a crucial parameter when studying the dynamic response of the glacier to different melt season characteristics. From those results, we can infer a more precise evolution of the dynamics of land terminating glaciers that are heavily driven by their subglacial drainage system. We also highlight which changes in the melt season pattern would be the most damageable for glacier stability in the future.

How to cite: de Fleurian, B., Langebroeke, P. M., and Davy, R.: The meltwater feedbacks on ice dynamics, influence of melt amplitude, duration and extent., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1099, https://doi.org/10.5194/egusphere-egu21-1099, 2021.

EGU21-1809 | vPICO presentations | CR3.3

A large tectonic-controlled subglacial lake with ocean drainage in Princess Elizabeth Land, East Antarctica

Shuai Yan, Donald D. Blankenship, Duncan A. Young, Jamin S. Greenbaum, Lin Li, Anja Rutishauser, Jingxue Guo, Jason L. Roberts, Tas D van Ommen, and Bo Sun

The Princess Elizabeth Land (PEL) sector of the East Antarctic Ice Sheet, one of the largest grounded ice reservoirs in Antarctica, is adjacent to regions that experienced significant change during the last glacial maximum. The identification of subglacial water in PEL (to date only inferred from satellite image data) would provide important constraints on our estimation of the basal thermal condition in this region. Also, the existence of a large subglacial hydrology system in PEL comes with potential impacts on the basal melting rate and stability of downstream ice shelves, such as the West Ice Shelf. Here we present geophysical evidences confirming the existence of a large subglacial lake in PEL, hereby referred as Lake Snow Eagle (LSE), for the first time, using recently acquired aerogeophyscial data by international collaborations. We estimate LSE to be about 42 km in length and 370 km2 in area, making it one of the largest subglacial lakes in Antarctica. LSE is shown to lie in a subglacial canyon system that is linked to the coastal ice shelves, which makes LSE the first known major Antarctic interior water body that has a potential direct hydrological pathway into the ocean. We then systematically investigate its geological characteristics and bathymetry by 2-D geophysics modellings. We estimate the water volume of LSE to be about 21 km3, while the sediment volume to be about 20 km3. Our geophysical modelling results also suggest that LSE is located along a compressional geologic boundary, indicating possible tectonic controls over LSE.

How to cite: Yan, S., Blankenship, D. D., Young, D. A., Greenbaum, J. S., Li, L., Rutishauser, A., Guo, J., Roberts, J. L., Ommen, T. D. V., and Sun, B.: A large tectonic-controlled subglacial lake with ocean drainage in Princess Elizabeth Land, East Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1809, https://doi.org/10.5194/egusphere-egu21-1809, 2021.

EGU21-2183 | vPICO presentations | CR3.3

Exploring mechanisms and rates of tunnel valley formation beneath deglaciating mid-latitude ice sheets using high-resolution 3D seismic data and numerical modelling

James Kirkham, Kelly Hogan, Robert Larter, Ed Self, Ken Games, Mads Huuse, Margaret Stewart, Dag Ottesen, Neil Arnold, Jeremy Ely, and Julian Dowdeswell

The geological record of landforms produced beneath deglaciating ice sheets offers insights into otherwise inaccessible subglacial processes. Large subglacial channels formed by meltwater erosion of sediments (tunnel valleys) are widespread in formerly glaciated regions such as the North Sea. These features have the potential to inform basal melt rate parameterisations, realistic water routing and the interplay between basal hydrology and ice dynamics in numerical ice‑sheet models; however, the mechanisms and timescales over which tunnel valleys form remain poorly understood. Here, we present a series of modelling experiments, informed by geophysical observations from novel high-resolution 3D seismic data (6.25 m bin size, ~3.5 m vertical resolution), which test different hypotheses of tunnel valley formation and calculate the rates at which these features likely form beneath deglaciating ice sheets. Reconstructions of the former British-Irish and Fennoscandian ice sheets from a 3D thermomechanical ice‑sheet model (BRITICE CHRONO version 2) are used to calculate subglacial water routing and steady-state water discharges as these ice sheets retreated across the North Sea Basin during the last glaciation. Using these simulations, we calculate potential meltwater channel erosion rates and estimate how quickly tunnel  valleys are formed beneath deglaciating ice sheets in warmer than present-day climates. We find little evidence for widespread water ponding which may have led to channel formation through outburst floods. Instead, our results demonstrate that seasonal surface melt delivered to the bed could incise large channels of comparable dimensions to tunnel valleys over timescales of several hundred years as these ice sheets deglaciated.  

How to cite: Kirkham, J., Hogan, K., Larter, R., Self, E., Games, K., Huuse, M., Stewart, M., Ottesen, D., Arnold, N., Ely, J., and Dowdeswell, J.: Exploring mechanisms and rates of tunnel valley formation beneath deglaciating mid-latitude ice sheets using high-resolution 3D seismic data and numerical modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2183, https://doi.org/10.5194/egusphere-egu21-2183, 2021.

EGU21-2645 | vPICO presentations | CR3.3

Tectonic Influence on Bed-Character Variability under Thwaites Glacier, West Antarctica

Louise Borthwick, Atsuhiro Muto, and Sridhar Anandakrishnan

Subglacial topography and bed character are important controls on glacier and ice-sheet flow. Previous studies using reflection-seismic data from the upper half of Thwaites Glacier, West Antarctica, have shown variations in the bed character in the along-flow direction with continuous soft bed in the flatter “lowland” areas and a mix of soft and hard bed over more elevated, rugged “highland” areas. Here we use long-offset reflection/refraction seismic and aerogravity data over a ~40-km section 230-km inland of the current grounding line to model the upper-crustal structures and relate them to the previously identified bed-character variability. We identified a sedimentary basin ~11-km long and up to ~400-m deep beneath the lowland area with continuous soft bed. The downstream end of this sedimentary basin aligns with the transition from the lowland to highland area which indicates its existence could be related to the formation of the subglacial topography. The sedimentary basin is a graben or half-graben potentially formed due to rifting associated with the development of the West Antarctic Rift System, suggesting tectonic influence on the bed character variability and, in turn, on the glacier flow. We will further analyze the seismic reflection data and also add aeromagnetic data to model the crustal structures more accurately and clarify the potential tectonic control on bed-character variability.

How to cite: Borthwick, L., Muto, A., and Anandakrishnan, S.: Tectonic Influence on Bed-Character Variability under Thwaites Glacier, West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2645, https://doi.org/10.5194/egusphere-egu21-2645, 2021.

EGU21-2847 | vPICO presentations | CR3.3

Indication of high basal melting at EastGRIP drill site on the Northeast Greenland Ice Stream

Ole Zeising and Angelika Humbert

The origin of Greenland’s largest ice stream – the Northeast Greenland Ice Stream (NEGIS) – is located far inland of the Greenland Ice Sheet. High surface flow velocities in the center of NEGIS are attributed to the lubrication of the ice sheet base facilitated by basal melt water. In order to derive basal melt rates at the EastGRIP drill site (~2668 m thick ice), we performed in-situ measurements with an autonomous phase-sensitive radar (ApRES; Brennan et al., 2014; Nicholls et al., 2015) in two consecutive years. The precise processing method (Stewart et al., 2019 and Vankova et al., 2020) detects englacial and basal vertical displacements, but it is limited due to noisy data in the lower half of the ice column. Thus, we made assumptions for the vertical strain in the lower half and adapted simulation results (Rückamp et al., 2020). We found melt rates ranging from 0.16 to 0.22 m/a, which is extremely large for inland ice. However, our results are only slightly above melt rates from previous studies (Fahnestock et al., 2001 and MacGregor et al., 2016) which found melt rates of 0.10 m/a and more through airborne radar measurements (evaluated using radiostratigraphy methods) in the vicinity of EastGRIP. Melt rates of >0.16 m/a require a heat flux into the ice of >1.55 W/m2 which is not exclusively the geothermal heat flux, as also the subglacial hydrological system may supply a significant heat flux into the ice.

How to cite: Zeising, O. and Humbert, A.: Indication of high basal melting at EastGRIP drill site on the Northeast Greenland Ice Stream, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2847, https://doi.org/10.5194/egusphere-egu21-2847, 2021.

EGU21-3490 | vPICO presentations | CR3.3

Relict basal ice from the Laurentide Ice Sheet near Lac de Gras, Slave Geological Province, N.W.T., Canada

Stephan Gruber, Rupesh Subedi, and Steven V. Kokelj

A 2015 drilling campaign near Lac de Gras has recovered permafrost core interpreted to contain preserved basal ice of the Laurentide Ice Sheet (Subedi et al., 2020). Previous samples of basal ice from ice sheets originate from coring, usually beneath modern ice divides, modern margins of Arctic icecaps that have preserved basal ice-sheet ice, or from studies near the margins of former ice sheets. The present study may be the first evidence of basal ice a few hundred kilometers from ice divides. In this intermediate zone, rates of erosion beneath an ice sheet increase and the thermal regime at the base varies. Our finding is of applied relevance because it highlights the mosaic character of a landscape that contains terrain types with non-negligible ground-ice content, poised for climate-driven thaw and landscape change. The occurrence and mosaic character of preserved ice may be reconciled with glaciological theory and observations from mineral prospecting using the theory on the genesis of dispersal plumes in till developed by Hooke et al. (2013). The existence of preserved basal ice opens basic-research opportunities alongside exploration, mining and infrastructure development in the area.  

Hooke, R. L. B., Cummings, D. I., Lesemann, J. E., and Sharpe, D. R.: Genesis of dispersal plumes in till, Can. Jo. Earth Sci., 50, 847–855, https://doi.org/10.1139/cjes-2013-0018, 2013.

Subedi, R., Kokelj, S. V., and Gruber, S.: Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada, The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, 2020.

How to cite: Gruber, S., Subedi, R., and Kokelj, S. V.: Relict basal ice from the Laurentide Ice Sheet near Lac de Gras, Slave Geological Province, N.W.T., Canada, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3490, https://doi.org/10.5194/egusphere-egu21-3490, 2021.

EGU21-5735 | vPICO presentations | CR3.3

Basal speed and deformation velocity in an alpine temperate glacier from high resolution borehole tilt measurements and GNSS surface velocity observations

Juan Pedro Roldan-Blasco, Luc Piard, Florent Gimbert, Christian Vincent, Adrien Gilbert, Olivier Gagliardini, Anuar Tobaigekov, and Andrea Walpersdorf

Basal sliding speed is a main component of glacier flow. However, acquiring direct observations of the velocity at the base of a glacier is a challenging task due to limited accessibility. One option consists in indirectly measuring basal speed by subtracting the internal deformation velocity from the velocity observed at the surface. Internal deformation has been mostly studied through annual surveys of borehole inclinometry that provide a snapshot of the internal velocity field of the glacier, while more recent efforts have installed continuously recording sensors at different depths. The former method provides a good resolution in depth, while the latter provides a good resolution in time, but few studies have provided both.

In this study we quantify basal speed variations at both short and long timescales through the combined analysis of one year of continuous half-hour sampled borehole tilt measurements and high resolution GNSS positioning. The instrumentation campaign has been done in the framework of the SAUSSURE project, in which we drilled five boreholes in the ablation area of Argentière Glacier, a temperate mountain glacier in the French Alps. The boreholes were positioned along the center flow line, and each one was equipped with an array of ~18 sensors that recorded the tilt and azimuth at different depths as well as water pressure at the bottom and middle depth. With this dataset we are able to investigate how melt season impacts the internal dynamics of the glacier, or how the sudden accelerations of the glacier after heavy storms events are shared between changes in internal deformation and basal speed ups. We find that the yearly averaged internal deformation profile can be well described using a two dimensional Glen flow law with exponent n ~ 3.4. We observe as well that deformational velocities can represent up to 60% of the total velocity, more than previously considered for Argentière Glacier. Our findings suggest that weekly accelerations, usually observed along raises in water pressure, are due to the increase of basal speed paired with a decrease in deformation, which suggests stress reconfiguration. We don’t observe journal cycles of deformation velocity, which would indicate that journal variations of glacier velocity are due only to changes of basal speed. In contrast, glacier acceleration during melt season at monthly timescales is accommodated by  deformation velocity and not by sliding.

How to cite: Roldan-Blasco, J. P., Piard, L., Gimbert, F., Vincent, C., Gilbert, A., Gagliardini, O., Tobaigekov, A., and Walpersdorf, A.: Basal speed and deformation velocity in an alpine temperate glacier from high resolution borehole tilt measurements and GNSS surface velocity observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5735, https://doi.org/10.5194/egusphere-egu21-5735, 2021.

Airborne radar sounding observations have been instrumental in understanding subglacial environments and basal processes of ice sheets. Since the advent of analog radar-echo sounding (RES) system in the early 1970s, there have been tremendous innovations in both RES hardware and signal processing techniques. These technological advancements have provided high-resolution ice thickness measurements, improved detection and characterization of subglacial hydrology, as well as improved understanding of basal thermal conditions, bed roughness and geomorphology, and other processes that govern the basal boundary of the polar ice sheets. In this talk, I will provide an overview of the recent developments in radar processing approaches and system designs and highlight some of the new understanding of ice sheet subglacial processes that emerge from these breakthroughs. I will end by discussing areas where future radar applications and discoveries may be possible, including the utilization of machine learning algorithms, space-borne radar missions, and ground-based passive radar platforms to provide long-term monitoring of ice sheet subglacial environments.

How to cite: Chu, W.: Four decades of radar-echo sounding: The past, present, and future of radar applications for understanding subglacial environments , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6759, https://doi.org/10.5194/egusphere-egu21-6759, 2021.

EGU21-8411 | vPICO presentations | CR3.3

Increased winter warm events in Iceland drive enhanced glacier velocity and melting

Jane Hart, Kirk Martinez, Nathaniel Baurley, and Benjamin Robson

A key element in the comprehension of the response of glaciers to climate change is an understanding of the bed conditions, and these are a vital component of ice sheet models. The West Antarctic ice streams are potentially highly unstable, with implications for rapid sea level rise. These are underlain by unconsolidated sediments (soft-bed), which have a distinct but rarely studied subglacial hydrology. We present a detailed data set from Skálafellsjökull, a soft-bedded glacier in Iceland, as an analogue for other soft-bedded glaciers. These data include wireless in situ till water pressure, meteorological, surface melt, discharge and glacier surface velocity from GPS as well as remote sensing imagery. We show how short-term warm events during winter can effect annual velocity, and how the number of warm events has increased over the last 10 years. We argue this was because water was stored in a soft-bed subglacial reservoir where it could be rapidly released during winter, with the resultant storage levels effecting the following summer dynamics.  To test whether warm winter events are unique to Iceland, we analyzed the daily air temperatures record of 18 World Glacier Monitoring Service ‘reference’ glaciers (1979-2018). We were able to show that periods of warm temperatures during winter were present in maritime locations, and the number of these events had increased in locations where winter temperatures had also increased. We propose that winter events are an important component of glacier retreat and sea level rise that have hitherto not been examined in detail.

How to cite: Hart, J., Martinez, K., Baurley, N., and Robson, B.: Increased winter warm events in Iceland drive enhanced glacier velocity and melting, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8411, https://doi.org/10.5194/egusphere-egu21-8411, 2021.

EGU21-8685 | vPICO presentations | CR3.3

Inverting surface-elevation data and velocity for basal topography beneath Thwaites Glacier, West Antarctica

Helen Ockenden, Andrew Curtis, Daniel Goldberg, Antonios Giannopoulos, and Robert Bingham

Thwaites Glacier in West Antarctica is one of the regions of the fastest accelerating ice thinning and highest observed ice loss. The topography of the bed beneath the glacier is a key control of future ice loss, but is not currently well enough known to satisfy the requirements of ice sheet models predicting glacier behaviour. It has previously been suggested that in fast flowing ice streams the shapes of landforms at the bed should be reflected in the ice surface morphology, which is known to a much higher resolution. Indeed, recently published radar grids from Pine Island Glacier reveal bed landforms with a definite resemblance to the ice surface above them. Here, we present a new high resolution bed topography map of Thwaites Glacier, inverted from REMA and ITSLIVE data using linear perturbation theory, a mathematical formulation of this resemblance between bed and surface.  As it is based on linear physics, this method is faster than mass conservation and streamline diffusion interpolation, the two main techniques utilised by existing bed topography products in this region. Furthermore, as the theory is based on both mass and momentum balance, it provides a physically consistent estimate of elevation and basal slipperiness, in contrast to these more widely used methods. The resulting bed matches well with existing airborne and swath radar surveys, with significant detail between these radar lines. Variation in the results obtained using different reference models provides a measure of validity of the linear perturbation theory. Due to the importance of form drag in patterns of ice retreat, the inverted topographic features are potentially important for the future behaviour of Thwaites Glacier.

How to cite: Ockenden, H., Curtis, A., Goldberg, D., Giannopoulos, A., and Bingham, R.: Inverting surface-elevation data and velocity for basal topography beneath Thwaites Glacier, West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8685, https://doi.org/10.5194/egusphere-egu21-8685, 2021.

EGU21-9526 | vPICO presentations | CR3.3

Ribbed bedforms, markers of palaeo-ice stream margins, basal meltwater drainage and ice flow dynamic

Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Christopher D. Clark, Paul Bessin, Régis Mourgues, David Peigné, and Nigel Atkinson

Over the three last decades, great efforts have been undertaken by the glaciological community to characterize the behaviour of ice streams and better constrain the dynamics of ice sheets. Studies of modern ice stream beds reveal crucial information on ice-meltwater-till-bedrock interactions, but are restricted to punctual observations limiting the understanding of ice stream dynamics as a whole. Consequently, theoretical ice stream landsystems derived from geomorphological and sedimentological observations were developed to provide wider constraints on those interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of subglacial periodic bedforms transverse to the ice flow direction – ribbed bedforms – remain unclear. The purpose of this study is (i) to explore the conditions under which these ribbed bedforms develop and (ii) to constrain their spatial organisation along ice stream beds.  

We performed physical experiments with silicon putty (to simulate the ice), water (to simulate the meltwater) and sand (to simulate a soft sedimentary bed) to model the dynamics of ice streams and produce analog subglacial landsystems. We compare the results of these experiments with the distribution of ribbed bedforms on selected examples of palaeo-ice stream beds of the Laurentide Ice Sheet. Based on this comparison, we can draw several conclusions regarding the significance of ribbed bedforms in ice stream contexts:

  • Ribbed bedforms tend to form where the ice flow undergoes high velocity gradients and the ice-bed interface is unlubricated. Where the ribs initiate, we hypothesize that high driving stresses generate high basal shear stresses, accommodated through bed deformation of the active uppermost part of the bed.
  • Ribbed bedforms can develop subglacially from a flat sediment surface beneath shear margins (i.e., lateral ribbed bedforms) and stagnant lobes (i.e., submarginal ribbed bedforms) of ice streams, while they do not develop beneath surging lobes.
  • The orientation of ribbed bedforms reflects the local stress state along the ice-bed interface, with transverse bedforms formed by compression beneath ice lobes and oblique bedforms formed by transgression below lateral shear margins.
  • The development of ribbed bedforms where the ice-bed interface is unlubricated reveals distinctive types of discontinuous basal drainage systems below shear and lobe margins: linked-cavities and efficient meltwater channels respectively.

Ribbed bedforms could thus constitute convenient geomorphic markers for the reconstruction of palaeo-ice stream margins, palaeo-ice flow dynamics and palaeo-meltwater drainage characteristics.

How to cite: Vérité, J., Ravier, É., Bourgeois, O., Pochat, S., Lelandais, T., Clark, C. D., Bessin, P., Mourgues, R., Peigné, D., and Atkinson, N.: Ribbed bedforms, markers of palaeo-ice stream margins, basal meltwater drainage and ice flow dynamic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9526, https://doi.org/10.5194/egusphere-egu21-9526, 2021.

EGU21-9719 | vPICO presentations | CR3.3

Relative control of bedrock roughness versus topography on global glacier bed friction

Olivier Gagliardini, Fabien Gillet-Chaulet, and Florent Gimbert

Friction at the base of ice-sheets has been shown to be one of the largest uncertainty of model projections for the contribution of ice-sheet to future sea level rise. On hard beds, most of the apparent friction is the result of ice flowing over the bumps that have a size smaller than described by the grid resolution of ice-sheet models. To account for this friction, the classical approach is to replace this under resolved roughness by an ad-hoc friction law. In an imaginary world of unlimited computing resource and highly resolved bedrock DEM, one should solve for all bed roughnesses assuming pure sliding at the bedrock-ice interface. If such solutions are not affordable at the scale of an ice-sheet or even at the scale of a glacier, the effect of small bumps can be inferred using synthetical periodic geometry. In this presentation,  beds are constructed using the superposition of up to five bed geometries made of sinusoidal bumps of decreasing wavelength and amplitudes. The contribution to the total friction of all five beds is evaluated by inverse methods using the most resolved solution as observation. It is shown that small features of few meters can contribute up to almost half of the total friction, depending on the wavelengths and amplitudes distribution. This work also confirms that the basal friction inferred using inverse method  is very sensitive to how the bed topography is described by the model grid, and therefore depends on the size of the model grid itself. 

How to cite: Gagliardini, O., Gillet-Chaulet, F., and Gimbert, F.: Relative control of bedrock roughness versus topography on global glacier bed friction, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9719, https://doi.org/10.5194/egusphere-egu21-9719, 2021.

EGU21-10480 | vPICO presentations | CR3.3

Distribution of subglacial sediment layers around a DAS-instrumented borehole, Store Glacier, Greenland

Adam Booth, Poul Christoffersen, Joseph Chapman, Charlotte Schoonman, Bryn Hubbard, Thomas Chudley, Samuel Doyle, Robert Law, Andy Clarke, and Athena Chalari

Distributed acoustic sensing (DAS) involves detecting seismic energy from the deformation of a length of optical fibre cable, offers considerable potential in the high-resolution monitoring of glacier systems. Subglacial conditions and sediment properties exert a strong control on the basal sliding rate of glaciers, but identifying the connectivity of drainage pathways and their hydraulic conductivity remains poorly understood. This is due in part to the limitations of instrumental methods to monitor these processes accurately, whether by locating cryoseismic emissions in passive seismic records or actively imaging the subglacial environment in seismic reflection surveys.  Here, we explore the application of a borehole survey geometry for constraining the thickness and distribution of subglacial sediment deposits around a DAS installation on Greenland’s Store Glacier.

Store Glacier is a fast-moving outlet of the Greenland Ice Sheet. The instrumented borehole is drilled near the centre of a drained supraglacial meltwater lake, 28 km upstream of the Store Glacier terminus, and within 100 m of an active moulin, representing a continuous supply of water to the glacier bed. The borehole, which terminates at the glacier bed at a depth of 1043 m depth, is instrumented throughout its length with Solifos BruSENS fibre-optic cable, and monitored with a Silixa iDASTM interrogator. A suite of ~30 vertical seismic profiles (VSPs) was recorded at various azimuths and offsets (up to 500 m) from the borehole, using a 7 kg sledgehammer source. 

Initial analyses of VSP data implied a 20 [+17, -2] m thickness of sediment immediately beneath the borehole. These analyses are refined by considering the full suite of VSP data, to map spatial variations in the thickness of subglacial sediment layers.  This is undertaken using an iterative ray-tracing scheme, which seeks to minimise the differences in the arrival-time of direct seismic energy and subglacial reflections received at various depths in the borehole. Englacial compressional (P-) wave velocities are measured from cross-correlating direct arrivals (= 3700 ± 75 m/s in the upper 800 m of the glacier, 4000 ± 75 m/s between 880-950 m, 3730 ± 75 m/s through basal ice). For the subglacial sediment, we use a P-wave velocity of 1839 m/s, consistent with a value constrained in nearby surface seismic reflection data. To improve the definition of subglacial reflections and the constraint of their arrival times, data are first enhanced using frequency-wavenumber filtering.

Our approach suggests that sediment thickness is ~30 m directly beneath the borehole, potentially thinning by 10 m approximately 75 m further south. In reality, the seismic velocity through the sediment layer is unconstrained, but travel-time variations are themselves indicative of changes in either P-wave velocity and/or sediment thickness. Our work further highlights the interpretative potential of borehole DAS approaches, in support of conventional surface-based seismic analysis.

How to cite: Booth, A., Christoffersen, P., Chapman, J., Schoonman, C., Hubbard, B., Chudley, T., Doyle, S., Law, R., Clarke, A., and Chalari, A.: Distribution of subglacial sediment layers around a DAS-instrumented borehole, Store Glacier, Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10480, https://doi.org/10.5194/egusphere-egu21-10480, 2021.

EGU21-10726 | vPICO presentations | CR3.3

Feedback Mechanisms between Heterogeneous Geothermal Heat Fluxes and the Dynamic Ice Sheet Reinforce the Formation of Tunnel Valleys

Sascha Barbara Bodenburg, Sönke Reiche, Christian Hübscher, and Julia Kowalski

The large variety of subglacial landforms observed on Earth are due to a complex interplay between the overlying ice sheet and the solid Earth below. While the ice cover thermally isolates the subglacial region, hence shields it from any influence by variations in the atmosphere, spatially varying geothermal heat fluxes from below may lead to the formation or reinforcement of existing subglacial landform patterns, such as tunnel valleys. An observed spatial correlation between tunnel valleys and underlying salt structures in the North German Basin is often explained mechanically. In this work, we alternatively focus on the role of heat transfer for the formation of tunnel valleys, which has not been holistically investigated until now. As salt has a higher thermal conductivity than the surrounding rocks, a local concentration of geothermal energy above salt structures may lead to increased subglacial melting rates of the overlying ice sheet. In particular, it is our goal to investigate to which extent the resulting meltwater discharge and corresponding erosion has the potential to reinforce tunnel valley formation. For our analysis, we develop a coupled computational strategy capable of determining the interplay between the temperature distribution within the heterogeneous subsurface including heat transport and ground water flow, and the overlying ice sheet. Modelling the interfacial heat flux from the subsurface into the ice sheet then allows us to infer on subglacial melt rates, which can be further assessed with respect to their role in the formation of tunnel valleys. In this contribution, we present results of a scaling analysis that takes into account the ice sheet with its internal horizontal and vertical velocity fields, the subsurface and the subglacial interfacial area. We furthermore describe a 1D computational strategy to combine the heat transport including subglacial phase change into a coupled process model allowing for investigating feedback mechanisms. Finally, we discuss strategies how this can be integrated into a full dimensional computational subsurface model, such as SHEMAT-Suite. Preliminary results for two tunnel valleys overlying salt structures in the German North Sea show that the local concentration of geothermal energy solely basing on heat conduction is only slightly augmented. The role of hydrothermal flow processes still remains to be quantified. We can therefore conclude that the geothermal distribution has a complementary effect to mechanical processes together leading to the formation of tunnel valleys.

How to cite: Bodenburg, S. B., Reiche, S., Hübscher, C., and Kowalski, J.: Feedback Mechanisms between Heterogeneous Geothermal Heat Fluxes and the Dynamic Ice Sheet Reinforce the Formation of Tunnel Valleys, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10726, https://doi.org/10.5194/egusphere-egu21-10726, 2021.

EGU21-12022 | vPICO presentations | CR3.3

Repeat Subglacial Lake Drainage and Filling Beneath Thwaites Glacier

George Malczyk, Noel Gourmelen, Daniel Goldberg, Jan Wuite, and Thomas Nagler

Active subglacial lakes have been identified throughout Antarctica, offering a window into subglacial environments and their impact on ice sheet mass balance. We use high-resolution altimetry measurements over the Thwaites Glacier to show that a lake system underwent a second episode of drainage activity in 2017, only four years after another substantial drainage event. Our observations suggest significant modifications of the drainage system between the two events, with 2017 experiencing greater upstream discharge, faster lake-to-lake connectivity, and the transfer of water within a closed system. Measured rates of lake recharge during the inter-drainage period are significantly larger than modelled estimates, suggesting processes which drive subglacial melt production are currently underestimated. Our study highlights new methods of exploring subglacial environments through the application of altimetry, with potential applications for studying subglacial lakes across Antarctica

How to cite: Malczyk, G., Gourmelen, N., Goldberg, D., Wuite, J., and Nagler, T.: Repeat Subglacial Lake Drainage and Filling Beneath Thwaites Glacier, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12022, https://doi.org/10.5194/egusphere-egu21-12022, 2021.

EGU21-14867 | vPICO presentations | CR3.3

Constraints on the relationship between velocity and basal traction over the grounded regions of Greenland

Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet, and Adrien Gilbert

On glaciers and ice sheets, constraints on the bed physics which control the relationship between velocity and traction are critical for simulating ice flow. However, in Greenland the relationship between velocity and traction remains unquantified over much of the ice sheet. In this work, we determine the spatial relationship between velocity and traction in all eight drainage catchments of Greenland. The basal traction is estimated using three different methods over large grid cells to minimize biases associated with unconstrained rheologic parameters used in numerical inversions. We find that the velocity-traction relationships are consistent with our current understanding of basal physics in each catchment. We identify catchments that predominantly show Mohr-Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics. Overall, the velocity-traction relationships suggest that the flow field and surface geometries over the grounded regions of the Greenland ice sheet are mainly dictated by Weertman-type physics. This data- and modeling based analysis provides a first constraint on the physics of basal motion over the grounded regions of Greenland and gives unique insight into future dynamics and vulnerabilities in a warming climate.

How to cite: Maier, N., Gimbert, F., Gillet-Chaulet, F., and Gilbert, A.: Constraints on the relationship between velocity and basal traction over the grounded regions of Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14867, https://doi.org/10.5194/egusphere-egu21-14867, 2021.

EGU21-15070 | vPICO presentations | CR3.3

Hydrology and biogeochemistry of subglacial environment of Greenland ice sheet

Ankit Pramanik, Nick Hayes, Frank Pattyn, and Sandra Arndt

CR3.4 – Ice shelves and tidewater glaciers - dynamics, interactions, observations, modelling

EGU21-2313 | vPICO presentations | CR3.4 | Highlight

Exploring the influence of frontal ablation on global glacier mass change projections

Jan-Hendrik Malles, Fabien Maussion, and Ben Marzeion

Mountain glaciers across the world are contributing around one-third to the recent barystatic global mean sea-level rise, and relevant for regional hydrological changes. Although the majority of Earth’s glaciers is land-terminating, roughly one-third of the glaciated area drains into an ocean or a lake. Due to the interrelation of surface and frontal mass budget, marine-terminating glaciers are subject to different dynamics than land-terminating ones, which are only forced by the atmosphere. This means that mass changes of marine-terminating glaciers cannot only be explained by changes in the atmospheric forcing. Thus, if ice-ocean interaction is not explicitly treated in a mass-balance model, calibration using, e.g., geodetic mass balances will lead to an overestimation of these glaciers’ sensitivity to changes in atmospheric temperatures. However, most large-scale glacier models are not yet able to account for this process and frontal ablation remains an elusive feature of glacier dynamics, because direct observations are sparse. We explore this issue by implementing a simple frontal ablation parameterization in the Open Global Glacier Model (OGGM). One of the major changes this entails is the lowering of marine-terminating glaciers’ sensitivities to atmospheric temperatures in the model’s surface mass-balance calibration. We then use this model, forced with an ensemble of atmospheric temperature and precipitation projections from climate models taking part in the Climate Model Intercomparison Project’s sixth phase (CMIP6), to project global glacier mass change until 2100. The main aim of this work is to investigate  the influence of the frontal ablation parameterization on those projections. We find that introducing the parameterization of frontal ablation, but ignoring changes in ocean climate, reduces the spread between different emission scenarios in 2100.

How to cite: Malles, J.-H., Maussion, F., and Marzeion, B.: Exploring the influence of frontal ablation on global glacier mass change projections, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2313, https://doi.org/10.5194/egusphere-egu21-2313, 2021.

EGU21-2274 | vPICO presentations | CR3.4

Revisiting the crevasse-depth calving law in the presence of melt undercutting

Donald Slater, Doug Benn, Tom Cowton, Jeremy Bassis, and Joe Todd

For tidewater glaciers worldwide, calving is a principal mechanism of mass loss. In turn, undercutting of tidewater glacier termini by submarine melting is understood to be a principal driver of calving. Yet, we currently have no practical and widely-accepted parameterisations that can represent the impact of submarine melting on calving in ice sheet models that are used for sea level projection, reducing confidence in their predictions.

The ‘crevasse-depth calving law’ that broadly relates depth-mean stress to a crevasse depth has been very widely used in models of tidewater glaciers, but this law does not fully account for the impact of submarine melt undercutting on the near-terminus stress field, which may be the key link between tidewater glaciers and the ocean. As such, we here work to incorporate the full impact of melt undercutting into a revised crevasse-depth calving law.

We combine elastic beam theory, linear elastic fracture mechanics and Elmer/Ice simulations to study the propagation of surface and basal crevasses near the front of tidewater glaciers in response to melt undercutting. We work to parameterise these results through a simple revision of the existing crevasse-depth calving law. The revised law explicitly accounts for the impact of melt undercutting on crevasses near the terminus, without increasing the computational demand on ice sheet models that might incorporate such a law, representing an important step towards better projection of ice sheet mass loss driven by the ocean.

How to cite: Slater, D., Benn, D., Cowton, T., Bassis, J., and Todd, J.: Revisiting the crevasse-depth calving law in the presence of melt undercutting, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2274, https://doi.org/10.5194/egusphere-egu21-2274, 2021.

EGU21-126 | vPICO presentations | CR3.4

Enhanced calving rates related to meltwater plume occurrence at Eqip Sermia, Greenland

Adrien Wehrlé, Martin P Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli

Glacier calving plays a key role in the recently observed dynamic mass
loss of the Greenland ice sheet. Calving waves, generated by the
sudden detachment of ice from the glacier terminus, can reach tens of
meters of height and have devastating effects upon impact on
surrounding shores. In this study, we describe a new method for the
detection of source location and timing of calving waves, and the
analysis of their magnitude and spreading properties using a
terrestrial radar interferometer (TRI). This method was applied to
11,500 minute-interval TRI acquisitions from Eqip Sermia, Greenland.
More than 2,000 calving waves were detected within seven
days. Quantitative assessment with a Wave Power Index (WPI) showed
spatially distinctive patterns: the sector of the calving front ending
in deep water shows a higher wave activity (+49%) with higher
cumulative WPI (+34%) than the shallow sector. In combination with
a detection of meltwater plume locations, we highlighted a 2.3 times
higher occurrence of visible meltwater plumes in the deep sector than the
shallow one. We found both the cumulated WPI and the number of waves
to increase by more than 80% in the presence of a meltwater plume
in the deep sector while only by 30% in the shallow sector.  We
therefore explain the higher calving activity in the deep sector to be 
strongly related to a combination of higher occurrence of meltwater plumes 
and more efficient calving enhancement linked to better connections 
to deep warm waters.

How to cite: Wehrlé, A., Lüthi, M. P., Walter, A., Jouvet, G., and Vieli, A.: Enhanced calving rates related to meltwater plume occurrence at Eqip Sermia, Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-126, https://doi.org/10.5194/egusphere-egu21-126, 2021.

EGU21-797 | vPICO presentations | CR3.4

Modelling calving at Kronebreen, Svalbard using Elmer/Ice

Felicity Holmes, Eef van Dongen, and Nina Kirchner

Understanding how tidewater glaciers are responding to climatic and oceanographic changes is vital in order to reduce uncertainty in sea level rise estimates. In this project, we are using the 3D calving model in Elmer/Ice to simulate how Kronebreen responds over short time scales to various forcing scenarios. Specifically, a variety of frontal melt scenarios are being implemented to understand how calving and glacier dynamics respond to changing inputs. Both the magnitude and spatial distribution of frontal melt will be varied, with these scenarios being informed by a dataset of glacier proximal water temperatures (spanning Aug 2016 –  Aug 2017) as well as by plume locations as identified from satellite imagery.  The model output will be compared to observational data (frontal position, velocities) collected for the period 2016 – 2017 with the aim of running longer simulations using a ’best fit’ model set up. Details of the experimental set up, as well as some preliminary results, are presented here. 

How to cite: Holmes, F., van Dongen, E., and Kirchner, N.: Modelling calving at Kronebreen, Svalbard using Elmer/Ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-797, https://doi.org/10.5194/egusphere-egu21-797, 2021.

Ocean-driven retreat of Greenland’s tidewater glaciers remains a large uncertainty in predictions of sea level rise, partly due to limited constraints on glacier-adjacent water properties. Icebergs are likely important modifiers of fjord water properties, yet their effect is poorly understood. Here, we use a 3-D ocean circulation model coupled to a submarine iceberg melt module to investigate the effect of submarine iceberg melting on glacier-adjacent water properties in a range of idealised settings. Icebergs can modify glacier adjacent water properties in three principle ways: (1) substantial cooling and modest freshening in the upper ~50 m of the water column; (2) warming of Polar Water due to iceberg-induced upwelling of warm Atlantic Water, and; (3) the Atlantic Water layer warms on average when vertical temperature gradients through the Atlantic Water layer are steep (due to vertical mixing of warm water at depth), but cools on average when vertical temperature gradients are shallow. When icebergs extend to-or-below sill depth, they can cause cooling throughout the entire water column. All of these effects are more pronounced in fjords with higher iceberg concentrations and deeper iceberg keel depths. These results characterise the important role of icebergs in modifying ice sheet – ocean interaction and highlight the need to improve representations of fjord processes in ice sheet-scale models.

How to cite: Davison, B.: Characterising the effect of submarine iceberg melting on glacier-adjacent water properties, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14678, https://doi.org/10.5194/egusphere-egu21-14678, 2021.

EGU21-2972 | vPICO presentations | CR3.4

Sub-shelf melting consequences of recent and future Pine Island Glacier ice shelf calving events

Alex Bradley, Paul Holland, and Pierre Dutrieux

In recent years, the ice shelf of Pine Island Glacier has experienced several significant calving events. It is understood that the presence of the ice shelf in conjunction with a subglacial ridge provide a strong topographic barrier to warm Circumpolar Deep Water spilling onto the continental shelf, but it is not known how this barrier will respond to this recent, and possible future, calving events. In this presentation, I shall present results of numerical simulations of ocean circulation under Pine Island Glacier, which indicate a strong sensitivity to such calving events, and discuss the implications of these results for the overall stability of the glacier.

How to cite: Bradley, A., Holland, P., and Dutrieux, P.: Sub-shelf melting consequences of recent and future Pine Island Glacier ice shelf calving events, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2972, https://doi.org/10.5194/egusphere-egu21-2972, 2021.

EGU21-9310 | vPICO presentations | CR3.4

the Development of an Annual Iceberg Calving Dataset of the Antarctic Ice Shelves 

Mengzhen Qi, Yan Liu, and Xiao Cheng

  Iceberg calving, one of the key processes of Antarctic mass balance, has been regarded as an important variable in fine monitoring the changes of ice shelves. Based on multi-source satellite imagery, all annual calving events larger than 1 km² that occurred from August 2005 to August 2019 were extracted. Also, their area, thickness, mass, and calving recurrence cycle were calculated to derive the annual iceberg calving dataset. This dataset contains the distribution of 14-year annual calving events, along with the attributes of each calving event including calving year, length, area, average thickness, mass, recurrence interval, and calving type, and it can directly reflect the magnitude characteristics and distribution of Antarctic iceberg calving in different years, which fills the gap of fine monitoring dataset of iceberg calving and provides fundamental data for subsequent research on calving mechanism and mass balance of Antarctic ice shelf-ice sheet system.

How to cite: Qi, M., Liu, Y., and Cheng, X.: the Development of an Annual Iceberg Calving Dataset of the Antarctic Ice Shelves , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9310, https://doi.org/10.5194/egusphere-egu21-9310, 2021.

EGU21-6099 | vPICO presentations | CR3.4 | Highlight

Damage state and damage change assessment from remote sensing observations at Antarctic ice shelves

Maaike Izeboud and Stef Lhermitte

The increasing contribution of the Antarctic Ice Sheet to sea level rise is linked to reductions in ice shelf buttressing, compounded by their thinning, weakening and fracturing. Ice shelf shear zones that are highly crevassed and with open fractures are first signs that these shear zones have structurally weakened. The weakening of shear zones by this damage results in speedup, shearing and further weakening of the ice shelf, hence promoting additional damage development. This damage feedback potentially preconditions these ice shelves for disintegration and enhances grounding line retreat, and is considered key to the retreat of Pine Island Glacier and Thwaites Glacier as well as the collapse of Larsen B. Although damage feedbacks have been identified as key to future ice shelf stability, it is one of the least understood processes in marine ice sheet dynamics. Furthermore, the amount of damage and its changes is yet to be quantified.

Quantifying damage efficiently and accurately is a challenging task due to the highly complex surface of Antarctica, the variations in viewing-illumination geometry, snow or cloud cover and the variable signal-to-noise levels in satellite imagery (e.g. speckle in SAR). As a result, efforts to detect damage from remote sensing are usually limited to regional studies or limited in spatial resolution, thus only identifying large rifts. Or alternatively when used to support models or machine learning techniques, mapping fractures is often done manually, with several shortcomings. Lastly, there has been little to no effort to map the changes of damage state over regional areas.

In this study we construct an Antarctic wide damage and damage change assessment from an automated approach that includes high resolution features, with regional focus on identified weak ice shelves. We apply the radon transform technique to detect damage from both optical (Sentinel-2) and SAR (Sentinel-1) imagery in the past 5 years (2015-2020). The radon transform has been demonstrated to be efficient in detecting along-flow features and also to be used for complex flow patterns with a wide range of crevasse orientations. By using two remote sensing sources, we overcome the stated challenges that relate to the respective individual sources.

In our damage assessment we are able to distinguish shallow surface crevasses from large rifts, and identify mode I (opening; tensile) and mode III (shearing) fractures. With this, we can clearly identify weak ice shelves from our results, such as Pine Island and Thwaites glacier, where the damage area in the shear margins has grown substantially over the years. The changes in mode I and mode III fracture patterns observed on these ice shelves provide additional insights in the development of shear zone. Lastly, we show a good agreement in fracture pattern retrieved from optical and SAR imagery, and the complimentary application of SAR to detect fractures under snow cover.

How to cite: Izeboud, M. and Lhermitte, S.: Damage state and damage change assessment from remote sensing observations at Antarctic ice shelves, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6099, https://doi.org/10.5194/egusphere-egu21-6099, 2021.

EGU21-6392 | vPICO presentations | CR3.4

Riftquakes: Recording and Modeling Seismic Signals of Rifting at Pine Island Glacier

Seth Olinger, Brad Lipovsky, Marine Denolle, and Brendan Crowell

Nearly 50% of Antarctic ice discharge into the ocean occurs via iceberg calving (Depoorter et al 2013). Large tabular icebergs calve from ice shelves along large fractures called rifts, but the physics of rifting are poorly understood. How fast does rift propagation occur? Does the timing of rift fracture coincide with episodes of unusual ice motion? We investigate these questions using data from seismometers and GPS sensors deployed on Pine Island Glacier ice shelf (PIG) from January 2012 to December 2013 surrounding the calving of iceberg B31, which exceeded 700 km2 in size and calved in November 2013 along a large rift. Using TerraSAR-X imagery, we identify a large 7km-long rift that must have occurred between May 8 and May 11, 2012. We identify a large-amplitude seismic signal on May 9, 2012, which we attribute to the rifting event. The signal is broadband, containing energy at frequencies higher than 1 Hz and lower than 0.01 Hz, and exhibits pronounced dispersion characterized by high frequencies arriving before low frequencies. We use features of the May 9 “riftquake” to detect thousands of similar events, which we classify using K-shape clustering. We hypothesize that the observed signals are flexural gravity waves generated by a bending moment applied to the ice shelf during fracture. To test this hypothesis, we model the ice shelf as a dynamic beam supported by an inviscid, incompressible ocean. We find that the model reproduces observed riftquake waveforms when forced with a bending moment. We then use a Markov Chain Monte Carlo inversion to model representative events from each cluster of observed events. The inversion reveals that source durations on the order of seconds have the highest likelihood of explaining observed riftquake waveforms, suggesting that rifting occurs on elastic timescales. Finally, we locate the riftquakes and find that a swarm of events originating at the rift tip occurs just after the start of a period of acceleration at PIG, suggesting that the stress concentrations driving rift opening are influenced by changes in ice dynamics.

How to cite: Olinger, S., Lipovsky, B., Denolle, M., and Crowell, B.: Riftquakes: Recording and Modeling Seismic Signals of Rifting at Pine Island Glacier, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6392, https://doi.org/10.5194/egusphere-egu21-6392, 2021.

The propagation of high-frequency elastic-flexural waves through an ice shelf was modeled by a full 3-D elastic models. These models based on the momentum equations that were written as the differential equations (model#1) and as the integro-differential equations (model#2). The integro-differential form implies the vertical integration of the momentum equations from the ice surface to the current coordinate z like, for instance, in the Blatter-Pattyn ice flow model. The sea water flow under the ice shelf is described by the wave equation. The numerical solutions were obtained by a finite-difference method. Numerical experiments were undertaken for a crevasse-ridden ice shelf with different spatial periodicities of the crevasses. In this research the modeled positions of the band gaps in the dispersion spectra dependently on the spatial periodicities of the crevasses is investigated from the point of view of agreement of these positions with the Bragg’s law. The investigation of the dispersion spectra shows that different models reveal different sensitivities of the dispersion spectra (in relation to the appearance of the band gaps in the spectra) dependently on the spatial periodicity of the crevasses and on the crevasses depth.

How to cite: Konovalov, Y.: Modeling of ocean wave propagation across the crevasse-ridden ice shelf: focus on the comparison of two models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6175, https://doi.org/10.5194/egusphere-egu21-6175, 2021.

EGU21-3053 | vPICO presentations | CR3.4

Constraining ice shelf basalt melting rates from isochrone data

Vjeran Visnjevic, Reinhard Drews, Clemens Schannwell, and Inka Koch

Ice shelves buttress ice flow from the continent towards the ocean, and their disintegration results in increased ice discharge.  Ice-shelf evolution and integrity is influenced by surface accumulation, basal melting, and ice dynamics. We find signals of all of these processes imprinted in the ice-shelf stratigraphy that can be mapped using isochrones imaged with radar.

Our aim is to develop an inverse approach to infer ice shelf basal melt rates using radar isochrones as observational constraints. Here, we investigate the influence of basalt melt rates on the shape of isochrones using combined insights from both forward and inverse modeling. We use the 3D full Stokes model Elmer/Ice in our forward simulations, aiming to reproduce isochrone patterns observed in our data. Moreover we develop an inverse approach based on the shallow shelf approximating, aiming to constrain basal melt rates using isochronal radar data and surface velocities. Insights obtained from our simulations can also guide the collection of new radar data (e.g., profile lines along vs. across-flow) in a way that ambiguities in interpreting the ice-shelf stratigraphy can be minimized. Eventually, combining these approaches will enable us to better constrain the magnitude and history of basal melting, which will give valuable input for ocean circulation and sea level rise projections.

How to cite: Visnjevic, V., Drews, R., Schannwell, C., and Koch, I.: Constraining ice shelf basalt melting rates from isochrone data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3053, https://doi.org/10.5194/egusphere-egu21-3053, 2021.

EGU21-4750 | vPICO presentations | CR3.4

Simulating detailed spatial patterns of ice shelf basal melt

Erwin Lambert, André Jüling, Paul Holland, and Roderik van de Wal

The contact between ice shelves and relatively warm ocean waters causes basal melt, ice shelf thinning, and ultimately ice sheet mass loss. This basal melt, and its dependence on ocean properties, is poorly understood due to an overall lack of direct observations and a difficulty in explicit simulation of the circulation in sub-shelf cavities. In this study, we compare a number of parameterisations and models of increasing complexity, up to a 2D ‘Layer’ model. Each model is aimed at quantifying basal melt rates as a function of offshore temperature and salinity. We test these models in an idealised setting (ISOMIP+) and in a realistic setting for the Amundsen Sea Embayment. All models show a comparable non-linear sensitivity of ice-shelf average basal melt to ocean warming, indicating a positive feedback between melt and circulation. However, the Layer model is the only one which explicitly resolves the flow direction of the buoyant melt plumes, which is primarily governed by rotation and by the basal topography of the ice shelves. At 500m resolution, this model simulates locally enhanced basal melt near the grounding line, in topographical channels, and near the western boundary. The simulated melt patterns for the Amundsen Sea ice shelves are compared to satellite observations of ice shelf thinning and to 3D numerical simulations of the sub-shelf cavity circulation. As detailed melt rates near the grounding line are essential for the stability of ice sheets, spatially realistic melt rates are crucial for future projections of ice sheet dynamics. We conclude that the Layer model can function as a relatively cheap yet realistic model to downscale 3D ocean simulations of ocean properties to sub-kilometer scale basal melt fields to provide detailed forcing fields to ice sheet models.

How to cite: Lambert, E., Jüling, A., Holland, P., and van de Wal, R.: Simulating detailed spatial patterns of ice shelf basal melt, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4750, https://doi.org/10.5194/egusphere-egu21-4750, 2021.

EGU21-3486 | vPICO presentations | CR3.4

Inferring ice rheology in Antarctic ice shelves from remotely sensed observations

Joanna Millstein and Brent Minchew

Glaciers and ice sheets flow as a consequence of ice rheology. At the temperatures and pressures found on Earth, several creep mechanisms allow glacier ice to flow as a non-Newtonian (shear-thinning) viscous fluid. The semi-empirical constitutive relation known as Glen’s Flow Law is often used to describe ice flow and to provide a simple expression for an effective viscosity that decreases with increasing stress and deformation rate. Glen’s Flow Law is a power-law relation between effective strain rate and deviatoric stress, with two parameters defining the rheology of ice: a rate factor, A, and stress exponent, n. The rate factor depends on features such as temperature and grain size, while the stress exponent is primarily representative of the creep mechanism. Neither A nor n are well constrained in natural ice, and the stress exponent is typically assumed to be n = 3 everywhere. Here, we take advantage of recent improvements in remotely sensed observations of surface velocity and ice shelf thickness to infer the values of A and n in Antarctic ice shelves. We focus on areas of ice shelves that flow in a purely extensional regime, where extensional stresses are proportional to observed ice thickness, drag at the base of the ice is negligible, and extensional strain-rates are calculated from the gradients of observed surface velocity fields. In this manner, we use independent observational data to derive spatially dependent constraints on the rate factor A and stress exponent n in Glen's Flow Law. The robust spatial variability provides insights into the creep mechanisms of ice, thereby capturing rheological properties from satellite observations. Our analysis indicates that n ≈ 4 in most fast-flowing areas in an extensional regime, contrary to the prototypical value of n = 3. This finding implies higher non-linearity in ice flow than typically prescribed, influencing calculations of mass flux and the response of ice sheets to perturbations. Additionally, This result suggests that dislocation creep is the dominant creep mechanism in extensional regimes of Antarctic ice shelves, indicative of tertiary creep. This analysis unites theoretical work and synoptic-scale observations of ice flow, providing insights into the rheology and stress-states of ice shelves in Antarctica.

How to cite: Millstein, J. and Minchew, B.: Inferring ice rheology in Antarctic ice shelves from remotely sensed observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3486, https://doi.org/10.5194/egusphere-egu21-3486, 2021.

EGU21-3566 | vPICO presentations | CR3.4

A scaling law for similar ice sheet flow

Johannes Feldmann and Anders Levermann

The time scales of the flow and retreat of the outlet glaciers draining Greenland and Antarctica and their potential instabilities are arguably the largest uncertainty in future sea-level projections. The associated stress and velocity fields are highly complex. Here we derive an exact scaling law from first principles that shows that the time scale of outlet-glacier flow is related to the inverse of 1) the fourth power of the width-to-length ratio of its topographic confinement, 2) the third power of the confinement depth and 3) the temperature-dependent ice softness. We show that idealized numerical simulations of marine ice-sheet instabilities (MISI) as found in Antarctica follow this theoretical prediction. In a further step we apply the scaling law to observations of different MISI-prone Antarctic outlets to compare their potential instability time scales. The simple scaling relation incorporates the full complexity of the ice stress field of a fast outlet glacier similar to the predictive power of the thermodynamic equations of an ideal gas. In quantifying the non-linear influence of glacier geometry and temperature on the ice dynamicsscaling law allows to investigate similar ice flow under future global warming.

How to cite: Feldmann, J. and Levermann, A.: A scaling law for similar ice sheet flow, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3566, https://doi.org/10.5194/egusphere-egu21-3566, 2021.

EGU21-7285 | vPICO presentations | CR3.4

Thermal structure of the Amery Ice Shelf from borehole observations and simulations

Yu Wang, Chen Zhao, Rupert Gladstone, and Ben Galton-Fenzi

The Amery Ice Shelf (AIS), East Antarctica, has a layered structure, due to the presence of both meteoric and marine ice. In this study, the thermal structures of the AIS are evaluated from vertical temperature profiles, and its formation mechanism are demonstrated by numerical simulations. The temperature profiles, derived from borehole thermistor data at four different locations, indicate distinct temperature regimes in the areas with and without basal marine ice. The former shows a near-isothermal layer over 100 m at the bottom and stable internal temperature gradients, while the latter reveals a cold core ice resulting from upstream cold ice advection and large temperature gradients within 90 m at the bottom. The three-dimensional steady-state temperature fields are simulated by Elmer/Ice, a full-stokes ice sheet model, using three different basal mass balance datasets. We found the simulated temperature fields are highly sensitive to the choice of dynamic boundary conditions on both upper and lower surfaces. To better illustrate the formation of the vertical thermal regimes, we construct a one-dimensional temperature column model to simulate the process of ice columns moving on the flowlines with varying boundary conditions. The comparison of simulated and observed temperature profiles suggests that the basal mass balance and meteoric ice advection are both crucial factors determining the thermal structure of the ice shelf. The different basal mass balance datasets are indirectly evaluated as well. The improved understanding of the thermal structure of the AIS will assist with further studies on its thermodynamics and rheology.

How to cite: Wang, Y., Zhao, C., Gladstone, R., and Galton-Fenzi, B.: Thermal structure of the Amery Ice Shelf from borehole observations and simulations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7285, https://doi.org/10.5194/egusphere-egu21-7285, 2021.

EGU21-935 | vPICO presentations | CR3.4

A GIS Database of Submarine Glacial Landforms and Sediments on High-Arctic Continental Shelves

Katharina Streuff and Colm Ó Cofaigh

A new digital database compiling glacial landforms and sediments in the High Arctic was created in order to facilitate and underpin new research on palaeo-ice sheets and tidewater glacier dynamics. The database is in a geographic information system (GIS) format and will be available for web download when published. It documents evidence of previous glacial activity as visible on the contemporary seafloor of fjords and continental shelves around all of Svalbard, Greenland, and Alaska, and north of 66°30’ N in Russia, Norway, and Canada. Extensive literature research was conducted to create the database, compiling a large number of glacial landforms at a range of scales, sediment cores, and radiocarbon dates. Glacial landforms included in the database are cross-shelf troughs, trough-mouth fans, grounding-zone wedges, overridden moraines, glacial lineations, drumlins, crag-and-tails, medial moraines, terminal moraines, debris-flow lobes (including glacier-contact fans), recessional moraines, De Geer moraines, crevasse-fill ridges, eskers and submarine channels. Sediment core locations are attributed with a description of the sampled lithofacies and sediment accumulation rates where available. Radiocarbon dates were included when thought to be relevant for constraining the timing of large-scale palaeo-ice dynamics. Outlines of bathymetric datasets published before December 2020 were also mapped to give an overview of previously investigated research areas. The database will aid researchers in the reconstruction of ice dynamics during and since the Last Glacial Maximum and in the interpretation of High-Arctic glacial landform-sediment assemblages. Moreover, apart from providing a comprehensive bibliography on Arctic glacial geomorphological and sedimentological research, it is intended to serve as a basis for future ice sheet modelling of High-Arctic glacier dynamics.

How to cite: Streuff, K. and Ó Cofaigh, C.: A GIS Database of Submarine Glacial Landforms and Sediments on High-Arctic Continental Shelves, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-935, https://doi.org/10.5194/egusphere-egu21-935, 2021.

EGU21-10040 | vPICO presentations | CR3.4

Drainage basins and glacier catchments for the Greenland Ice Sheet

Lukas Krieger and Dana Floricioiu

The drainage divides of ice sheets separate the overall glaciated area into multiple sectors and outlet glaciers. These catchments represent essential input data for partitioning glaciological measurements or modelling results to the individual glacier level. They specify the area over which basin specific measurements need to be integrated.

The delineation of drainage basins on ice sheets is challenging due to their gentle slopes accompanied by local terrain disturbances and complex patterns of ice movement. Therefore, in Greenland the basins have been mostly delineated along the major ice divides, which results in large drainage sectors containing multiple outlet glaciers. In [1] we developed a methodology for delineating individual glaciers that was applied to the Northeast Greenland sector and proposed slightly changed separations between 79N and Zachariae basins driven by the ice flow lines. In the present study the method is extended to the entire Greenland Ice Sheet.

We present a fully traceable approach that combines ice sheet wide velocity measurements by Sentinel-1 SAR and the 90 m TanDEM-X global DEM to derive individual glacier drainage basins for the entire Greenland Ice Sheet with a modified watershed algorithm. We delineate a total of 335 individual glacier catchments, a result triggered by the number and location of the selected seed points.

The resulting dataset will be made publicly available online and is extensible by even more granular delineations of individual tributaries upon request. The proposed approach has the potential to produce catchment areas also for the entirety of the Antarctic Ice Sheet.

 

[1] Krieger, L., D. Floricioiu, and N. Neckel (Feb. 1, 2020). “Drainage Basin Delineation for Outlet Glaciers of Northeast Greenland Based on Sentinel-1 Ice Velocities and TanDEM-X Elevations”.  In:Remote  Sensing  of  Environment 237,  p.  111483.

How to cite: Krieger, L. and Floricioiu, D.: Drainage basins and glacier catchments for the Greenland Ice Sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10040, https://doi.org/10.5194/egusphere-egu21-10040, 2021.

EGU21-15097 | vPICO presentations | CR3.4 | Highlight

Ice-ocean interactions on Ryder Glacier in North Greenland 

Johan Nilsson, Martin Jakobsson, Christian Stranne, Matt O'Regan, and Larry Mayer

Here, we report oceanographic observations and multi-beam bathymetry from the previously uncharted Sherard Osborn Fjord in North Greenland, collected in the summer of 2019 by the Swedish icebreaker Oden. Ryder Glacier, which has Greenland's third largest floating ice tongue, discharges into Sherard Osborn Fjord. The observations show that Arctic Atlantic Water interacts with the ice tongue, creating a prominent intermediate layer of glacially-modified water in the fjord. However, a secondary sill in the inner fjord restricts the heat carried by the Atlantic Water towards Ryder Glacier’s floating tongue, thereby reducing basal melt rates. The observations indicate that the inflow of Atlantic Water over the inner sill is limited by hydraulic control, and that shear-driven vertical mixing cools the inflow reaching the ice tongue. The interactions between the flow and the sill geometry suggest a negative feedback, which reduces the sensitivity of the basal melt rate to variations of Atlantic Water temperature. This may help to explain why the extent of Ryders Glacier's ice tongue has remained stable over the past 50 years, whereas the neighbouring Petermann Glacier's ice tongue, with a different sill geometry, has retreated significantly.  

How to cite: Nilsson, J., Jakobsson, M., Stranne, C., O'Regan, M., and Mayer, L.: Ice-ocean interactions on Ryder Glacier in North Greenland , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15097, https://doi.org/10.5194/egusphere-egu21-15097, 2021.

EGU21-1358 | vPICO presentations | CR3.4

Potenial future recovery of Petermann Glacier in northwest Greenland simulated using ISSM

Henning Åkesson, Mathieu Morlighem, Martin Jakobsson, Johan Nilsson, and Christian Stranne

Ice shelves in Antarctica and Greenland are thinning and breaking up, and marine outlet glaciers are retreating, where the ocean is known to play a key role. This pattern is projected to continue over the next decades to centuries due to ocean warming induced by global carbon emissions. Given that we halt or even reverse the current warming trend and fulfil the Paris agreement, it is unclear whether ice shelves and glaciers can recover from the preceding breakup and retreat. Here, we use the numerical ice sheet model ISSM to assess whether Petermann Glacier in northwest Greenland can recover after future ice shelf breakup and grounding line retreat. Petermann’s ice tongue is one of the few remaining in Greenland, where several major calving events occurred over the last decade.

Our experiments suggest that if Petermann’s ice shelf collapses due to future ocean warming, the ice shelf will not regrow even if that warming is reversed. Neither an ocean warming reversal nor a more positive surface mass balance help the ice shelf to regrow once it has collapsed. Future ocean warming may thus push Petermann into a new dynamic state from where recovery is exceedingly difficult. Finally, we investigate whether reduced calving activity allows for future grounding line readvance and ice shelf recovery. We discuss our findings in light of both potential future recovery and ice shelf collapse and regrowth in the past.

How to cite: Åkesson, H., Morlighem, M., Jakobsson, M., Nilsson, J., and Stranne, C.: Potenial future recovery of Petermann Glacier in northwest Greenland simulated using ISSM, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1358, https://doi.org/10.5194/egusphere-egu21-1358, 2021.

EGU21-10758 | vPICO presentations | CR3.4

Scalings for subglacial discharge driven circulation in Greenland's proglacial fjords

Adam Stanway, Andrew Wells, Helen Johnson, and Jeff Ridley


Around Greenland, the transport of heat and fresh meltwater between the ocean and Greenland's Ice Sheet is mediated by circulation in several hundred proglacial fjords. These fjords are long and narrow, with circulation controlled by a variety of processes. This circulation, and the resultant heat transported to the ice sheet has global implications. However, the spatial scales of these fjords means that they cannot be directly represented in global scale climate models, as currently achievable horizontal resolutions are too coarse to resolve fjords directly. Therefore, a subgrid-scale parameterization scheme is required, to include the impact of fjord circulation on Greenland's Ice Sheet in these models. The development of such a scheme requires increased theoretical understanding, with the aim of capturing the circulation response simply, over a relevant range of the parameter space.

Current climate models add freshwater runoff from Greenland's Ice Sheet into the ocean model in the surface grid cell, and do not account for the impacts of fjord circulation on melt rates at glacial termini. Therefore, we focus on predicting the depth at which fresh meltwater enters the wider ocean, and the flow structure at the ice face itself, to understand the feedback on ice melt rates. We consider a subglacial discharge driven regime, with a localised source of subglacial discharge into the fjord at the glacial grounding line. We employ a combination of computational modelling using idealised configurations in MITgcm, and theoretical explorations, to capture this circulation as simply as possible. For fjords without sills, we find that the cross-fjord integrated velocity profile at the fjord mouth echoes that at the ice face. Further, we find that a horizontal recirculation cell develops at the ice face, as the fjord responds to horizontal velocities driven by the plume itself, generating flow across the entire ice face. We use scaling laws previously developed for turbulent plumes to provide a simple prediction of the cross-fjord integrated velocity structure at the fjord mouth, predicting the depth level at which meltwater enters the wider ocean. We develop theoretical predictions for the cross-fjord flow at the ice face, as a consequence of the flow directly induced by a buoyant plume and the circulation response in the fjord, allowing prediction of the pattern of melt across the ice face.

How to cite: Stanway, A., Wells, A., Johnson, H., and Ridley, J.: Scalings for subglacial discharge driven circulation in Greenland's proglacial fjords, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10758, https://doi.org/10.5194/egusphere-egu21-10758, 2021.

EGU21-13956 | vPICO presentations | CR3.4

Projections of 21st century sea-level contribution from the retreat of Humboldt Glacier, North Greenland

Trevor Hillebrand, Matthew Hoffman, Mauro Perego, Stephen Price, Abby Roat, and Ian Howat

Humboldt Glacier drains ~5% of the Greenland Ice Sheet and has retreated and accelerated since the late 1990s. The northern section of the terminus has retreated towards an overdeepening in the glacier bed that extends tens of kilometers towards the ice sheet interior, raising the possibility of a rapid increase in ice discharge and retreat in the near future. Here we investigate the potential 21st century sea-level contribution from Humboldt Glacier with the MPAS-Albany Land Ice (MALI) ice sheet model. First, we optimize the basal friction field using observations of surface velocity and ice surface elevation to obtain an initial condition for the year 2007. Next, we tune parameters for calving, basal friction, and submarine melt to match the observed retreat rates and surface velocity changes. We then simulate glacier evolution to 2100 under a range of climate forcings from the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), using ocean temperatures from the MIROC5 Earth System Model, with surface mass balance and subglacial discharge from MAR3.9/MIROC5. Our simulations predict ~3.5 mm of sea-level rise from the retreat of Humboldt Glacier by 2100 for RCP8.5, and ~1 mm for RCP2.6. The results are insensitive to the choice of calving parameters for grounded ice, but a low stress threshold for calving from floating ice is necessary to initiate retreat. We find that a highly plastic basal friction law is required to reproduce the observed acceleration, but the choice of basal friction law does not have a large effect on the magnitude of sea-level contribution by 2100 because much of the ice is at present close to floatation in the areas that retreat most significantly. Instead, the majority of ice mass loss comes from increasingly negative surface mass balance. Preliminary results from experiments with a subglacial hydrology model suggest that the simple treatment of subglacial discharge used in our 21st century projections (as used in the ISMIP6-Greenland protocol) underestimates spatial variability of melting at the glacier front but gives a reasonable approximation of total melt. When compared to the recent ISMIP6 estimates of 60–140 mm sea-level rise from the entire Greenland Ice Sheet by 2100, our estimate of 3.5 mm from Humboldt Glacier indicates a significant but far from dominant contribution from this single large outlet.

How to cite: Hillebrand, T., Hoffman, M., Perego, M., Price, S., Roat, A., and Howat, I.: Projections of 21st century sea-level contribution from the retreat of Humboldt Glacier, North Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13956, https://doi.org/10.5194/egusphere-egu21-13956, 2021.

EGU21-1362 | vPICO presentations | CR3.4

Basal melting at the floating tongue of the 79° North Glacier – on the impacts of ice-shelf basal channels

Mahdi Mohammadi-Aragh, Ole Zeising, Angelika Humbert, knut klingbeil, janin schaffer, Ralph Timmermann, and Hans Burchard

 The floating ice tongue of the 79° North Glacier (Nioghalvfjerdsfjorden Glacier) in Northeast Greenland has been found to thin over the past two decades. Recent studies suggest the warming of the ocean as one of the main drivers of destabilizing outlet glaciers of the Greenland ice sheet by enhanced subglacial melting. Using a horizontal two-dimensional numerical plume model, we study the hydrodynamic processes determining basal melt rates beneath the glacial tongue of the 79° North Glacier. We specifically investigate the spatial distribution of submarine melting and assess the importance of ice base morphology in controlling basal melting. For our study, we design a suite of simulations by implementing a synthetic network of basal channels. Additionally, we determine the role of subglacial discharge in driving melting along the glacier base. Our model results lead us to the conclusion that channelised basal topographies at the glacier base are the dominant control on the basal melt rates and its spatial distribution. 

How to cite: Mohammadi-Aragh, M., Zeising, O., Humbert, A., klingbeil, K., schaffer, J., Timmermann, R., and Burchard, H.: Basal melting at the floating tongue of the 79° North Glacier – on the impacts of ice-shelf basal channels, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1362, https://doi.org/10.5194/egusphere-egu21-1362, 2021.

EGU21-10028 | vPICO presentations | CR3.4

Greenland's glacier tidal response and ice sheet motion  

Julia Christmann, Veit Helm, Shfaqat Abbas Khan, Thomas Kleiner, Ralf Müller, Mathieu Morlighem, Niklas Neckel, Martin Rückamp, Daniel Steinhage, Ole Zeising, and Angelika Humbert

The Greenland ice sheet is the largest contributor to global sea-level rise. Large uncertainties remain in sea level rise projections due to limited insights in the dynamics of outlet glaciers in Greenland. Nioghalvfjerdsbræ (79°NG) is an outlet glacier of the Northeast Greenland Ice Stream (NEGIS), which holds 1.1 m sea-level equivalent of ice. 
While critical progress has been made in ice sheet modelling, the motion of fast-moving ice streams and their interactions with ocean tides remain poorly understood. We combine GPS observations and two-dimensional numerical modelling to show that tides alter lubrication of the glacier as far as 15 km inland. Modelling these systems is highly complex due to the need for an appropriate material model and the interaction of different components of the physical system. We associate a viscoelastic material with subglacial hydrology and get friction parameters by solving an inverse problem. Steep basal topography enhances creep by 14% locally, whereas in the majority of the fast-moving part of NEGIS the ratio of creep to sliding is below 2%. Based on the viscoelastic material model, it is possible to distinguish between elastic and viscous strains that sum up to the total strain. The elastic strain contribution in the considered cross-section is up to 34%, independent of any tidal forcing. Elastic strain contributes significantly to deformation in fast-moving outlet glaciers and appears to coincide with crevasses representing the solid nature of ice. Including sliding and elastic deformation in ice sheet models to represent recent accelerations of outlet glaciers is an important step forward in reducing uncertainties of Greenland’s contribution to future sea-level rise.

How to cite: Christmann, J., Helm, V., Khan, S. A., Kleiner, T., Müller, R., Morlighem, M., Neckel, N., Rückamp, M., Steinhage, D., Zeising, O., and Humbert, A.: Greenland's glacier tidal response and ice sheet motion  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10028, https://doi.org/10.5194/egusphere-egu21-10028, 2021.

EGU21-15695 | vPICO presentations | CR3.4

High-resolution ocean/sea ice/ice shelf simulation of the 79° North Glacier and Zachariae Isstrøm

Claudia Wekerle, Ralph Timmermann, Qiang Wang, and Rebecca McPherson

The 79° North Glacier (79NG) is the largest of the marine terminating glaciers fed by the  Northeast Greenland Ice Stream (NEGIS), which drains around 15% of the Greenland ice sheet. The 79NG is one of the few Greenland glaciers with a floating ice tongue, and is strongly influenced by warm Atlantic Water originating from Fram Strait and carried towards it through a trough system on the Northeast Greenland continental shelf.

Considering the decrease in thickness of the 79NG and also of the neighboring Zachariae Isstrøm (ZI), we aim to understand the processes that potentially lead to the decay of these glaciers. As a first step we present here an ocean-sea ice simulation which explicitly resolves the cavities of the 79NG and ZI glaciers, applying the Finite-Element Sea ice-Ocean Model (FESOM). We take advantage of the multi-resolution capability of FESOM and locally increase mesh resolution in the vicinity of the 79NG to 700 m. The Northeast Greenland continental shelf is resolved with 3 km, and the Arctic Ocean and Nordic Seas with 4.5 km. The simulation is conducted for the time period 1980 to 2018, using JRA-55 atmospheric reanalysis. Solid and liquid runoff from Greenland is taken from the Bamber et al. 2018 dataset. The flow of warm Atlantic water into the glacier and outflow of meltwater is compared to observational data from measurement campaigns. We further use current and hydrographic data from moorings deployed in Norske Trough to assess the model performance in carrying warm water towards the glacier. This simulation spanning several decades allows us to investigate recent changes in basal melt rates induced by oceanic processes, in particular warm Atlantic Water transport towards the glacier.

How to cite: Wekerle, C., Timmermann, R., Wang, Q., and McPherson, R.: High-resolution ocean/sea ice/ice shelf simulation of the 79° North Glacier and Zachariae Isstrøm, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15695, https://doi.org/10.5194/egusphere-egu21-15695, 2021.

EGU21-2098 | vPICO presentations | CR3.4

Submarine Melt Water from the 79 North Glacier (79NG, Nioghalvfjerdsbræ), northeast Greenland

Oliver Huhn, Monika Rhein, Klaus Bulsiewicz, Torsten Kanzow, Janin Schaffer, and Jürgen Sültenfuß

The Greenland Ice Sheet faces accelerated melting under warming climate conditions. The involved processes are surface melting, iceberg calving, and submarine melting through the contact of warm water with marine terminating glaciers. The Nioghalvfjerdsfjorden Glacier (79 North Glacier, 79NG) is the largest marine terminating outlet glacier of the Northeast Greenland Ice Stream and has still a floating ice tongue. In the cavity, the heat of inflowing warm and saline Atlantic Water melts the floating ice shelf at its base, and the colder and fresher outflow is exported towards the shelf break and presumably south with the East Greenland Current. However, freshwater from submarine melting is hardly distinguishable from other freshwater sources off the sources by salinity alone. To identify and to quantify the fraction and distribution of submarine melt water on the northeast Greenland shelf, we use helium (He) and neon (Ne) observations, obtained directly at the calving front of the 79NG, in its close and far vicinity on the northeast Greenland shelf, and beyond the shelf break in Fram Strait during a Polarstern expedition in 2016. These lighter and low soluble noble gasses provide a unique tool to identify submarine melt water and to quantify its fractions. We calculate a submarine melt water formation rate of 14.5 ± 2.3 Gt per year, equivalent to a basal melt rate of 8.6 ± 1.4 m per year of the 79NG. Submarine melt water fractions are present on the shelf, but dilute from 1.8% at the 79NG calving front to nonsignificant in Fram Strait. A surplus of Ne on most of the shelf region indicates that up to 10% of the original water mass had been transformed to sea ice.

How to cite: Huhn, O., Rhein, M., Bulsiewicz, K., Kanzow, T., Schaffer, J., and Sültenfuß, J.: Submarine Melt Water from the 79 North Glacier (79NG, Nioghalvfjerdsbræ), northeast Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2098, https://doi.org/10.5194/egusphere-egu21-2098, 2021.

EGU21-3405 | vPICO presentations | CR3.4

Investigating the drivers of Helheim Glacier’s variability from 2007 to 2020

Gong Cheng and Mathieu Morlighem

At least half of today’s mass loss of the Greenland ice sheet is due to the retreat of tidewater glaciers. For example, Helheim Glacier, in southwest Greenland, has one of the largest ice discharge records in the Greenland ice sheet during the previous decade. While there is broad agreement that the intrusion of warmer current in the Sermilik Fjord triggers the acceleration and retreat of this marine terminating glacier, other processes such as changes in basal conditions, surface mass balance or calving dynamics may have also played important roles in controlling the retreat of these glaciers. However, our understanding of these processes and their contributions to the retreat and acceleration of the glaciers remains still limited. The individual contributions of these processes have not been quantified, which makes it difficult to determine which of these processes should be included in ice sheet models to correctly capture the present and future retreat and associated mass loss of the ice sheet. Here, we simulate the dynamics of Helheim Glacier from 2007 to 2020 using the Ice-sheet and Sea-level System Model (ISSM) to investigate the model response to changes in external forcings and boundary conditions, such as basal friction, surface mass balance, ice rheology, and ice-ocean interactions at the calving front. The relative importance of each mechanism to the model is quantified within a series of perturbation experiments. We evaluate the ability of the model to match surface speed and terminus position from the observations collected during the simulation period. Preliminary results suggest that Helheim’s dynamics is relatively insensitive to the choice of friction law or the surface mass balance, but that the position of the calving front and changes in basal sliding conditions are critical to explain the high variability of Helheim’s surface speed. This study, as a result, can be used as a guide for model development of similar glaciers.

How to cite: Cheng, G. and Morlighem, M.: Investigating the drivers of Helheim Glacier’s variability from 2007 to 2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3405, https://doi.org/10.5194/egusphere-egu21-3405, 2021.

EGU21-7910 | vPICO presentations | CR3.4

Contrasting retreat patterns of east Greenland tidewater glaciers

Stephen Brough, J. Rachel Carr, Neil Ross, and James Lea

Between 2000 and 2010, glaciers on Greenland’s east coast were shown to have distinct contrasts in patterns and rates of ice front retreat north and south of 69°N latitude. The correspondence of this transition zone with the northern limit of subtropical waters carried by the Irminger Current has led to the hypothesis that variability in coastal heat transport is the dominant mechanisms causing this regional difference (e.g. Seale et al. 2011). However, whether these regional differences exist for recent glacier change is unknown. Here we examine seasonal and interannual variability in Landsat-8 derived ice-front positions with respect to atmospheric and oceanic forcings for 24 east Greenland outlet glaciers between 2013 and 2017.

 

We find that all glaciers exhibit seasonal advance and retreat cycles proportional to glacier width and velocity, though there is a distinct difference between the interannual trends of glacier termini north and south of 69oN throughout our study period. Glaciers above this latitude showed either limited or gradual terminus change over time that was mostly linear on annual timescales. This contrasts with glaciers south of 69°N where step-wise retreat was observed between 2016 and 2017, following a period of relative stability between 2013 and 2016. We find that retreat south of 69°N during 2016 was coincident with periods of anomalously warm atmospheric and subsurface oceanic temperatures, and a marked decline in sea ice/mélange. Warm atmospheric conditions were also experienced north of 69°N, though subsurface oceanic temperature increases and changes in mélange cover were not as marked. Our work supports the hypothesis that differences in the terminus response of glaciers either side of 69°N can be explained by contrasting oceanic forcing regimes above and below this latitude.

 

References: Seale, A., Christoffersen, P., Mugford, R. I. and O’Leary, M. (2011) Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. Journal of Geophysical Research Letters, 116, doi: 10.1029/2010JF001847.

 

How to cite: Brough, S., Carr, J. R., Ross, N., and Lea, J.: Contrasting retreat patterns of east Greenland tidewater glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7910, https://doi.org/10.5194/egusphere-egu21-7910, 2021.

EGU21-10539 | vPICO presentations | CR3.4 | Highlight

Increase of ice discharge from Greenland's peripheral tidewater glaciers over recent decades

Marco Möller, Beatriz Recinos, and Ben Marzeion

The Greenland Ice Sheet is losing mass at increasing rates. Substantial amounts of this mass loss occur by ice discharge. The ice sheet is surrounded by thousands of peripheral glaciers, which are dynamically decoupled from the ice sheet, and which account for ~10 % of the global glacier ice volume outside the two main ice sheets. Rather low-lying along the coasts, these peripheral glaciers are also losing mass at increasing, but disputed, rates. The total absence of knowledge about the role and share of solid ice discharge in this mass loss adds to the controversy. Since the quantification of ice discharge is still pending, a full understanding of ice mass loss processes in this globally important glacier region is substantially hampered.

Here, we present the first estimation of ice discharge from Greenland's peripheral tidewater glaciers. For each of these 760 glaciers, we combine an idealized rectangular flux gate cross sections derived from modelling with the Open Global Glacier Model with surface ice flow velocities derived from the ITS_LIVE and MEaSUREs remote sensing datasets to calculate glacier specific ice discharge on both annual and multi-annual time scales over the period 1985 to 2018. For the few glaciers not covered by either of the employed original datasets or modelling methods we use a regression tree-based extrapolation scheme to estimate the necessary input data for our calculation.

Our findings indicate a significant overall increase of ice discharge over the study period although several individual glaciers show contrasting developments. This increase became especially apparent across the southern parts of Greenland. Our results also show that the total of the ice discharge from Greenland's peripheral tidewater glaciers is dominated by few major contributors and that this dominance is completely time-independent.

How to cite: Möller, M., Recinos, B., and Marzeion, B.: Increase of ice discharge from Greenland's peripheral tidewater glaciers over recent decades, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10539, https://doi.org/10.5194/egusphere-egu21-10539, 2021.

EGU21-2650 | vPICO presentations | CR3.4

The effect of Antarctic ice-shelf extent on ice discharge

Jim Jordan, HIlmar Gudmundsson, Adrian Jenkins, Chris Stokes, Stewart Jamiesson, and Bertie Miles
The buttressing strength of Antarctic ice shelves directly effects the amount of ice discharge across the grounding line, with buttressing strength affected by both the thickness and extent of an ice shelf. Recent work has shown that a reduction in ice-shelf buttressing due to ocean induced ice-shelf thinning is responsible for a significant portion of increased Antarctic ice discharge (Gudmundsson et al., 2019, but few studies have attempted to show the effect of variability in ice-shelf extent on ice discharge. This variability arises due to ice-shelf calving following a cycle of long periods of slow, continuous calving interposed with calving of large, discrete sections.  These discrete calving events tend to occur on a comparative timeframe to that of the observational record. As such, when determining observed changes in ice discharge it is crucial that this natural variability is separated from any observed trends.  
 
In this work we use the numerical ice-flow model Úa in combination with observations of ice shelf extent to diagnostically calculate Antarctic ice discharge. These observations primarily date back to the 1970s, though for some ice shelves records exist back to the 1940s. We assemble an Antarctic wide model for two scenarios: 1) with ice shelves at their maximum observed extent and 2) with ice shelves at their minimum observed extent. We then compare these two scenarios to differences in the observed changes in Antarctic ice-discharge to determine how much can be attributed to natural variance .

 

Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., & Fricker, H. A. (2019). Instantaneous Antarctic ice‐ sheet mass loss driven by thinning ice shelves. Geophysical Research Letters, 46, 13903– 13909. 

How to cite: Jordan, J., Gudmundsson, H., Jenkins, A., Stokes, C., Jamiesson, S., and Miles, B.: The effect of Antarctic ice-shelf extent on ice discharge, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2650, https://doi.org/10.5194/egusphere-egu21-2650, 2021.

EGU21-11412 | vPICO presentations | CR3.4

Investigations of DInSAR derived grounding line migration in Antarctica induced by ocean tides

Yin Ying Ip, Lukas Krieger, and Dana Floricioiu

The migration of the glacier grounding line, the boundary between grounded ice and floating ice, is an important indicator of tice sheet stability in a warming climate. Ice-shelf thinning induces grounding line retreat, and potentially leads to the collapse of the inland catchment areas in centennial time periods. Therefore, a continuous observation of the grounding line position is of interest for ice sheet modelling also to predict future sea level rise. However, grounding line in nature is not static in position and it is subject to short-term fluctuations which are influenced by changes in ocean tide level and atmospheric pressure. Investigating tidal influence to the grounding line helps separating the tidal signal from the long-term migration because of ice shelf thinning. Also, it helps quantifying ice discharge and ice flow, as well as potential melting underneath the ice, due to intrusion of sea water.

In this study, the correlation between the time series of grounding line, derived from Sentinel-1 double difference interferograms and the ocean tide level computed from CATS2008 tide model and air pressure corrected with NCEP reanalysis data  are investigated. Study regions are chosen at the Filchner-Ronne Ice Shelf, the Amery Ice Shelf and Dronning Maud Land based on the availability of coherent interferograms and the large tidal amplitude at these locations. The result is expected to be presented as qualitative description of changes in the fringe belt pattern in double difference interferograms and statistical analysis of the derived changes in grounding line position, depending on the complexity of the grounding line structure and the topography of the bed rock.

How to cite: Ip, Y. Y., Krieger, L., and Floricioiu, D.: Investigations of DInSAR derived grounding line migration in Antarctica induced by ocean tides, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11412, https://doi.org/10.5194/egusphere-egu21-11412, 2021.

EGU21-15197 | vPICO presentations | CR3.4

Grounding-zone flow variability of Priestley Glacier, Antarctica, in a diurnal tidal regime

Reinhard Drews, Christian Wild, Oliver Marsh, Wolfgang Rack, Todd Ehlers, Niklas Neckel, and Veit Helm

Dynamics of polar outlet glaciers vary with ocean tides, providing a natural laboratory to understand basal processes beneath ice streams, ice rheology and ice-shelf buttressing. We apply Terrestrial Radar Interferometry to close the spatiotemporal gap between localized, temporally well-resolved GNSS and area-wide but sparse satellite observations. Three-hour flowfields collected over an eight day period at Priestley Glacier, Antarctica, validate and provide the spatial context for concurrent GNSS measurements. Ice flow is fastest during falling tides and slowest during rising tides. Principal components of the timeseries prove upstream propagation of tidal signatures $>$ 10 km away from the grounding line. Hourly, cm-scale horizontal and vertical flexure patterns occur $>$6 km upstream of the grounding line. Vertical uplift upstream of the grounding line is consistent with ephemeral re-grounding during low-tide impacting grounding-zone stability. On the freely floating ice shelves, we find velocity peaks both during high- and low-tide suggesting that ice-shelf buttressing varies temporally as a function of flexural bending from tidal displacement. Taken together, these observations identify tidal imprints on ice-stream dynamics on new temporal and spatial scales providing constraints for models designed to isolate dominating processes in ice-stream and ice-shelf mechanics.

How to cite: Drews, R., Wild, C., Marsh, O., Rack, W., Ehlers, T., Neckel, N., and Helm, V.: Grounding-zone flow variability of Priestley Glacier, Antarctica, in a diurnal tidal regime, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15197, https://doi.org/10.5194/egusphere-egu21-15197, 2021.

EGU21-16419 | vPICO presentations | CR3.4

Seasonal flow variations of Ross Ice Shelf (Antarctica): from observations to modeling

Cyrille Mosbeux, Laurence Padman, Emilie Klein, Peter Bromirski, Scott Springer, and Helen A Fricker

Ice mass loss from both Antarctic Ice Sheet is increasing, accelerating its contribution to global sea level rise. Interactions between the ice shelves (the floating portions of the ice sheet) and the ocean are key processes in this mass loss. The large Ross Ice Shelf is presently stable but buttresses grounded ice equivalent to about 12 m of global sea level, and geological evidence points to large and sometimes rapid past changes. Recent ocean modeling and observations show that seasonal inflows of warmed upper-ocean water under a thin-ice corridor from Ross Island to Minna Bluff and at the ice front can produce locally high melt rates each summer, suggesting that future increases in summer upper-ocean ocean warming north of the ice front could accelerate ice-shelf flow speeds and mass loss. Recent GPS observations of Ross Ice Shelf velocity have shown seasonal flow variations of several meters per year over a large part of the ice shelf, accelerating in summer and decelerating in winter. A similar seasonal variability has been observed over the floating extension of Byrd glacier (one of the major tributary glaciers of Ross Ice Shelf) by processing Antarctic image pairs in the ITS_LIVE dataset. However, ice-sheet simulations driven by realistic annual cycles of basal melt rates near the ice front produce much smaller seasonal variations than observed, suggesting that other processes could be at play. Here, we investigate a new potential mechanism for a seasonal signal in ice flow: variations of sea surface height (SSH) driven by seasonal changes in thermodynamic and atmospheric forcing of ocean state under the ice shelf. Model annual cycle of SSH under Ross Ice Shelf has an amplitude of up to ~20 cm, with substantial spatial variability. These variations of sea level, similarly to tidal signal but with a longer period, can lead to changes in driving stress over the ice shelf as well as a migration of the grounding line due to hydrostatic adjustment and visco-elastic bending of the ice shelf in the grounding zone. By simulating these SSH variations in an ice-sheet model, we more accurately reproduce the variations observed at GPS stations on Ross Ice Shelf.

How to cite: Mosbeux, C., Padman, L., Klein, E., Bromirski, P., Springer, S., and Fricker, H. A.: Seasonal flow variations of Ross Ice Shelf (Antarctica): from observations to modeling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16419, https://doi.org/10.5194/egusphere-egu21-16419, 2021.

EGU21-9139 | vPICO presentations | CR3.4

Influence of Climate Variability in King George Island Glacier Retreat – Antarctic Peninsula

Ibeth Celia Rojas Macedo, Wilson Alfredo Suarez Alayza, Edwin Anibal Loarte Cadenas, and Katy Damacia Medina Marcos

This research aims to explain the influence of climatic variables (temperature and precipitation) in King George Island (KGI) glacier shrinkage on the Antarctic Peninsula. It employed Landsat satellite images from 1989 to 2020, climatic data and ONI index from 1980 to 2019.

King George Island glaciers have lost 10% of their coverage in the last 31 years. Greater glacier shrinkage was shown until the first mid-period assessed, while the retreat rate slowed down for the second half of the studied period. Furthermore, of 73 KGI glaciers, 37% were marine- and land-terminating, 42% were land-terminating and 21% were sea-terminating. Nonetheless, the decreases in the ice-coverage of marine-contact glaciers (35% of glacier coverage reduced) were higher than land-terminating glaciers (17% of glacier coverage reduced).

There was a perceivable fluctuation in annual average air temperature for the 1980-2006 period. Nevertheless, from around 2007 to 2015/2016 there was a slight continuous cooling period and precipitation was somewhat above the average. Therefore, these patterns could explain the recent KGI glacier-retreat deceleration.

Unlike the 1982/1983 and 1997/1998 El Niño events, the 2015/2016 El Niño was colder with precipitation reduction from the sustained annual amount (since roughly 2007 to 2015/2016) to values below the average. Moreover, during the 2015/2016 El Niño, KGI glacier coverage reduction was the lowest for the 31 year-long evaluated. However, it was revealed that the glacier's height could increase by accumulation in El Niño years, but glacier mass balance could be more negative due to basal melting. Additionally, land-terminating glaciers have lost more glacier coverage than sea-terminating glaciers throughout this ENSO event.

Hence, climate variability might play a significant role in KGI glacier shrinkage, but calving process, glacier features and so on, further a combination of them should be assessed to reach a better understanding of KGI glacier retreat.

How to cite: Rojas Macedo, I. C., Suarez Alayza, W. A., Loarte Cadenas, E. A., and Medina Marcos, K. D.: Influence of Climate Variability in King George Island Glacier Retreat – Antarctic Peninsula, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9139, https://doi.org/10.5194/egusphere-egu21-9139, 2021.

EGU21-9510 | vPICO presentations | CR3.4

Retreat of Pine Island Glacier: The impact of El Nino Southern Oscillation events 

Bradley Reed, Mattias Green, Hilmar Gudmundsson, and Adrian Jenkins

The Amundsen Sea sector in West Antarctica is undergoing dramatic changes, with thinning ice shelves and accelerating, retreating glaciers. One of the largest and fastest flowing ice streams in the region is Pine Island Glacier (PIG). In recent decades it has retreated over 30 km, experienced a 75% increase in velocity and thinned by more than 100m. However, these changes have not been constant, there have been alternating periods of acceleration and stabilisation since the start of the observational era in the 1970s. This has been attributed to variable ocean conditions, where interannual and decadal changes in the Circumpolar Deep Water layer have been linked to large-scale climate variability. The initial ungrounding and subsequent retreat of PIG from a submarine ridge is believed to have been caused by extreme changes in ocean conditions linked to El Niño Southern Oscillation (ENSO) events during the 1940s and 1970s. However, the exact role that these events have played over the last century is not fully understood.

In this study the ice flow model Úa is used to assess how the retreat of PIG has been impacted by ENSO events. During these events, variations in thermocline depth affect the amount of heat available for basal melting beneath the ice shelf. To represent these changing ocean conditions a melt rate parameterisation based on a 1D plume model is used, which depends on ice shelf geometry, grounding line depth and ambient ocean properties. Results will show if a gradually warming ocean is enough to initiate grounding line retreat or if brief, large changes in temperature are required. Further investigations will determine whether cooler years contributed to a slow down of the ice stream. This work will help us understand and model the response of other glaciers to extreme changes in ocean conditions caused by ENSO events in a warming future.

How to cite: Reed, B., Green, M., Gudmundsson, H., and Jenkins, A.: Retreat of Pine Island Glacier: The impact of El Nino Southern Oscillation events , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9510, https://doi.org/10.5194/egusphere-egu21-9510, 2021.

EGU21-9437 | vPICO presentations | CR3.4

Investigating the impact of the Southern Annular Mode on ice-shelf basal melt in Antarctica using a regional ocean model forced by reanalysis data

Deborah Verfaillie, Charles Pelletier, Hugues Goosse, Nicolas Jourdain, Vincent Favier, Jonathan Wille, Quentin Dalaiden, and Thierry Fichefet

The climate of polar regions is characterized by large fluctuations and has experienced dramatic changes over the past decades. In the high latitudes of the Southern Hemisphere, the patterns of changes in sea ice and ice sheet mass, in particular, are more complex than for the Northern Hemisphere. Some regions have warmed less than the global average with some sea-ice advance, in particular in the Ross Sea, while other regions such as the Bellingshausen Sea have warmed significantly and displayed sea-ice loss. The Antarctic Ice Sheet has also lost mass in the past decades, with a spectacular thinning and weakening of ice shelves, i.e., the floating extensions of the grounded ice sheet. Despite recent advances in observing and modelling the Antarctic climate, the mechanisms at the origin of those trends are very uncertain because of the limited amount of observations and the large biases of climate models in polar regions, in concert with the large internal variability prevailing in the Antarctic. One of the most important atmospheric modes of climate variability in the Southern Ocean is the Southern Annular Mode (SAM), which represents the position and the strength of the westerly winds. During years with a positive SAM index, lower sea level pressure at high latitudes and higher sea level pressure at low latitudes occur, resulting in a stronger pressure gradient and intensified Westerlies. However, the current knowledge of the impact of these fluctuations of the Westerlies on the Southern Ocean and Antarctic cryosphere is still limited. Some efforts have been devoted over the past few years to the impact of the SAM on the Antarctic sea ice and the surface mass balance of the ice sheet from an atmospheric-specific perspective. Recently, a few studies have focused on the local impact on ice-shelf basal melt in specific regions of Antarctica. However, to our knowledge, there is no such study of the impact of the SAM on ice-shelf basal melt at the pan-Antarctic scale. In this communication, we will address this issue by using simulations performed with the regional ocean and sea-ice model NEMO-LIM3.6 at a spatial resolution of 0.25° forced by the ERA5 reanalysis over the period 1979-2018 CE. The impact of both the annular and the non-annular components of the SAM on ice-shelf basal melt will be assessed through regressions and correlations between the seasonal or annual averages of the SAM index and the ice-shelf basal melt.

How to cite: Verfaillie, D., Pelletier, C., Goosse, H., Jourdain, N., Favier, V., Wille, J., Dalaiden, Q., and Fichefet, T.: Investigating the impact of the Southern Annular Mode on ice-shelf basal melt in Antarctica using a regional ocean model forced by reanalysis data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9437, https://doi.org/10.5194/egusphere-egu21-9437, 2021.

EGU21-2617 | vPICO presentations | CR3.4

Decadal changes in south west Antarctic Peninsula Ice Shelves

Tom Holt and Neil Glasser

Over the latter half of the 20th Century and beginning of the 21st Century, ice shelves around the Antarctic Peninsula have been losing mass at an accelerating rate, attributable to changes in atmospheric and oceanic conditions. Ice shelves have declined in extent and thickness, and some show signs of structural weakening. Here we investigate the glaciological changes to Bach, Stange and George VI ice shelves that fringe the Southwest Antarctic Peninsula. We used satellite imagery from 2009/10 to 2019/20 (Landsat, Sentinel and ASTER) to measure areal changes, calculate flow speeds, and quantify structural changes, focusing on open fracture width and length. We reveal a total net loss of 797.5 km2 from all three ice shelves since 2009/10, though spatial and temporal patterns of ice loss vary at individual ice fronts. Flow speeds have remained largely stable, but notable acceleration was calculated for Bach Ice Shelf, and at the northern and southern extents of George VI Ice Shelf. Open fractures have widened and lengthened over the observation periods. We conclude that Stange Ice Shelf is stable, and not under any immediate threat of enhanced recession. Continued ice-mass loss and consequential speed up of George VI South may cause further fracturing and destabilisation in the coming decades. Of more immediate concern are the glaciological changes noted for Bach Ice Shelf and George VI North; significant areas of passive ice have already, or will be soon removed, that could result in enhanced recession within the next decade.

How to cite: Holt, T. and Glasser, N.: Decadal changes in south west Antarctic Peninsula Ice Shelves, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2617, https://doi.org/10.5194/egusphere-egu21-2617, 2021.

EGU21-10418 | vPICO presentations | CR3.4 | Highlight

Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica

Andrew Thompson, Mar Flexas, Michael Schodlok, and Kevin Speer

The acceleration of ice-shelf basal melt rates throughout West Antarctica, as well as their potential to destabilize the ice sheets they buttress, is well documented.  Yet, the mechanisms that determine both trends and variability of these melt rates remain uncertain.  Explanations for the intensification of melting have largely focused on local processes in seas surrounding the ice shelves, including variations in wind stress over the continental slope and shelf.  Here, we show that non-local freshwater forcing, propagated between shelf seas by the Antarctic Coastal Current (AACC), can have a significant impact on ice-shelf melt rates.  

We present results from a suite of high-resolution (~3-km) numerical simulations of the ocean circulation in West Antarctica that includes a dynamic sea-ice field, ice-shelf cavities and forcing from ice shelf-ocean interactions.  Motivated by persistent warming at the northern Antarctic Peninsula since the 1950’s, freshwater perturbations are applied to the West Antarctic Peninsula.  This leads to a strengthening of the AACC and a westward propagation of the freshwater signal.  Critically, basal melt rates increase throughout the WAP, Bellingshausen and Amundsen Seas in response to this perturbation.  The freshwater anomalies stratify the ocean surface near the coast, enhancing lateral heat fluxes that lead to greater ice-shelf melt rates.  A suite of sensitivity studies show that changes in meltrates are linearly proportional to the magnitude of the freshwater anomaly, changing by as much as 30% for realistic perturbations, but are relatively insensitive to the distribution of the perturbation across the WAP shelf.  These results indicate that glacial run-off on the Antarctic Peninsula, one of the first signatures of a warming climate in Antarctica, could be a key trigger for increased melt rates in the Amundsen and Bellingshausen Seas.

How to cite: Thompson, A., Flexas, M., Schodlok, M., and Speer, K.: Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10418, https://doi.org/10.5194/egusphere-egu21-10418, 2021.

EGU21-15367 | vPICO presentations | CR3.4 | Highlight

Variable Antarctic ice flux linked to ocean forcing, bed topography and ice shelf buttressing

Bertie Miles, Chris Stokes, Stewart Jamieson, Jim Jordan, Hilmar Gudmundsson, and Adrian Jenkins

It has been widely reported that ice flux from the Antarctic Ice Sheet has increased over the preceding decades. The vast majority of these increases can be attributed to the ongoing destabilization of the Amundsen Sea sector in West Antarctica, with a much more limited change in East Antarctica. However, much less attention has been focussed on the temporal and spatial variations of ice flux in Antarctica over the observational period.

In this study we combine existing velocity products (ITS_LIVE and MEaSUREs) to create 12 timestamped velocity mosaics between 1999 and 2018 to investigate both overall trends in ice flux and the temporal and spatial variability across our observational period. At an ice sheet scale we report a 45 GT yr-1 increase in ice discharge in West Antarctica and no overall change in East Antarctica. However, at an individual catchment scale we observe considerable temporal and spatial variability. For West Antarctica, despite the overall increase in discharge clear periods of deceleration are observed in most individual catchments. In East Antarctica, despite overall consistency, 3-10% variations in ice discharge are observed at several major outlet glaciers (e.g. Denman, Totten, Frost, Cook, Matusevitch, Rennick). These variations can be linked to regional oceanic variability along with highly localised differences in bed topography and ice shelf calving. In some cases, this can result in neighbouring catchments simultaneously undergoing opposing trends. Improving our understanding the processes driving these short-term variations will be important in improving the accuracy of future sea level contributions from Antarctica.

How to cite: Miles, B., Stokes, C., Jamieson, S., Jordan, J., Gudmundsson, H., and Jenkins, A.: Variable Antarctic ice flux linked to ocean forcing, bed topography and ice shelf buttressing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15367, https://doi.org/10.5194/egusphere-egu21-15367, 2021.

CR3.5 – Observing and modelling glaciers at regional to global scales

EGU21-1066 | vPICO presentations | CR3.5 | Highlight

Global mapping of surface flow velocity and re-evaluation of the volume of the world's glaciers

Romain Millan, Jérémie Mouginot, Antoine Rabatel, and Mathieu Morlighem

The effects of climate change on water resources and sea level are largely determined by the size of the ice reservoirs around the world, which still remains largely uncertain. Ice flow defines the transfer of ice within a glacier and therefore largely governs the spatial distribution of the ice volume. Although some individual regions have been mapped, there is to date no global and complete view of glacier flow. In this study, we present a global mapping of surface ice flow velocity and use it to revise the ice thickness distribution and volume of glaciers around the world. Glacier surface flow velocities were calculated using Sentinel-2/ESA, Landsat-8/USGS, Venμs/CNES-ISA, Pléiades/AirbusD&S and radar data from Sentinel-1/ESA. We designed an automated workflow that (i) downloads the data from institutional or commercial servers, (ii) prepares the images, (iii) launches the feature tracking algorithm, (iv) calibrate the glacier surface velocities, and (v) mosaics the results to obtain filtered and averaged velocity maps. For years 2017 and 2018, glacier surface flow velocities are quantified for every possible repeat cycles from the nominal cycle of the sensor (2-16 days) up to more than one year. This new database of glacier surface flow velocity is used to construct an updated global ice volume based on the well known Shallow Ice Approximation approach. We discuss the quality of our global glacier surface flow velocity product and of our new ice volume reconstruction with respect to existing state of the art estimates and quantify the impact of our results in terms of sea level rise and water resources.

How to cite: Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Global mapping of surface flow velocity and re-evaluation of the volume of the world's glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1066, https://doi.org/10.5194/egusphere-egu21-1066, 2021.

EGU21-1391 | vPICO presentations | CR3.5

Impact of the choice of surface mass balance models and their calibration on large-scale glacier change projections

Lilian Schuster, David Rounce, and Fabien Maussion

A recent large model intercomparison study (GlacierMIP) showed that differences between the glacier models is a dominant source of uncertainty for future glacier change projections, in particular in the first half of the century.  Each glacier model has their own unique set of process representations and climate forcing methodology, which makes it impossible to determine the model components that contribute most to the projection uncertainty. This study aims to improve our understanding of the sources of large scale glacier model uncertainty using the Open Global Glacier Model (OGGM), focussing on the surface mass balance (SMB) in a first step. We calibrate and run a set of interchangeable SMB model parameterizations (e.g. monthly vs. daily, constant vs. variable lapse rates, albedo, snowpack evolution and refreezing) under controlled boundary conditions. Based on ensemble approaches, we explore the influence of (i) the parameter calibration strategy and (ii) SMB model complexity on regional to global glacier change. These uncertainties are then put in relation to a qualitative selection of other model design choices, such as the forcing climate dataset and ice dynamics model parameters. 

How to cite: Schuster, L., Rounce, D., and Maussion, F.: Impact of the choice of surface mass balance models and their calibration on large-scale glacier change projections, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1391, https://doi.org/10.5194/egusphere-egu21-1391, 2021.

EGU21-2926 | vPICO presentations | CR3.5

Calibration of a frontal ablation parameterization applied to Greenland's peripheral calving glaciers

Beatriz Recinos, Fabien Maussion, Brice Noël, Marco Möller, and Ben Marzeion

Greenland's Peripheral Glaciers (PGs) are glaciers that are weakly or not connected to the Ice Sheet. Many are tidewater, losing mass via frontal ablation. Without comprehensive regional observations or enough individual estimates of frontal ablation, constraining model parameters remains a challenging task in this region. We present three independent ways to calibrate the calving parameterization implemented in the Open Global Glacier Model (OGGM) and asses the impact of accounting for frontal ablation on the estimate of ice stored in PGs. We estimate an average regional frontal ablation flux for PGs of 7.94±4.15 Gtyr-1 after calibrating the model with two different satellite velocity products, and of 0.75±0.55 Gt yr-1 if the model is constrained using frontal ablation fluxes derived from independent modelled Surface Mass Balance (SMB) averaged over an equilibrium reference period (1961-1990). This second method is based on the assumption that most PGs during that time have an equilibrium between mass gain via SMB and mass loss via frontal ablation. This assumption can serve as a basis to assess the order of magnitude of dynamic mass loss of glaciers when compared to the SMB imbalance. By comparing the model output after applying both calibration methods, we find that the model is not able to predict individual tidewater glacier dynamics if it relies only on SMB estimates and the assumption of a closed budget to constrain the model. The differences between the results from both calibration methods serve as an indication of how strong the dynamic imbalance might have been for PGs during that reference period.

How to cite: Recinos, B., Maussion, F., Noël, B., Möller, M., and Marzeion, B.: Calibration of a frontal ablation parameterization applied to Greenland's peripheral calving glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2926, https://doi.org/10.5194/egusphere-egu21-2926, 2021.

Depending on the seasonality of temperature and precipitation, mountain glaciers seasonally store and release large amounts of freshwater. Therefore, glaciers have a strong influence on water availability in many regions of the world. In an ongoing global climate change, glaciers have an additional impact on water availability, as the net amount of stored ice changes in an unsustainable way. This results in glaciers not only altering the seasonal runoff, but also adding a net input into the drainage system.
To better understand the interplay between seasonal and long-term storage changes, we suggest to split the monthly seasonal mass balance into a sustainable fraction, which is derived by balancing solid precipitation by ablation proportional to positive temperatures, and an unsustainable fraction, which causes long-term glacier mass change.

Similarly, we consider the effect of glacier area changes, allowing us to separate seasonal runoff into components attributable to (unsustainable) area change, (unsustainable) mass change, or the (sustainable) seasonal runoff from the glacier.

By applying the concept to a reconstruction of global glacier change, we illustrate how the glacier input into river basins in different climatological settings has been affected by the glacier mass loss during the 20th century. 

How to cite: Mengert, M. and Marzeion, B.: The relevance of the past unsustainable increase of glacier runoff for large-scale basins in different climatological settings , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7700, https://doi.org/10.5194/egusphere-egu21-7700, 2021.

EGU21-7775 | vPICO presentations | CR3.5

GlacierMIP3 global glacier mass change equilibration experiments - rationale and experimental design

Harry Zekollari, Regine Hock, Ben Marzeion, Fabien Maussion, and Lilian Schuster and the GlacierMIP3 participants

Glaciers outside the ice sheets are major contributors to today’s sea-level rise and are projected to remain so in the coming century. With the goal to better assess the future sea-level contribution from glaciers and to quantify related uncertainties, the Glacier Model Intercomparison Project (GlacierMIP) has set out to develop a series of coordinated experiments to be run as a community-wide effort.

The first two phases of the GlacierMIP have focused on the evolution of glaciers throughout the 21st century (Hock et al., 2019; Marzeion et al., 2020). In the third phase of GlacierMIP (GlacierMIP3 – equilibration), a new set of experiments has been designed to investigate the equilibration of glaciers under constant climate conditions. These experiments will allow us to answer the following fundamental questions:

1. What would be the equilibrium volume and area of all glaciers outside the ice sheets if global mean temperatures were to stabilize at present-day levels?

2. What would be the equilibrium volume and area of all glaciers outside the ice sheets if global mean temperatures were to stabilize at different temperature levels (e.g. +1.5, +2, relative to pre-industrial)?

3. For each of these global mean temperature stabilization scenarios, how much time would the glaciers need to reach their new equilibrium?

In this contribution, we present the experimental design of GlacierMIP3 and open up the floor for ideas and discussions about possible processing of these experiments. We also invite interested individuals and groups to join us to discuss the possibility of their model to be included in the newest phase of GlacierMIP.

 

References

GlacierMIP1: Hock, R., Bliss, A., Marzeion, B., Giesen, R.H., Hirabayashi, Y., Huss, M., Radic, V., Slangen, A.B.A. (2019), GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections, Journal of Glaciology 65(251), 453-467, doi: 10.1017/jog.2019.22

GlacierMIP2: Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., Huss, M., Immerzeel, W., Kraaijenbrink, P., Malles, J-H., Maussion, F., Radic, V., Rounce, D.R., Sakai, A., Shannon, S., van de Wal, R., Zekollari, H. (2020), Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change, Earth’s Future 8(7), e2019EF001470, doi: 10.1029/2019EF001470

How to cite: Zekollari, H., Hock, R., Marzeion, B., Maussion, F., and Schuster, L. and the GlacierMIP3 participants: GlacierMIP3 global glacier mass change equilibration experiments - rationale and experimental design, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7775, https://doi.org/10.5194/egusphere-egu21-7775, 2021.

EGU21-9032 | vPICO presentations | CR3.5

Modelling future evolution of glaciation in the Central Caucasus

Taisiya Dymova, Oleg Rybak, Harry Zekollary, Matthias Huss, Irina Korneva, Afanasy Gubanov, and Gennady Nosenko

The retreat of glaciers of the Greater Caucasus in the second half of the 20th and early 21st centuries was recorded by a variety of methods, including both direct instrumental observations and remote sensing. It is natural to expect that in the conditions of a gradually warming climate, the general trend of glacier retreat will continue in the future.

In the foothills of the North Caucasus, an important agricultural region, the problem of expected changes in mountain glaciation is particularly acute, since fluctuations in the flow regime of local rivers depend on the evolution of glaciers: the contribution of glacial runoff to total discharge is very significant. Retreating glaciers can also cause lakes to appear in local depressions in the underlying relief. Their possible breakthrough could cause significant damage to the economy and threaten human lives. The forecast of runoff and lake formation are associated with the projections on the future state of mountain glaciation.

Here, we present the work in progress to assess the rate of future glacier change in the Central Caucasus throughout the 21st century. The aim is to determine how the characteristics of mountain glaciation (its area, volume, position of the glacier fronts) of the Central Caucasus will change, depending on the climate scenario. In order to accomplish this goal, we use the GloGEMflow model (Zekollari et al., 2019) with an updated radiation block (Rybak et al., 2021, in press) and a set of CMIP5/CMIP6 climate scenarios. The GloGEMflow model features an ice flow block which is calibrated to match the Huss & Farinotti (2012, updated to RGI6.0) glacier geometry data. Validation of the model is based on the assessment of discrepancies arising when comparing data about glaciers boundaries changes for the period from ~2000 (RGI6.0) to 2018 (Department of Glaciology RAS).

The reported study was funded by RFBR and RS, project number 21-55-100003.

How to cite: Dymova, T., Rybak, O., Zekollary, H., Huss, M., Korneva, I., Gubanov, A., and Nosenko, G.: Modelling future evolution of glaciation in the Central Caucasus, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9032, https://doi.org/10.5194/egusphere-egu21-9032, 2021.

EGU21-9761 | vPICO presentations | CR3.5

CRAMPON: a model- and observation-based near real-time platform for glacier mass balance monitoring in Switzerland

Johannes Marian Landmann, Matthias Huss, Hans Rudolf Künsch, Christophe Ogier, Lea Geibel, Leo Sold, and Daniel Farinotti

As glaciers shrink, high interest in their near real-time mass balance arises. This is mainly for two reasons: first, there are concerns about water availability and short-term water resource planning, and second, glaciers are one of the most prominent indicators of climate change, resulting in a high interest of the broader public.

To satisfy both interests regarding information on near real-time mass balance, we are running the project CRAMPON – “Cryospheric Monitoring and Prediction Online”. Within this project, we set up an operational assimilation platform where it is possible to query daily mass balance estimates in near real-time, i.e. updated with a lag of max. 24 hours. During the operational alpha phase, we increase the amount of modelled glaciers and assimilated observations steadily. We start with about 15 glaciers from the Glacier Monitoring Switzerland (GLAMOS) program, for which time series of seasonal mass balances from the glaciological method are available. After that, we expand our set of modelled glaciers to about 50 glaciers that have frequent geodetic mass balances in the past, and finally to all glaciers in Switzerland. The assimilated observations reach from the operational GLAMOS seasonal mass balance observations via daily point mass balances from nine in situ cameras providing instantaneous ablation rates to satellite-derived albedo and snow distribution on the glacier.
As basis for the platform, we run an ensemble of three temperature index and one simplified energy balance melt models. This ensemble takes gridded temperature, precipitation and radiation as input and aims at quantifying uncertainties of the produced daily mass balances. To determine uncertainties in the model prediction of a current mass budget year correctly, we run the models with parameter distributions we have fitted on individual parameter sets calibrated in the past. Since a purely model-based prediction can reveal high uncertainties though, we choose a sequential data assimilation approach in the form of a Particle Filter to constrain this uncertainty with observations, whenever available. We have customized the standard Particle Filter to (1) use a resampling method that is able to keep models in the ensemble despite a temporary bad performance, and (2) allow parameter and model probability evolution over time.

In this contribution, we focus on giving a holistic overview over the already existing platform features and discuss the future developments. We plan to make the calculated mass balances publicly available in summer 2021, and to extend this platform to the global scale at a later stage.

How to cite: Landmann, J. M., Huss, M., Künsch, H. R., Ogier, C., Geibel, L., Sold, L., and Farinotti, D.: CRAMPON: a model- and observation-based near real-time platform for glacier mass balance monitoring in Switzerland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9761, https://doi.org/10.5194/egusphere-egu21-9761, 2021.

EGU21-11578 | vPICO presentations | CR3.5

Evaluating Simplified Numerical Models of Debris-Covered Glaciers

James C. Ferguson, Tobias Bolch, and Andreas Vieli

EGU21-11602 | vPICO presentations | CR3.5

Estimating the ice thickness of the Müller Ice Cap using an inversion of the shallow ice approximation

Ann-Sofie Priergaard Zinck and Aslak Grinsted

The ice thickness of the Müller Ice Cap, Arctic Canada, is estimated using regression parameters obtained from an inversion of the shallow ice approximation by the use of a single Operation IceBridge flight line in combination with the glacier outline, surface slope, and elevation. The model is compared with an iterative inverse method of estimating the bedrock topography using PISM as a forward model. In both models the surface elevation is given by the Arctic Digital Elevation Model. The root mean squared errors of the ice thickness on the ice cap is 131 m and 139 m for the shallow ice inversion and the PISM model, respectively. Including the outlet glaciers increases the root mean squared errors to 136 m and 396 m, respectively.

The simplicity of the shallow ice inversion model, combined with the good results and the fact that only remote sensing data is needed, means that there is a possibility of applying this model in a global glacier thickness estimate by using the Randolph Glacier Inventory. Most global glacier estimates only provide the volume and not the ice thickness of the glaciers. Hence, global ice thickness models is of great importance in quantifying the potential contribution of sea level rise from the glaciers and ice caps around the globe.

How to cite: Zinck, A.-S. P. and Grinsted, A.: Estimating the ice thickness of the Müller Ice Cap using an inversion of the shallow ice approximation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11602, https://doi.org/10.5194/egusphere-egu21-11602, 2021.

EGU21-12250 | vPICO presentations | CR3.5

Modelling climate change impacts on glaciers and water resources in China  using OGGM and FUSE

Dan Goldberg, Louis Kinnear, Florian Kobierska-Baffie, Nans Addor, Helen He, Qianyu Zha, Nele Reyniers, and Fabien Maussion

Hundreds of millions of people depend strongly on hydrological inputs in the mountainous regions of China and central Asia. Glacier runoff is a major contributor to this hydrological forcing, yet many glaciers in the region have undergone mass loss in recent years and this mass loss is expected to continue or increase in response to climatological change. As such it is important to assess the large-scale response of High Mountain Asia glaciers to climate change , and its effects on hydrology. We present here preliminary modelling investigations of glacier change and hydrological impacts in response to high-resolution climate model projections over the 21st century as a component of the project SWARM (Impacts Assessment to Support WAter Resources Management and Climate Change Adaptation for China). Our model chain consists of i) Open Global Glacier Model (OGGM), which allows for high-resolution glacier flowline modelling of multiple glaciers, and ii) the Framework for Understanding Structural Errors (FUSE) a modular framework for snow and hydrology modelling, which we used to assemble and run three hydrological models over the whole of China. Both FUSE and OGGM are forced by an ensemble of bias-corrected CORDEX-East Asia regional climate models (in turn forced by CMIP5 general circulation models), and outputs of OGGM are provided to FUSE. We discuss our application of OGGM to 80,000 glaciers in Chinese river catchments; our efforts to calibrate the mass balance model using an expanded set of geodetic mass balance constraints; and finally the projections of glacier, snow and streamflow changes in the 21st century. In particular, we discuss the robustness and uncertainties in the projections as sampled by our multi-model ensemble.

How to cite: Goldberg, D., Kinnear, L., Kobierska-Baffie, F., Addor, N., He, H., Zha, Q., Reyniers, N., and Maussion, F.: Modelling climate change impacts on glaciers and water resources in China  using OGGM and FUSE, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12250, https://doi.org/10.5194/egusphere-egu21-12250, 2021.

EGU21-12383 | vPICO presentations | CR3.5

The potential of TanDEM-X repeat acquisitions to monitor elevation and mass changes of Arctic and Antarctic glaciers

Christian Sommer, Thorsten Seehaus, Lukas Sochor, Philipp Malz, and Matthias Braun

The large ice caps and glaciers of the northern and southern polar regions have the potential to contribute significantly to global sea-level rise, yet measurements of glacier mass changes in those regions are scarce and difficult due to harsh conditions and the size of Arctic and Antarctic glacier areas. Acquisitions of the synthetic aperture radar satellite mission TanDEM-X provide valuable insights into glacier dynamics in those regions as the X-band radar is independent from clouds and illumination and can resolve elevation changes of large glacierized areas as well as individual glaciers. We use specifically generated and coregistered digital elevation models (DEM) from repeated TanDEM-X data takes to derive glacier elevation changes between 2010 and 2020.

For the Arctic regions, we already calculated elevation changes for the Russian Arctic archipelagos from TanDEM-X acquisitions (2000-2017). Currently, we are preparing similar TanDEM-X DEM differences for Arctic glaciers outside the Greenland ice sheet (Svalbard, Iceland, Alaska, Canadian Arctic, Scandinavia and North Asia). In contrast to the wide and smooth areas of the East and West Antarctic ice sheets, the steep topography of the Antarctic Peninsula strongly limits the application of altimeter data for accurately quantifying glacier mass changes. Therefore, we computed glacier mass changes along the Antarctic Peninsula by means of TanDEM-X data.

Additionally, measurements of the IceSAT2 laser altimeter will be integrated in the analysis to improve the estimation of radar signal penetration into snow and firn and thereby reduce the elevation change and mass balance uncertainties.

How to cite: Sommer, C., Seehaus, T., Sochor, L., Malz, P., and Braun, M.: The potential of TanDEM-X repeat acquisitions to monitor elevation and mass changes of Arctic and Antarctic glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12383, https://doi.org/10.5194/egusphere-egu21-12383, 2021.

EGU21-13629 | vPICO presentations | CR3.5

What is a Glacier? Assessing Ice Dynamic Thresholds

Caitlyn Florentine

The current global Randolph Glacier Inventory (RGI V6) minimum area cutoff is 0.01 km2. Including features this small empowers comprehensive assessments of global glacier water resources. It also enables high-resolution glacier hindcasts, ensuring that sites where modern glacier extent is now diminutive are charted and not overlooked. Yet the automated and manual mapping techniques used to generate RGI glacier outlines do not necessarily discriminate based on ice motion. There is currently no RGI mask that discerns between glaciers that likely still deform under their own weight (classic glacier) versus glaciers that are unlikely to satisfy this criterion (stagnant ice patch). Here is a highly simplified, data-driven attempt to develop a globally complete ice dynamic mask. Features are treated as simple slabs, with area given by the RGI database, order of magnitude thickness derived from volume-area power law scaling, and median surface slope derived from topography data (RGI-TOPO dataset, beta release). Driving stress is calculated using these inputs and assuming material density 900 kg m-3. This is repeated using varying elevation data sources, the globally complete consensus ice thickness estimate, and sparse direct ice thickness measurements (GlaThiDa), to explore driving stress sensitivity to different slab representations. Slabs with driving stress less than 105 Pa are interpreted as features where the ambient driving stress is insufficient to overcome the yield strength of ice. Uncertainty analysis and comparison against ice motion observations determines if these sub 105 Pa slab features reliably mask RGI glaciers that are no longer in motion. This approach serves as a first cut at developing a reproducible, systematic way of discerning between classic glaciers (bodies of ice that move) versus other cryosphere features. This may enhance consistency across technical analyses within the glaciological research community and science communication with policy makers.

How to cite: Florentine, C.: What is a Glacier? Assessing Ice Dynamic Thresholds, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13629, https://doi.org/10.5194/egusphere-egu21-13629, 2021.

EGU21-13679 | vPICO presentations | CR3.5 | Highlight

Global and monthly glacier mass balance from radar altimetry from 2010 to 2020

Livia Jakob, Noel Gourmelen, and Johanna Kauffert

Glaciers are currently experiencing the largest land-ice imbalance and are the largest contributor to sea level rise after ocean thermal expansion, contributing ~30% to sea level budget. Global monitoring of these regions remains a challenging task since global estimates rely on a variety of observations and models to achieve the required spatial and temporal coverage, and significant differences remain between current estimates. Here we report, for the first time, the application of radar altimetry to retrieve spatially and temporally resolved elevation and mass changes of glaciers on a global scale. We apply interferometric swath altimetry to CryoSat-2 data acquired between 2010 and 2020 over all large mountain glacier regions and provide monthly and annual time series of glacier mass loss for each region, together with linear mass losses. We report ubiquitous and sustained ice loss ranging from 82.3 ± 6.3 Gt yr−1 in Alaska, to 3.4 ± 2.5 Gt yr−1 for the Antarctica Periphery. While there is a considerable spatial and temporal variability in imbalance, reflecting the complexity of regional atmospheric and oceanic forcing and of glacier forcing, the global glacier trend is remarkably sustained over this period. Globally, glaciers have lost a combined mean of 275 ± 15 Gt yr−1 between 2010 and 2020 contributing 0.76 ± 0.5 mm yr−1 to global Sea Level Rise.

How to cite: Jakob, L., Gourmelen, N., and Kauffert, J.: Global and monthly glacier mass balance from radar altimetry from 2010 to 2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13679, https://doi.org/10.5194/egusphere-egu21-13679, 2021.

EGU21-14637 | vPICO presentations | CR3.5 | Highlight

Why 0.5°C matter for the future evolution of Alpine glaciers

Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti

With the Paris Agreement, leaders of the world have recognized the urgency of limiting ongoing, anthropogenic climate change. In preparation of the upcoming 26th UN Climate Change Conference of the Parties, discussions have been focusing on the difference of limiting the increase in global average temperatures below 1.0, 1.5, or 2.0°C compared to pre-industrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. We force the combined glacier mass balance and ice flow model GloGEMflow with climate projections from Coupled Model Intercomparison Project Phase 6 (CMIP6), and compute the area and volume evolution of all 3926 glaciers of the European Alps for the period 1990 to 2100. Our results show that the different temperature targets have important implications for the predicted changes: in a +1.0°C scenario, glaciers in the European Alpsare  projected to lose 44 ± 21 % of their 2020 ice volume; 68 ± 12 % in a +1.5 °C scenario; while 81 ± 8% in a +2.0°C scenario. The changes in glacier volume will strongly impact the water yield from presently-glacierized catchments, with 2080-2100 yearly average runoffs decreasing by 25 ± 6% (for a global warming of +1.0°C), 32 ± 8%, (+1.5°C) and 36 ± 10% (+2.0°C) when compared to 2000-2020 levels. Changes in peak runoff -- anticipated to occur 1 to 2 months earlier by the end of the century than it does today -- will be even more pronounced, with reductions of 23 ± 15 %, 29 ± 14 %, and 37 ± 15 % in the three warming scenarios, respectively.

How to cite: Compagno, L., Eggs, S., Huss, M., Zekollari, H., and Farinotti, D.: Why 0.5°C matter for the future evolution of Alpine glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14637, https://doi.org/10.5194/egusphere-egu21-14637, 2021.

Glacier surges periodically move ice masses to lower elevations and hence produce dynamic patterns of substantial thinning and thickening, but the net mass change over a typical time period of elevation change assessment of a few years to decades is not obvious.  Surging glaciers may therefore affect regional scale elevation change assessments as acquired from differencing of remotely sensed elevations, as for example for the observed Karakoram mass gain anomaly.

In this study I synthetically model glacier surges for a range of glacier sizes (slopes, thicknesses) and investigate the impact on the surface elevation change and total mass change for a typical range of surge durations, intensities and periods.

When keeping the climate forcing constant I find that the mean glacier elevation (or volume) is almost symmetric around the surge phase. Hence, when sampling elevation change over a large population of glaciers with randomly occurring surges there is little impact on the detected average elevation changes over all glaciers. The exceptions are steep glaciers which produce very short advance phases and much more extended phases of mass recovery. When sampling elevation change over a couple of years to decades, it is therefore much more likely to detect a thickening and therefore the population mean is biased to positive elevation change values.

When assessing mean elevation change on a regional scale, usually one fixed glacier outline is chosen for masking the data. However, for surging glaciers the extent can undergo large fluctuations. I therefore further assess the mean elevation change for glaciers extent masks that are varying between the maximum and minimum values of a surge. Despite a constant climate, the mean elevation change turns out to be increasingly biased towards detecting a thickening signal the further upstream the glacier extent is taken. This implies that for minimizing this thickening bias from glacier surges in assessing regional elevation change, glacier outline masks from their most extensive extents should be used.

Further modelling experiment showed that, the results are still valid when prescribing a variable climate forcing, but the surging effect is slightly subdued.  

How to cite: Vieli, A.: Numerical modelling assessment of glacier surge impact on observed elevation change signals, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14874, https://doi.org/10.5194/egusphere-egu21-14874, 2021.

EGU21-15926 | vPICO presentations | CR3.5

Glacier Changes in Iceland From ∼1890 to 2019

Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Finnur Pálsson, Thorsteinn Thorsteinsson, Joaquín Belart, Tómas Jóhannesson, Hrafnhildur Hannesdóttir, Oddur Sigurðsson, Andri Gunnarsson, Bergur Einarsson, Etienne Berthier, Louise Schmidt, Hannes Haraldsson, and Helgi Björnsson

The volume of glaciers in Iceland (∼3,400 km3 in 2019) corresponds to about 9 mm of potential global sea level rise. In this study, observations from 98.7% of glacier covered areas in Iceland (in 2019) are used to construct a record of mass change of Icelandic glaciers since the end of the 19th century i.e. the end of the Little Ice Age (LIA) in Iceland. Glaciological (in situ) mass-balance measurements have been conducted on Vatnajökull, Langjökull, and Hofsjökull since the glaciological years 1991/92, 1996/97, and 1987/88, respectively. The combined record shows a total mass change of −540 ± 130 Gt (−4.2 ± 1.0 Gt a−1 on average) during the study period (1890/91 to 2018/19). This mass loss corresponds to 1.50 ± 0.36 mm sea level equivalent or 16 ± 4% of mass stored in Icelandic glaciers around 1890. Almost half of the total mass change occurred in 1994/95 to 2018/19, or −240 ± 20 Gt (−9.6 ± 0.8 Gt a−1 on average), with most rapid loss in 1994/95 to 2009/10 (mass change rate −11.6 ± 0.8 Gt a−1). During the relatively warm period 1930/31–1949/50, mass loss rates were probably close to those observed since 1994, and in the colder period 1980/81–1993/94, the glaciers gained mass at a rate of 1.5 ± 1.0 Gt a−1. For other periods of this study, the glaciers were either close to equilibrium or experienced mild loss rates. Comparison of our results with WGMS time series (Zemp et al., 2019) shows that the interannual variability is generally well captured by both data sets, but some details are not; for example, the large ice melt due to the Gjálp eruption in October 1996 and the non-surface mass balance are not included by WGMS data set. Our time seris is within the large uncertainty range of the GRACE record (Wouters et al., 2019) that has some years (e.g., 2006/07 and 2010/11) with more negative mass change, and others (e.g., 2005/06, 2011/12, and 2013/14) with less negative mass change than our estimates.

How to cite: Aðalgeirsdóttir, G., Magnússon, E., Pálsson, F., Thorsteinsson, T., Belart, J., Jóhannesson, T., Hannesdóttir, H., Sigurðsson, O., Gunnarsson, A., Einarsson, B., Berthier, E., Schmidt, L., Haraldsson, H., and Björnsson, H.: Glacier Changes in Iceland From ∼1890 to 2019, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15926, https://doi.org/10.5194/egusphere-egu21-15926, 2021.

CR3.6 – Hydrology of ice shelves, ice sheets and glaciers - from the surface to the base

EGU21-508 | vPICO presentations | CR3.6

A novel technique for automated mapping of Antarctic supraglacial lakes in Sentinel-1 SAR imagery using deep learning

Mariel Dirscherl, Andreas Dietz, Celia Baumhoer, Christof Kneisel, and Claudia Kuenzer

Supraglacial meltwater accumulation on ice sheets and ice shelves can have considerable impact on ice discharge, mass balance and global sea-level-rise. With further increasing surface air temperatures, surface melting and resulting processes including hydrofracturing, meltwater penetration to the glacier bed as well as surface runoff will cumulate and most likely trigger unprecedented ice mass loss from the Greenland and Antarctic ice sheets. To date, the Antarctic surface hydrological network remains understudied calling for increased monitoring efforts and circum-Antarctic mapping strategies. This is particularly important given that Antarctica’s future contribution to global sea-level-rise is the largest uncertainty in current projections.

In this study, we present a novel methodology for Antarctic supraglacial lake extent mapping in Sentinel-1 Synthetic Aperture Radar imagery using state-of-the-art deep learning techniques. The method was implemented with the aim of complementing a previously developed supraglacial lake detection algorithm applying Machine Learning on optical Sentinel-2 data in order to deliver a more complete picture of Antarctic meltwater ponding compared to single-sensor mapping products. The deep learning model was trained on 21,200 Sentinel-1 image patches using a modified ResUNet for semantic segmentation of supraglacial lakes and evaluated by means of ten spatially or temporally independent Sentinel-1 test acquisitions distributed across the Antarctic continent. Besides, George VI Ice Shelf is analyzed for intra-annual lake dynamics throughout austral summer 2019/2020 and decision-level fused Sentinel-1 and Sentinel-2 maximum lake extent mapping products are presented for selected time periods. Future work involves the integration of more training data as well as the generation of circum-Antarctic mapping products using both, Sentinel-2 and Sentinel-1 derived lake extent mappings. These will be crucial for intra-annual analyses on supraglacial lake occurrence across the whole continent and associated drivers and impacts.

How to cite: Dirscherl, M., Dietz, A., Baumhoer, C., Kneisel, C., and Kuenzer, C.: A novel technique for automated mapping of Antarctic supraglacial lakes in Sentinel-1 SAR imagery using deep learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-508, https://doi.org/10.5194/egusphere-egu21-508, 2021.

EGU21-2798 | vPICO presentations | CR3.6

Rivers on Ice: The Evolution of Supraglacial Channels on the Greenland Ice Sheet

Lauren Rawlins, David Rippin, Andrew Sole, Stephen Livingstone, and Kang Yang

Throughout the satellite era, an increasingly positive trend in the extent and duration of seasonal surface melt has been observed across the Greenland Ice Sheet (GrIS). Surface melt, and meltwater runoff now accounts for over half of GrIS mass loss annually, signifying the importance of surface mass balance on the future contribution to global sea level rise. A vast expanse of supraglacial channel networks and lakes now dominate the ablation zone during the melt season, transporting, storing, and evacuating increasingly large volumes of meltwater from the ice surface. The interception of this water, either by moulins or through linked crevasses, can propagate through the ice column and flood the ice-bed interface, influencing ice velocity and, in turn ice discharge over the grounding line.

To date, much of the hydrological interest on the GrIS has centred around its western and south-western margins, often limited to short windows (days) during the melt season. This study expands surface hydrological mapping to other regions of the GrIS, specifically its northern sector, and explores network evolution across both seasonal (intra-) and inter-annual timescales.

This study utilises a satellite-derived Normalised Difference Water Index (NDWI) alongside an automatic river detection algorithm to effectively delineate active supraglacial channel networks and (hydrologically-connected) saturated slush zones using Sentinel-2 and Landsat optical imagery. This work reveals a transformation of the northern supraglacial channel network from a highly-fragmented system of short channels extending a maximum of ~40 km inland during the 1980’s, to one dominated by long, parallel channels extending ~80 km inland from 2016. The observations presented in this study have significant implications on both the speed and efficiency of supraglacial meltwater drainage of the GrIS, holding a great potential to impact the dynamic response of outlet glaciers, and ice sheet mass loss.

How to cite: Rawlins, L., Rippin, D., Sole, A., Livingstone, S., and Yang, K.: Rivers on Ice: The Evolution of Supraglacial Channels on the Greenland Ice Sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2798, https://doi.org/10.5194/egusphere-egu21-2798, 2021.

EGU21-3625 | vPICO presentations | CR3.6

Surface meltwater routing through the supraglacial-proglacial river system on the northwestern Greenland Ice Sheet

Ya Li, Kang Yang, Laurence Smith, Xavier Fettweis, Shuai Gao, and Wensong Zhang

Large, complex supraglacial river networks are widely distributed on the northwestern Greenland Ice Sheet (GrIS) each summer. Owing to the absence of moulins and crevasses on the ice surface, meltwater is continuously routed on the ice surface by supraglacial river networks to feed proglacial rivers on land. This continuous supraglacial-proglacial river system controls the magnitude and timing of surface meltwater runoff on the northwestern GrIS but remains poorly studied. In this study, we first mapped the supraglacial-proglacial river system across the Inglefield Land on the northwestern GrIS during 2016–2019 melt seasons using ninety Sentinel-2 and forty-five Landsat-8 images. Then, we proposed two quantitative river metrics, i.e., surface meltwater area fraction and proglacial river width, to quantify the seasonal and annual evolutions of the supraglacial-proglacial river system. Next, we correlated these satellite-derived river metrics with surface meltwater runoff estimated by two Surface Mass Balance (SMB) models (MAR v3.11 and MERRA-2), and estimated the optimal meltwater routing lag times. Our results showed that: (1) two satellite-derived river metrics, surface meltwater area fraction and proglacial river width, are strongly and positively correlated, indicating that the northwestern GrIS supraglacial-proglacial river system can efficiently route surface meltwater from the ice surface to the proglacial zone; (2) these two satellite-derived river metrics are also positively correlated with simultaneous surface runoff simulated by MAR and MERRA-2, indicating that SMB models can capture the general runoff pattern but exhibit considerable discrepancy with satellite observations; and (3) delayed MAR surface runoff better match two satellite-derived river metrics than simultaneous MAR surface runoff, and the optimal lag times are both two days, suggesting that supraglacial routing accounts for most of the lag time whereas rapid proglacial routing accounts for short lag time. Overall, the northwestern GrIS supraglacial-proglacial river system is a unique and efficient meltwater routing system, and multi-temporal satellite observations of this river system raise prospects for directly estimating surface meltwater runoff on the poorly-studied northwestern GrIS.

How to cite: Li, Y., Yang, K., Smith, L., Fettweis, X., Gao, S., and Zhang, W.: Surface meltwater routing through the supraglacial-proglacial river system on the northwestern Greenland Ice Sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3625, https://doi.org/10.5194/egusphere-egu21-3625, 2021.

EGU21-6263 | vPICO presentations | CR3.6

Inter-annual variability in supraglacial lakes around East Antarctica

Jennifer Arthur, Chris Stokes, Stewart Jamieson, Rachel Carr, and Amber Leeson

Surface meltwater ponding can weaken and trigger the rapid disintegration of Antarctic ice shelves which buttress the ice sheet, causing ice flow acceleration and global sea-level rise. While supraglacial lakes (SGLs) are relatively well documented during some years and selected ice shelves in Antarctica, we have little understanding of how Antarctic-wide SGL coverage varies between melt seasons. Here, we present a record of SGL evolution around the peak of the melt season on the East Antarctic Ice Sheet (EAIS) over seven consecutive years. Our findings are based on a threshold-based algorithm applied to 2175 Landsat 8 images during the month of January from 2014 to 2020. We find that EAIS-wide SGL volume fluctuates inter-annually by up to ~80%. Moreover, patterns within regions and on neighbouring ice shelves are not necessarily synchronous. Over the whole EAIS, total SGL volume was greatest in January 2017, dominated by the Amery and Roi Baudouin ice shelves, and lowest in January 2016. Excluding these two ice shelves, SGL volume peaked in January 2020. Preliminary results suggest EAIS-wide total SGL volume and extent are weakly correlated with firn model simulations of firn air content, surface melt and minimum ice lens depth predicted by the regional climate model MAR. On certain ice shelves, years with peak SGL volume correspond with minimum firn air content. This work provides important constraints for numerical ice-shelf and ice-sheet model predictions of future Antarctic surface meltwater distributions and the potential impact on ice-sheet stability and flow.  

How to cite: Arthur, J., Stokes, C., Jamieson, S., Carr, R., and Leeson, A.: Inter-annual variability in supraglacial lakes around East Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6263, https://doi.org/10.5194/egusphere-egu21-6263, 2021.

EGU21-7304 | vPICO presentations | CR3.6

Subglacial Discharge of the Greenland Ice Sheet from Basal Melt

Nanna Bjørnholt Karlsson, Anne M Solgaard, Kenneth D Mankoff, Fabien Gillet-Chaulet, Joseph A. MacGregor, Douglas I. Benn, Ian Hewitt, and Robert S. Fausto

The total mass balance of ice sheets is determined using estimates of ice volume change from satellite altimetry, measurements of gravity changes, or by differencing solid ice discharge and surface mass balance. The basal melt is only implicitly included in the first two and entirely neglected by the last method. Here, we show that the basal mass loss of the Greenland Ice Sheet is a non-negligible component of the total mass budget. We estimate that the basal melt is 21.4 +4.4/-4.0 Gt per year corresponding to 8% of the ice sheet’s total mass balance. The basal melt is composed of three separate terms; melt caused by frictional heat, geothermal heat and heat from surface meltwater, respectively, and the basal friction term is responsible for half of the basal melt.

Importantly, the geothermal and friction heat are active year round. This implies that a quantifiable volume of freshwater is discharged into the Greenlandic fjords during the winter where the ice-fjord interactions often are assumed dormant. Here, we present basal melt volumes from different outlet glaciers that discharge into Greenlandic fjords. We compare the basal melt to the freshwater volumes generated by surface meltwater, and identify locations where basal melt volumes are comparable to surface meltwater during the winter.

How to cite: Karlsson, N. B., Solgaard, A. M., Mankoff, K. D., Gillet-Chaulet, F., MacGregor, J. A., Benn, D. I., Hewitt, I., and Fausto, R. S.: Subglacial Discharge of the Greenland Ice Sheet from Basal Melt, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7304, https://doi.org/10.5194/egusphere-egu21-7304, 2021.

EGU21-7431 | vPICO presentations | CR3.6

Continent-wide bimonthly mapping of Antarctic surface meltwater using Google Earth Engine

Peter Tuckett, Jeremy Ely, Andrew Sole, Stephen Livingstone, and James Lea

Surface meltwater is widespread around the margin of the Antarctic Ice Sheet during the austral summer. This meltwater, typically transported via surface streams and rivers and stored in supraglacial lakes, has the potential to influence ice-sheet mass balance through ice-dynamic and albedo feedbacks. To predict the impact that surface melt will have on mass balance over coming decades, it is important to understand spatial and temporal variability in surface meltwater extent. A variety of methods have been used to detect supraglacial lakes in Antarctica, yet a multi-annual, continent-wide study of Antarctic supraglacial meltwater has yet to be conducted. Cloud-based computational platforms, such as Google Earth Engine (GEE), enable large-scale temporal and spatial analysis of remote sensing datasets at minimal time expense. Here, we implement an automated method for meltwater detection in GEE to generate continent-wide, bimonthly repeat assessments of supraglacial lake extent between 2013 and 2020. We use a band-threshold based approach to delineate surface water from Landsat-8 imagery. Furthermore, our method incorporates a novel technique for quantifying meltwater extent that accounts for variability in optical image coverage and cloud cover, enabling an upper uncertainty bound to be attached to minimum mapped lake areas. We present results from continent-wide mapping, and highlight initial findings that indicate evolution of lakes in Antarctica over the past seven years. This work demonstrates how platforms such as GEE have revolutionized our ability to undertake large-scale projects from remote sensing datasets, allowing for greater temporal and spatial analysis of cryospheric processes than previously possible.

How to cite: Tuckett, P., Ely, J., Sole, A., Livingstone, S., and Lea, J.: Continent-wide bimonthly mapping of Antarctic surface meltwater using Google Earth Engine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7431, https://doi.org/10.5194/egusphere-egu21-7431, 2021.

EGU21-8080 | vPICO presentations | CR3.6

Stratigraphic analysis of firn cores from the Müller Ice Shelf

Shelley MacDonell, Francisco Fernandoy, Paula Villar, and Arno Hammann

In recent decades, several large ice shelves in the Antarctic Peninsula region have experienced significant ice loss, likely driven by a combination of oceanic, atmospheric and hydrological processes. Of these three, the role of liquid water on and in ice shelves is the lesser defined variable, largely due to the paucity of field measurements. Even though the hydrological system is largely unknown, several authors have proposed the existence of firn aquifers on Antarctic ice shelves, however little is known about their distribution, formation, extension and role in ice shelf mechanics. In this study we present the discovery of saturated firn at three drill sites distributed across the Müller ice shelf (67º 14’S; 66º52’W) (one near the front and two in the central region of the ice shelf), which leads us to the conclusion of at least one large firn aquifer or disconnected smaller firn aquifers on this ice shelf. From the stratigraphic analysis of three short firn cores extracted during February 2019 we describe a new classification system to identify the structures and morphological signatures of refrozen meltwater, identify evidence of superficial meltwater percolation, and use this information to propose a conceptual model of firn aquifer development on the Müller ice shelf. The detailed stratigraphic analysis of the sampled cores will provide an invaluable baseline for modelling studies.

How to cite: MacDonell, S., Fernandoy, F., Villar, P., and Hammann, A.: Stratigraphic analysis of firn cores from the Müller Ice Shelf, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8080, https://doi.org/10.5194/egusphere-egu21-8080, 2021.

We introduce an algorithm (Watta), which automatically calculates supraglacial lake bathymmetry and potential ice layers along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, corrected depth and (sub)surface ice cover in addition to producing surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements for calibration. Imagery sources include Landsat OLI, Sentinel-2 and high-resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths.

The Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland, and we use multiple imagery sources to assess the use of the red vs green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly-simultaneous Operation IceBridge CAMBOT imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season.   Our results suggest that the use of multiple imagery sources (both publicly-available and commercial) in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.

How to cite: Wouters, B. and Datta, R. T.: Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10388, https://doi.org/10.5194/egusphere-egu21-10388, 2021.

EGU21-10980 | vPICO presentations | CR3.6

Sediment-laden meltwater plume variability in Kongsfjorden, Svalbard

Guy D. Tallentire, Jeff Evans, and Richard Hodgkins

The Arctic is warming at a rate of at least twice the global average. This is directly impacting upon the hydrological cycle; changing the balance of rain and snowfall, increasing losses of snow and glacier cover, and subsequently shifting the volumes and timing of meltwater runoff to nearby fjords and oceans. Sediment-laden meltwater plumes which are easily observable using satellite remote sensing, are good proxies for glacier runoff, both from subaerial rivers draining land-terminating glaciers, and subglacial discharge at tidewater glacier systems; they to bridge the gap between infrequent field observations and regular satellite data acquisitions. In-situ surface reflectance and surface water measurements were collected in July 2019, at the terrestrial glacier-fed Bayelva river plume, and the Blomstrandbreen subglacial discharge plume. These in-situ measurements, combined with Moderate Imaging Spectroadiometer (MODIS) satellite data were used to calibrate a relationship between surface reflectance and suspended sediment concentration at the two sediment-laden meltwater plumes. Using these empirical relationships, we determined seasonal sediment flux by establishing the thickness of the plume layer through conductivity, temperature and depth (CTD) profiles. Additionally, we determined plume metrics (area, extent or planform morphology and distribution), by integrating CTD profiles and measurements of meltwater runoff and sediment collected at the Bayelva hydrometric gauge, along with modelled datasets. We find that the sediment-laden meltwater plumes are extremely sensitive to variable inputs of meltwater runoff, with distinct changes in plume morphometry and sediment concentrations occurring at various points throughout the melt season, evidenced clearly during the transition from snow to firn and glacier ice melt, and after episodic rainfall events. Future work will apply these empirical relationships to other satellite datasets (including Planet, Sentinel and Landsat) from the last 20 years to determine long-term changes in the  sediment-laden meltwater plume systems, including their wider effects on fjord hydrography, and glaciomarine sedimentary processes in response to climatically-induced changes in the hydrology of the glacier systems.

How to cite: Tallentire, G. D., Evans, J., and Hodgkins, R.: Sediment-laden meltwater plume variability in Kongsfjorden, Svalbard, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10980, https://doi.org/10.5194/egusphere-egu21-10980, 2021.

EGU21-11371 | vPICO presentations | CR3.6

Ice sheet scale subglacial meltwater conduit dimensions and processes: insights from 3D morphometry of a large sample of eskers

Robert Storrar, Andrew Jones, Frances Butcher, Nico Dewald, Chris Clark, Cathy Delaney, David Evans, Emma Lewington, Stephen Livingstone, and Chris Stokes

Meltwater exerts an important influence on ice sheet dynamics and has attracted an increasing amount of attention over the last 20 years. However, the active subglacial environment remains difficult to study mainly due to its inaccessibility. Understanding of the dimensions, pattern, and extent of subglacial meltwater conduits at the ice sheet scale is limited to relatively sparse observations. We address this gap by using the geomorphological record of Quaternary ice sheets as a proxy to quantify the dimensions and pattern of subglacial conduits at the ice sheet scale. We present the results of a high-resolution (2 m), large sample (n>50,000) study of three-dimensional esker morphometry at sample locations in SW Finland and Nunavut, Canada. Detailed mapping of esker crestlines and outlines permits the quantification of a number of parameters, including: length, width, height, cross-sectional area, volume, sinuosity, cross-sectional symmetry, and uphill/downhill trends. Whilst the dimensions of eskers reflect depositional processes as well as simply the size of the parent conduit, they nevertheless offer a powerful tool for understanding the size and shape of meltwater conduits and the configuration of subglacial drainage systems across large areas (entire ice sheets), and over long periods of time (from years to thousands of years) in both high spatial and temporal resolution. The results may be used to: (1) inform numerical models of subglacial meltwater drainage, (2) inform process models of esker formation, and (3) provide a dataset of esker morphometry against which other features may be compared (e.g. sinuous ridges on Mars).

How to cite: Storrar, R., Jones, A., Butcher, F., Dewald, N., Clark, C., Delaney, C., Evans, D., Lewington, E., Livingstone, S., and Stokes, C.: Ice sheet scale subglacial meltwater conduit dimensions and processes: insights from 3D morphometry of a large sample of eskers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11371, https://doi.org/10.5194/egusphere-egu21-11371, 2021.

EGU21-13089 | vPICO presentations | CR3.6

Evidences of melt water control on crevasse propagation using dense array seismic observations

Florent Gimbert, Benoit Urruty, Philippe Roux, Adrien Gilbert, Ugo Nanni, and Albanne Lecointre

Crevasses are inherent features of glaciers and Ice Sheets. They exert a primary control on glacier dynamics, such as, for example, along shear margins through reducing the overall glacier ice viscosity, or at glacier and Ice Sheet fronts through controlling the onset of serac falls and of ice sheet instabilities (calving, ice shelf disintegration). However, our understanding of crevasse formation and propagation, and in particular the effect of melt water, remains limited due to lacking observations. Here we provide novel observational insights into englacial fracturing, the depth of crevasses and their depth propagation rates using dense seismic array monitoring on an Alpine glacier. We systematically detect and locate englacial seismic events through applying matched-field-processing on a particularly dense seismic array of 98 sensors deployed on the Glacier d’Argentière during 1-month in spring 2018. We observe rupture fronts along crevasses, which propagate from the glacier center to the glacier side at typical velocities of few hundreds of meters per day, i.e. at velocities that are much lower than those of seismic waves but much higher than those of glacier flow. We argue based on a dedicated spatial and temporal analysis that crevasse rupture propagation is set by the migration of water along the crevasse tip. We also observe that crevasses are associated with a wide range of depths, varying from the near surface to the glacier base, which at the present site is located about a hundred meters below the surface. This observation is particularly interesting, since it provides evidences that (i) crevasses are water filled and (ii) crevasses play a role in the supply of water to the bed. These findings are further supported by the observation that surface melt modulates the seismic activity of crevasses including those reaching the bed. Finally, by evaluating coherent structures in the crevasse population, we are able to infer their depth propagation rate, which we find is constant through the ice column, as expected if the surrounding ice stress field is counterbalanced by the water pressure in the crevasse. These observationally-derived findings provide useful grounds to test and improve theories of crevasse dynamics and their control in the overall transfer of water from the surface to the bed.

How to cite: Gimbert, F., Urruty, B., Roux, P., Gilbert, A., Nanni, U., and Lecointre, A.: Evidences of melt water control on crevasse propagation using dense array seismic observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13089, https://doi.org/10.5194/egusphere-egu21-13089, 2021.

EGU21-14157 | vPICO presentations | CR3.6

Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica

Roland Warner, Helen Fricker, Susheel Adusumilli, Philipp Arndt, Jonathan Kingslake, and Julian Spergel

Surface meltwater accumulating on Antarctica’s floating ice shelves can drive fractures through to the ocean and potentially cause their collapse, leading to enhanced ice discharge from the continent. Surface melting in Antarctica is predicted to increase significantly during coming decades, but the implications for ice shelf stability are unknown. We are still learning how meltwater forms, flows and alters the surface, and that rapid water-driven changes are not limited to summer. The southern Amery Ice Shelf in East Antarctica already has an extensive surface meltwater system and provides us with an opportunity to study melt processes in detail. We present high-resolution satellite data (imagery, ICESat-2 altimetry and elevation models from WorldView stereo-photogrammetry) revealing an abrupt change extending across ~60 km2 of the ice shelf surface in June 2019 (midwinter). We interpret this as drainage of an englacial lake through to the ocean below in less than three days. This left an uneven depression in the ice shelf surface, 11 km2 in area and as much as 80 m deep, with a bed of fractured ice: an “ice doline”. The englacial lake had lain beneath the perennially ice-covered portion of a 20 km2 meltwater lake. The reduced mass loading on the floating ice shelf after the drainage event resulted in flexure, with uplift of up to 36 m around the former lake. Applying an elastic flexural model to the uplift profiles suggests the loss of 0.75 km3 of water to the ocean. In summer 2020, we observed meltwater accumulating in a new lake basin created by the flexure. ICESat-2 observations profiled a new narrow meltwater channel (20 m wide and 3 m deep), rapidly incised inside the doline as meltwater spilled over from the new lake and started refilling the depression. This study demonstrates how high-resolution geodetic measurements from ICESat-2 and WorldView can explore critical fine-scale ice shelf processes. The insights gained will greatly improve our ability to model these processes, ultimately improving the accuracy of our projections.

How to cite: Warner, R., Fricker, H., Adusumilli, S., Arndt, P., Kingslake, J., and Spergel, J.: Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14157, https://doi.org/10.5194/egusphere-egu21-14157, 2021.

EGU21-14383 | vPICO presentations | CR3.6

Simulating the formation and decay of supraglacial lakes in South-West Greenland

Prateek Gantayat, Amber Leeson, James Lea, Noel Gourmelen, and Xavier Fettweis

The dynamics of the Greenland Ice Sheet (GrIS) is greatly affected by surface meltwater that is routed from the surface to the bed, for example when a supraglacial lake (SGL) drains. The South-West Greenland Ice Sheet (SWGrIS) has an abundance of such lakes that form and decay over every hydrological year. In case a crevasse is opened up underneath an SGL, the lake water is likely to drain via the crevasse into the ice-sheet’s bed. This in turn influences the ice sheet motion by increasing the lubrication at the ice-sheet’s base. SGLs may also either drain laterally via a supra-glacial meltwater channel or the water they contain can stay put throughout the hydrological year, refreezing in the winter. These processes may affect the ice rheology in addition to influencing ice flow. While simulating the future evolution of the GrIS, it is thus important to account for processes associated with the evolution of SGLs. Until now, however, none of the existing ice sheet models have fully accounted for these processes, in part because no hydrological model yet includes them all. Here we propose a new process-based hydrological model for the SWGrIS which fully accounts for the evolution of  SGLs. The model consists of four units. The first is a surface water routing unit where the daily-generated surface meltwater is routed assuming steepest decent into the surface depressions forming SGLs. The second unit uses principles of Linear Elastic Fracture Mechanics (LEFM) to deal with the scenario where an SGL drains into the bed through an underlying crevasse. The third deals with the SGL drainage event that occurs when a surface meltwater channel gets incised though the ice sheet’s surface due to erosion from the SGL’s overflowing meltwater i.e. channel incision. Finally, the fourth unit simulates the freezing/unfreezing of SGLs by calculating the energy balance at the SGL’s surface. Using this model forced by Modèle Atmosphérique Régionale (MAR) derived daily surface melt-water values we quantify a) the amount and location of surface meltwater injection to the ice-sheet’s bed via moulins or crevasses and ,b) the meltwater that is either  retained in SGL or drained overland via meltwater channels and stored elsewhere over the period 2011-2020, in the Leverett glacier catchment. In the future, we plan to integrate this hydrological model with the sophisticated state-of-the-art BISICLES ice sheet model.

How to cite: Gantayat, P., Leeson, A., Lea, J., Gourmelen, N., and Fettweis, X.: Simulating the formation and decay of supraglacial lakes in South-West Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14383, https://doi.org/10.5194/egusphere-egu21-14383, 2021.

EGU21-14890 | vPICO presentations | CR3.6

Airborne and ground-based geophysical evaluation of the surface and englacial hydrological system of the Sørsdal Glacier, East Antarctica, and implications for ice-shelf stability

Bernd Kulessa, Sarah Thompson, Sue Cook, Glenn Jones, Christopher Watson, Christian Schoof, and Victoria Lane

Large swathes of the margin of the East Antarctic Ice Sheet experience pronounced surface melting during the austral summer. The nature and temporal evolution of evolving surface hydrological systems are poorly known, however, as are their potential connections with englacial and subglacial water systems and their effects on ice dynamics. We have acquired helicopter-based ground-penetrating radar (GPR), electrical self-potential (SP), broadband passive seismic and GNSS data to delineate the geometry and monitor the temporal evolution of the subsurface hydrological system of the marine-terminating Sørsdal Glacier, Princess Elizabeth Land, East Antarctica, between the austral summers of 2017-18 and 2018-19. Our data reveal the presence of a shallow englacial hydrological system that is connected to surface lakes upstream of the grounding line and, surprisingly, is active not only in the austral summer but also through the Antarctic winter. Here we illustrate the spatial and temporal characteristics of the englacial hydrological system and its susceptibility to tidal forcing through the Antarctic winter. Our observations are consistent with persistent year-round redistribution of mass from grounded to floating portions of at the East Antarctic margin, with far-reaching consequences for ice shelf stability.

How to cite: Kulessa, B., Thompson, S., Cook, S., Jones, G., Watson, C., Schoof, C., and Lane, V.: Airborne and ground-based geophysical evaluation of the surface and englacial hydrological system of the Sørsdal Glacier, East Antarctica, and implications for ice-shelf stability, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14890, https://doi.org/10.5194/egusphere-egu21-14890, 2021.

EGU21-14907 | vPICO presentations | CR3.6

Subglacial hydrology modulates basal sliding response to climate forcing of the Antarctic ice sheet

Elise Kazmierczak, Sainan Sun, and Frank Pattyn

Sliding laws determine to a large extent the sensitivity of the Antarctic ice sheet on centennial time scales (Pattyn, 2017, Bulthuis et al, 2019, Sun et al, 2020). Especially the contrast between linear and plastic sliding laws makes the latter far more responsive to changes at the grounding line. However, most studies neglect subglacial processes linked to those sliding laws. Subglacial hydrology may also play a role in modulating the amplitude of the reaction of marine ice sheets to forcing. Subglacial processes influence the effective pressure at the base. For a hard bed system, the latter can be defined by the ice overburden pressure minus the subglacial water pressure determined by routing of subglacial meltwater through a thin film. For soft-bed systems, the effective pressure is determined from till properties and physics. Here we investigate a wide range of subglacial processes and hydrology used in ice sheet models and implemented them in one ice sheet model (f.ETISh).

 

The subglacial hydrology models and till deformation models are coupled to different sliding and friction laws (linear, power law, Coulomb), leading to 24 different representations. The Antarctic ice sheet model was then forced by the ISMIP6 forcing in surface mass balance and ocean temperature until 2100 for different RCP scenarios (Seroussi et al., 2020). Furthermore, to sample the intrinsic sensitivity we performed the ABUMIP experiments (Sun et al., 2020) for the full set of subglacial characteristics.  Results demonstrate that the type of sliding law is the most determining factor in the sensitivity of the ice sheet, modulated by the subglacial hydrology.

How to cite: Kazmierczak, E., Sun, S., and Pattyn, F.: Subglacial hydrology modulates basal sliding response to climate forcing of the Antarctic ice sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14907, https://doi.org/10.5194/egusphere-egu21-14907, 2021.

EGU21-14932 | vPICO presentations | CR3.6

Supraglacial Lakes on George VI Ice Shelf from a multi-decadal perspective

Thomas Barnes, Amber Leeson, Mal McMillan, Vincent Verjans, and Chris Kittel

In 2020, 11.8% of northern George VI ice shelf was covered by supraglacial lakes, and it has been speculated that this was a record high lake density. Supraglacial lakes are associated with ice shelf instability, and were implicated in the collapse of Larsen B in 2002, where ~10% lake density was recorded. Here we use optical satellite imagery from Sentinel-2 and Landsat-1-8 in combination with recorded and modelled climate data from Fossil Bluff AWS, the MAR climate model, and the community firn model to study lakes on George VI ice shelf between 1973 and 2020. We find that the high density of lakes in 2020 was not unique, with similar events occurring five times in the study period, including a record value of 12.1% density in 1989. Furthermore, we find lake density to be controlled by a combination of high firn air content, high air temperature and a neutral southern annular mode, thus a strong melt year alone is insufficient for producing high lake densities. 2020 had record-high melt and temperature values, which suggests that this should also be a record year for lake coverage. A thicker than usual snow/firn pack in the winter prior to the 2020 melt season however, had a dampening effect on lake formation and thus lakes were less abundant than in 1989. As temperatures at this location are projected to increase in coming decades, but snowfall is expected to stay the same, future high melt years are very likely to lead to new record high lake coverage. Since supraglacial lakes are an indicator of ice shelf stability, this suggests that George VI may be rendered unstable within our lifetime.

How to cite: Barnes, T., Leeson, A., McMillan, M., Verjans, V., and Kittel, C.: Supraglacial Lakes on George VI Ice Shelf from a multi-decadal perspective, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14932, https://doi.org/10.5194/egusphere-egu21-14932, 2021.

EGU21-16349 | vPICO presentations | CR3.6

A record of slush and water extent on Antarctic ice shelves from 2013 to present day

Rebecca Dell, Alison Banwell, Neil Arnold, Ian Willis, Anna Ruth W. Halberstadt, Tom Chudley, and Hamish Pritchard

Supraglacial melt is observed across the majority of Antarctic ice shelves and is expected to increase in line with rising air temperatures. Surface meltwater may run off the ice shelf edge and into the ocean, or be stored within firn pore spaces (slush) and supraglacial water bodies (ponds, lakes or streams). When stored either as slush or supraglacial water bodies, the water can indirectly impact ice shelf dynamics, and potentially facilitate ice shelf collapse. Numerous studies have quantified ice shelf meltwater in supraglacial water bodies, however, despite its importance, no studies exist that quantify the extent of slush on a pan-Antarctic scale.

Here, we develop a supervised classifier in Google Earth Engine capable of identifying both slush and ponded water on a pan-Antarctic scale using Landsat 8 imagery. We train and test our classifier on six ice shelves: (1) Nivlisen, (2) Roi Baudouin, (3) Amery, (4) Shackleton, (5) Nansen, (6) George VI. A k-means clustering algorithm is applied to selected Landsat 8 training scenes, and the output clusters are manually interpreted to form training classes (i.e. slush, water, and other surface types (e.g. blue ice, dirty ice)). These training classes are then used to train a Random Forest Classifier, and the accuracy of the outputs are assessed using expert elicitation. Overall, the classifier accuracy for water and slush is 78 % and 70 % respectively. The validated classifier is then applied to numerous ice shelves across Antarctica, in order to produce estimates of slush and water extent from 2013 to the present day.

How to cite: Dell, R., Banwell, A., Arnold, N., Willis, I., Halberstadt, A. R. W., Chudley, T., and Pritchard, H.: A record of slush and water extent on Antarctic ice shelves from 2013 to present day, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16349, https://doi.org/10.5194/egusphere-egu21-16349, 2021.

CR3.9 – Characterizing interactions between ice sheets, solid Earth and sea level by observations, data assimilation and coupled modelling

Although understanding the response of ice sheets to a changing climate is a pressing issue of this century, our current knowledge of past ice-sheet changes remains limited by data sparsity. I explore approaches that leverage non-traditional datasets to constrain past ice sheet and sea-level change over the last glacial cycle. For example, I consider the potential to use past landscapes to infer crustal deformation induced by ice sheet loading. Over the ice-age, glacial isostatic adjustment produces rates of uplift comparable to some of the fastest tectonic uplift rates (~10 mm/yr) in regions hundreds of kilometers away from the maximum ice sheet extent. Additionally, I show it is possible to gain insight into longer-term continental scale ice sheet deglacial histories using small-scale ice stream dynamics. Using records for a rapid retreat of the Amundsen Gulf Ice Stream, located on the northwest Laurentide Ice Sheet, along with observations of the Bering Strait flooding as sea-level indicators, I fingerprint the timing and location of North American saddle deglaciation.

How to cite: Pico, T.: Leveraging non-traditional evidence for glacial isostatic adjustment to constrain past ice sheets, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-751, https://doi.org/10.5194/egusphere-egu21-751, 2021.

EGU21-16399 | vPICO presentations | CR3.9

A Standardized Database of Marine Isotope Stage 5a and 5c Paleo-Shoreline Indicators

Schmitty B. Thompson and Jessica R. Creveling

Reconstructions of global mean sea level (GMSL) through interstadials such as Marine Isotope Stages (MIS) 5a and 5c provide important constraints on the rates of growth and collapse of major ice sheets during warm periods analogous to future climate projections. These reconstructions rely upon precisely dated geomorphic and sedimentological indicators for past sea level whose present elevations are complicated by tectonics and glacial isostatic adjustment (GIA). Compilations of MIS 5a and 5c paleo-sea level indicators that covering a wide geographic range can be used to minimize misfit with glacial isostatic adjustment models and thereby quantify and refine the convolved contribution of GMSL to the present elevation of paleo-shoreline indicators. Here we present a global compilation of previously published Marine Isotope Stages 5a and 5c local sea level indicators from 39 sites covering three main regions: the Pacific coast of North America, the Atlantic coast of North America and the Caribbean, and far field. We describe the standardized entry of these data into the World Atlas of Last Interglacial Shorelines (WALIS) database. Each entry within the MIS 5a and 5c WALIS database reproduces from the primary literature the indicator elevation, indicative meaning, and geochronology, along with a comprehensive overview of the literature for each site. While MIS 5a and 5c indicators sites are geographically widespread, these data are also patchy and preferentially represent the North American continent and the Caribbean and, hence, regions intermediate and far afield of the contemporaneous ice sheets. While this dataset will support future refinements to MIS 5a and 5c GMSL reconstructions arising from GIA modeling, it also motivates further data collection.

How to cite: Thompson, S. B. and Creveling, J. R.: A Standardized Database of Marine Isotope Stage 5a and 5c Paleo-Shoreline Indicators, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16399, https://doi.org/10.5194/egusphere-egu21-16399, 2021.

EGU21-9558 | vPICO presentations | CR3.9

Validating GIA models based on an ensemble of 3D Earth structures with present-day GPS uplift rates

Volker Klemann, Eva Boergens, and Meike Bagge

Glacial-isostatic adjustment (GIA) models simulate the viscoelastic response of the solid earth due to loading. During the last glacial maximum, large areas in the northern and southern hemisphere were covered by km-thick ice sheets. Although most of the ice has been melted already 8,000 year ago, the time-delayed response of the viscoelastic earth is still a significant contribution to present-day uplift rates. The implementation of GIA models in global climate models is an essential part of the current research. Hereby, the choice of an appropriate earth structure in the GIA model plays an important role and has to be constrained by observational data.

Here, we apply present-day uplift data to constrain a set of GIA models that differ in 3D earth structure. To this end, these different GIA models are validated against GPS uplift rates provided by Schumacher et al. (2019). The GPS stations are globally distributed and not necessarily clustered in regions with strong GIA signal. For validation, regions with the largest gradient present in the GIA signal are most crucial. Thus, we use a weighting scheme, where those GPS stations get a higher weight that are less correlated to all other stations. Additionally, uncertainties in the GPS rates appear due to the length of the GPS time series and due to station specifics such as the used GPS receiver, and are provided together with the rates as standard deviations. Thence, the weighting used for the validation is the sum of the correlation derived weights and the uncertainty derived weights.

With this weighting in place, different GIA models can be validated against present day uplift rates by means of root mean square errors or mean absolute error.

How to cite: Klemann, V., Boergens, E., and Bagge, M.: Validating GIA models based on an ensemble of 3D Earth structures with present-day GPS uplift rates, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9558, https://doi.org/10.5194/egusphere-egu21-9558, 2021.

EGU21-12420 | vPICO presentations | CR3.9

Correcting Late Cenozoic Sea-Level Records for Dynamic Topography: Examples from Australia

Fred Richards, Sophie Coulson, Jacqueline Austermann, Mark Hoggard, and Jerry Mitrovica

Much of our understanding of ice sheet sensitivity to climatic forcing is derived from palaeoshoreline records of past sea-level. However, the present-day elevations of these sea-level markers reflect the integrated effect of both ice volume change and solid Earth processes. Accurately quantifying the latter contribution is therefore essential for making reliable inferences of past ice volume. While uncertainties associated with glacial isostatic adjustment (GIA) can be mitigated by focusing on sites far from ice sheets, the same is not true for mantle flow-driven dynamic topography, which is ubiquitous and can generate vertical motions of ~±100 m on million-year timescales. As a result, improved knowledge of the spatio-temporal evolution of this transient topography is required to refine constraints on ice sheet stability and to guide modelling of future trajectories.

Since the shortest wavelength and fastest evolving contributions to dynamic topography originate in the shallow mantle, reconstructing dynamic topography over 1–10 Myr timescales requires accurate models of Earth’s lithosphere and asthenosphere. Here, we construct these models by mapping upper mantle shear wave velocities from high-resolution surface wave tomographic models into thermomechanical structure using calibrated parameterisations of anelasticity at seismic frequency. Resulting numerical predictions of present-day dynamic topography are in good agreement with residual depth measurements, with particularly good fits obtained around Australia. In this region, predicted temperatures are also compatible with palaeogeotherms extracted from xenolith suites, indicating that present-day upper mantle structure is well characterised and that numerical “retrodictions” of vertical motions are more likely to be reliable. In addition, Australia is sufficiently distant from major ice sheets that uncertainty in GIA contributions to sea-level change are relatively small. These considerations, combined with new compilations of continent-wide sea-level indicators, make Australia a particularly promising location for separating out ice volume-driven global mean sea-level changes from local sea-level variations related to vertical land motions and gravitational effects.

By back-advecting density perturbations from an ensemble of Earth models, we demonstrate that ~±200 m relative sea-level changes across Australia since the Mid-Pliocene Warm Period (MPWP; ∼3 Ma) can be tied directly to changes in dynamic topography. Significantly, after removing this signal from observed relative sea-level changes,  a consistent global mean sea-level during the MPWP of 12±8 m above present is obtained, towards the lower end of previous estimates.

How to cite: Richards, F., Coulson, S., Austermann, J., Hoggard, M., and Mitrovica, J.: Correcting Late Cenozoic Sea-Level Records for Dynamic Topography: Examples from Australia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12420, https://doi.org/10.5194/egusphere-egu21-12420, 2021.

EGU21-1261 | vPICO presentations | CR3.9

Inferring mantle viscosity through data assimilation of relative sea level observations in a glacial isostatic adjustment model

Reyko Schachtschneider, Jan Saynisch-Wagner, Volker Klemann, Meike Bagge, and Maik Thomas

We suggest to apply data assimilation in glacial isostatic adjustment (GIA) to constrain the mantle viscosity structure based on sea level observations. We apply the Parallel Data Assimilation Framework (PDAF) to assimilate sea level data into the time-domain spectral-finite element code VILMA in order to obtain better estimates of the mantle viscosity structure. In a first step, we reduce to a spherically symmetric earth structure and prescribe the glaciation history. A particle filter is used to propagate an ensemble of models in time. At epochs when observations are available, each particle's performance is estimated and the particles are resampled based on their performance to form a new ensemble that better resembles the true viscosity distribution.

Using this algorithm, we show the ability to recover mantle viscosities from a set of synthetic relative sea level observations. Those synthetic observations are obtained from a reference run with a given viscosity structure that defines the target viscosity values in our experiments. The viscosity estimation is applied to a three-layer model with an elastic lithosphere and two mantle layers, and to a multi-layer model with a smoother viscosity profile. We use various subsets of realistic observation locations (e.g. only observations from Fennoscandia) and show that it is possible to obtain the target viscosity values in those cases. We also vary the time from which observations are available to evolve the test cases towards a realistic scenario for the availability of relative sea level observations. The most relevant cases start at 26.5ka BP and at 10ka BP as they mark the beginning of the maximum glaciation and the end of deglaciation with a larger amount of observations following, respectively, and end at present day.

How to cite: Schachtschneider, R., Saynisch-Wagner, J., Klemann, V., Bagge, M., and Thomas, M.: Inferring mantle viscosity through data assimilation of relative sea level observations in a glacial isostatic adjustment model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1261, https://doi.org/10.5194/egusphere-egu21-1261, 2021.

EGU21-14164 | vPICO presentations | CR3.9

A kinematic formalism for tracking ice-ocean mass exchange on the Earth's surface and estimating sea-level change 

Surendra Adhikari, Erik Ivins, Eric Larour, Lambert Caron, and Helene Seroussi

Polar ice sheets are important components of the Earth System.  As the geometries of land, ocean, and ice sheets evolve, they must be consistently captured within the lexicon of geodesy.  Understanding the interplay between the processes such as ice-sheet dynamics, solid-Earth deformation, and sea-level adjustment requires both geodetically consistent and mass conserving descriptions of evolving land and ocean domains, grounded ice sheets and floating ice shelves, and their respective interfaces. Here we present mathematical descriptions of a generic level set that can be used to track both the grounding lines and coastlines, in light of ice-ocean mass exchange and complex feedbacks from the solid Earth and sea level. We next present a unified method to accurately compute the sea-level contribution of evolving ice sheets based on the change in ice thickness, bedrock elevation and mean sea level caused by any geophysical processes. Our formalism can be applied to arbitrary geometries and at all time scales. While it can be used for applications with modeling, observations and the combination of two, it is best suited for Earth System models, comprising ice sheets, solid Earth and sea level, that seek to conserve mass.

© 2020 California Institute of Technology. Government sponsorship is acknowledged.

How to cite: Adhikari, S., Ivins, E., Larour, E., Caron, L., and Seroussi, H.: A kinematic formalism for tracking ice-ocean mass exchange on the Earth's surface and estimating sea-level change , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14164, https://doi.org/10.5194/egusphere-egu21-14164, 2021.

EGU21-15682 | vPICO presentations | CR3.9

Simulating Interactive Ice Sheets in the Multi-Resolution AWI-ESM: A case study using the SCOPE Coupler

Paul Gierz, Lars Ackermann, Christian Rodehacke, Uta Krebs-Kanzow, Christian Stepanek, Dirk Barbi, and Gerrit Lohmann

Interactions between the climate and the cryosphere have the potential to induce strong non-linear transitions in the Earth's climate. These interactions influence both the atmospheric circulation, by changing the ice sheet's geometry, as well as the oceanic circulation, by modification of the water mass properties. Furthermore, the waxing and waning of large continental ice sheets influences the global albedo, altering the energy balance of the Earth System and inducing climate-ice sheet feedbacks on a global scale as evident in Pleistocene glacial-interglacial cycles. To date, few fully
comprehensive models exist, that do not only contain a coupled atmosphere/land/ocean component, but also consider interactive cryosphere physics. Yet, on glacial-interglacial and tectonic time scales, as well as in the Anthropocene, ice sheets are not in equilibrium with the climate, and prescribed fixed ice sheet representations in the model can principally be only an approximation to reality. Only climate models, that contain interactive ice sheets, can produce simulations of the Earth's climate which include all feedbacks and processes related to atmosphere-land-ocean-ice interactions. Previous fully coupled models were limited either by low spatial resolution or an incomplete representation of ice sheet processes, such as iceberg calving, surface ablation processes, and ocean/ice-shelf interactions. Here, we present the newly developed AWI-Earth System Model (AWI-ESM), which tackles some of these problems. Our modelling toolbox is based on the AWI-climate model, including atmosphere and vegetation components suitable for paleoclimate studies, a multi-resolution global ocean component which can be refined to simulate regions of interest at high resolution, and an ice sheet component suitable for simulating both ice sheet and ice shelf dynamics and thermodynamics. We describe the currently implemented coupling between these components, present first results for the Mid-Holocene and Last Interglacial, and introduce further ideas for scientific applications for both future and past climate states with a focus on the Northern Hemisphere. Finally, we provide an outlook on the potential of such fully coupled Earth System models in improving representation of climate-ice sheet feedbacks in future paleoclimate studies with this model.

How to cite: Gierz, P., Ackermann, L., Rodehacke, C., Krebs-Kanzow, U., Stepanek, C., Barbi, D., and Lohmann, G.: Simulating Interactive Ice Sheets in the Multi-Resolution AWI-ESM: A case study using the SCOPE Coupler, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15682, https://doi.org/10.5194/egusphere-egu21-15682, 2021.

EGU21-13479 | vPICO presentations | CR3.9

3D glacial-isostatic adjustment models using geodynamically constrained Earth structures

Meike Bagge, Volker Klemann, Bernhard Steinberger, Milena Latinović, and Maik Thomas

The interaction between ice sheets and the solid Earth plays an important role for ice-sheet stability and sea-level change and hence for global climate models. Glacial-isostatic adjustment (GIA) models enable simulation of the solid Earth response due to variations in ice-sheet and ocean loading and prediction of the relative sea-level change. Because the viscoelastic response of the solid Earth depends on both ice-sheet distribution and the Earth’s rheology, independent constraints for the Earth structure in GIA models are beneficial. Seismic tomography models facilitate insights into the Earth’s interior, revealing lateral variability of the mantle viscosity that allows studying its relevance in GIA modeling. Especially, in regions of low mantle viscosity, the predicted surface deformations generated with such 3D GIA models differ considerably from those generated by traditional GIA models with radially symmetric structures. But also, the conversion from seismic velocity variations to viscosity is affected by a set of uncertainties. Here, we apply geodynamically constrained 3D Earth structures. We analyze the impact of conversion parameters (reduction factor in Arrhenius law and radial viscosity profile) on relative sea-level predictions. Furthermore, we focus on exemplary low-viscosity regions like the Cascadian subduction zone and southern Patagonia, which coincide with significant ice-mass changes.

How to cite: Bagge, M., Klemann, V., Steinberger, B., Latinović, M., and Thomas, M.: 3D glacial-isostatic adjustment models using geodynamically constrained Earth structures, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13479, https://doi.org/10.5194/egusphere-egu21-13479, 2021.

EGU21-13647 | vPICO presentations | CR3.9

The effect of geothermal heat flux on the deglacial evolution of the Greenland ice sheet

Parviz Ajourlou, François PH Lapointe, Glenn A Milne, and Yasmina Martos

Geothermal heat flux (GHF) is known to be an important control on the basal thermal state of an ice sheet which, in turn, is a key factor in governing how the ice sheet will evolve in response to a given climate forcing. In recent years, several studies have estimated GHF beneath the Greenland ice sheet using different approaches (e.g. Rezvanbehbahani et al., Geophysical Research Letters, 2017; Martos et al., Geophysical Research Letters, 2018; Greve, Polar Data Journal, 2019). Comparing these different estimates indicates poor agreement and thus large uncertainty in our knowledge of this important boundary condition for modelling the ice sheet. The primary aim of this study is to quantify the influence of this uncertainty on modelling the past evolution of the ice sheet with a focus on the most recent deglaciation. We build on past work that considered three GHF models (Rogozhina et al., 2011) by considering over 100 different realizations of this input field. We use the uncertainty estimates from Martos et al. (Geophysical Research Letters, 2018) to generate GHF realisations via a statistical sampling procedure. A sensitivity analysis using these realisations and the Parallel Ice Sheet Model (PISM, Bueler and Brown, Journal of Geophysical Research, 2009) indicates that uncertainty in GHF has a dramatic impact on both the volume and spatial distribution of ice since the last glacial maximum, indicating that more precise constraints on this boundary condition are required to improve our understanding of past ice sheet evolution and, consequently, reduce uncertainty in future projections.

How to cite: Ajourlou, P., PH Lapointe, F., A Milne, G., and Martos, Y.: The effect of geothermal heat flux on the deglacial evolution of the Greenland ice sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13647, https://doi.org/10.5194/egusphere-egu21-13647, 2021.

EGU21-16554 | vPICO presentations | CR3.9

Long-term ice loss from Greenland mediated by ice-load bedrock uplift feedback

Maria Zeitz, Jan Haacker, Jonathan Donges, and Ricarda Winkelmann

Mass loss from the Greenland Ice Sheet has significantly accelerated over the past decades, both through enhanced melting as well as the acceleration of outlet glaciers. Positive feedback mechanisms, including the melt-elevation feedback and the ice-albedo feedback, introduce a non- linear evolution and may further accelerate mass loss. Negative feedbacks, such as the feedback between receding ice load and subsequent bedrock uplift, might counteract these accelerating positive feedbacks on long timescales. Bedrock uplift can amount to roughly one third of the change in the ice sheet thickness on a timescale of millennia. Here we explore the interplay of both positive and negative feedbacks, using simulations of the Greenland Ice Sheet with the Parallel Ice Sheet Model (PISM) including an Elastic Lithosphere Relaxing Asthenosphere (ELRA) model in an idealized warming scenario. In particular, we find that depending on the temperature anomaly (and thus the ice retreat rate) and the asthenosphere viscosity, distinct responses of the ice sheet are possible, ranging from the full or partial retreat of the ice sheet to the full or partial recovery of the ice sheet after an initial retreat, and potential large-scale self-sustained oscillations of ice volume on multi- millennial timescales.

How to cite: Zeitz, M., Haacker, J., Donges, J., and Winkelmann, R.: Long-term ice loss from Greenland mediated by ice-load bedrock uplift feedback, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16554, https://doi.org/10.5194/egusphere-egu21-16554, 2021.

EGU21-6997 | vPICO presentations | CR3.9

Antarctic Sedimentary Basins: defining crucial constraints on ice-sheet and solid-earth dynamic interactions

Alan Aitken, Lu Li, Bernd Kulessa, Thomas Jordan, Joanne Whittaker, Sridhar Anandakrishnan, Jamin Greenbaum, Dustin Schroeder, Philippa Whitehouse, Olaf Eisen, and Martin Siegert

Subglacial and ice-sheet marginal sedimentary basins have very different physical properties to crystalline bedrock and, therefore, form distinct conditions that influence the flow of ice above. Sedimentary rocks are particularly soft and erodible, and therefore capable of sustaining layers of subglacial till that may deform to facilitate fast ice flow downstream. Furthermore, sedimentary rocks are relatively permeable and thus allow for enhanced fluid flux, with associated impacts on ice-sheet dynamics, including feedbacks with subglacial hydrologic systems and transport of heat to the ice-sheet bed. Despite the importance for ice-sheet dynamics there is, at present, no comprehensive record of sedimentary basins in the Antarctic continent, limiting our capacity to investigate these influences. Here we develop the first version of an Antarctic-wide spatial database of sedimentary basins, their geometries and physical attributes. We emphasise the definition of in-situ and undeformed basins that retain their primary characteristics, including relative weakness and high permeability, and therefore are more likely to influence ice sheet dynamics. We define the likely extents and nature of sedimentary basins, considering a range of geological and geophysical data, including: outcrop observations, gravity and magnetic data, radio-echo sounding data and passive and active-source seismic data. Our interpretation also involves derivative products from these data, including analyses guided by machine learning. The database includes for each basin its defining characteristics in the source datasets, and interpreted information on likely basin age, sedimentary thickness, surface morphology and tectonic type. The database is constructed in ESRI geodatabase format and is suitable for incorporation in multifaceted data-interpretation and modelling procedures. It can be readily updated given new information. We define extensive basins in both East and West Antarctica, including major regions in the Ross and Weddell Sea embayments and the Amundsen Sea region of West Antarctica, and the Wilkes, Aurora and Recovery subglacial basins of East Antarctica. The compilation includes smaller basins within crystalline-bedrock dominated areas such as the Transantarctic Mountains, the Antarctic Peninsula and Dronning Maud Land. The distribution of sedimentary basins reveals the combined influence of the tectonic and glacial history of Antarctica on the current and future configuration of the Antarctic Ice Sheet and highlights areas in which the presence of dynamically-evolving subglacial till layers and the exchange of groundwater and heat with the ice sheet bed  are more likely, contributing to dynamic behaviour of the Antarctic Ice Sheet.  

How to cite: Aitken, A., Li, L., Kulessa, B., Jordan, T., Whittaker, J., Anandakrishnan, S., Greenbaum, J., Schroeder, D., Whitehouse, P., Eisen, O., and Siegert, M.: Antarctic Sedimentary Basins: defining crucial constraints on ice-sheet and solid-earth dynamic interactions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6997, https://doi.org/10.5194/egusphere-egu21-6997, 2021.

EGU21-15773 | vPICO presentations | CR3.9 | Highlight

The effect of the GIA feedback loop on the evolution of the Antarctic Ice sheet over the last glacial cycle using a coupled 3D GIA – Ice Dynamic model

Caroline van Calcar, Bas de Boer, Bas Blank, Roderik van de Wal, and Wouter van der Wal

The Earth’s surface and interior deform due to a changing load of the Antarctic Ice Sheet (AIS) during the last glacial cycle, called Glacial Isostatic Adjustment (GIA). This deformation changes the surface height of the ice sheet and indirectly the groundling line position. These changes in surface height and grounding line position influence the evolution of the AIS and consequently, again the load on the Earth’s surface. As a result, GIA operates as a negative feedback loop and could stabilize the evolution of the AIS. This feedback maybe particularly relevant for relatively low viscosities of the mantle in West Antarctica which lead to a relatively fast response time of the bedrock due to changes in the West Antarctic Ice Sheet loading. Most studies capture this process by ignoring lateral variations in the viscosity of the mantle and the stabilizing GIA feedback loop. Here we present a new method to couple an ice sheet model to a GIA model at a variable timestep in the order of a thousand years. Several experiments have been done using different radial and lateral varying rheologies for simulations of the last glacial cycle. It is shown that the effect of including lateral variations and accounting for the stabilizing GIA feedback is up to 80 kilometers for the grounding line position and 400 meters for the ice thickness. The largest differences are observed close to the grounding line of the Ronne ice shelf and at several locations in East Antarctica. The total ice volume of the AIS increases by 0.5 percent over 5000 years when including the 3D GIA feedback loops in the coupled model. These results quantify the local importance of including GIA feedback effects in ice dynamic models when simulating the Antarctic Ice Sheet evolution over the full glacial cycle.  

How to cite: van Calcar, C., de Boer, B., Blank, B., van de Wal, R., and van der Wal, W.: The effect of the GIA feedback loop on the evolution of the Antarctic Ice sheet over the last glacial cycle using a coupled 3D GIA – Ice Dynamic model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15773, https://doi.org/10.5194/egusphere-egu21-15773, 2021.

EGU21-13786 | vPICO presentations | CR3.9

Reassessing the Contribution of West Antarctica to Last Interglacial Sea Level in Light of 3D Mantle Viscosity Structure

Linda Pan, Evelyn M. Powell, Konstantin Latychev, Jerry X. Mitrovica, Jessica R. Creveling, Natalya Gomez, Mark J. Hoggard, and Peter U. Clark

Studies of peak global mean sea level (GMSL) during the Last Interglacial (LIG; 130-116 ka) commonly cite values ranging from ~2-5 m for the maximum contribution from grounded, marine-based sectors of the West Antarctic Ice Sheet (WAIS). However, this estimate neglects viscoelastic crustal uplift and the associated meltwater flux out of marine sectors as they are exposed, a contribution considered to be small and slowly-accumulating. This assumption should be revisited, as a range of evidence indicates that West Antarctica is underlain by shallow mantle of anomalously low viscosity. By incorporating this complex structure into a gravitationally self-consistent sea-level calculation, we find that GMSL differs substantially from previous estimates. Our results indicate that these estimates thus require a reassessment of the contribution to GMSL rise from WAIS collapse, as will ice sheet models that do not account for the uplift mechanism. This conclusion has important implications for the sea level budget not only during the LIG, but also for all previous interglacials and projections of GMSL change in the future warming world.  

How to cite: Pan, L., Powell, E. M., Latychev, K., Mitrovica, J. X., Creveling, J. R., Gomez, N., Hoggard, M. J., and Clark, P. U.: Reassessing the Contribution of West Antarctica to Last Interglacial Sea Level in Light of 3D Mantle Viscosity Structure, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13786, https://doi.org/10.5194/egusphere-egu21-13786, 2021.

EGU21-8050 | vPICO presentations | CR3.9

Coupled solid Earth – Antarctic ice sheet simulations with VILMA and PISM

Torsten Albrecht, Meike Bagge, Ricarda Winkelmann, and Volker Klemann

The Antarctic Ice Sheet rests on a bed that is characterized by tectonical activity and hence by a heterogeneous rheology. Spots of extremely weak lithosphere structure could have strong impacts on the Glacial Isostatic Adjustment and hence on the stability of the ice sheet, possibly also for confined glacier regions and on timescales of decades down to even years (Barletta et al., 2018).

We coupled the VIscoelastic Lithosphere and MAntle model (VILMA) to the Parallel Ice Sheet Model (PISM) and ran simulations over the last two glacial cycles. In this framework, VILMA considers both viscoelastic deformations of the solid Earth and gravitationally consistent mass redistribution in the ocean by solving for the sea-level equation (Martinec et al., 2018). In turn, PISM interprets this as a vertical shift in bed topography that directly affects the stress balance within the ice sheet and hence the grounding line dynamics at the interface of ice, ocean and bedrock.

Here we present first results of the coupled Antarctic glacial-cycle simulations and investigate technical aspects, such as optimal coupling time steps, iteration schemes and convergence, for both one-dimensional and three-dimensional Earth structures. This project is part of the German Climate Modeling Initiative, PalMod2.

 

References:

Barletta et al., 2018. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science360, pp.1335-1339. DOI: 10.1126/science.aao1447

Martinec et al., 2018. A benchmark study of numerical implementations of the sea level equation in GIA modelling. Geophysical Journal International215(1), pp.389-414. DOI: 10.1093/gji/ggy280

 

How to cite: Albrecht, T., Bagge, M., Winkelmann, R., and Klemann, V.: Coupled solid Earth – Antarctic ice sheet simulations with VILMA and PISM, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8050, https://doi.org/10.5194/egusphere-egu21-8050, 2021.

EGU21-1350 | vPICO presentations | CR3.9 | Highlight

Impact of glacial isostatic adjustment on the long-term stability of the Antarctic ice sheet

Violaine Coulon, Kevin Bulthuis, Pippa Whitehouse, Sainan Sun, and Frank Pattyn

Projections of the contribution of the Antarctic ice sheet to future sea-level rise remain highly uncertain, especially on long timescales. One of the reasons for this uncertainty lies in the uncertainty in the intensity of the feedbacks of glacial isostatic adjustment (GIA; i.e. the combination of bedrock adjustment and gravitationally-consistent sea-surface changes due to ice mass changes) on ice-sheet evolution. Indeed, the Antarctic ice sheet lies on a solid Earth that displays large spatial variations in rheological properties, with a thin lithosphere and low-viscosity upper mantle beneath West Antarctica and an opposing structure beneath East Antarctica (Morelli & Danesi, 2004; Lloyd et al., 2020). In addition to this West-East dichotomy, strong viscoelastic heterogeneities (sometimes by several orders of magnitude across relatively short spatial scales) exist within the East and West Antarctic regions (An et al., 2015). These lateral variations are known to have a significant impact on the ice-sheet grounding-line stability (Gomez et al., 2015; Konrad et al., 2015). However, large uncertainties remain in determining these viscoelastic properties with precision.

Here, we investigate the influence of GIA feedbacks on the uncertainty in assessing the long-term contribution of the Antarctic ice sheet to future sea-level rise (SLR). In this framework, we design an ensemble approach, taking advantage of the computational efficiency of the Elementary GIA model (Coulon et al., under review). The latter consists of a modified Elastic Lithosphere—Relaxing Asthenosphere model able to consider spatially-varying viscoelastic properties supplemented with an approximation of gravitationally-consistent geoid changes, allowing to approximate near-field relative sea-level changes. Using existing upper-mantle viscosity and lithosphere thickness maps, we produce a large range of plausible Antarctic viscoelastic properties by varying the level of lateral variability in the associated relaxation time and flexural rigidity. We thereby take into account (i) the important lateral variations in rheological properties observed beneath the Antarctic ice sheet as well as (ii) the strong uncertainty characterizing the estimation of Antarctic solid Earth properties. We investigate the potential stabilizing role of GIA effects as well as their influence on multi-centennial to multi-millenial SLR. In addition, we investigate whether GIA feedbacks are able to stabilize the Antarctic ice sheet on short or longer timescales for strong and intermediate mitigation climate scenarios. Preliminary results (Coulon et al., under review) show that the weak Earth structure observed beneath West Antarctica plays a significant role in promoting the stability of the West Antarctic ice sheet (WAIS). However, WAIS collapse cannot be prevented under high-emissions climate scenarios. The highest uncertainty arises from the East Antarctic ice sheet (EAIS) where ice retreat in the Aurora Basin is highly dependent on mantle viscosity.

How to cite: Coulon, V., Bulthuis, K., Whitehouse, P., Sun, S., and Pattyn, F.: Impact of glacial isostatic adjustment on the long-term stability of the Antarctic ice sheet, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1350, https://doi.org/10.5194/egusphere-egu21-1350, 2021.

CR4.2 – Sea Ice and Snow Processes in the Central Arctic Ocean: Advancing Understanding using Results from the MOSAiC Expedition

EGU21-10136 | vPICO presentations | CR4.2 | Highlight

Overview of the MOSAiC expedition – Snow and Sea Ice

Marcel Nicolaus and Donald Perovich and the MOSAiC Snow and Sea Ice Team

Year-round observations of the properties and processes that govern the ice pack and its interaction with the atmosphere and the ocean were the key element of the MOSAiC field experiment. The aim was to completely characterize the properties of the snow and ice cover across different spatial scales over an entire annual cycle. This was done by monitoring snow and ice mass balance, observing the evolving energy budget, studying dynamical features, and by documenting snow and ice dynamics over nested spatial scales. We conducted in-situ observations at multiple scales, which will be integrated in numerical models and remote sensing methods. Overall, we performed the most comprehensive snow and sea ice program to date. Here, we summarize the observational snow and sea ice program during the drift from October 2019 to September 2020. We will present improved concepts and diagnostics of the field program and show relationships to satellite retrievals and numerical models. We will highlight individual events and characteristics of the snow and ice pack during the different seasons based on time-series that were obtained from numerous sea-ice programs of the MOSAiC ICE team. We will discuss the various activities with respect to the coupled system and the life cycle of sea ice along the transpolar drift.

How to cite: Nicolaus, M. and Perovich, D. and the MOSAiC Snow and Sea Ice Team: Overview of the MOSAiC expedition – Snow and Sea Ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10136, https://doi.org/10.5194/egusphere-egu21-10136, 2021.

EGU21-6920 | vPICO presentations | CR4.2

Seasonality of sea ice deformation at MOSAiC

Jennifer Hutchings, Angela Bliss, Rajlaxmi Basu, Bin Cheng, Polona Itkin, Thomas Krumpen, Ruibo Lei, Jari Haapala, Christian Haas, Mario Hoppmann, Phil Hwang, Ola Persson, Luisa von Albedyll, and Daniel Watkins

Sea ice drift and deformation shapes the ice cover of the polar oceans, lead opening modulating heat transfer across the ice pack and deformation driven roughness changes affecting momentum transfer from winds and currents. Yet we do not fully understand the seasonal evolution of sea ice deformation. An array of >95 GPS drifting buoys and 11 ice stations was deployed as a Distributed Network around the MOSAiC Central Observatory, capturing scales of sea ice motion between hundreds of meters to up to 200 kilometers. The array drifted across the Arctic in the transpolar drift in less than a year, with an anomalous east-west sea level pressure gradient driving the fast drift. The buoys monitored horizontal deformation of the pack ice from freeze up north of the Laptev Sea to melt in the Greenland Sea. The deformation responds to inertial motion during the freeze up transition to a consolidated ice pack. The fractal dimension of the total deformation changes throughout the year. At smaller scales of about 10 km deformation becomes whiter during the growth season, once the ice pack is consolidated to the coast. There iis an increase in episodic events at the largest scales during the periods the ice pack is consolidated and where it becomes more tidally active during transition through Fram Strait. The MOSAiC distributed network brings improved understanding in the transition of sea ice deformation from freedrift to pack ice, and the response of the ice to changing momentum transfer from the wind and ocean across the Transpolar Drift. The MOSAiC campaign provides unprecedented information about the atmospheric structure and spatial distribution of winds, as well as near surface currents, from which we can deduce the affect of sub-mesoscale deformation in the wind field on the horizontal ice deformation. 

How to cite: Hutchings, J., Bliss, A., Basu, R., Cheng, B., Itkin, P., Krumpen, T., Lei, R., Haapala, J., Haas, C., Hoppmann, M., Hwang, P., Persson, O., von Albedyll, L., and Watkins, D.: Seasonality of sea ice deformation at MOSAiC, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6920, https://doi.org/10.5194/egusphere-egu21-6920, 2021.

EGU21-9496 | vPICO presentations | CR4.2 | Highlight

Autonomously observing coupled Arctic processes year-round: the Distributed Network of ice-tethered buoys during MOSAiC

Benjamin Rabe and the Team MOSAiC Distributed Network

The Arctic Ocean is a region with unique physical processes coupling the atmosphere, sea-ice and ocean. Biogeochemical and ecosystem processes feedback with this physical system not only on a regional scale but also locally around each ice floe. Capturing these processes, both vertically and horizontally from the mesoscale to turbulence scales is essential to understand the Arctic system and to improve model simulations of this region and global climate.  

The MOSAiC Distributed Network (DN) of autonomous, ice-tethered measurement systems recorded a full seasonal cycle of atmospheric, surface, sea ice and snow, and oceanic conditions. Physical and biological variables were measured throughout the whole drift of the original MOSAiC ice floe with the icebreaker Polarstern (Central Observatory, CO) from north of Laptev Sea to Fram Strait, covering the seasons from mid-autumn 2019 to mid-summer 2020. In addition, a subset of ice-tethered buoys observed the freeze-up in the central Arctic around the second CO, after the relocation of the ice camp in late summer 2020, and even beyond the drift of Polarstern. These observations form a variety of three-dimensional datasets valuable for analyses across the spectrum of research foci covered by MOSAiC.  

We will present the scientific concept of the DN in the context of other MOSAiC observations, and show the success and preliminary scientific results from a whole year of autonomous observations.  

How to cite: Rabe, B. and the Team MOSAiC Distributed Network: Autonomously observing coupled Arctic processes year-round: the Distributed Network of ice-tethered buoys during MOSAiC, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9496, https://doi.org/10.5194/egusphere-egu21-9496, 2021.

EGU21-5748 | vPICO presentations | CR4.2

Autonomous observations of sea ice mass balance during MOSAiC

Don Perovich, Ian Raphael, Ryleigh Moore, and David Clemens-Sewall

Four seasonal ice mass balance buoys were deployed as part of the MOSAiC distributed network. These instruments measured vertical profiles of snow and ice temperature, as well as snow depth and ice thickness every six hours. Ice growth, surface melt, and bottom melt, as well as temporally averaged estimates of ocean heat fluxes, were calculated from these measurements. The buoys were installed in October 2019, with durations ranging from February 2020 to July 2020. Three of the buoys were destroyed in ridging events in February, March, and June 2020. The fourth buoy lasted until floe breakup in July 2020. The sites were separated by tens of kilometers, but had very similar air temperatures. While air temperatures were similar, snow – ice interface temperatures at different buoys varied by as much as 15 C due to differences in snow depth and ice thickness. Initial ice thicknesses ranged from 0.30 to 1.36 meters. During the growth season snow depths typically were around 0.1 to 0.2 meters, except for one case where the buoy was in a snow drift and the snow depth exceeded 0.5 meter. Peak growth rates of about 0.8 cm per day occurred in January. In mid-January there was a rapid increase in ice thickness associated with an aggregation of platelet ice. This aggregation only lasted for two weeks. In mid-April, air temperatures increased to nearly 0 C, almost ending the growth season.

How to cite: Perovich, D., Raphael, I., Moore, R., and Clemens-Sewall, D.: Autonomous observations of sea ice mass balance during MOSAiC, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5748, https://doi.org/10.5194/egusphere-egu21-5748, 2021.

EGU21-3907 | vPICO presentations | CR4.2

Thermal sea ice classification during the MOSAiC expedition

Linda Thielke, Marcus Huntemann, Gunnar Spreen, Stefan Hendricks, Arttu Jutila, and Robert Ricker

The MOSAiC expedition took place in the Arctic from September 2019 to October 2020 while having measurements under, in, and above sea ice for a complete annual cycle. Airborne thermal infrared imaging was conducted during 41 helicopter survey flights along the MOSAiC drift track. We analyze the infrared brightness temperature of snow, sea ice, and ocean water surfaces from October 2019 until May 2020 from the airborne measurements. While the snow-covered sea ice appears very cold, thin ice and open water are significantly warmer. These surface types will be considered with particular attention because they dominate the heat exchange between the ocean, ice, and atmosphere during wintertime. This influences the Arctic Climate and becomes even more important in the currently changing Arctic, where the sea ice gets thinner, moves faster, and breaks up easier. After georeferencing and merging the recorded images to a mosaic, we can provide maps of infrared brightness temperatures in a high spatial resolution of 1 m for each flight. The spatial range of the maps varies from local (~5 km) up to regional (~30 km). This data set provides a basis to study the spatial and temporal variability of sea ice characteristics in the Arctic winter. We derive the physical surface temperature from the brightness temperature, surface emissivity, and downwelling radiation from the sky or clouds. Using the surface temperature, we calculate the heat flux from a local up to a regional scale based on thermodynamic assumptions and atmospheric measurements on the ice floe. From more complex thermodynamic simulations, we estimate ice thickness and ice age based on the airborne measured surface temperatures. The model calculates for each surface temperature a specific ice thickness and heat flux based on the knowledge about the surface’s thermodynamic history. The simulated ice thickness allows a sea ice classification which is compared to our first classification approach which deals with the flight's temperature distribution only. In the future, we will investigate the sub-footprint scale variability of ice surface temperature and thin ice thickness for satellite data, e.g. MODIS and Sentinel-3.

How to cite: Thielke, L., Huntemann, M., Spreen, G., Hendricks, S., Jutila, A., and Ricker, R.: Thermal sea ice classification during the MOSAiC expedition, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3907, https://doi.org/10.5194/egusphere-egu21-3907, 2021.

EGU21-3757 | vPICO presentations | CR4.2

Manual point-measurements of sea ice mass balance during the MOSAiC Expedition

Ian Raphael, Donald Perovich, Chris Polashenski, David Clemens-Sewall, Polona Itkin, Matthias Jaggi, Julia Regnery, Madison Smith, Jennifer Hutchings, Marcel Nicolaus, Ilkka Matero, David Wagner, Marc Oggier, Oguz Demir, Amy Macfarlane, and Steven Fons

Sea ice plays a critical role in the Arctic climate system, regulating much of the energy transfer between the ocean and the atmosphere. Repeat measurements of ice mass balance at discrete points allow us to determine the direct response of sea ice mass to environmental conditions. We installed a network of mass balance measurement sites across the MOSAiC Central Observatories, distributed over a diverse range of ice types and features. The sites were composed of gridded arrays of 9-17 hotwire thickness gauges, each paired with a surface ablation stake. Seven sites were installed on first year ice, and seven on second or multi year ice, with a total of 120+ individual measurement stations. The sites were operational over different periods throughout the year; several were destroyed or became inaccessible during ridging events. Initial ice thicknesses ranged from 0.13-3.50 m. We made measurements of ice and snow interfaces and thicknesses with 1 cm precision at each station, at intervals of 2-3 weeks during the growth season and as few as 1-2 days during the melt season. From these measurements, we infer ice growth, ice bottom melt, ice surface melt, snow deposition, snow erosion, and snow melt. The time series spans October 2019–September 2020, with a five-week measurement gap beginning mid-May 2020. We present an overview of the measurements and preliminary analysis, partitioning results by ice type and comparing mass balance to concurrent atmosphere and ocean measurements. We identify trends in the seasonal evolution of different ice types, and give particular attention to notable events in the time series. As true point-measurements, the data are especially relevant in improving one-dimensional thermodynamic sea ice models. The results also provide validation for satellite and electromagnetic induction ice-thickness measurements made during MOSAiC, which offer higher areal coverage but lower measurement- and spatial-precision.

How to cite: Raphael, I., Perovich, D., Polashenski, C., Clemens-Sewall, D., Itkin, P., Jaggi, M., Regnery, J., Smith, M., Hutchings, J., Nicolaus, M., Matero, I., Wagner, D., Oggier, M., Demir, O., Macfarlane, A., and Fons, S.: Manual point-measurements of sea ice mass balance during the MOSAiC Expedition, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3757, https://doi.org/10.5194/egusphere-egu21-3757, 2021.

EGU21-10798 | vPICO presentations | CR4.2

Seasonal evolution and salt/freshwater fluxes of first-year sea ice: Comparison between pack ice and landfast sea ice 

Marc Oggier, Hajo Eicken, Robert Rember, Allison Fong, Dmitry V. Divine, Steven Fons, Mats A. Granskog, Andrew R. Mahoney, and Evgenii Salganik and the MOSAiC Sea-Ice Coring Team

Sea ice affects the exchange of energy and matter between the atmosphere and the ocean from local to hemispheric scales. Salt fluxes across the ice-ocean interface that drive thermohaline mixing beneath growing sea ice are important elements of upper ocean nutrient and carbon exchange. Sea-ice melt releases freshwater into the upper ocean and results in formation of melt ponds that affect gas and energy transfer across the atmosphere-ice interface. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) provided an opportunity to follow sea-ice evolution and exchange processes over a full seasonal cycle in a rapidly changing ice cover. To this end, approximately 25 sea-ice cores were collected at 2 distinct sites, representing first-year and multi-year ice, to monitor physical, biological and geochemical processes relevant to atmosphere-ice-ocean exchange processes. Here we compare the growth and decay of first-year ice in the Central Arctic during the winter 2019-2020 to that of landfast first-year ice at Utqiaġvik, Alaska, from 1998 to 2016. Ice stratigraphy was similar at both sites with about 15 cm of granular ice on top of columnar ice, with a comparable growth history with a similar maximum ice thickness of 1.6-1.7 m. We aggregated the sea-ice bulk salinity and temperature profiles using a degree-day approach, and examined brine and freshwater fluxes at lower and upper interfaces of the ice, respectively. Preliminary results show lower sea-ice bulk salinity during the growth season and greater desalination at the ice surface during the melt season at the MOSAiC floe in comparison to Utqiaġvik.

How to cite: Oggier, M., Eicken, H., Rember, R., Fong, A., Divine, D. V., Fons, S., Granskog, M. A., Mahoney, A. R., and Salganik, E. and the MOSAiC Sea-Ice Coring Team: Seasonal evolution and salt/freshwater fluxes of first-year sea ice: Comparison between pack ice and landfast sea ice , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10798, https://doi.org/10.5194/egusphere-egu21-10798, 2021.

EGU21-12860 | vPICO presentations | CR4.2

Comparison of complementary methods of melt pond depth retrieval on different spatial scales

Felix Linhardt, Niels Fuchs, Marcel König, Melinda Webster, Luisa von Albedyll, Gerit Birnbaum, and Natascha Oppelt

Pond bathymetry and average pond depth on Arctic sea ice are important for characterizing and quantifying the distribution of  surface melt water volume. Melt pond models that take depth into account used to be based on manual in situ measurements; however, the capability of measuring pond depth through other means have increased substantially in recent years .

We take advantage of the extensive sampling and data recorded during the 2019-2020 MOSAiC campaign to compare different melt pond depth retrievals from a unique case study involving a melt pond in the center of the MOSAiC floe.  Thus, we are able to present the most recent upscaling cascade of pond depth measurement methods. 

The methods we examine in our contribution include in-situ echo sounder and hyperspectral measurements, airborne hyperspectral and photogrammetry-based measurements, as well as spaceborne multispectral measurements. Each method is assessed regarding its spatial resolution, retrieval accuracy, technical prerequisites and limitations.

How to cite: Linhardt, F., Fuchs, N., König, M., Webster, M., von Albedyll, L., Birnbaum, G., and Oppelt, N.: Comparison of complementary methods of melt pond depth retrieval on different spatial scales, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12860, https://doi.org/10.5194/egusphere-egu21-12860, 2021.

EGU21-3783 | vPICO presentations | CR4.2

Freshwater under the MOSAiC floe: implications of under-ice melt ponds for mass balance

Madison Smith, Luisa von Albedyll, Ian Raphael, Ilkka Matero, and Benjamin A. Lange

During the melt season in the Arctic, freshwater ponds can accumulate under ice floes as a result of local snow and sea ice melt, far from terrestrial freshwater inputs. Under-ice freshwater ponds have been suggested to play a role in the summer sea ice mass balance both by isolating the sea ice from salty, warmer water below, and by driving formation of ice ‘false bottoms’ at the interface of the under-ice pond and the underlying ocean. 

The MOSAiC drift expedition in the Central Arctic observed the presence of under-ice ponds and false bottoms beginning early in the melt season (June - July) at primarily first-year ice locations on the floe. We examine the prevalence and drivers of these ponds and resulting false bottoms during this period. Additionally, we explore the impact for mass balance using observations from ablation stakes and a 1D model, where freshwater ponds can not only delay summer melt but also result in growth. We speculate that the unique history of the MOSAiC floe likely led to a relatively high occurrence of these features, but the results also suggest that freshwater under-ice ponds and false bottoms may be more common and more persistent in early summer in the Arctic than previously thought. Both have implications for the broader ice-ocean system, for example by reducing fluxes between the ice and the ocean, isolating the primary producers in ice from pelagic nutrient sources, and altering the optical properties.

How to cite: Smith, M., von Albedyll, L., Raphael, I., Matero, I., and Lange, B. A.: Freshwater under the MOSAiC floe: implications of under-ice melt ponds for mass balance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3783, https://doi.org/10.5194/egusphere-egu21-3783, 2021.

EGU21-12470 | vPICO presentations | CR4.2

Effects of lead width variation, re-freezing and mixing events on lead water structure in the central Arctic

Daiki Nomura, Alison Web, Yuhong Li, Manuel Dall’osto, Katrin Schmidt, Elise Droste, Emelia Chamberlain, Yusuke Kawaguchi, Jun Inoue, Ellen Damm, and Bruno Delille

We undertook a lead survey during the international drift campaign MOSAiC, Leg 5 (from 22 August to 17 September 2020) to understand the effects of lead width variation, re-freezing, and mixing events on lead water vertical structure. At the beginning of the survey period, the freshwater layer was occupied for the top 1 m depth and there were strong vertical gradients in temperature, salinity, and dissolved oxygen (DO) within 1 m depth: from 0.0°C to –1.6°C for temperature, from 0.0 to 31.4 psu for salinity, and 10.5 to 13.5 mg L–1 for DO. A strong DO minimum layer corresponded with a salinity of 25 psu, and usually occurred at the freshwater–seawater interface at approx. 1 m depth, most likely as a result of an accumulation of organic matter and ongoing degradation/respiration processes at this interface. However, during the survey period, these strong gradients weakened and reduced the freshwater layer thickness (FLT). In the first half of the sampling period (until 4 September), FLT changed due to variations in lead width: as lead width increased, FLT decreased due to a stretching of the freshwater layer. In the second half of the sampling period, FLT was controlled by the surface ice formation (re-freezing) and mixing processes along the lower boundary of the freshwater layer. Surface ice formation removed freshwater and the formation of surface ice (about 0.2 m thick) explains 20% of the reduction of FLT. The remaining 80% of the reduction of FLT was due to the mixing process within the water column that was initiated by cooling and re-freezing. This mixing process diluted the salinity from 31.6 to 29.3 psu in the water below freshwater layer towards the end of the survey period. Our results indicate that lead water structure can change rapidly and dynamically and that this has significant effects on the biogeochemical exchange between lead systems and the atmosphere.

How to cite: Nomura, D., Web, A., Li, Y., Dall’osto, M., Schmidt, K., Droste, E., Chamberlain, E., Kawaguchi, Y., Inoue, J., Damm, E., and Delille, B.: Effects of lead width variation, re-freezing and mixing events on lead water structure in the central Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12470, https://doi.org/10.5194/egusphere-egu21-12470, 2021.

EGU21-12692 | vPICO presentations | CR4.2 | Highlight

Snowfall and snow accumulation processes during MOSAiC

David N. Wagner, Matthew D. Shupe, Ola G. Persson, Taneil Uttal, Markus Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Julia Regnery, Robert Ricker, Nikolai Kolabutin, Egor Shimanchuck, Marc Oggier, Ian Raphael, and Michael Lehning

Due to logistical challenges, snowfall in the high Arctic has rarely been measured, which is particularly valid for longer time-spans and the polar night. When estimating snowfall with precipitation gauges, a snowfall reference and detailed knowledge of how the precipitated snow accumulated or eroded is required.

To overcome snowfall uncertainties and to improve accumulated and eroded snow estimates, we used data from precipitation gauges, snow particle counters (SPCs) and a Ka-Band ARM Zenith Radar (KAZR) installed on and around research vessel (RV) Polarstern during the snow accumulation season of MOSAiC (October 2019 - May 2020). In addition to this, direct snow water equivalent (SWE) measurements were conducted and SWE estimates were retrieved from SnowMicroPen (SMP) measurements distributed all over the floe. The evolution of accumulated snow mass was finally computed by applying a simple fitted z-SWE function to snow depths that were measured approximately weekly along a fixed transect path with a Magnaprobe. The transects paths were along two distinct ice types: predominantly level remnant ice that at the start of the winter had large refrozen melt ponds, and predominantly deformed thick second year ice (SYI).

We could show that at least 34 mm of snow has accumulated and approximately 9 kg m-2 of snow mass was eroded between 31 October 2019 and 26 April 2020. In the beginning of the winter, the total estimated SWE on level remnant ice was only 42 % of SWE on deformed SYI. By end of April 2020 the values almost equalized as the snow mass on remnant ice reached almost 90 % of the snow mass over deformed SYI.

Based on the SWE evolution of the snowpack, we validated precipitation sensors and the reanalysis ERA5 for their capability to estimate snowfall. Eroded snow mass, among other processes, led to a discrepancy of precipitation- sensor estimated snowfall and computed SWE of the snow cover from 20 February 2020 on. However, for the time period before the first net erosion could be observed we found best agreements of cumulated snowfall and SWE for the Vaisala Present Weather Detector (PWD22) installed on the vessel (RMSE = 2 mm) and for snowfall retrievals from the KAZR (RMSE = 4 mm). Other sensors largely overestimated snowfall (corrected OTT Pluvio2: 14 mm; Vaisala PWD22 on the ice: 26 mm, OTT Parsivel2 on RV Polarstern: 51 mm). ERA5 overestimates snowfall too, with 13 mm and an increasing positive bias from March 2020 on. With horizontal snow mass fluxes derived from SPCs we could show that the Vaisala PWD22 on RV Polarstern was effectively protected against blowing snow. This, however, greatly affected snowfall measurements of instruments collocated on the ice. Further, we investigated a high-wind event in February 2020 resulting in high blowing snow mass fluxes and an average eroded snow mass of 5.5 kg m-2. The lifted blowing snow particles from the surface led to strong overestimation of snowfall from instruments installed on the ice which cannot be corrected with conventional correction methods.

How to cite: Wagner, D. N., Shupe, M. D., Persson, O. G., Uttal, T., Frey, M., Kirchgaessner, A., Schneebeli, M., Jaggi, M., Macfarlane, A. R., Itkin, P., Arndt, S., Hendricks, S., Krampe, D., Regnery, J., Ricker, R., Kolabutin, N., Shimanchuck, E., Oggier, M., Raphael, I., and Lehning, M.: Snowfall and snow accumulation processes during MOSAiC, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12692, https://doi.org/10.5194/egusphere-egu21-12692, 2021.

EGU21-6720 | vPICO presentations | CR4.2

Improving Observations of Aggregate Snow Cover Properties on MOSAiC by Integrating Repeat Terrestrial Laser Scanning and In-Situ Data

David Clemens-Sewall, Amy Macfarlane, Chris Polashenski, Don Perovich, Matthias Jaggi, Ian Raphael, Martin Schneebeli, and David Wagner

The spatial heterogeneity of the snow cover on Arctic sea ice impacts the coupled Ice-Ocean-Atmosphere system. This spatial heterogeneity manifests in both the spatial distribution of snow thickness and the material properties of that snow (e.g. density, specific surface area [SSA], thermal conductivity, salinity, etc). This presents a challenge for observing the aggregate snow cover properties. Most material properties can only be measured in-situ and it is logistically difficult to measure material properties at a large number of sites. Here, we address this challenge by integrating repeat Terrestrial Laser Scan (TLS) data and in-situ observations of snow properties on an area several hundred meters across. We used TLS to map the topography of this area at cm-scale vertical resolution on approximately a biweekly basis throughout the winter during MOSAiC. By comparing successive scans, we map the spatial extent of snow layers as they build up the snow cover. Concurrently, we made in-situ penetration resistance force measurements using a SnowMicroPen (SMP) to quantify the snow properties at sites within the measurement area. These weekly point measurements, with 3mm vertical resolution, provide details of the grain type, snow density and SSA stratigraphy. Combining the TLS and SMP observations enables us to extrapolate the layer-wise properties of the snow cover throughout the measurement area. We examine how consistent snow properties are within layers and use this information to quantify aggregate snow cover properties for the entire region. For example, by integrating SMP-derived density with TLS-derived layers we estimate aggregate change in snow mass for this region for selected periods of the winter.

How to cite: Clemens-Sewall, D., Macfarlane, A., Polashenski, C., Perovich, D., Jaggi, M., Raphael, I., Schneebeli, M., and Wagner, D.: Improving Observations of Aggregate Snow Cover Properties on MOSAiC by Integrating Repeat Terrestrial Laser Scanning and In-Situ Data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6720, https://doi.org/10.5194/egusphere-egu21-6720, 2021.

EGU21-7626 | vPICO presentations | CR4.2

Snow microstructure on sea ice: Importance for remote sensing applications

Amy R. Macfarlane, Stefanie Arndt, Ruzica Dadic, Carolina Gabarró, Bonnie Light, Mallik Mahmud, Reza Naderpour, Randall Scharien, Madison Smith, Gunnar Spreen, Julienne Stroeve, Aikaterini Tavri, David N. Wagner, and Martin Schneebeli

Snow plays a key role in interpreting satellite remote sensing data from both active and passive sensors in the high Arctic and therefore impacts retrieved sea ice variables from these systems ( e.g., sea ice extent, thickness and age). Because there is high spatial and temporal variability in snow properties, this porous layer adds uncertainty to the interpretation of signals from spaceborne optical sensors, microwave radiometers, and radars (scatterometers, SAR, altimeters). We therefore need to improve our understanding of physical snow properties, including the snow specific surface area, snow wetness and the stratigraphy of the snowpack on different ages of sea ice in the high Arctic.

The MOSAiC expedition provided a unique opportunity to deploy equivalent remote sensing sensors in-situ on the sea ice similar to those mounted on satellite platforms. To aid in the interpretation of the in situ remote sensing data collected, we used a micro computed tomography (micro-CT) device. This instrument was installed on board the Polarstern and was used to evaluate geometric and physical snow properties of in-situ snow samples.  This allowed us to relate the snow samples directly to the data from the remote sensing instruments, with the goal of improving interpretation of satellite retrievals. Our data covers the full annual evolution of the snow cover properties on multiple ice types and ice topographies including level first-year (FYI), level multi-year ice (MYI) and ridges.

First analysis of the data reveals possible uncertainties in the retrieved remote sensing data products related to previously unknown seasonal processes in the snowpack. For example, the refrozen porous summer ice surface, known as surface scattering layer, caused the formation of a hard layer at the multiyear ice/snow interface in the winter months, leading to significant differences in the snow stratigraphy and remote sensing signals from first-year ice, which has not experienced summer melt, and multiyear ice. Furthermore, liquid water dominates the extreme coarsening of snow grains in the summer months and in winter the temporally large temperature gradients caused strong metamorphism, leading to brine inclusions in the snowpack and large depth hoar structures, all this significantly influences the signal response of remote sensing instruments.

How to cite: Macfarlane, A. R., Arndt, S., Dadic, R., Gabarró, C., Light, B., Mahmud, M., Naderpour, R., Scharien, R., Smith, M., Spreen, G., Stroeve, J., Tavri, A., Wagner, D. N., and Schneebeli, M.: Snow microstructure on sea ice: Importance for remote sensing applications, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7626, https://doi.org/10.5194/egusphere-egu21-7626, 2021.

EGU21-11311 | vPICO presentations | CR4.2

Investigating how platform height affects sea ice radar returns with KuKaSim

Thomas Newman, Rosemary Willatt, Julienne Stroeve, Robbie Mallet, Michel Tsamados, and Vishnu Nandan

EGU21-16150 | vPICO presentations | CR4.2

KuKa altimeter mode data gathered during MOSAiC: scattering from snow covered sea ice and snow depth determination using dual-frequency and polarimetric approaches

Rosemary Willatt, Julienne Stroeve, Vishnu Nandan, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Thomas Newman, Polona Itkin, Glen Liston, Robbie Mallett, Lu Zhou, Martin Schneebeli, Daniela Krampe, Michel Tsamados, Oguz Demir, Marc Oggier, Ella Buehner Gattis, and Jeremy Wilkinson

Retrieving the thickness of sea ice, and its snow cover, on long time- and length-scales is critical for studying climate. Satellite altimetry has provided estimations of sea ice thickness spanning nearly three decades, and more recently altimetry techniques have provided estimations of snow depth, using dual-band satellite altimetry data. These approaches are based on assumptions about the main scattering surfaces of the radiation. The dominant scattering surface is often assumed to be the snow/ice interface at Ku-band frequencies and the air/snow interface at Ka-band and laser frequencies. It has previously been shown that these assumptions do not always hold, but field data to investigate the dominant scattering surfaces and investigate how these relate to the physical snow and ice characteristics were spatially and temporally limited. The MOSAiC expedition provided a unique opportunity to gather data using a newly-developed Ku- and Ka-band radar 'KuKa' deployed over snow-covered sea ice, along with coincident field measurements of snow and ice properties. We present transect data gathered with the instrument looking at nadir to demonstrate how the scattering characteristics vary spatially and temporally in the Ku- and Ka-bands, and discuss implications for interpretation of dual-frequency satellite radar altimetry data. We compare KuKa data with field measurements to demonstrate snow depth retrieval using Ku- and Ka-band data.

How to cite: Willatt, R., Stroeve, J., Nandan, V., Tonboe, R., Hendricks, S., Ricker, R., Mead, J., Newman, T., Itkin, P., Liston, G., Mallett, R., Zhou, L., Schneebeli, M., Krampe, D., Tsamados, M., Demir, O., Oggier, M., Buehner Gattis, E., and Wilkinson, J.: KuKa altimeter mode data gathered during MOSAiC: scattering from snow covered sea ice and snow depth determination using dual-frequency and polarimetric approaches, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16150, https://doi.org/10.5194/egusphere-egu21-16150, 2021.

EGU21-13067 | vPICO presentations | CR4.2

Impact of Snow Properties on Ka- and Ku-band Winter and Melt Season Microwave Signatures of Arctic Sea Ice

Vishnu Nandan, Rosemary Willatt, Julienne Stroeve, and Robbie Mallett and the MOSAiC - Team ICE and RS

EGU21-8585 | vPICO presentations | CR4.2

The MOSAiC sea ice albedo record: its context and role for informing improved surface radiative budgets in a climate model 

Bonnie Light, Marika Holland, Madison Smith, Donald Perovich, Melinda Webster, David Clemens-Sewell, Felix Linhardt, Ian Raphael, and David Bailey

Sea ice albedo is both a driver and a consequence of summer melt evolution. The ability to collect comprehensive observations and develop accurate, general, and consistent physics-based models is central to our quantitative understanding of sea ice mass and heat budgets and a variety of associated feedback processes. Sea ice albedos recorded during the MOSAiC field campaign have extended our knowledge of the optical properties of specific ice types as well as their seasonal evolution. This new dataset complements and extends observations made during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign in the Beaufort Sea in 1998. It also presents an opportunity to improve numerical treatment of shortwave radiation partitioning by sea ice covers in climate models. Specifically, the observations include spectral and broadband albedo measurements made by observers on the surface for two classes of measurement: 1) individual ice types including snow covered ice (prior to and during melt), bare melting ice, ponded ice, and sediment-laden ice, and 2) time series measured over the full seasonal cycles. The MOSAiC and SHEBA data sets show remarkable similarity with respect to the steady spectral albedo of bare, melting summer ice and the seasonal evolution measured over representative survey lines. Both data sets include coordinated physical property characterization, which is key to the development and refinement of radiative transfer treatment in climate modeling.

In this work, we compare the observational record with results generated from runs of the CESM2 model. The Community Earth System Model (CESM2) is a coupled climate model that includes a physics-based radiative transfer treatment for sea ice. This model relies on a 2-stream delta-Eddington solution with prescribed ice-type-specific inherent optical properties. Specifically, we consider newly available sub-gridscale diagnostics in the model that detail the radiative partitioning for individual surface types and thickness categories. Comparisons between observed and modeled values are considered for the albedo of individual surface types, aggregate albedo estimates, and their seasonal progression. In particular, we use these comparisons to derive a quantitative picture of the overall partitioning of shortwave radiation by the ice cover, and how it has changed over past decades. These results can help pinpoint where the most substantial model upgrades can be accomplished as well as where the best observational investments should be made.

How to cite: Light, B., Holland, M., Smith, M., Perovich, D., Webster, M., Clemens-Sewell, D., Linhardt, F., Raphael, I., and Bailey, D.: The MOSAiC sea ice albedo record: its context and role for informing improved surface radiative budgets in a climate model , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8585, https://doi.org/10.5194/egusphere-egu21-8585, 2021.

EGU21-11377 | vPICO presentations | CR4.2 | Highlight

Drone-based sea ice albedo measurements and photogrammetry during the Arctic freeze-up in the MOSAiC expedition

Roberta Pirazzini, Henna-Reetta Hannula, David Brus, Ruzica Dadic, and Martin Scnheebeli

Aerial albedo measurements and detailed surface topography of sea ice are needed to characterize the distribution of the various surface types (melt ponds of different depth and size, ice of different thicknesses, leads, ridges) and to determine how they contribute to the areal-averaged albedo on different horizontal scales. These measurements represent the bridge between the albedo measured from surface-based platforms, which typically have metre-to-tens-of-meters footprint, and satellite observations or large-grid model outputs.

Two drones were operated in synergy to measure the albedo and map the surface topography of the sea ice during the leg 5 of the MOSAiC expedition (August-September 2020), when concurrent albedo and surface roughness measurements were collected using surface-based instruments. The drone SPECTRA was equipped with paired Kipp and Zonen CM4 pyranometers measuring broadband albedo and paired Ocean Optics STS VIS (350 – 800 nm) and NIR (650-1100 nm) micro-radiometers measuring visible and near-infrared spectral albedo, and the drone Mavic 2 Pro was equipped with camera to perform photography mapping of the area measured by the SPECTRA drone.

Here we illustrate the collected data, which show a drastic change in sea ice albedo during the observing period, from the initial melting state to the freezing and snow accumulation state, and demonstrate how this change is related to the evolution of the different surface features, melt ponds and leads above all. From the data analysis we can conclude that the 30m albedo is not significantly affected by the individual surface features and, therefore, it is potentially representative of the sea ice albedo in satellite footprint and model grid areas.

The Digital Elevation Models (DEMs) of the sea ice surface obtained from UAV photogrammetry are combined with the DEMs based on Structure From Motion technique that apply photos manually taken close to the surface. This will enable us to derive the surface roughness from sub-millimeter to meter scales, which is critical to interpret the observed albedo and to develop correction methods to eliminate the artefacts caused by shadows.

The UAV-based albedo and surface roughness are highly complementary also to analogous helicopter-based observations, and will be relevant for the interpretation of all the physical and biochemical processes observed at and near the sea ice surface during the transition from melting to freezing and growing.

How to cite: Pirazzini, R., Hannula, H.-R., Brus, D., Dadic, R., and Scnheebeli, M.: Drone-based sea ice albedo measurements and photogrammetry during the Arctic freeze-up in the MOSAiC expedition, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11377, https://doi.org/10.5194/egusphere-egu21-11377, 2021.

EGU21-1467 | vPICO presentations | CR4.2

Physical properties and spatial distribution of the sea ice surface layer (SSL/snow) during the autumn phase of the MOSAiC expedition

Ruzica Dadic, Martin Schneebeli, Henna-Reeta Hannula, Amy Macfarlane, and Roberta Pirazzini

Snow cover dominates the thermal and optical properties of sea ice and the energy fluxes between the ocean and the atmosphere, yet data on the physical properties of snow and its effects on sea ice are limited. This lack of data leads to two significant problems: 1) significant biases in model representations of the sea ice cover and the processes that drive it, and 2) large uncertainties in how sea ice influences the global energy budget and the coupling of climate feedback. The  MOSAiC research initiative enabled the most extensive data collection of snow and surface scattering layer (SSL) properties over sea ice to date. During leg 5 of the MOSAiC expedition, we collected multi-scale (microscale to 100-m scale) measurements of the surface layer (snow/SSL) over first year ice (FYI) and MYI on a daily basis. The ultimate goal of our measurements is to determine the spatial distribution of physical properties of the surface layer. During leg 5 of the MOSAiC expedition, that surface layer changed from the  surface scattering layer (SSL),   characteristic for the melt season, to an early autumn snow pack. Here,  we will present data showing both a) the physical properties and the spatial distribution of the SSL during the late melt season and b) the transition of the sea ice surface from the SSL to the fresh autumn snowpack. The structural properties of this transition period are poorly documented, and this season is critical  for the initialization of sea ice and snow models. Furthermore, these data are crucial to interpret simultaneous observations of surface energy fluxes, surface optical and remote sensing data (microwave signals in particular), near-surface biochemical activity, and to understand the sea ice  processes that occur as the sea ice transitions from melting to freezing.

How to cite: Dadic, R., Schneebeli, M., Hannula, H.-R., Macfarlane, A., and Pirazzini, R.: Physical properties and spatial distribution of the sea ice surface layer (SSL/snow) during the autumn phase of the MOSAiC expedition, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1467, https://doi.org/10.5194/egusphere-egu21-1467, 2021.

CR4.3 – Rapid changes in sea ice: processes and implications

EGU21-10607 | vPICO presentations | CR4.3

Sea ice deformation and thickness in the Western Ross Sea

Wolfgang Rack, Daniel Price, Christian Haas, Patricia J. Langhorne, and Greg H. Leonard

Sea ice cover is arguably the longest and best observed climate variable from space, with over four decades of highly reliable daily records of extent in both hemispheres. In Antarctica, a slight positive decadal trend in sea ice cover is driven by changes in the western Ross Sea, where a variation in weather patterns over the wider region forced a change in meridional winds. The distinguishing wind driven sea ice process in the western Ross Sea is the regular occurrence of the Ross Sea, McMurdo Sound, and Terra Nova Bay polynyas. Trends in sea ice volume and mass in this area unknown, because ice thickness and dynamics are particularly hard to measure.

Here we present the first comprehensive and direct assessment of large-scale sea-ice thickness distribution in the western Ross Sea. Using an airborne electromagnetic induction (AEM) ice thickness sensor towed by a fixed wing aircraft (Basler BT-67), we observed in November 2017 over a distance of 800 km significantly thicker ice than expected from thermodynamic growth alone. By means of time series of satellite images and wind data we relate the observed thickness distribution to satellite derived ice dynamics and wind data. Strong southerly winds with speeds of up to 25 ms-1 in early October deformed the pack ice, which was surveyed more than a month later.

We found strongly deformed ice with a mean and maximum thickness of 2.0 and 15.6 m, respectively. Sea-ice thickness gradients are highest within 100-200 km of polynyas, where the mean thickness of the thickest 10% of ice is 7.6 m. From comparison with aerial photographs and satellite images we conclude that ice preferentially grows in deformational ridges; about 43% of the sea ice volume in the area between McMurdo Sound and Terra Nova Bay is concentrated in more than 3 m thick ridges which cover about 15% of the surveyed area. Overall, 80% of the ice was found to be heavily deformed and concentrated in ridges up to 11.8 m thick.

Our observations hold a link between wind driven ice dynamics and the ice mass exported from the western Ross Sea. The sea ice statistics highlighted in this contribution forms a basis for improved satellite derived mass balance assessments and the evaluation of sea ice simulations.

How to cite: Rack, W., Price, D., Haas, C., Langhorne, P. J., and Leonard, G. H.: Sea ice deformation and thickness in the Western Ross Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10607, https://doi.org/10.5194/egusphere-egu21-10607, 2021.

EGU21-12946 | vPICO presentations | CR4.3

Sea Ice Thickness Retrieval based on Predictive Regression Neural Networks using L-band Microwave Radiometry Data from the FSSCat mission

Christoph Herbert, Joan Francisc Munoz-Martin, David LLaveria, Miriam Pablos, and Adriano Camps

Several approaches have been developed to yield Arctic sea ice thickness based on satellite observations. Microwave radiometry operating at L-band is sensitive to sea ice properties and allows to retrieve thin sea ice up to ~ 0.5 m. Sea ice thickness retrievals above 1 m can be successfully derived using sea ice freeboard data from satellite altimeters. Current inference models are build upon empirically determined assumptions on the physical composition of sea ice and are validated against regionally available data. However, sea ice can exhibit time-dependent non-linear relations between sea ice properties during the process of formation and melting, which cannot be fully addressed by simple inversion models. Until now, an accurate estimation of sea ice thickness requires specific conditions and is only viable during Arctic freeze up from mid-October to mid-April. Neural networks are an efficient model-based learning technique capable of resolving complex systems while recognizing hidden links among large amounts of data. Models have the advantage to be adaptive to new data and can therefore reflect seasonally changing sea ice conditions to make predictions based on the relationship between a set of input features. FSSCat is a two 6-unit CubeSat mission launched on September 3, 2020, which carries the FMPL-2 payload on board the 3Cat-5/A, one out of two spacecrafts. FMPL-2 encompasses the first L-band radiometer and GNSS-Reflectometer on a CubeSat, designed to provide global brightness temperature data suitable for soil moisture retrieval on land and sea ice applications.

In this work a predictive regression neural network was built to predict thin sea ice thickness up to 0.6 m at Arctic scale based on FMPL-2 observations and ancillary data including sea ice concentration and surface temperature. The network was trained based on CubeSat acquisitions during early Arctic freeze up from October 15 to December 4, 2020, using existing maps of daily estimated sea ice thickness derived from the Soil Moisture and Ocean Salinity (SMOS) mission as ground truth data. Hyperparameters were optimized to prevent the model from overfitting and overgeneralization with the best fit resulting in an overall mean absolute error of 6.5 cm. Preliminary results reveal good performance up to 0.5 m, whereas predicted values are slightly underestimated for higher thickness. The thin ice model allows to produce weekly composites of Arctic sea ice thickness maps. Future work involves the complementation of the input features with sea ice freeboard observations from the Cryosat-2 mission to extend the sensitivity range of the current network and to validate the findings with on-site data. Aim is to apply the model trained on Arctic data to retrieve full-range Arctic and Antarctic sea ice thickness maps. The presented approach demonstrated the potential of neural networks for sea ice parameter retrieval and indicated that data acquired by moderate-cost CubeSat missions can offer scientifically valuable contributions to applications in Earth observation.

How to cite: Herbert, C., Munoz-Martin, J. F., LLaveria, D., Pablos, M., and Camps, A.: Sea Ice Thickness Retrieval based on Predictive Regression Neural Networks using L-band Microwave Radiometry Data from the FSSCat mission, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12946, https://doi.org/10.5194/egusphere-egu21-12946, 2021.

EGU21-12079 | vPICO presentations | CR4.3

Arctic sea ice volume budget decomposition satellite product for the CryoSat-2 (2010-2020) period 

Harry Heorton, Michel Tsamados, Paul Holland, and Jack Landy

We combine satellite-derived observations of sea ice concentration, drift, and thickness to provide the first observational decomposition of the dynamic (advection/divergence) and thermodynamic (melt/growth) drivers of wintertime Arctic sea ice volume change. Ten winter growth seasons are analyzed over the CryoSat-2 period between October 2010 and April 2020. Sensitivity to several observational products is performed to provide an estimated uncertainty of the budget calculations. The total thermodynamic ice volume growth and dynamic ice losses are calculated with marked seasonal, inter-annual and regional variations. Ice growth is fastest during Autumn, in the Marginal Seas and over first year ice. Our budget decomposition methodology can help diagnose the processes confounding climate model predictions of sea ice. We make our product and code available to the community in monthly pan-Arctic netcdft files for the entire October 2010 to April 2020 period.

How to cite: Heorton, H., Tsamados, M., Holland, P., and Landy, J.: Arctic sea ice volume budget decomposition satellite product for the CryoSat-2 (2010-2020) period , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12079, https://doi.org/10.5194/egusphere-egu21-12079, 2021.

EGU21-14246 | vPICO presentations | CR4.3

Atmospheric drivers of a 4-month drift of an ice buoy in the Antarctic marginal ice zone

Ashleigh Womack and Marcello Vichi

Sea-ice drift in the Antarctic marginal ice zone (MIZ) was investigated by using an ice buoy (buoy U1), deployed during the winter sea-ice expansion in July 2017, and drifted for approximately four months from the South Atlantic sector to the Indian Ocean sector of the Southern Ocean. The analysis of this buoy revealed that it remained within the MIZ even during the winter ice expansion, as the mixed pancake-frazil field was maintained. This allowed for a continued assumption of free drift conditions for buoy U1’s full drift, where it continued to respond linearly to the momentum transfer from surface winds. The analysis of buoy U1 also indicated a strong inertial signature at a period of 13.47 hours however, the wavelet analysis indicated majority of the power remained within the lower frequencies. This strong influence at the lower (multi-day) frequencies has therefore been identified as the primary effect of atmospheric forcing. When these lower frequencies were filtered out using the Butterworth high-pass filter it allowed the inertial oscillations to become more significant within the wavelet power spectrum, where it can be seen that these inertial oscillations were often triggered by the passage of cyclones. The initiation of inertial oscillations of sea ice has therefore been identified as the secondary effect of atmospheric forcing, which dominates ice drift at sub-daily timescales and results in the deviation of ice drift from a straight-line path. This comprehensive analysis suggests that the general concentration-based definition of the MIZ is not enough to describe the sea-ice cover, and that the MIZ, where sea ice is in free drift and under the influence of cyclone induced inertial motion, and presumably waves, extends up to »200 km.

How to cite: Womack, A. and Vichi, M.: Atmospheric drivers of a 4-month drift of an ice buoy in the Antarctic marginal ice zone, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14246, https://doi.org/10.5194/egusphere-egu21-14246, 2021.

EGU21-2657 | vPICO presentations | CR4.3

The effects of assimilating a sub-grid scale sea ice thickness distribution in a new Arctic sea ice data assimilation system

Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, and Andrew Shepherd
A modified, standalone version of the Los Alamos Sea Ice Model (CICE) has been coupled to the Parallelized Data Assimilation Framework (PDAF) to produce a new Arctic sea ice data assimilation system CICE-PDAF, with routines for assimilating many types of recently developed sea ice observations. In this study we explore the effects of assimilating a sub-grid scale sea ice thickness distribution derived from Cryosat-2 Arctic sea ice estimates into CICE-PDAF. The true state of the sub-grid scale ice thickness distribution is not well established, and yet it plays a key role in large scale sea ice models and is vital to the dynamical and thermodynamical processes necessary to produce a good representation of the Arctic sea ice state. We examine how assimilating sub-grid scale sea ice thickness distributions can affect the evolution of the sea ice state in CICE-PDAF and better our understanding of the Arctic sea ice system.

How to cite: Williams, N., Byrne, N., Feltham, D., Van Leeuwen, P. J., Bannister, R., Schroeder, D., and Shepherd, A.: The effects of assimilating a sub-grid scale sea ice thickness distribution in a new Arctic sea ice data assimilation system, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2657, https://doi.org/10.5194/egusphere-egu21-2657, 2021.

EGU21-2943 | vPICO presentations | CR4.3

Improving Arctic Sea Ice Prediction Though Freeboard Assimilation

Imke Sievers, Till Rasmussen, and Lars Stenseng

With the presented work we aim to improve sea ice forecasts and our understanding of Arcitc sea ice formation though freeboard assimilation. Over the last years understanding Arctic sea ice changes and being able to make a reliable sea ice forecast has gained in importance. The central roll of Arctic sea ice extent in climate warming makes it a highly discussed topic in the climate research community. However a reliable Arctic sea ice forecast both on short term to seasonal time scales remains a challenge to be mastered, hinting that there are still many processes at play to be better understood.
One promising approach to improve forecasts has been to assimilate satellite sea ice data into numerical sea ice models. Mainly two parameters measured by satellites have been used for assimilation: Sea ice concentration, which is competitively easy to obtain from satellites measuring passive microwave emissions as for example obtained by the SMOS satellite, and sea ice thickness, which is not directly measured, but has to be calculated from surface elevation measurements, as for example obtained by Cryosat 2. Compering the skill, of assimilation products using sea ice thickness and sea ice concentration shows that sea ice thickness has a longer memory and is over all leading to a better performance then sea ice concentration assimilation. Knowing this, sea ice thickness assimilation is far from being straight forward. Surface elevation measurements, obtained from satellite altemitry measurements, have to be separated into snow and ice freeborad, by assuming a snow thickness, to derive sea ice thickness from. Most of the time this is done using a snow thickness climatology obtained from Soviet drift stations measuring snow over multi year ice during the period 1954-1991 with adaption over first year sea ice, where this climatology has proven to be overestimating snow thickness. The technique is widely used jet known to introduce an error.
To avoid errors caused by wrongly assumed snow covers the DMI and Aalborg University and DTU are at the moment collaborating on assimilating freebord instead of sea ice thickness into the CICE-NEMO modeling frame work using LARS NGen (LARS the Advanced Retracking System, Next Generation) sate of the art retracing software. In the presented work we will show first results of freeboard assimilation with a focus how this assimilation influences winter sea ice formation as well as the upper Arctic Ocean dynamics.

How to cite: Sievers, I., Rasmussen, T., and Stenseng, L.: Improving Arctic Sea Ice Prediction Though Freeboard Assimilation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2943, https://doi.org/10.5194/egusphere-egu21-2943, 2021.

EGU21-3253 | vPICO presentations | CR4.3

Snow on Arctic sea ice in a warming climate as simulated in CESM

Melinda Webster, Alice DuVivier, Marika Holland, and David Bailey

Snow on Arctic sea ice is important for several reasons: it creates a habitat for microorganisms and mammals, it changes sea-ice growth and melt, and it affects the speed at which ships and people can travel through sea ice. Therefore, investigating how snow on Arctic sea ice may change in a warming climate is useful for anticipating its potential effects on ecosystems, sea ice, and socioeconomic activities. Here, we use experiments from two versions of the Community Earth System Model (CESM) to study how snow conditions change over time. Comparison with observations indicates that CESM2 produces an overly-thin, overly-uniform snow distribution, while CESM1-LE produces a variable, excessively-thick snow cover. The 1950-2050 snow depth trend in CESM2 is 75% smaller than in CESM1-LE due to CESM2 having less snow. In CESM1-LE, long-lasting, thick sea ice, cool summers, and excessive summer snowfall facilitate a thicker, longer-lasting snow cover. In a warming climate, CESM2 shows that snow on Arctic sea ice will: (1) have greater, earlier spring melt, (2) accumulate less in summer-autumn, (3) sublimate more, and (4) cause marginally more snow-ice formation. CESM2 reveals that snow-free summers can occur ~30-60 years before an ice-free central Arctic, which may promote faster sea-ice melt.

How to cite: Webster, M., DuVivier, A., Holland, M., and Bailey, D.: Snow on Arctic sea ice in a warming climate as simulated in CESM, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3253, https://doi.org/10.5194/egusphere-egu21-3253, 2021.

EGU21-5141 | vPICO presentations | CR4.3

Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion

Sukun Cheng, Ali Aydoğdu, Pierre Rampal, Alberto Carrassi, and Laurent Bertino

We evaluate the impact of uncertainties in surface wind and sea ice cohesion on sea ice forecasts by the neXtSIM sea ice model. neXtSIM includes the Maxwell-elasto-brittle rheology describing the ice dynamics. Ensemble forecasts are done every 10 days from January to April 2008. The ensembles are generated by perturbing the wind forcing and ice cohesion field both separately and jointly. The wind forcing, an external forcing of the model, is perturbed continuously during the forecast. While the sea-ice cohesion, an internal parameter of the model, is randomized on the initial field of each sea ice forecast. The model uncertainties are assessed statistically using ensemble forecasts, in which virtual drifters are seeded over the Arctic Ocean. We analyze the spread of Lagrangian sea ice trajectories of the ensemble of virtual drifters and compare them with the IABP buoys. We demonstrate that the wind perturbations usually contribute more to the forecast uncertainty, but the ice cohesion perturbations significantly increase the degree of anisotropy in the spread and become occasionally important during strong wind events.

How to cite: Cheng, S., Aydoğdu, A., Rampal, P., Carrassi, A., and Bertino, L.: Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5141, https://doi.org/10.5194/egusphere-egu21-5141, 2021.

EGU21-3280 | vPICO presentations | CR4.3

The role of ocean heat transport from the Atlantic into the Arctic Ocean on sea ice variability

David Schroeder and Danny Feltham

The decrease of Arctic sea ice affects the future climate in the Arctic and beyond. Therefore, it is important to understand the drivers of sea ice variability and trend. Previous model studies found that the summer sea ice is mainly driven by atmospheric processes (incoming radiation and albedo feedback) and the winter sea ice extent by ocean processes (ocean heat transport from Atlantic into Arctic Ocean, e.g. applying Community Earth System Model large ensemble simulation). In our study, we analyse a historical simulation with the UK Earth System Model (UKESM1) performed for CMIP6 from 1850 to 2014 and ocean – sea ice simulations forced by atmospheric reanalysis data with the same ocean model NEMOv3.6 and sea ice model CICEv5.1. The UKESM simulation confirms previous findings showing that the ocean heat transport between Norway and Svalbard (Barents Sea Opening; BSO) is strongly correlated with the winter (and annual) sea ice extent in the Barents Sea and the whole Arctic. However, there is no correlation in the atmospheric-forced simulations suggesting that the interaction between atmosphere and ocean is crucial. We will present sensitivity simulations showing the impact of atmospheric forcing data on the BSO heat flux and analyse the role of atmospheric processes (large scale circulation, cloud formation) on winter sea ice conditions.

How to cite: Schroeder, D. and Feltham, D.: The role of ocean heat transport from the Atlantic into the Arctic Ocean on sea ice variability, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3280, https://doi.org/10.5194/egusphere-egu21-3280, 2021.

EGU21-2170 | vPICO presentations | CR4.3

Ocean heat transport as a driver of sea ice extent in CMIP6 models

Jake Aylmer, David Ferreira, and Daniel Feltham

Estimating long-term projections of sea ice extent is a key part of understanding the possible future climate state. This is hampered by uncertainties within and across comprehensive climate models, and the relative importance and nature of contributing factors are not fully understood. Here, we investigate the role of ocean and atmospheric forcing on sea ice on multidecadal time scales.

Pre-industrial control simulations of 19 CMIP6 models are analysed. Sea ice extent is negatively correlated with ocean heat transport (OHT), and positively correlated with atmospheric heat (moist-static energy) transport (AHT), in both hemispheres. In most models, increased OHT into the Arctic enhances surface fluxes in the Atlantic sector just south of the sea ice edge, which in turn increases the AHT convergence at higher latitudes. In the southern ocean, increased OHT directly increases the mean ocean–ice heat flux while AHT plays no direct role. Sensitivities of the sea ice cover to OHT are consistent with predictions from an idealised energy balance model (EBM), which is fitted to each model in turn. This shows that the sensitivities are constrained by atmospheric radiation parameters and the mean surface temperature response, with no explicit dependence on ocean parameters. These results are a step towards quantifying the effect of ocean biases on sea ice uncertainty in climate projections.

How to cite: Aylmer, J., Ferreira, D., and Feltham, D.: Ocean heat transport as a driver of sea ice extent in CMIP6 models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2170, https://doi.org/10.5194/egusphere-egu21-2170, 2021.

EGU21-461 | vPICO presentations | CR4.3

Numerical modeling on landfast ice in Arctic region

Yuqing Liu and Martin Losch

Sea ice is regarded as a significant indicator of climate change in the Arctic Ocean. Landfastice is sea ice that is immobile or almost immobile in coastal regions, decreasing the transfer of heat, moisture, and momentum. As an extension of the land for travel and hunting, landfast ice also influences the construction of ice roads and arctic shipping routes in the summertime. Despite the important role of landfast ice in the climate system, the formation and maintenance of landfast ice are not well simulated by current sea ice models. Lemieux (2015) came up with the grounding scheme, by adding a basal stress term according to the water depth, improving landfast ice representation in shallow regions while underestimating in deep regions especially in the Kara Sea. The two different resolution model configurations with the MIT General Circulation Model (MITgcm) sea ice package is compared in landfast ice simulation in the arctic region. Preliminary results show that a higher resolution model better represents landfast ice in deep regions. The proper illustration of coastlines, which serve as pinning points for sea ice arches, in the high-resolution model can improve the representation of landfast ice. We also apply a new parameterization lateral drag term, a function with sea ice thickness, drift velocity, and coastline intricacy, in the model to better simulate landfast ice. The results suggest a combination of lateral drag and basal stress terms successfully simulates fast ice in most regions

How to cite: Liu, Y. and Losch, M.: Numerical modeling on landfast ice in Arctic region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-461, https://doi.org/10.5194/egusphere-egu21-461, 2021.

EGU21-9875 | vPICO presentations | CR4.3

Sea ice fragmentation and its role in the evolution of the Arctic sea ice cover. 

Adam Bateson, Daniel Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff Ridley, and Yevgeny Aksenov

The Arctic sea ice cover is not a continuous expanse of ice but is instead composed of individual sea ice floes. These floes can range in size from just a few metres to tens of kilometres. Floe size can influence a variety of processes, including lateral melt rates, momentum transfer within the sea ice-ocean-atmosphere system, surface moisture flux, and sea ice rheology. Sea ice models have traditionally defined floe size using a single parameter, if floe size is explicitly treated at all. There have been several recent efforts to incorporate models of the Floe Size Distribution (FSD) into sea ice models in order to explore both how the shape of the FSD emerges and evolves and its impact on the sea ice cover, including the seasonal retreat. Existing models have generally focused on ocean surface wave-floe interactions and thermodynamic melting and growth processes. However, in-situ observations have indicated the presence of mechanisms other than wave fracture involved in the fragmentation of floes, including brittle failure and melt-induced break up.

In this study we consider two alternative FSD models within the CICE sea ice model: the first assumes the FSD follows a power law with a fixed exponent, with parameterisations of individual processes characterised using a variable FSD tracer; the second uses a prognostic approach, with the shape of the FSD an emergent characteristic of the model rather than imposed. We firstly use case studies to understand how similarities and differences in the impacts of the two FSD models on the sea ice emerge, including the different spatial and temporal variability of these impacts. We also consider whether the inclusion of FSD processes in sea ice models can enhance seasonal predictability. We will also demonstrate the need to include in-plane brittle fracture processes in FSD models and discuss the requirements needed within any parameterisation of the brittle failure mechanism.

How to cite: Bateson, A., Feltham, D., Schröder, D., Wang, Y., Hwang, B., Ridley, J., and Aksenov, Y.: Sea ice fragmentation and its role in the evolution of the Arctic sea ice cover. , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9875, https://doi.org/10.5194/egusphere-egu21-9875, 2021.

EGU21-14701 | vPICO presentations | CR4.3

Arctic MIZ Sensitivity to Atmosphere- Ice-Ocean Feedbacks

Rebecca Frew, Daniel Feltham, David Schroeder, and Adam Bateson

EGU21-9739 | vPICO presentations | CR4.3

Evaluating simulated linear kinematic features in high-resolution sea-ice simulations of the FAMOS Sea Ice rheology experiments (SIREx)

Nils Hutter, Amélie Bouchat, Frédéric Dupont, Dmitry Dukhovskoy, Nikolay Koldunov, Younjoo Lee, Jean-François Lemieux, Camille Lique, Martin Losch, Wieslaw Maslowski, Paul G. Myers, Einar Olason, Pierre Rampal, Till Rasmussen, Claude Talandier, Bruno Tremblay, and Qiang Wang

Simulating sea-ice drift and deformation in the Arctic Ocean is still a challenge because of the multi-scale interaction of sea-ice floes that compose the Arctic sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project formed within the Forum of Arctic Modeling and Observational Synthesis (FAMOS) to collect and design skill metrics to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) and provide guidance for modeling small-scale deformation. In this contribution, spatial and temporal properties of LKFs are assessed in 33 simulations of state-of-the-art sea ice models (VP/EVP,EAP, and MEB) and compared to deformation features derived from RADARSAT Geophysical Processor System (RGPS).
All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, lifetimes, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric forcing affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≤2km) the concentration and thickness anomalies along LKFs are large enough to affect air-ice-ocean interaction processes.

How to cite: Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W., Myers, P. G., Olason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Evaluating simulated linear kinematic features in high-resolution sea-ice simulations of the FAMOS Sea Ice rheology experiments (SIREx), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9739, https://doi.org/10.5194/egusphere-egu21-9739, 2021.

EGU21-1373 | vPICO presentations | CR4.3

Alternative viscous-plastic rheologies for the representation of fracture lines in high-resolution sea ice models

Damien Ringeisen, Martin Losch, and L. Bruno Tremblay

Fracture lines dominate the dynamics of sea ice. They affect the ice mass balance and the heat transfer between the atmosphere and the ocean. Therefore, climate modeling and sea ice prediction require an accurate fracture representation. Most sea ice models use viscous-plastic (VP) rheologies to simulate sea ice internal stresses. One of the issues with these rheologies is that they overestimate the intersection angles between fracture lines, with consequences for the subsequent sea ice drift. In idealized experiments, we investigate the mechanisms linking VP rheologies and fracture angles and assess alternative rheologies for high-resolution modeling. Results show that the definition of the transition between viscous and plastic states is essential for the creation of sharp fracture lines. The fracture angles with Mohr-Coulomb yield curves agree with the Arthur fault orientation theory. Further, rheologies with Mohr-Coulomb yield curves or teardrop yield curves appear to reduce intersection angles. Finally, experiments show that these results are reproduced for different sea ice initial conditions. With rheologies that favor smaller intersection angles, sea ice models move a step closer to accurate sea ice dynamics at high-resolution.

How to cite: Ringeisen, D., Losch, M., and Tremblay, L. B.: Alternative viscous-plastic rheologies for the representation of fracture lines in high-resolution sea ice models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1373, https://doi.org/10.5194/egusphere-egu21-1373, 2021.

EGU21-12274 | vPICO presentations | CR4.3

Importance of variable neutral drag coefficients for ocean-ice and air-ice fluxes in polar regions

Jean Sterlin, Thierry Fichefet, Francois Massonnet, and Michel Tsamados

Sea ice features a variety of obstacles to the flow of air and seawater at its top and bottom surfaces. Sea ice ridges, floe edges, ice surface roughness and melt ponds, lead to a form drag that interacts dynamically with the air-ice and ocean-ice fluxes of heat and momentum. In most climate models, surface fluxes of heat and momentum are calculated by bulk formulas using constant drag coefficients over sea ice, to reflect the mean surface roughness of the interfaces with the atmosphere and ocean. However, such constant drag coefficients do not account for the subgrid-scale variability of the sea ice surface roughness. To study the effect of form drag over sea ice on air-ice-ocean fluxes, we have implemented a formulation that estimates drag coefficients in ice-covered areas comprising the effect of sea ice ridges, floe edges and melt ponds, and ice surface skin (Tsamados et al., 2013) into the NEMO3.6-LIM3 global coupled ice-ocean model. In this work, we thoroughly analyse the impacts of this improvement on the model performance in both the Arctic and Antarctic. A particular attention is paid to the influence of this modification on the air-ice-ocean fluxes of heat and momentum, and the characteristics of the oceanic surface layers. We also formulate an assessment of the importance of variable drag coefficients over sea ice for the climate modelling community.

How to cite: Sterlin, J., Fichefet, T., Massonnet, F., and Tsamados, M.: Importance of variable neutral drag coefficients for ocean-ice and air-ice fluxes in polar regions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12274, https://doi.org/10.5194/egusphere-egu21-12274, 2021.

EGU21-9239 | vPICO presentations | CR4.3 | Highlight

The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial

Rachel Diamond, Louise Sime, David Schroeder, and Maria-Vittoria Guarino

HadGEM3 is the first coupled climate model to simulate an ice-free Arctic during the Last Interglacial (LIG), 127 000 years ago. This simulation appears to yield accurate Arctic surface temperatures during the summer season. Here, we investigate the causes and impacts of this extreme simulated ice loss. We find that the summer ice melt is predominantly driven by thermodynamic processes: atmospheric and ocean circulation changes do not significantly contribute to the ice loss. We demonstrate these thermodynamic processes are significantly impacted by melt ponds, which form on average 8 days earlier during the LIG than during the pre-industrial control (PI) simulation. This relatively small difference significantly changes the LIG surface energy balance, and strengthens the albedo feedback. Compared to the PI simulation: in mid-June, of the absorbed flux at the surface over ice-covered cells (ice concentration>0.15), ponds account for 45-50%, open water 45%, and bare ice and snow 5-10%. We show that the simulated ice loss leads to large Arctic sea surface salinity and temperature changes. The sea surface temperature and salinity signals we identify here provide a means to verify, in marine observations, if and when an ice-free Arctic occurred during the LIG. Strong LIG correlations between spring melt pond and summer ice area indicate that, as Arctic ice continues to thin in future, the spring melt pond area will likely become an increasingly reliable predictor of the September sea-ice area. Finally, we note that models with explicitly modelled melt ponds seem to simulate particularly low LIG sea-ice extent. These results show that models with explicit (as opposed to parameterised) melt ponds can simulate very different sea-ice behaviour under forcings other than the present-day. This is of concern for future projections of sea-ice loss.

How to cite: Diamond, R., Sime, L., Schroeder, D., and Guarino, M.-V.: The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9239, https://doi.org/10.5194/egusphere-egu21-9239, 2021.

EGU21-3518 | vPICO presentations | CR4.3

Testing a Sea Ice Model

David Livings, Danny Feltham, and David Schroeder

SI3 (Sea Ice modelling Integrated Initiative) is the sea ice engine of the NEMO ocean model. It incorporates elements of three sea ice models that have been used with NEMO in the past: CICE, GELATO, and LIM. It takes account of sea ice dynamics, thermodynamics, brine inclusions, and subgrid-scale thickness variations.

A process that has historically been poorly represented in sea ice models is the formation and evolution of melt ponds. These ponds accumulate on the surface of sea ice during the melt season and affect the heat and mass balance in various ways, the most important of which is a reduction in albedo. A melt pond scheme that has a significant impact on surface albedo has recently been added to SI3, based on the ideas of Flocco et al (JGR, 2010). This scheme attempts to represent the influence of ice topography on lateral meltwater transport. We present the results of tests of the grid-level conservation of heat and fresh water in this new scheme. To perform these tests we have incorporated a basic mixed-layer ocean model into SI3 as an intermediate complexity alternative to running with the full ocean model or forcing with saved ocean fields.

We also present a comparison of SI3 with the Los Alamos sea ice model (CICE) in multi-decadal simulations. These comparisons cover the sea ice mass balance (sea ice concentration, extent, and thickness) and the sea ice motion.

How to cite: Livings, D., Feltham, D., and Schroeder, D.: Testing a Sea Ice Model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3518, https://doi.org/10.5194/egusphere-egu21-3518, 2021.

EGU21-3510 | vPICO presentations | CR4.3

A directed percolation model for the permeability of young sea ice

Sönke Maus

The permeability of sea ice is an important property with regard to the role of sea ice in the earth system. It controls fluid flow within sea ice, and thus affects processes like desalination and melt pond drainage. It also impacts the role of sea ice in hosting sea ice algae and organisms, and the uptake and release of nutrients and pollutants from Arctic surface waters. However, as sea ice permeability is difficult to measure in the field, observations are sparse and vary, even for similar porosity, over orders of magnitude. This range is related to the evolution of the sea ice pore space during aging from young ice to thick first year ice. In young ice, the pore network is dominated by primary pores constrained by brine layers and the near-interface microstructure. In older sea ice, the ongoing desalination and thermal fluctuations have created wider secondary brine channels, implying a several orders of magnitude higher permeability. It is a challenge to understand and model these changes in pore space and permeability. Here a directed percolation model for the permeability of young sea ice is proposed. The model describes the dependence of sea ice permeability and electrical conductivity on brine porosity, and its critical behaviour and percolation transition due to necking of pores, and related disconnection of pore networks. Its parameters are based on 3D X-ray micro-tomographic imaging of young sea ice and direct numerical simulation of its transport properties, that strongly support the application of directed percolation theory to young sea ice, with a threshold porosity (impermeable ice) of 2 to 3 percent. Combined to an approach to predict the crystal structure at the ice-ocean interface, the model also the growth-velocity dependence and evolution of permeability near the ice-ocean interface. As the model is strictly valid for growing and cooling sea ice, without present of wider secondary brine channels, it is mostly relevant for sea ice desalination processes during winter. Modelling permeability of older and summer ice (and melt pond drainage) will require more observations of the pore space evolution in warming sea ice, for which the present results can be considered as a starting point.

How to cite: Maus, S.: A directed percolation model for the permeability of young sea ice , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3510, https://doi.org/10.5194/egusphere-egu21-3510, 2021.

EGU21-13270 | vPICO presentations | CR4.3

A network model for ponding on sea ice

Michael Coughlan

I present a physically-based network model for systems of ponds which accounts for both the individual and collective behaviour of ponds, and allows us to investigate the behaviour of both. Each pond initially occupies a distinct catchment basin and evolves according to a mass-conserving differential equation representing the melting dynamics for bare and water-covered ice. Ponds can later connect together to form a network with fluxes of water between catchment areas, constrained by the ice topography and pond water levels. 

I use the model to explore how the evolution of pond area and hence melting depends on the governing parameters, and to explore how the connections between ponds develop over the melt season. Comparisons with observations are made to demonstrate the ways in which the model qualitatively replicates properties of pond systems, including fractal dimension of pond areas and two distinct regimes of pond complexity that are observed during their development cycle. The network structure, and tools from percolation theory also allows us to probe how the connectivity of pond systems affect the system at each stage of development.

How to cite: Coughlan, M.: A network model for ponding on sea ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13270, https://doi.org/10.5194/egusphere-egu21-13270, 2021.

CR5.1 – Modelling and measuring snow processes across scales

EGU21-2120 | vPICO presentations | CR5.1

Climate forcing due to the snow albedo effect in the regional climate models from the CORDEX Flagship Pilot study LUCAS.

Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Marianne T. Lund, Marcus Breil, Rita M. Cardoso, Edouard Davin, Peter Hoffmann, Elena Katragkou, Daniela C.A. Lima, Rony Meier, Nathalie de Noblet-Ducoudre, Diana Rechid, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, and Merja H. Toelle

In the Northern Hemisphere, the seasonal snow cover plays a major role in the climate system via its effect on albedo and surface fluxes, influencing the variations in near surface temperature. Across climate models, the parameterization of the snow-albedo relationship remains a source of high uncertainty, often leading to large biases in the representation of local and global climate.

In this work, we analyze regional climate model outputs from the flagship pilot study (FPS) Land Use and Climate Across Scales (LUCAS) of the European branch of the Coordinated Downscaling Experiments EURO-CORDEX. These experiments include land use change forcing to identify robust biophysical impacts of land use changes on climate across regional to local spatial scales and at various time scales from extreme events to multi-decadal trends.

Here, we evaluate the ability of this ensemble of regional climate models combined with different land surface models to capture the climate forcing from the snow albedo effect in Europe, by comparing their representation of the Snow Atmosphere Sensitivity Index (SASI) with reanalyses and satellite observations. A specific focus is given to three sub-regions: Scandinavia, East Baltic and East Europe. For all regions, during the accumulation period, the models tend to largely agree on the representation of SASI. However, during the ablation period, there are large disparities, which are related to differences in the representation of the snow cover fraction in the models. This suggests that the choice of the land model is more critical for the representation of the climate forcing from the snow albedo effect than the atmospheric model. These differences in SASI leads to discrepancies in the simulated surface temperature. 

How to cite: Daloz, A. S., Schwingshackl, C., Mooney, P., Strada, S., T. Lund, M., Breil, M., M. Cardoso, R., Davin, E., Hoffmann, P., Katragkou, E., C.A. Lima, D., Meier, R., de Noblet-Ducoudre, N., Rechid, D., M. M. Soares, P., Sofiadis, G., Strandberg, G., and H. Toelle, M.: Climate forcing due to the snow albedo effect in the regional climate models from the CORDEX Flagship Pilot study LUCAS., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2120, https://doi.org/10.5194/egusphere-egu21-2120, 2021.

EGU21-10933 | vPICO presentations | CR5.1

Lab experiments to quantify wind induced microstructural modifications of surface snow

Benjamin Walter and Henning Löwe

The microstructural evolution of surface snow under the influence of wind is hardly understood and poorly quantified, but crucial for polar and alpine snowpacks. Only few field studies addressed the process of wind affecting surface snow at the snow-atmosphere interface in detail. Available descriptions are based on empirical relations between snow density, wind velocity and air temperature. A microstructural picture discerning independent controls of snow crystal fragmentation, abrasion and sublimation is yet missing. 

The goal of this project is to analyze the relevant physical processes responsible for wind induced microstructural modifications, and develop parametrizations from controlled wind-tunnel experiments. A ring-shaped wind tunnel (RWT) with an infinite fetch was used in a cold lab to quantify the snow microstructural evolution through systematic variations of flow, snow, and temperature conditions. For the drift experiments, dendritic fresh snow was produced in a WSL/SLF snowmaker and slowly added to the wind tunnel during the experiments simulating precipitation. Measurement techniques like X-ray tomography, SnowMicroPen, density cutters and IceCube were applied to characterize the snow density (ρ), specific surface area (SSA), particle size and shape and vertical layering before and after the highly dendritic new snow was exposed to the wind. 

The vertical heterogeneity of the deposited snow was characterized by SnowMicroPen measurements, showing increasing densities towards the snow surface. Densification rates (normalized by the initial density ρ0) of the surface layer measured with a density cutter show an increase with increasing wind velocity and are two to three orders of magnitude higher than those measured for isothermal metamorphism, underlining the importance of accurately understanding wind induced microstructural modifications. Densification rates simulated with stat-of-the-art snow physical models span an order of magnitude, significantly deviating from the measured values. The SSA, measured with the IceCube instrument, decreases with a rate of change of approximately -0.1 h-1, which is an order of magnitude higher than the rates for isothermal metamorphism. We hypothesize that the smallest fragments disappear because of sublimation while being transported by the wind. 

The results of this project will lead to an improved, fundamental understanding of optically and mechanically relevant microstructural properties of surface snow and are thus applicable to many cryospheric processes like avalanche formation, exchange of chemical species with the atmosphere, alpine and polar mass balances, or radiative transfer.

How to cite: Walter, B. and Löwe, H.: Lab experiments to quantify wind induced microstructural modifications of surface snow, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10933, https://doi.org/10.5194/egusphere-egu21-10933, 2021.

EGU21-10029 | vPICO presentations | CR5.1

Surface temperature and radiation budget of snow-covered complex terrains

Alvaro Robledano, Ghislain Picard, Laurent Arnaud, Fanny Larue, and Inès Ollivier

The temporal evolution of the snowpack is controlled by the surface temperature, which plays a key role in physical processes such as snowmelt. It shows large spatial variations in mountainous areas, where the illumination conditions are variable and depend on the topography. The surface energy budget is affected by the particular processes that occur in these areas, such as the modulation of the illumination by local slope and the re-illumination of the surface from surrounding slopes. These topography effects are often neglected in models, considering the surface as flat and smooth. Here we aim at estimating the surface temperature and the radiation budget of snow-covered complex terrains, in order to evaluate the role of the different processes that control their spatial variations. For this, a modelling chain is implemented to derive surface temperature from in-situ measurements. The main component is the Rough Surface Ray-Tracing (RSRT) model, based on a photon transport algorithm to quantify the impact of surface roughness in snow-covered areas. It is coupled to a surface scheme in order to estimate the radiation budget. To validate the model, we use in-situ measurements and satellite thermal observations (TIRS sensor aboard Landsat-8) in the Col du Lautaret area, in the French Alps. The satellite images are corrected from atmospheric effects with a single-channel algorithm. The results of the simulations show (i) an agreement between the simulated and observed surface temperature for a diurnal cycle in winter; (ii) the spatial variations of surface temperature are on the order of 5 to 10°C between opposed slope orientations; (iii) the agreement with satellite observations is improved when considering topography effects. It is therefore necessary to account for these effects to estimate the spatial variations of the radiation budget and surface temperature over snow-covered complex terrain. 

How to cite: Robledano, A., Picard, G., Arnaud, L., Larue, F., and Ollivier, I.: Surface temperature and radiation budget of snow-covered complex terrains, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10029, https://doi.org/10.5194/egusphere-egu21-10029, 2021.

EGU21-2193 | vPICO presentations | CR5.1

The Influence of Vapor Attachment Kinetics on Snow Effective Properties

Kevin Fourteau, Florent Domine, and Pascal Hagenmuller

Proper modelling of heat and mass transfer in snow is a prerequisite for understanding snow metamorphism and simulating the mass and energy budget of a snowpack and the underlying ground. The transfer of heat and water vapor in snow can be described with macroscopic conservation equations, which include effective coefficients such as the snow thermal conductivity or the snow water vapor diffusion coefficient. Here, we investigate the impact of the surface kinetics of water vapor sublimation and deposition at the microscopic scale on these macroscopic equations, restraining ourselves to the limiting cases of slow and fast kinetics. In particular, we show that under the assumption of fast kinetics the thermal behavior of snow is similar to that of a regular inert medium, but with an enhanced conduction in the pores, due to latent heat transported with water vapor. Besides, faster kinetics increases the effective water vapor diffusion coefficient, which nonetheless remains less than that in free air. Most (but not all) available experimental investigations suggest that in snow, fast surface kinetics prevails, so that our results have numerous implications for the proper simulation of heat and mass transfer in snow.

How to cite: Fourteau, K., Domine, F., and Hagenmuller, P.: The Influence of Vapor Attachment Kinetics on Snow Effective Properties, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2193, https://doi.org/10.5194/egusphere-egu21-2193, 2021.

Seasonal snowpack significantly influences the catchment runoff and thus represents an important input for the hydrological cycle. Changes in the precipitation distribution and intensity, as well as a shift from snowfall to rain is expected in the future due to climate changes. As a result, rain-on-snow events, which are considered to be one of the main causes of floods in winter and spring, may occur more frequently. Heat from liquid precipitation constitutes one of the snowpack energy balance components. Consequently, snowmelt and runoff may be strongly affected by these temperature and precipitation changes.

The objective of this study is 1) to evaluate the frequency, inter-annual variability and extremity of rain-on-snow events in the past based on existing measurements together with an analysis of changes in the snowpack energy balance, and 2) to simulate the effect of predicted increase in air temperature on the occurrence of rain-on-snow events in the future. We selected 40 near-natural mountain catchments in Czechia with significant snow influence on runoff and with available long-time series (>35 years) of daily hydrological and meteorological variables. A semi-distributed conceptual model, HBV-light, was used to simulate the individual components of the water cycle at a catchment scale. The model was calibrated for each of study catchments by using 100 calibration trials which resulted in respective number of optimized parameter sets. The model performance was evaluated against observed runoff and snow water equivalent. Rain-on-snow events definition by threshold values for air temperature, snow depth, rain intensity and snow water equivalent decrease allowed us to analyze inter-annual variations and trends in rain-on-snow events during the study period 1965-2019 and to explain the role of different catchment attributes.

The preliminary results show that a significant change of rain-on-snow events related to increasing air temperature is not clearly evident. Since both air temperature and elevation seem to be an important rain-on-snow drivers, there is an increasing rain-on-snow events occurrence during winter season due to a decrease in snowfall fraction. In contrast, a decrease in total number of events was observed due to the shortening of the period with existing snow cover on the ground. Modelling approach also opened further questions related to model structure and parameterization, specifically how individual model procedures and parameters represent the real natural processes. To understand potential model artefacts might be important when using HBV or similar bucket-type models for impact studies, such as modelling the impact of climate change on catchment runoff.

How to cite: Hotovy, O. and Jenicek, M.: Snowpack energy balance and changes in the frequency and extremity of rain-on-snow events in the warming climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-73, https://doi.org/10.5194/egusphere-egu21-73, 2021.

Mountainous catchments play an important role in water regulation as they store water along winter time and release it when snow melts several months after precipitations. Mid-altitude catchments are more prone to respond to climate changes as snow cover dynamics is directly impacted by temperature changes. Along with large scale precipitation events snow cover dynamics is also driven by small scale terrain characteristics which impact deposition, wind transport, melting through distributed solar insolation along slopes. These highly characteristic patterns impact snow cover dynamics significantly and the hydrological response even in small catchments.

This study focus on a small mid altitude alpine catchment at Col du Lautaret (France) which is a 15.28 ha subalpine catchment with the elevation range between 2000-2200 meter, typically 5-6 months period of full snow coverage over a grass dominated vegetation. Over this catchment, we simulated the impact of small scale snow spatial variability on the water cycle with the surface-subsurface coupled hyper-resolution distributed hydrological model ParFLOW/CLM. It consisted in several meteorological forcing scenarios prescribed to the model including distributed (2D) or non-distributed (1D) precipitation, solar radiation and wind. The model is able to simulate the snow cover distribution through the CLM energy balance module according to a combination of these forcings. The water transfers are then calculated through the Richards and kinematic wave equations following the ParFLOW formulation.

2D forcings induce a more spatially heterogeneous snowpack, which becomes patchy at the melt season. This asynchronous melt results in a longer melt period and a smoother hydrological response. However, 1D forcings do not generate such patchiness. Amongst the mechanisms responsible for the 2D distribution of the forcings, precipitation redistribution is the most important. Solar insolation distribution ads to the differential melting and wind distribution is not very important as a primary agent on the surface energy budget, but is important as it impacts precipitation redistribution in the watershed, which we treated separately.

How to cite: Gupta, A., Voisin, D., and Cohard, J.-M.: Sensitivity of snow cover spatio-temporal dynamics to the spatial distribution of meteorological forcings in a mid altitude alpine catchment: model analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16320, https://doi.org/10.5194/egusphere-egu21-16320, 2021.

EGU21-2966 | vPICO presentations | CR5.1

How Well Does Grain Boundary Sliding Represent Densification Rates in the Upper Firn?

Timm Schultz, Angelika Humbert, Ralf Müller, and Dietmar Gross

The simulation of firn densification, although first models were already developed in the 1960s, is still a work in progress. Various models and variants of earlier models developed throughout the decades testify for this (e.g. Lundin et al. 2017, Stevens et al, 2020). Here we focus on the first stage of firn densification up to the density of 550 kg m−3, hence the first few meters of the firn column. Describing the early stage of the process well is crucial as it proceeds fastest and influences further densification. Alley first applied the process of grain boundary sliding to firn in 1987 and thereby provided a physics based material model for the densification of firn at low densities. Despite being used in many firn densification models, it is sometimes debated if grain boundary sliding is governing the densification at low densities as there are very few observations of intra-crystalline deformation in firn.

We aim to test to which extent grain boundary sliding can be used to reproduce measured firn density profiles and to constrain the parameter range in the constitutive relation. To this end, we conduct a high number of simulations for various locations, stepping through the parameter space and select the best match with corresponding measured density profiles. By doing so, we are following Alley’s original approach, but we make use of a much larger firn density dataset provided by the SUMup working group (Koenig & Montgomery, 2020).

Forcing data provided by the regional climate model RACMO (van Wessem et al., 2014, Noël et al., 2015) allows not only to simulate steady state solutions but transient simulations. Our model implementation provides a very fast, complete and flexible simulation environment, allowing to test wide parameter ranges in short time and hence enables us to cover a great amount of firn properties. The broad testing approach allows to evaluate if and in which ways grain boundary sliding might play a role in firn densification at low densities.

How to cite: Schultz, T., Humbert, A., Müller, R., and Gross, D.: How Well Does Grain Boundary Sliding Represent Densification Rates in the Upper Firn?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2966, https://doi.org/10.5194/egusphere-egu21-2966, 2021.

EGU21-949 | vPICO presentations | CR5.1

Factors Influencing Snow Model Performance in Boreal Forests - Results from the ESM-SnowMIP Forest Site Simulations

Paul Bartlett, Libo Wang, Chris Derksen, Richard Essery, Cécile Menard, and Gerhard Krinner and the ESM-SnowMIP Site Level Modelling Groups

The site level component of the Earth System Model – Snow Model Intercomparison Project has 28 participating model variants. We summarize model performance at the Boreal Ecosystem Research and Monitoring Sites (BERMS) Old Aspen (OAS), Old Black Spruce (OBS) and Old Jack Pine (OJP) forests in Saskatchewan.

Many CMIP5 models have been previously shown to overestimate the winter albedo in the boreal forest due to errors in plant functional type (PFT) and leaf area index (LAI). In this project provided values for PFT and LAI were not implemented in a few models, but many models show a positive albedo bias in excess of 0.1 and some show a much larger positive bias. A larger positive albedo bias at OAS by some models suggests that snow masking by leafless trees requires attention. Average albedo bias from these off-line simulations, which lack atmospheric feedbacks, is not strongly related to bias in snowpack properties or the treatment or lack thereof of intercepted snow.

About half the models simulated snow water equivalent (SWE) with a RMSE smaller than the standard deviation of the observations. Snow depth was simulated slightly worse and only three models met this standard with respect to snowpack density. SWE was underestimated by just over half the models but the density of these sheltered snowpacks was overestimated by most models, resulting in snowpack depth being underestimated by an average 0.1 m. Models with multiple simplified surface parameterizations tend to show the greatest underestimation of SWE and depth and overestimation of density.

Biases in above-canopy radiative, snow surface and bulk snowpack temperatures are not consistent with respect to size and sign; many models show a combination of positive and negative biases. Radiative and snowpack surface temperatures are associated with trends in turbulent heat fluxes. Models with multiple simplified surface parameterizations (e.g. large or fixed density or thermal conductivity values, a composite snowpack, no organic soil) show more negative soil temperature biases and appear to be associated with a colder snowpack, but unfortunately, bulk snowpack temperature was not reported for many such models. Negative SWE and depth biases are associated with colder winter soil temperatures and shorter snow seasons. Most models simulate snow thermal conductivity with one of many relationships with density. Soil temperature bias is highly sensitive to the choice of snow thermal conductivity parameterization.

Models with many snow layers tend to show smaller errors in snowpack properties and are less likely to show cold biases in the snowpack and soil compared with composite or single layer models. However, as found in previous SnowMIPs, some single-layer models occupy the same bias range as multi-layer models. Models employing a multi-layer snowpack tend not to employ multiple “simplified parameterizations” as described above whereas the models with a single snow layer employ surface parameterizations with a range of sophistication.

How to cite: Bartlett, P., Wang, L., Derksen, C., Essery, R., Menard, C., and Krinner, G. and the ESM-SnowMIP Site Level Modelling Groups: Factors Influencing Snow Model Performance in Boreal Forests - Results from the ESM-SnowMIP Forest Site Simulations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-949, https://doi.org/10.5194/egusphere-egu21-949, 2021.

EGU21-4649 | vPICO presentations | CR5.1

Uncertainty assessment of a permanent long-range terrestrial laser scanning system at an Alpine glacier

Annelies Voordendag, Christoph Klug, Rainer Prinz, Martin Rutzinger, and Georg Kaser and the SCHISM Team

Terrestrial laser scanners (TLSs) are increasingly used to monitor glaciers. Recent developments enabled longer ranged and more frequent measurements. The quality of these high resolution topography data, especially in high mountain environments, has not been assessed in detail up to now.  An automated and permanent long-range TLS system is installed at Hintereisferner glacier (Ötztal, Austria) with the aim to detect changing snow surface patterns due to wind drift.

The scanner is controlled from Innsbruck and data is transferred daily. The system covers 66.5% of the glacier area and scans can be conducted on demand in very high frequency (e.g. daily or hourly measurements). The measurement distances range between 660 and 4600 m and with an angular step width of 0.01° (vertical and horizontal), this leads to a point spacing of 35 cm at a distance of 2 km and a resulting point cloud of approx. 43 million points. The point cloud is converted into grids with a 1 meter resolution.

Two main error sources of the system are indentified. First, the TLS used at Hintereisferner, a Riegl VZ-6000 is influenced by movements that cannot be corrected with the internal inclination sensors of the scanner. Small fluctuations in the roll and pitch of the scanner (ca. ±0.02°) result in deviations in decimetre range on the glacier. The movement of the scanner increases with increasing turbulent kinetic energy (TKE) measured with a nearby 3D sonic anemometer.

Second, atmospheric conditions at the glacier influence the laser beam way. The TLS operates by emitting light pulses and measuring the time of flight for the pulse to return. The pulse travel time changes depending on the atmospheric properties. The changes of pressure, temperature and humidity in the atmosphere differ from accumulation zone to glacier tongue and influence the pathway between TLS and the glacier surface, leading to an uncertainty in the scanning data in centimetre range.

The permanent and automated long-range TLS system promises high potential for the glaciological and environmental sciences, given the decimetre accuracy at a high spatiotemporal resolution. The first results of permanent TLS system at Hintereisferner show the ability to detect changing snow surface patterns and indicate the possibility of geodetic glacier mass balance acquisition.

How to cite: Voordendag, A., Klug, C., Prinz, R., Rutzinger, M., and Kaser, G. and the SCHISM Team: Uncertainty assessment of a permanent long-range terrestrial laser scanning system at an Alpine glacier, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4649, https://doi.org/10.5194/egusphere-egu21-4649, 2021.

EGU21-12662 | vPICO presentations | CR5.1

Improvements to an intermediate complexity atmospheric model for high-resolution downscaling in very complex terrain.

Dylan Reynolds, Bert Kruyt, Ethan Gutmann, Tobias Jonas, Michael Lehning, and Rebecca Mott

            Snow deposition patterns in complex terrain are heavily dependent on the underlying topography. This topography affects precipitating clouds at the kilometer-scale and causes changes to the wind field at the sub-kilometer scale, resulting in altered advection of falling hydrometeors. Snow particles are particularly sensitive to changes in the near-surface flow field due to their low density. Atmospheric models which run at the kilometer scale cannot resolve the actual heterogeneity of the underlying terrain, resulting in precipitation maps which do not capture terrain-affected precipitation patterns. Thus, snow-atmosphere interactions such as preferential deposition are often not resolved in precipitation data used as input to snow models. To bridge this spatial gap and resolve snow-atmosphere interactions at the sub-kilometer scale, we couple an intermediate complexity atmospheric model (ICAR) to the COSMO NWP model. Applying this model to sub-kilometer terrain (horizontal resolution of 50 and 250 m) required changes to ICAR’s computational grid, atmospheric dynamics, and boundary layer flow. As a result, the near-surface flow now accounts for surface roughness and topographically induced speed up. This has been achieved by using terrain descriptors calculated once at initialization which consider a point’s exposure or sheltering relative to surrounding terrain. In particular, the use of a 3-dimensional Sx parameter allows us to simulate areas of stagnation and recirculation on the lee of terrain features. Our approach maintains the accurate large-scale precipitation patterns from COSMO but resolves the dynamics induced by terrain at the sub-kilometer scale without adding additional computational burden. We find that solid precipitation patterns at the ridge scale, such as preferential deposition of snow, are better resolved in the high-resolution version of ICAR than the current ICAR or COSMO models. This updated version of ICAR presents a new tool to dynamically downscale NWP output for snow models and enables future studies of snow-atmosphere interactions at domain scales of 100’s of kilometers.

How to cite: Reynolds, D., Kruyt, B., Gutmann, E., Jonas, T., Lehning, M., and Mott, R.: Improvements to an intermediate complexity atmospheric model for high-resolution downscaling in very complex terrain., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12662, https://doi.org/10.5194/egusphere-egu21-12662, 2021.

Snow on Arctic sea ice plays many, sometimes contrasting roles in Arctic climate feedbacks. During the sea ice growth season, the presence of snow on sea ice can enhance ice growth by increasing the sea ice albedo, or conversely, inhibit sea ice growth by insulating the ice from the cold atmosphere. Furthermore, estimates of snow depth on Arctic sea ice are also a key input for deriving sea ice thickness from altimetry measurements, such as satellite lidar altimetry measurements from ICESat-2. Due to the logistical challenges of making measurements in as remote a region as the Arctic, snow depth on Arctic sea ice is difficult to observationally constrain.

The NASA Eulerian Snow On Sea Ice Model (NESOSIM) can be used to provide snow depth and density estimates over Arctic sea ice with pan-Arctic coverage within a relatively simple framework. The latest version of NESOSIM, version 1.1, is a 2-layer model with simple representations of the processes of accumulation, wind packing, loss due to blowing snow, and redistribution due to sea ice motion. Relative to version 1.0, NESOSIM 1.1 features an extended model domain, and reanalysis snowfall input scaled to observed snowfall retrieved from CloudSat satellite radar reflectivity measurements.

In this work, we present a systematic calibration, and an accompanying estimate in the uncertainty of the free parameters in NESOSIM, targeting airborne snow radar measurements from Operation IceBridge. We further investigate uncertainties in snow depth and the resulting uncertainties in derived sea ice thickness from ICESat-2 altimetry measurements using NESOSIM snow depths.

How to cite: Cabaj, A., Kushner, P., and Petty, A.: Parameter calibration and uncertainty analysis for snow depths from the NASA Eulerian Snow On Sea Ice Model and derived sea ice thickness from ICESat-2, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13791, https://doi.org/10.5194/egusphere-egu21-13791, 2021.

In mountainous regions, atmospheric and surface conditions (like snow coverage) are strongly modulated by complex terrain. One relevant process is the topographic effect on incoming/outgoing surface short- and longwave radiation by surrounding terrain. Radiation in weather and climate models is typically represented by the two-stream approximation, which only allows for vertical radiation exchange and thus no lateral interaction with terrain. In reality, surface radiation can be modulated through various processes: the direct-beam part of the incoming shortwave radiation depends on local surface inclination and on shading from the neighbouring terrain. Incoming diffuse shortwave radiation is modified by partial sky-obstruction and terrain reflection. Outgoing longwave radiation is reduced by interception from neighbouring terrain.

In this study, we develop a parameterisation which considers the above-mentioned processes on a sub-grid scale, and implement the scheme in the Regional Climate Model COSMO (Consortium for Small-scale Modeling). On the grid scale, such a parameterisation is already available and has been applied in the numerical weather prediction mode of COSMO. Applying this parameterisation in the climate mode of COSMO has revealed that biases like the over-/underestimation of snow cover duration at south-/north-facing slopes can be improved. However, the associated radiation correction appears to be too weak because only terrain effects on the resolved scales are considered. We therefore parameterise these effects on a sub-grid scale.

The (current) surface radiation correction scheme requires consideration of topographic parameters like the elevation of the horizon and the sky-view factor. The computation of these parameters on the sub-grid scale is very expensive, because non-local information of a large high-resolution Digital Elevation Model (DEM) needs to be processed. We developed a new algorithm, which allows for horizon computations from a high-resolution DEM in a fast and flexible way. We furthermore found that existing sky-view factor algorithms might yield inaccurate results for locations with very steep terrain and subsequently developed an improved method. Output of these new algorithms will be used for the new sub-grid radiation parameterisation scheme.

How to cite: Steger, C. and Schär, C.: Developing an algorithm to consider sub-grid topographic effects on surface radiation in a kilometre-scale regional climate model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5575, https://doi.org/10.5194/egusphere-egu21-5575, 2021.

EGU21-3539 | vPICO presentations | CR5.1

A Detailed and in Situ Assessment of the Snowpack Physical Properties in a Discontinuous Humid Boreal Forest

Benjamin Bouchard, Daniel F. Nadeau, and Florent Domine

Boreal forests occupy a large fraction of the continental surfaces and receive a lot of solid precipitation in winter. Evergreen canopies are often represented as a single and homogeneous layer in hydrological and weather forecasting models. However, in reality, boreal canopies are composed of a rather complex mosaic of trees unevenly spaced apart, with gaps of various sizes. Therefore, mass and energy inputs to the snowpack show remarkable variability at small scales resulting not only in strong spatial heterogeneity in snow depth (SD) and snow water equivalent (SWE), but also in the vertical temperature gradient in the snow column (). Unlike SD and SWE, has been little documented in discontinuous needleleaf forests, despite its impact on snow cover metamorphism and on a range of physical properties of snow such as density (), specific surface area (SSA) and effective thermal conductivity (keff). This work investigates the snowpack underneath the canopy and inside small forest gaps using continuous measurements of SD and keff and weekly snow pit surveys during winter 2018-19 in a juvenile balsam fir stand of eastern Canada (47°17’18’’N, 71°10’05’’W). This site receives an average of almost 1600 mm of precipitation annually, including 40 % falling as snow. Snow cover typically lasts over 6 months. Observations show that less snow accumulates in the subcanopy and therefore  is more pronounced than inside the gaps. Moreover,  and SSA are lower underneath the canopy where faceted crystals are observed. Large  in that environment results in a decreasing keff over time. Overall, kinetic grain growth takes place in the subcanopy whereas settlement and isothermal conditions prevail inside the gaps. This research provides accurate observations of the snowpack in forested environments needed for a better representation of SWE, heat fluxes and ground thermal regime in hydrological and meteorological models.

How to cite: Bouchard, B., F. Nadeau, D., and Domine, F.: A Detailed and in Situ Assessment of the Snowpack Physical Properties in a Discontinuous Humid Boreal Forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3539, https://doi.org/10.5194/egusphere-egu21-3539, 2021.

EGU21-15636 | vPICO presentations | CR5.1

A comparison between coincident laser and Ku radar versus S- to C-band 'snow radar' data for airborne retrievals of snow depth on sea ice

Claude de Rijke-Thomas, Jack Landy, Joshua King, and Michel Tsamados

Snow depth estimates remain a large uncertainty for constraining the accuracy of sea ice thickness retrievals from polar altimetry. There have been several recent investigations into methods for estimating snow depth from airborne observations over sea ice; this poster outlines a comparison between two different methods applied to Operation IceBridge data from the Spring 2016 campaign. The first co-locates visible-band laser scanner data from the Airborne Topographic Mapper with Ku-band data from the CReSIS radar, using a fixed threshold first-maximum retracker algorithm for retracking radar waveforms and applying a calibration step to remove the vertical offset between sensors at leads. This method represents an airborne proxy for the newly-aligned ICESat-2 and CryoSat-2 orbits of the Cryo2Ice campaign. The second method uses the conventional CReSIS ultrawide-band frequency‐modulated continuous‐wave ‘snow radar’ system, that ranges between S- and C-band, applying the retracker algorithm described by Newman et al 2014. We evaluate properties of the estimated snow depth distribution, and alignment of air-snow and snow-ice interfaces, along the aircraft track and the scale of correlation between sensors.

How to cite: de Rijke-Thomas, C., Landy, J., King, J., and Tsamados, M.: A comparison between coincident laser and Ku radar versus S- to C-band 'snow radar' data for airborne retrievals of snow depth on sea ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15636, https://doi.org/10.5194/egusphere-egu21-15636, 2021.

EGU21-7634 | vPICO presentations | CR5.1

Improved modelling of the present-day Greenland firn layer

Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, Achim Heilig, Baptiste Vandercrux, and Michiel van den Broeke

Recent studies indicate that a declining surface mass balance will dominate the Greenland Ice Sheet’s (GrIS) contribution to 21st century sea level rise. It is therefore crucial to understand the liquid water balance of the ice sheet and its response to increasing temperatures and surface melt if we want to accurately predict future sea level rise. The ice sheet firn layer covers ~90% of the GrIS and provides pore space for storage and refreezing of meltwater. Because of this, the firn layer can retain up to ~45% of the surface meltwater and thus act as an efficient buffer to ice sheet mass loss. However, in a warming climate this buffer capacity of the firn layer is expected to decrease, amplifying meltwater runoff and sea-level rise. Dedicated firn models are used to understand how firn layers evolve and affect runoff. Additionally, firn models are used to estimate the changing thickness of the firn layer, which is necessary in altimetry to convert surface height change into ice sheet mass loss.

Here, we present the latest version of our firn model IMAU-FDM. With respect to the previous version, changes have been made to the handling of the freshly fallen snow, the densification rate of the firn and the conduction of heat. These changes lead to an improved representation of firn density and temperature. The results have been thoroughly validated using an extensive dataset of density and temperature measurements that we have compiled covering 126 different locations on the GrIS. Meltwater behaviour in the model is validated with upward-looking GPR measurements at Dye-2. Lastly, we present an in-depth look at the evolution firn characteristics at some typical locations in Greenland.

Dedicated, stand-alone firn models offer various benefits to using a regional climate model with an embedded firn model. Firstly, the vertical resolution for buried snow and ice layers can be larger, improving accuracy. Secondly, a stand-alone firn model allows for spinning up the model to a more accurate equilibrium state. And thirdly, a stand-alone model is more cost- and time-effective to use. Firn models are increasingly capable of simulating the firn layer, but areas with large amounts of melt still pose the greatest challenge.

How to cite: Brils, M., Kuipers Munneke, P., van de Berg, W. J., Heilig, A., Vandercrux, B., and van den Broeke, M.: Improved modelling of the present-day Greenland firn layer, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7634, https://doi.org/10.5194/egusphere-egu21-7634, 2021.

EGU21-5410 | vPICO presentations | CR5.1

Modeling snow isothermal metamorphism at the pore scale with the phase-field model Snow3D

Lisa Bouvet, Neige Calonne, Frédéric Flin, and Christian Geindreau

Representing snow isothermal metamorphism is key to model the evolution and properties of the snow cover. Recently, a new phase-field model allowing to describe 3D microstructure induced by curvature effects has been proposed (Bretin et al, Esiam: M2an, 2019). In the present work, this model is used to simulate isothermal metamorphism of snow at the pore scale, considering the only process of moving interfaces by sublimation-deposition driven by curvatures. This model runs on real 3D microtomographic images and gives a temporal series of 3D images simulating isothermal metamorphism. To determine the condensation coefficient to use in the model, which shows complex dependencies and is still poorly known, we calibrated it by reproducing the time evolution of the specific surface area (SSA) measured during an isothermal experimental time-series at -2°C (Flin et al., Ann. Glaciol., 2004). This calibration has led to a value of the condensation coefficient of 9.9 ± 0.6 10−4. Using this calibration, we obtained a good agreement between simulations and an independent series of isothermal metamorphism at -2°C (Hagenmuller et al., The Cryosphere, 2019). Finally, 4 images representing different types of snow microstructure have been chosen as input to simulate isothermal metamorphism at -2°C during 75 days. The obtained temporal series of 3D images were then used to calculate microstructural (porosity, SSA, covariance lengths) and physical transport properties (thermal conductivity, effective diffusion, permeability) evolution. Comparing our numerical estimations of physical properties to current parameterizations gives overall good agreement. An interesting new result arising from the simulations is the conservation or enhancement of the structural anisotropy under isothermal conditions for the samples that were initially strongly anisotropic.

 

How to cite: Bouvet, L., Calonne, N., Flin, F., and Geindreau, C.: Modeling snow isothermal metamorphism at the pore scale with the phase-field model Snow3D, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5410, https://doi.org/10.5194/egusphere-egu21-5410, 2021.

EGU21-9101 | vPICO presentations | CR5.1

Monitoring snow processes in the Ötztal Alps (Austria) and development of an open source snow model framework

Michael Warscher, Florian Hanzer, Carsten Becker, and Ulrich Strasser

The Rofental is a high Alpine environmental research basin in the Ötztal Alps (Austria, 1890 - 3770 m a.s.l.). The existing measurement network has recently been extended by new stations and sensors that focus on automated recordings of snow cover properties. Core of the network are three automatic weather stations (AWS) that incorporate 10 min. recordings of snow depth (SD), snow water equivalent (SWE), layered snow temperatures, snow surface temperature, snow density, as well as solid and liquid water content of the snowpack. One AWS is extended by a particular setup of two SD and SWE measurements at nearby wind-exposed and sheltered locations, complemented by an acoustic-based snow drift sensor to quantify wind-driven snow redistribution.

We here present analyses of the publicly available data that focus on snow drift events in an avalanche-prone winter season. The two nearby SWE measurements show differences of around 500% of measured peak SWE at a horizontal distance of only 25 m caused by wind-driven redistribution. In addition, the presented data is used to develop and validate the new open source, distributed snow cover model openAMUNDSEN. We evaluate different integrated energy balance and snow layer schemes and compare the data to results of the ESM-SnowMIP project.

How to cite: Warscher, M., Hanzer, F., Becker, C., and Strasser, U.: Monitoring snow processes in the Ötztal Alps (Austria) and development of an open source snow model framework, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9101, https://doi.org/10.5194/egusphere-egu21-9101, 2021.

EGU21-4896 | vPICO presentations | CR5.1

Point simulation of snow cover in Peñalara Massif (Sierra de Guadarrama, Central Spain)

Álvaro González-Cervera and Luis Durán

The Factorial Snowpack Model (FSM, Essery, 2015) has been applied for the winters ranging from 2008 to 2021 to predict snow height in a location at 1800 m of altitude in Peñalara Massif (Sierra de Guadarrama, Central Spain). Data from an automatic meteorological station is used as input after a thorough validation and completion using different methods. Several configurations of the model have been tested and sensitivity runs regarding long-wave and short-wave radiative flux, air temperature, liquid and solid precipitation rate, surface pressure, relative humidity and wind velocity, have been performed. Comparison of predictions versus automatic and manual in-situ measurements show a coherent evolution of the snow height. A satisfactory degree of precision regarding the beginning and end of the snow cover has been found but also a high sensitivity to radiative flux, mainly long-wave, air temperature and total solid precipitation rates that need further research. Future work will be carried out testing other snowpack models, developing new parametrizations and performing predictions for the  whole basin considering side effects and other factors.

How to cite: González-Cervera, Á. and Durán, L.: Point simulation of snow cover in Peñalara Massif (Sierra de Guadarrama, Central Spain), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4896, https://doi.org/10.5194/egusphere-egu21-4896, 2021.

EGU21-12581 | vPICO presentations | CR5.1

On the necessity of including vapor kinetics to model the specific surface area evolution in snow

Anna Karpova, Michael Lehning, and Henning Löwe

Vapor fluxes in snow are often inferred from the temperature field by assuming vapor concentrations in local thermodynamic equilibrium with the temperature. Here we give evidence that, at the pore scale, this picture is in clear contradiction with the observed evolution of the specific surface area (SSA) under temperature gradient metamorphism. To this end, we have calculated pore-scale temperature fields using the Finite Element Method on micro-tomography images. Subsequently, we utilized the exact volume-averaged evolution equation for the SSA to infer that the disagreement stems from the employed diffusion-limited growth law which manifests in local thermodynamic equilibrium of vapor and temperature. Via sensitivity studies we confirm that this conclusion is not affected by the involved image analysis and numerical procedures. We outline how and why attachment kinetics may resolve the observed contradiction.

How to cite: Karpova, A., Lehning, M., and Löwe, H.: On the necessity of including vapor kinetics to model the specific surface area evolution in snow, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12581, https://doi.org/10.5194/egusphere-egu21-12581, 2021.

EGU21-7048 | vPICO presentations | CR5.1

Neither Arctic nor Alpine: Snow Characterization in the low-Arctic Region of Nunavik, Canada

Georg Lackner, Florent Domine, Daniel Nadeau, Francois Anctil, and Annie-Claude Parent

Snow is an integral part of high latitude regions and is highly affected by global warming. While high-Arctic snowpacks over herb tundra can be approximated by a two-layer structure formed of low-density depth hoar covered with a denser wind slab, low-Arctic snow over shrub tundra tends to be more complex with a greater variety of layers. Furthermore, a high interannual variability makes it difficult to characterize low-Arctic snow as its physical properties such as its height, density, and thermal conductivity fluctuate greatly from one year to another. 
In this study, we attempt to provide an overview of this interannual variability and its implications on the energy budget of the snow cover. For this purpose, we present multiple years of snow observations collected from automated stations and manual snow pits from a low-Arctic valley of northern Quebec, Canada (56°32'N 76°33'W). The experimental setup included a vertical array of continuous thermal conductivity and snow temperature measurements, combined with eddy covariance data to establish a full energy budget of the snow cover.
Snow height varied by a factor of two (0.7 m to 1.4 m) from one year to another with tremendous impact on the stratigraphy. In thick-snow years, the snowpack was more alpine-like, with density decreasing with height while in thin-snow years, the snowpack was more Arctic-like with an inverted density profile. This alpine-like snow effectively shielded the ground from the cold air temperature and the soil remained several degrees warmer than in other years. Heat fluxes above the snowpack, however, did not show differences between alpine-like snow and arctic-like snow. 

How to cite: Lackner, G., Domine, F., Nadeau, D., Anctil, F., and Parent, A.-C.: Neither Arctic nor Alpine: Snow Characterization in the low-Arctic Region of Nunavik, Canada, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7048, https://doi.org/10.5194/egusphere-egu21-7048, 2021.

EGU21-9427 | vPICO presentations | CR5.1

How to model enhanced firn densification due to strain softening

Falk Oraschewski and Aslak Grinsted

Most classical firn densification models merely consider temperature and accumulation rate as variable input parameters. However, in locations with high horizontal strain rates, such as the shear margins of ice streams, a reduced firn thickness can be observed. This is explained by an enhancement of power-law creep due to the effect of strain softening, which is not yet captured by existing firn models. We present a model extension that corrects the densification rate, predicted by any classical, climate-forced firn model, for the effect of strain softening caused by horizontal strain rates. With the presented model firn densities measured along a cross-section of the North-East Greenland ice stream (NEGIS) are reproduced with good agreement, validating the accuracy of the developed model. The results further indicate the general importance of considering strain rates in firn densification modeling and pave the way for the development of a firn model that inherently uses temperature, accumulation rate and horizontal strain rates as forcing parameters.

How to cite: Oraschewski, F. and Grinsted, A.: How to model enhanced firn densification due to strain softening, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9427, https://doi.org/10.5194/egusphere-egu21-9427, 2021.

EGU21-13227 | vPICO presentations | CR5.1

A snowfall downscaling scheme for mountainous terrain

Nora Helbig, Rebecca Mott, Yves Bühler, Michael Lehning, and Perry Bartelt

In mountainous terrain, the spatial and temporal variability of the snow cover is driven by the interaction of meteorological processes with the underlying topography. Typically, terrain-precipitation-wind interactions predominantly shape the spatial snow depth distribution during the accumulation season through drifting snow and preferential deposition of snowfall. While a suspension model forced with fine-scale three-dimensional wind fields can generate spatial preferential deposition patterns, fine-scale three-dimensional wind fields or the necessary computational demands cannot be met by most model applications over larger areas.

We present an efficient statistical snowfall downscaling scheme over complex topography reproducing preferred fine-scale snowfall deposition patterns. Towards this we generated several thousands of spatial new snow distributions on artificial topographies by modeling preferential deposition with a suspension model and pre-computed Advanced Regional Prediction System (ARPS) wind fields. To systematically analyze spatial preferential deposition patterns, we chose artificial topographies covering a broad range of real terrain characteristics as well as controlled conditions for the model runs. We developed two statistical downscaling schemes using several millions of distributed fine-scale snowfall values. With one parameterization, we scale coarse-scale snowfall with fine-scale surface vertical wind components and topographic parameters. If fine-scale vertical wind components are not available, a second parameterization can be used to scale coarse-scale snowfall with coarse-scale wind direction and fine-scale topographic parameters. The spatial patterns of preferential snowfall deposition were well reproduced by the parameterizations, indicating that the downscaling scheme can be used for various model applications such as hydrological, avalanche, weather, and climate forecasts or hazard mapping.

How to cite: Helbig, N., Mott, R., Bühler, Y., Lehning, M., and Bartelt, P.: A snowfall downscaling scheme for mountainous terrain, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13227, https://doi.org/10.5194/egusphere-egu21-13227, 2021.

EGU21-1325 | vPICO presentations | CR5.1

Improved Northern Hemisphere Snow Water Equivalent product from passive microwave remote sensing and in situ data

Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Pinja Venalainen, and Mikko Moisander

The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.

Previous GlobSnow SWE products used a constant snow density of 0.24 kg m-3 to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.

Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m-3 early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.

How to cite: Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Venalainen, P., and Moisander, M.: Improved Northern Hemisphere Snow Water Equivalent product from passive microwave remote sensing and in situ data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1325, https://doi.org/10.5194/egusphere-egu21-1325, 2021.

Effective elastic properties of snow, firn, and porous ice are key for
various applications and influenced by ice volume fraction and
different types of anisotropy. The geometrical anisotropy of the ice-matrix created by temperature gradient metamorphism in low-density
snow and firn and the crystallographic anisotropy commonly created
upon deformation in high-density, porous ice. Towards a quantitative-distinction of the impact of the different anisotropies on elasticity,
we derived a parametrization for the effective elasticity tensor over
the entire range of volume fractions as a function of density and
geometrical anisotropy. We employed FEM simulations on 395 X-ray
tomography microstructures of Lab, Alpine, Arctic, and Antarctic
samples. We employed an empirical two-parameter modification of the
anisotropic Hashin Shtrikman bounds to obtain a closed-form
parametrization accounting for density, anisotropy, and the correct
limiting behavior for bubbly ice. We compare our prediction to
previous parametrizations derived in limited density regimes and we
utilize the Thomson parameter to compare the geometrical-elastic
anisotropy to the crystallographic-elastic anisotropy of
monocrystalline ice. Our results suggest that a coupled treatment of
geometrical and crystallographic effects would be beneficial for a
careful interpretation of acoustic measurements in deep firn.

How to cite: sundu, K. and Loewe, H.: A microstructure-based parameterization of the effectivetransverse isotropic elasticity tensor of snow, firn, and porous ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2129, https://doi.org/10.5194/egusphere-egu21-2129, 2021.

Above canopy air temperatures, as simulated prognostic variables in earth system models or as driving data in snow-physics models, are used as a basis to calculate energy transfers through forest canopies and down to the snow surface. Consequently, simulations of absorption of solar radiation, emission of longwave radiation and coupling between canopy and air temperatures become critical. Parts of the forest canopy, especially the shaded downward-facing elements, are often in equilibrium with sub-canopy air temperatures.

Measurements of sub-canopy incoming longwave radiation, air temperatures, and forest canopy structure were made in a snow-covered boreal forest, March through April 2012 in Sodankylä, Finland. Accurate simulations of longwave radiation to the snow surface were enabled by using measured sub-canopy air temperatures as a proxy for downward-facing forest canopy temperatures. However, there was a notable decoupling of measured above and below forest canopy air temperatures in stable conditions (air temperatures warmer above the canopy than below), which was enhanced during night-time. Hence, here we present results of an experiment using a multi-physics snow model including a forest canopy (FSM2.1.1) to investigate the impact of above and below canopy air temperature decoupling on simulations of sub-canopy longwave radiation. Simulations compare the use of 1- and 2-layer canopy models, and application of Monin–Obukhov similarity theory across a wide range of forest densities.

How to cite: Rutter, N. and Essery, R.: Impact of above and below canopy air temperatures in simulation of sub-canopy longwave radiation in snow-covered boreal forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5541, https://doi.org/10.5194/egusphere-egu21-5541, 2021.

EGU21-4563 | vPICO presentations | CR5.1

Bistatic radar observations of the coherent backscatter opposition effect in dry snow

Marcel Stefko, Silvan Leinss, and Irena Hajnsek

In this submission we report on observations of the coherent backscatter opposition effect (CBOE) in seasonal snow layers using bistatic radar, and the possible pathways towards estimation of snow properties from these radar observations.

Bistatic radar refers to a configuration where the transmitter and the receiver are not in the same location. From the point of view of the observed target, there thus exists a non-zero angular separation between  directions towards the transmitter and towards the receiver, referred to as the bistatic angle. The coherent backscatter opposition effect (CBOE) is a phenomenon that causes increased backscatter of coherent radiation at small bistatic angles (less than 1 degree) in refractive but non-absorbing disordered media (e.g. snow). It has been previously investigated to characterize surfaces of various water-ice covered Solar System bodies [1], however it has received comparatively little attention in Earth-focused observations, despite the well-known occurrence of significant volume scattering within snow and ice.

Scattering models of CBOE relate the shape of the intensity peak (width, height) to specific parameters of the random medium (grain size, mean free path, reflectivity) [2]. Measurements of the CBOE peak profile are thus a possible pathway towards improving the accuracy of estimates of these parameters, and those closely connected to them, such as the snow water equivalent (SWE).

We report on two separate observations of the CBOE-intensity peak in snow. We carried out ground-based observations using an experimental bistatic Ku-band radar system KAPRI [3], to observe the effect in a winter snow layer on top of the peak Rinerhorn in Davos, Switzerland. We also report on observations of backscatter enhancement in the accumulation zone of Aletsch glacier, using the spaceborne bistatic X-band synthetic aperture radar system TanDEM-X. Applying the aforementioned scattering models to the observations, we can estimate the mean free path of the scattered signal within the snow layer to be 10 cm at Ku-band, and 17 cm at X-band.

We believe that further study of CBOE in the context of Earth-focused observations of snow and ice opens new opportunities for development of quantitative models aiming to derive snow properties from bistatic radar observations.

REFERENCES

[1] Black et al. 2001: Icy Galilean Satellites: Modeling Radar Reflectivities as a Coherent Backscatter Effect. Icarus, 151(2), 167–180.
[2] Hapke et al. 1998: The Opposition Effect of the Moon: Coherent Backscatter and Shadow Hiding. Icarus, 133(1), 89–97.
[3] Baffelli et al. 2017: Polarimetric Calibration of the Ku-Band Advanced Polarimetric Radar Interferometer. IEEE Transactions on Geoscience and Remote Sensing, 56(4), 2295–2311.

How to cite: Stefko, M., Leinss, S., and Hajnsek, I.: Bistatic radar observations of the coherent backscatter opposition effect in dry snow, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4563, https://doi.org/10.5194/egusphere-egu21-4563, 2021.

EGU21-13429 | vPICO presentations | CR5.1

Simulating airborne ‘snow walls’ of Antarctica using CRYOWRF v1.0

Varun Sharma, Franziska Gerber, and Michael Lehning

When a well-developed, high velocity katabatic flow draining down the ice sheet of Antarctica reaches the coast, it experiences an abrupt and rapid transition due to change in slope resulting in formation of a hydraulic jump. A remarkable manifestation of the hydraulic jump, given the ‘right’ surface conditions, is the large-scale entrainment and convergence of blowing snow particles within the hydraulic jump. This can result in formation of 100-1000 m high, highly localized ‘walls’ of snow in the air in an otherwise cloud-free sky.

Recent work by Vignon et al. (2020) has described in detail, the mechanisms resulting in the formation of hydraulic jumps and excitation of gravity waves during a particularly notable event at the Dumont d’Urville (DDU) station in August 2017. They used a combination of satellite images, mesoscale simulations with WRF and station measurements (including Micro Rain Radars) in their study, notably relying on the snow wall for diagnosing and quantifying the hydraulic jump in satellite images. On the other hand, relatively less importance was given towards the surface snow processes including the transport of snow particles in the wall.

In this presentation, we present results from simulations done using the recently developed CRYOWRF v1.0 to recreate the August 2017 episode at DDU and explicitly simulate the formation and the dynamics of the snow wall itself. CRYOWRF enhances the standard WRF model with the state-of-the-art surface snow modelling scheme SNOWPACK as well as a completely new blowing snow scheme. SNOWPACK essentially acts as a land surface model for the WRF atmospheric model, thus making a quantum leap over the existing snow cover models in WRF. Since SNOWPACK is a grain-scale snow model, it allows for the proper formulation of boundary conditions for simulating blowing snow dynamics.

Results show the formation of the snow wall due to large scale entrainment over a wide area of the ice sheet, the mass balance of the snow wall within the hydraulic jump and finally, the destruction of the snow wall and the ultimate fate of all the entrained snow. We also show results for the influence of the snow wall on the local surface radiation at DDU. Overall, we test the capabilities of CRYOWRF to simulate such a complex phenomenon and highlight possible applications now feasible due the tight coupling of an advanced snow cover model and a multi-scale, non-hydrostatic atmospheric flow solver.

Reference:

Vignon, Étienne, Ghislain Picard, Claudio Durán-Alarcón, Simon P. Alexander, Hubert Gallée, and Alexis Berne. " Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica". Journal of the Atmospheric Sciences 77.4 (2020): 1295-1312. <>.

How to cite: Sharma, V., Gerber, F., and Lehning, M.: Simulating airborne ‘snow walls’ of Antarctica using CRYOWRF v1.0, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13429, https://doi.org/10.5194/egusphere-egu21-13429, 2021.

EGU21-387 | vPICO presentations | CR5.1

Spatial and temporal patterns of snowmelt refreezing in a Himalayan catchment

Sanne Veldhuijsen, Remco De Kok, Emmy Stigter, Jakob Steiner, Tuomo Saloranta, and Walter Immerzeel

Seasonal snow contributes significantly to the annual runoff in the Himalaya and both timing and volume are important for downstream users.  In  polar regions, meltwater refreezing within snowpacks has been well-studied. While the conditions in the Himalaya are considered favorable for refreezing, little is known about refreezing in this region, hindering a complete understanding of seasonal snowmelt dynamics. In this study, we simulated refreezing with the seNorge (v2.0) snow model for the Langtang catchment in the Nepalese Himalaya covering a 5-year period. Thereby, we aim to improve our understanding about how refreezing varies in space and time and to provide a framework for future snow modeling studies. The first part of this study focuses extensively on developing meteorological forcing data, which were derived from an unique elaborate network of meteorological stations and high-resolution meteorological simulations. The snow model was validated against in-situ snow observations and snow cover satellite data. In the second part of this study, we analyze the spatial and temporal refreezing patterns, and attempt to identify possible driving factors. The results show that the annual average refreezing amounts to 122 mm (21% of the total melt). We found that the magnitude of refreezing varies strongly in space depending on elevation and aspect. In addition, there is a strong seasonal altitudinal variability related to air temperature and snow depth, with most refreezing during the early melt season. We also found a substantial intra-annual variability, which mainly results from fluctuations of snowfall, highlighting the importance of using multi-year time series in refreezing assessments. Daily refreezing simulations decreased by 84% (to an average 19 mm year-1) compared to hourly simulations, emphasizing the importance of using sub-daily time steps to capture diurnal melt-refreeze cycles. Climate sensitivity experiments revealed that refreezing is highly sensitive to future changes in air temperature, as a temperature increase of 2°C leads to a refreezing decrease of 35%. We conclude that including refreezing with a sub-daily temporal resolution is highly relevant for understanding snow dynamics in the current and future climate of the Himalaya.

 

How to cite: Veldhuijsen, S., De Kok, R., Stigter, E., Steiner, J., Saloranta, T., and Immerzeel, W.: Spatial and temporal patterns of snowmelt refreezing in a Himalayan catchment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-387, https://doi.org/10.5194/egusphere-egu21-387, 2021.

In mountainous terrain, wind-driven transport of deposited snow affects the overall distribution of snow, and can have a significant effect on snowmelt patterns even at coarser resolution.  In an operational modelling perspective, a compromise must be found to represent this complex small-scale process with enough accuracy while mitigating the computational costs of snow cover simulations over large domains. To achieve this compromise, we implemented the SNOWTRAN-3D snow transport module within the FSM intermediate complexity snow cover model. We included a new layering scheme and a historical variable of past snow wetting, but without resolving the snow microstructure. Simulations are run and evaluated over a small mountain range in the Swiss Alps at 25 to 100 m resolution. Being implemented in the model framework of the SLF operational snow hydrology service (OSHD), simulations further benefit from snow data assimilation techniques to provide improved estimates of solid precipitation fields. As complex wind patterns in mountains are the key processes driving snow transport, we tested statistical and dynamical methods to downscale 1 km resolution COSMO winds to better reflect topographically-induced flow patterns. These simulations are a first step working towards the integration of wind transport processes over large domains in an intermediate-complexity and -resolution operational modelling framework.

How to cite: Quéno, L., Morin, P., Mott, R., and Jonas, T.: Local simulations of snow redistribution by wind with an intermediate-complexity snow cover model driven by different wind downscaling methods, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14629, https://doi.org/10.5194/egusphere-egu21-14629, 2021.

EGU21-1319 | vPICO presentations | CR5.1

Impact of variability in measured and simulated tundra snowpack properties on heat transfer metrics

Victoria Dutch, Nick Rutter, Leanne Wake, Mel Sandells, Chris Derksen, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, and Phillip Marsh

Tundra snowpack properties are highly heterogenous over a variety of spatial scales and evolve over the course of the winter. Variations in snowpack properties such as snow density and microstructure control the transfer of heat through the snowpack. Thermal properties of the snowpack impact the subnivean environment; snow insulates the underlying soil, allowing films of liquid water to remain unfrozen, enabling biological processes to take place. In this study, field measurements from four field campaigns across two different winters (March and November 2018, January and March 2019) are used to capture and constrain the spatial variability of the snowpack. These include 1050 spatially distributed Snow MicroPenetrometer (SMP) profiles throughout the Trail Valley Creek catchment in the Northwest Territories, Canada. Bespoke coefficients for tundra snowpacks were calculated (based on the work of King et al., 2020) to convert raw SMP force measurements to densities. This allowed density changes of vertical profiles to be assessed and spatial variability in the thickness and properties of three snowpack layers (wind slab, indurated hoar and depth hoar) to be quantified. 105 needleprobe measurements from 37 snowpits were used to contrast the density and thermal conductivity of snowpack layers, as well as thermal conductivities estimated from recalibrated SMP density profiles. These in-situ measurements will be compared to 1-D simulations of snowpack properties from the Community Land Model (PTCLM 5.0) over the two winter seasons. The impact of snowpack layering on snow heat transfer metrics will be investigated using both 2-layer (wind slab: depth hoar) and 3-layer (wind slab: indurated hoar: depth hoar) snowpack configurations. The spatial variability of heat transfer metrics across the Trail Valley Creek catchment will also be considered.

How to cite: Dutch, V., Rutter, N., Wake, L., Sandells, M., Derksen, C., Hould Gosselin, G., Sonnentag, O., Essery, R., and Marsh, P.: Impact of variability in measured and simulated tundra snowpack properties on heat transfer metrics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1319, https://doi.org/10.5194/egusphere-egu21-1319, 2021.

CR5.2 – Snow avalanche dynamics: from driving processes to mitigation strategies

EGU21-16562 | vPICO presentations | CR5.2

Observing avalanche dynamics with Distributed Acoustic Sensing

Andreas Fichtner, Pascal Edme, Patrick Paitz, Nadja Lindner, Michael Hohl, Pierre Huguenin, Betty Sovilla, Pere Roig-Lafon, Emma Surinach, and Fabian Walter

Avalanche research requires comprehensive measurements of sudden and rapid snow mass movement that is hard to predict. Automatic cameras, radar and infrasound sensors provide valuable observations of avalanche structure and dynamic parameters, such as velocity. Recently, seismic sensors have also gained popularity, because they can monitor avalanche activity over larger spatial scales. Moreover, seismic signals elucidate rheological properties, which can be used to distinguish different types of avalanches and flow regimes. To date, however, seismic instrumentation in avalanche terrain is sparse. This limits the spatial resolution of avalanche details, needed to characterise flow regimes and maximise detection accuracy for avalanche warning.

As an alternative to conventional seismic instrumentation, we propose Distributed Acoustic Sensing (DAS) to measure avalanche-induced ground motion. DAS is based on fibre-optic technology, which has previously been used already for environmental monitoring, e.g., of snow avalanches. Thanks to recent technological advances, modern DAS interrogators allow us to measure dynamic strain along a fibre-optic cable with unprecedented temporal and spatial resolution. It therefore becomes possible to record seismic signals along many kilometres of fibre-optic cables, with a spatial resolution of a few metres, thereby creating large arrays of seismic receivers. We test this approach at an avalanche test site in the Valleé de la Sionne, in the Swiss Alps, using an existing 700 m long fibre-optic cable that is permanently installed underground for the purpose of data transfer of other, independent avalanche measurements.

During winter 2020/2021, we recorded numerous snow avalanches, including several which reached the valley bottom, travelling directly over the cable during runout. The DAS recordings show clear seismic signatures revealing individual flow surges and various phases/modes that may be associated with roll waves and avalanche arrest. We compare our observations to state-of-the-art radar and seismic measurements which ideally complement the DAS data.

Our initial analysis highlights the suitability of DAS-based monitoring and research for avalanches and other hazardous granular flows. Moreover, the clear detectability of avalanche signals using existing fibre-optic infrastructure of telecommunication networks opens the opportunity for unrivalled warning capabilities in Alpine environments.

How to cite: Fichtner, A., Edme, P., Paitz, P., Lindner, N., Hohl, M., Huguenin, P., Sovilla, B., Roig-Lafon, P., Surinach, E., and Walter, F.: Observing avalanche dynamics with Distributed Acoustic Sensing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16562, https://doi.org/10.5194/egusphere-egu21-16562, 2021.

EGU21-16361 | vPICO presentations | CR5.2

mGEODAR – a new mobile radar for avalanche mass movement monitoring

Anselm Köhler, Lai Bun Lok, and Jan-Thomas Fischer

Radar imaging has become increasingly important in either the detection of avalanches or in the scientific characterization of the avalanche flow. Detection radars usually base on the Doppler radar principle that is sensitive to the velocity of moving object but lack sufficient resolution which can be circumvented with frequency-modulated pulsed radars. We present a new radar device as a follow up of the successful GEODAR radar that suit the need for both applications – low resolution detection and high resolution observation. While the original GEODAR is permanently installed in the full-scale avalanche Test site “Vallée de la Sionne" in Valais, Switzerland, our new device is much smaller and can be deployed in fast response to the metrological forecast and avalanche situation. Currently the mGEODAR is installed at Nordkette ski resort above Innsbruck that is known for its frequent artificial avalanche releases. The new radar features a versatile frequency generation scheme using direct digital synthesis and can be quickly reprogrammed into a low-resolution detection mode for continuous data recording that switches to a high-resolution observation mode as soon as an avalanche is detected.

Beside the radar system itself, avalanche data are presented of the winter season 2020/21. A focus is on small to medium sized avalanches that are just on the limit to develop into a powder snow avalanche which is characterized by surging in the intermittent frontal region. Connecting the radar data of the dynamic flow evolution with snow conditions will lead to drivers of this flow regime transition. The snow conditions are taken from nearby weather stations and manual snow profiles but also from the radar itself. A continuous scanning of the resting snow cover in the avalanche path during the season further allows snow cover monitoring. This application allows to identify new snow fall, warming and wetting of surface layers as well as diurnal melt-freeze cycles.

The radar data should be consequently used for model validation, calibration, and development. With the current measurement campaign of small to mid-sized avalanches, we hope to close a gap in data availability for those events as they are increasingly the object of simulation scenarios, but current modelling and simulation tools are usually calibrated for larger and extreme events. In the future, we expect the mGEODAR radar to be deploy on other gravitational mass-movements phenomena like soil slides and rock-fall.

How to cite: Köhler, A., Lok, L. B., and Fischer, J.-T.: mGEODAR – a new mobile radar for avalanche mass movement monitoring, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16361, https://doi.org/10.5194/egusphere-egu21-16361, 2021.

EGU21-16560 | vPICO presentations | CR5.2

Influence of cohesion on drifting snow investigated in cold wind-tunnel 

Jean-luc Velotiana Ralaiarisoa, Florence Naaim, Kenji Kosugi, Masaki Nemoto, Yoichi Ito, Alexandre Valance, Ahmed Ould el Moctar, and Pascal Dupont

Aeolian transport of particles occurs in many geophysical contexts such as wind-blown sand or snow drift and is governed by a myriad of physical mechanisms. Most of drifting particles are transported within a saltation layer and has been largely studied for cohesionless particles whether for snow or for sand. Thus, the theoretical description of aeolian transport has been greatly improved for the last decades. In contrast cohesive particles-air system have received much less attention and there remain many important physical issues to be addressed.  

In the present study, the characteristics of drifting cohesive snow phenomena is investigated experimentally. Several wind tunnel experiments were carried out in the Cryopsheric Environment simulator at Shinjo (Sato et al., 2001). Spatial distribution of wind velocity and the mass flux of drifting snow were measured simultaneously by an ultrasonic anemometer and a snow particle counter. Compacted snow was sifted on the floor and left for a determined duration time to become cohesive by sintering. Two kinds of snow beds with different compression hardness were used (“hard snow” with a compression hardness of about 60 kPa and “semi hard snow” with a compression hardness of about 30 kPa). Wind tunnel velocity varied from 7 m/s to 15 m/s. Moreover steady snow drifting can be produced by seeding snow particles at a constant rate at the upwind of the test section.

It was shown that :

- on hard snow cover, aerodynamic entrainment does not occur and saltating particles from the seeder just rebounded without splashing particles composing the snow surface (Kosugi et al.,2004). At a given transport rate, the characteristic decay length lν,which can be seen as an estimation of the height of the saltating layer, exhibits a quadratic dependence with the air friction speed, u*. It is in agreement with results obtained by Ho (2011) with saltating sand on non-erodible bed. More surprisingly, lν increases with snow particles diameter, which means that restitution coefficient over hard snow cover also increases with snow particles diameters.

 - On loose snow cover, without seeder, data analysis from  Sugiura et al. (1998), shows that lv is proportional to u* to the power 1.4. This results therefore supports the idea that cohesionless snow doesn’t exist: on erodible sand bed configuration, the decay length is invariant (Ho, 2012).

-on semi hard snow cover, without seeder, the inter-particle cohesion makes the transport unsteady and spatially inhomogeneous. lv is proportional to u* to the power 1.6. It is therefore an intermediate case between “loose” and “hard “snow. Restitution coefficient on semi-hard snow is higher than on loose snow cover but smaller than on hard snow cover.  Particles are mainly lifted through aerodynamic entrainment so that saturation length is not obtained in the wind-tunnel : the transport rate  is two orders of magnitude lower than   the maximum transport rate observed for loose snow.

-on semi hard snow cover, with seeder, the drifting snow flux dramatically increases, even for low wind speed, leading sometimes to snow cover vanish. Experimental results provide evidence that impacting particles are efficient to lift cohesive snow particles : the transport rate increases to nearly 10.

How to cite: Ralaiarisoa, J.-V., Naaim, F., Kosugi, K., Nemoto, M., Ito, Y., Valance, A., Ould el Moctar, A., and Dupont, P.: Influence of cohesion on drifting snow investigated in cold wind-tunnel , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16560, https://doi.org/10.5194/egusphere-egu21-16560, 2021.

EGU21-14504 | vPICO presentations | CR5.2

Tree-ring reconstruction of snow avalanches in Şureanu Mountains (Southern Carpathians, Romania)

Corina Todea and Olimpiu Pop

Snow avalanches (SAs) are a widespread natural hazard in the Carpathians, damaging forests and threatening properties, tourism infrastructures and people. In Şureanu Mountains (Southern Carpathians), SA activity is not documented in the historical archives and consequently information regarding the SA frequency and their spatial extent is lacking. Along the forested avalanche paths, disturbed trees record selectively in their annual rings evidence of past events. Tree rings represent therefore a natural archive which can provide valuable information about the past SA activity. The aim of the present study is to reconstruct the occurrence and spatial extent of past SA activity with tree rings in Şureanu Mts. For this purpose, two avalanche paths adjacent to a ski area located in the central part of Şureanu Mts., have been investigated. Samples (cores and discs) collected from 121 and 141 Norway spruce (Picea abies (L.) Karst.) trees damaged by SAs along both paths have been analyzed. Tree-growth anomalies (e.g. scars, callus tissues, onset sequences of tangential rows of traumatic resin ducts, compression wood and growth suppression sequences) associated with the mechanical impact produced by SAs on trees were identified and used to reconstruct the SA history. Within the investigated paths, the reconstructed SA chronology spans the period of the last century. The minimum SA frequency and maximum extent reconstructed served to define the return periods within the two paths investigated. Tree-ring derived records provided the most consistent SA chronology in the study area, and can further be integrated in the avalanche hazard zoning assessment.

How to cite: Todea, C. and Pop, O.: Tree-ring reconstruction of snow avalanches in Şureanu Mountains (Southern Carpathians, Romania), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14504, https://doi.org/10.5194/egusphere-egu21-14504, 2021.

EGU21-4097 | vPICO presentations | CR5.2

From avalanche-obstacle interaction processes to physics-based impact pressure calculations – an insight from DEM simulations

Michael Lukas Kyburz, Betty Sovilla, Johan Gaume, and Christophe Ancey

Predicting the magnitude of the impact force that snow avalanches can exert on structures still remains a challenging question.

In fast flow regimes, the impact pressure is mainly driven by the kinetic energy of the flow: it scales as one-half the product of the flow density and the square of the avalanche speed, and the effect of the shape of the structure is encapsulated in the so-called drag coefficient. Recent measurements on well-documented snow avalanches that have impacted different types of structures have confirmed the existence of another impact force regime at lower speed for which the pressure exerted on the obstacle is independent of the avalanche speed but rather controlled by the lithostatic pressure associated with the typical flow thickness. These measurements have also shown that the depth-dependent force could reach values that are many times greater than the lithostatic force.

The present paper proposes a general analytic form for the impact force of dense avalanches on structures. The approach is based on the application of mass and momentum conservation equations, in their depth-averaged forms, to a control-volume which surrounds the influence zone of the obstacle. A criterion to distinguish between the depth-dependent force regime and the velocity-square force regime can be derived. It is demonstrated that the size of the influence zone of the obstacle, relative to the dimension of the obstacle and/or the avalanche thickness, is a key ingredient (in addition to the traditional Froude number) to demarcate the depth-dependent impact forces from the velocity-square impact forces. Further developments are needed to unravel the size and shape of the influence zone (of any kind obstacle for any type of flowing snow), and then to be able to hone the proposed criterion. However, the present study takes a step forward for a better characterization of avalanche impact forces on structures.

How to cite: Faug, T.: Dense avalanches hitting structures: demarcating depth-dependent impact pressures from velocity-squared impact pressures, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11518, https://doi.org/10.5194/egusphere-egu21-11518, 2021.

EGU21-11202 | vPICO presentations | CR5.2

Recent advances in applied avalanche research in Norway

Christian Jaedicke, Dieter Issler, Kjersti Gleditsch Gisnås, Sean Salazar, Kate Robinson, Peter Gauer, Henrik Langeland, Ulrik Domaas, Zhongqiang Liu, Sylfest Glimsdal, Frode Sandersen, Katrine Mo, Regula Frauenfelder, Håkon Heyerdahl, Hedda Breien, and Graham Gilbert

Snow avalanches are a significant natural hazard and common phenomenon in Norway. Applied research on avalanches and their societal impact has been conducted at the Norwegian Geotechnical Institute (NGI) for nearly half a century.

Recent activities within the applied avalanche research group at NGI have focused on four areas: (1) Improved understanding of is sought through the application of simple probabilistic release models and local wind modelling. Encouraging results are obtained by analysing and refining publicly available climate time series for temperature, snow depth and precipitation on a 1 km² grid. A major remaining challenge in view of elaborating realistic large-area avalanche hazard indication maps is the a priori determination of the size of release areas as a function of return period. (2) Different aspects of are investigated by means of a wide array of experimental technologies at the Ryggfonn full-scale test site, application of aerial survey methods to derive snow distribution, and investigation of the scaling behaviour of avalanches with extreme runouts in many different paths. The results of all these analyses point towards the need for a departure from modelling avalanches with Voellmy-type models in favour of models encompassing multiple flow regimes, a more realistic rheology and entrainment as well as deposition. (3) To improve risk assessment and mitigation measures, with structures are studied by documenting destructive avalanche events, constructing vulnerability curves for persons inside buildings based on historic avalanche events, improving methods for evaluation of individual risks, and development of criteria for physical mitigation measures against powder-snow avalanches. (4) Current efforts in focus on the one hand on simple block models for studying scaling behaviour on idealised and natural slopes and on the other hand on an advanced multi-flow-regime model that also incorporates different effects of the snow cover. Ongoing work aims, among others, at an entrainment and deposition model that is dynamically consistent and only depends on measurable snow properties. This contribution will present an overview of recent activities and advancements in applied avalanche research in Norway. It is hoped that it will serve to facilitate future international collaborative efforts to address challenges in applied avalanche research.

How to cite: Jaedicke, C., Issler, D., Gleditsch Gisnås, K., Salazar, S., Robinson, K., Gauer, P., Langeland, H., Domaas, U., Liu, Z., Glimsdal, S., Sandersen, F., Mo, K., Frauenfelder, R., Heyerdahl, H., Breien, H., and Gilbert, G.: Recent advances in applied avalanche research in Norway, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11202, https://doi.org/10.5194/egusphere-egu21-11202, 2021.

EGU21-6110 | vPICO presentations | CR5.2

Modeling of snow avalanche dynamics using open source software OpenFOAM

Daria Romanova and Margarita Egiit

The work is devoted to the comparison of different approaches for modeling the dynamics of dense and powder snow avalanches. Various 3D and 2D approaches are considered. The accuracy of determining the avalanche run-out zone, the interaction of the flow with obstacles, the front speed, and various distributed parameters are evaluated. As objects for comparison, an experiment on the interaction of a slushflow with a combination of protective structures and a powder snow avalanche in the Khibiny mountains are modeled.

 

Taking into account the advantages and disadvantages of various approaches based on basic solutions available in the OpenFOAM package, a specialized software avalancheFoam is being developed for three-dimensional modeling of the dynamics of snow avalanches, taking into account the complex turbulent regime and multiphase structure of the flow. Machine learning techniques are used to refine turbulent stresses. The neural network is trained on a dataset obtained from high-precision supercomputer simulation of the flow, and sets the form of additional refinement members of the mathematical model of less computational complexity. Various avalanche sites in the Khibiny mountains are modeled to validate the developed software.

How to cite: Romanova, D. and Egiit, M.: Modeling of snow avalanche dynamics using open source software OpenFOAM, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6110, https://doi.org/10.5194/egusphere-egu21-6110, 2021.

EGU21-6045 | vPICO presentations | CR5.2

The material point method for simulating dense snow avalanches over complex real terrain

Xingyue Li, Betty Sovilla, Chenfanfu Jiang, and Johan Gaume

Various dynamics models can reproduce the motion of avalanches from release to deposition. These models often simulate a conceptual avalanche, adopt depth-averaged approaches and do not resolve variations along flow depth direction, and thus have clear limitations. This study presents three-dimensional, full-scale modeling of dense snow avalanches performed using the complex real terrain of the Vallée de la Sionne avalanche test site in Switzerland. We use the material point method (MPM) and a large-strain elastoplastic constitutive law for snow based on a Modified Cam Clay model. In our simulations, various and transient avalanche flow regimes are simulated by setting distinct snow properties. Snow avalanches are investigated from release to deposition. Detailed simulation results include the initial failure patterns, the mechanical behavior during the flow, and the characteristics of the final avalanche deposits. More specifically in the release zone, we can observe brittle and ductile fractures depending on the defined snow properties. During the flow phase, we monitor the temporal and spatial variations of snow density in the avalanche. In particular, cohesionless granular flows, cohesive granular flows, and plug flows are associated with snow fracture, compaction, and expansion. Finally, we can observe the structure of the avalanche deposit surfaces which show distinguishable differences in terms of smoothness, granulation, and compacting shear planes. This new model can offer a quantitative analysis for studying avalanches in different regimes and provide a powerful tool for exploring the dynamics of full-scale avalanches on complex real terrain, with high physical detail.

How to cite: Li, X., Sovilla, B., Jiang, C., and Gaume, J.: The material point method for simulating dense snow avalanches over complex real terrain, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6045, https://doi.org/10.5194/egusphere-egu21-6045, 2021.

EGU21-6560 | vPICO presentations | CR5.2

AvaFrame as a testing and benchmarking environment for avalanche simulations 

Felix Oesterle, Anna Wirbel, Matthias Tonnel, and Jan-Thomas Fischer

Testing and benchmarking avalanche models is a crucial step in developing models as well as assessing their applicability. This is not only limited to the representation of physical processes within models, be it via first principles or using empirical relationships, but also concerns their computing environment, including compilers, hardware used, programming language, among others. 

Test, benchmarking, and comparison strategies can aim at different issues, among others: numerics, the implementation thereof, plausibility, verification, or evaluation. However, they always require reference or expected results. References can come from observations, analytical results, comparison to other models, known physical processes or material properties that cannot be changed – e.g., “avalanches cannot fly”. The question is: which characteristics or properties do we test and how to design appropriate tests?  

To facilitate this, as part of the newly developed opensource avalanche framework - AvaFrame -, we started providing commonly accessible tools to make testing and developing easier. This ranges from tools to import data, generate input parameters to automatic analysis and plotting. Not only do we provide the infrastructure for testing, but we also provide a set of test cases complete with all necessary input data, reference results, and run script examples. These tests so far include idealized (generic) topographies, specific test cases for numerical questions, and 6 real world avalanches with distinct characteristics. 

In this contribution we present this freely available set of tests and benchmarks suitable to assess various aspects and properties of a shallow water model solver for a dense flow avalanche model, one of the core computing modules of AvaFrame (com1DFA). We highlight how we utilize the entire range of tests in our continuous model development to assure the quality and applicability / validity of our development. Showing results from comparison to existing models, but also how to extend and apply our strategies to other models or research questions, we invite other researchers and developers to make full use of these tools.

How to cite: Oesterle, F., Wirbel, A., Tonnel, M., and Fischer, J.-T.: AvaFrame as a testing and benchmarking environment for avalanche simulations , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6560, https://doi.org/10.5194/egusphere-egu21-6560, 2021.

EGU21-10762 | vPICO presentations | CR5.2

Testing the influence of snow and meteorological conditions on snow avalanche deposit volumes

Hippolyte Kern, Vincent Jomelli, Nicolas Eckert, and Delphine Grancher

Snow avalanche deposit volume is an important characteristic that determines vulnerability to snow avalanche. However, there is insufficient knowledge about snow and meteorological variables controlling deposit volumes. Our study focuses on the analysis of 1986 deposit volumes from 182 paths located in different regions of the French Alps including Queyras, and Maurienne valleys, between 2003 and 2017. This work uses data from the Permanent Avalanche Survey (EPA) database, an inventory of avalanche events occurring at well-known, delineated and mapped paths in France. We investigated relationships between snow deposit volumes and meteorological quantities, such as precipitation and temperature determined from SAFRAN reanalyses and snow-depth and wet snow-depth estimated from CROCUS reanalyses at a daily time scale at 2100m a.s.l. Analysis was conducted at an annual and seasonal time scale considering winter (November-February) and spring (March-May) between the mean deposit volumes and the mean meteorological and snow conditions. 

Results do not show any significant relationship between deposit volumes and meteorological or snow conditions at an annual time scale or for spring season. However, correlations between deposit volumes and meteorological and snow variables are high in winter (R2=0.78). The best model includes two snow variables: mean snow-depth and maximal wet snow-depth. We suggest that these two important snow variables reflect variations in the snow cover characteristics later influencing the nature of the flow and the deposit volumes. Dividing the studied paths sample into several classes according to their morphology (i.e: surface area or mean slope) increases the significance of the relationship for both seasons and highlights more complex relationships with meteorological and snow variables.

How to cite: Kern, H., Jomelli, V., Eckert, N., and Grancher, D.: Testing the influence of snow and meteorological conditions on snow avalanche deposit volumes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10762, https://doi.org/10.5194/egusphere-egu21-10762, 2021.

EGU21-4781 | vPICO presentations | CR5.2

Modelling powder snow avalanches using a depth-averaged turbulent shear model 

Kseniya Ivanova, Yves Bühler, and Perry Bartelt

Two different mathematical models of fluid mechanics are now being investigated  at the WSL Institute for Snow and Avalanche Research in Davos to model powder-snow avalanches. The first approach is to solve the full three-dimensional multiphase (ice-dust, air) incompressible Navier-Stokes equations; the second approach is to apply depth-averaged models to simulate both the formation and independent propagation of the powder cloud. The final goal of both models is to predict the dynamics of powder avalanches in three-dimensional terrain and specifically cloud impact pressures. Both models are driven by the same set of terrain dependent mass and momentum exchanges defined by the flow state (speed, density, height) of the avalanche core. The great advantage of the depth-average approach is computational speed, allowing the investigation of different hazard scenarios involving variable release locations, snow temperature and entrainment depths. This fact has allowed the widespread application of the depth-average model to many historical case studies, including the avalanches measured at the Vallée de la Sionne (VdlS) test site. However, a central modelling problem needs to be resolved: both air-entrainment (cloud height and density) and drag (cloud speed) are intimately linked to the turbulence created during the cloud formation phase.

In this presentation, we present a depth-averaged turbulence model proposed by V. M. Teshukov [1] and extended by Richard and Gavrilyuk [2] and Gavrilyuk et al. [3], Ivanova et al. [5, 6]. The mathematical model is a 2D hyperbolic non-conservative system of equations that is mathematically equivalent to the Reynolds-averaged model of barotropic turbulent flows. The system is non-conservative, extending the classical shallow water equations to contain three independent components of the symmetric Reynolds stress tensor. We simulate the measured powder cloud heights of two VdlS avalanches using both the incompressible Navier-Stokes and turbulent shallow-water models, capturing the unsteady formation of billow height and width measured by ground based photogrammetry [4]. This can only be achieved by making air-entrainment dependent on the vorticity predicted by the turbulence model. We conclude by summarizing why we believe shallow-water type models can be applied for practical hazard engineering problems.

References:

[1] V. M. Teshukov in "Gas-dynamics analogy for vortex free-boundary flows.", J. Appl. Mech. Tech. Phys., 2007.

[2] G. L. Richard, S. L. Gavrilyuk in "A new model of roll waves: comparison with Brock’s experiments", Journal of Fluid Mechanics, 2012.

[3] S.L. Gavrilyuk, K.A. Ivanova, N. Favrie in "Multi-dimensional shear shallow water flows : problems and solutions", Journal of Computational Physics, 2018.

[4] Dreier, L., Bühler, Y., Ginzler, C., and Bartelt, P.: Comparison of simulated powder snow avalanches with photogrammetric measurements, Annals of Glaciology, 57, 371 - 381, 10.3189/2016AoG71A532, 2016.]

[5] K.A. Ivanova, S.L. Gavrilyuk, ”Structure of the hydraulic jump in convergent radial flows”,Journal of Fluid Mechanics, Volume 860, 10 February2019 , pp. 441-464.

[6] K.A. Ivanova, S.L. Gavrilyuk, B. Nkonga, G.L. Richard, ”Formation and coarsening of roll-waves in shear shallow water flows down an inclinedrectangular channel”,Computers& Fluids, 159, pp 189203, 2017

How to cite: Ivanova, K., Bühler, Y., and Bartelt, P.: Modelling powder snow avalanches using a depth-averaged turbulent shear model , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4781, https://doi.org/10.5194/egusphere-egu21-4781, 2021.

EGU21-7454 | vPICO presentations | CR5.2

A numerical approach for simulating two-dimensional dense-snow avalanches in global coordinate systems

Daniel Zugliani, Giorgio Rosatti, and Stefania Sansone

Snow avalanche models are commonly based on a continuum fluid scheme, on the assumption of shallow flow in the direction normal to the bed, on a depth-averaged description of the flow quantities and on different assumptions concerning the velocity profile, the friction law, and the pressure in the flow direction (see Bartelt et al, 1999, Barbolini et al., 2000, for an overview). The coordinate reference system is commonly local, i.e., for each point of the domain, one axis is normal to the bed while the other two axes lay in a tangent plane. When the bed is vertical and the flow is not aligned with the steepest direction (e.g., in case of a side wall), the flow depth is no longer defined considering the normal direction and the model based on the local coordinate system is no longer valid. In near-vertical conditions, numerical problems can be expected.

Another critical point, for numerical models based on finite volume schemes and Godunov fluxes, is the accurate treatment of the source term in case of no-motion conditions (persistence, starting and stopping of the flow) due to the presence of velocity-independent, Coulomb-type terms in the bed shear stress. 

In this work, we provide a numerical approach for a Voellmy-fluid based model, able to overcome the limits depicted above, to accurately simulate analytical solutions and to give reliable solutions in other cases (Zugliani & Rosatti, 2021). Firstly, differently from the other literature models, the chosen coordinate reference system is global (an axis opposite the gravity vector and the other two orthogonal axes lay in the horizontal plane) and therefore, the relevant mass and momentum equations have been derived accordingly. Secondly, these equations have been discretized by using a finite volume method on a Cartesian square grid where the Godunov fluxes has been evaluated by mean of a modified DOT scheme (Zugliani & Rosatti, 2016) while source terms in conditions of motion have been discretized by using an implicit operator-splitting technique. Finally, a specific algorithm has been derived to deal with the source term to determine the no-motion conditions.  Several test cases assess the capabilities of the proposed approach.

 

References:

Barbolini, M., Gruber, U., Keylock, C.J., Naaim, M., Savi, F. (2000), Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites. Cold Regions Science and Tech. 31, 133–149.

Bartelt, P., Salm, B., Gruber, U. (1999), Calculating dense-snow avalanche runout using a voellmy-fluid model with active/passive longitudinal straining. Journal of Glaciology 45, 242-254.

Zugliani D., Rosatti G. (2021), Accurate modeling of two-dimensional dense snow avalanches in global coordinate system: the TRENT2D approach. Paper under review.

Zugliani, D., Rosatti, G. (2016), A new Osher Riemann solver for shallow water flow over fixed or mobile bed, Proceedings of the 4th European Congress of the IAHR, pp. 707–713.

How to cite: Zugliani, D., Rosatti, G., and Sansone, S.: A numerical approach for simulating two-dimensional dense-snow avalanches in global coordinate systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7454, https://doi.org/10.5194/egusphere-egu21-7454, 2021.

EGU21-16564 | vPICO presentations | CR5.2

Towards an Improved Parameter-Free Entrainment Model for Snow Avalanches

Dieter Issler

On physical grounds, the rate of bed entrainment in gravity mass flows should be determined by the properties of the bed material and the dynamical variables of the flow. Due to the complexity of the process, most entrainment formulas proposed in the literature contain some ad-hoc parameter not tied to measurable snow properties. Among the very few models without free parameters are the Eglit–Grigorian–Yakimov (EGY) model of frontal entrainment from the 1960s and two formulas for basal entrainment, one from the 1970s due to Grigorian and Ostroumov (GO) and one (IJ) implemented in NGI’s flow code MoT-Voellmy. A common feature of these three approaches is their treating erosion as a shock and exploiting jump conditions for mass and momentum across the erosion front. The erosion or entrainment rate is determined by the difference between the avalanche-generated stress at the erosion front and the strength of the snow cover. The models differ with regard to how the shock is oriented and which momentum components are considered. The present contribution shows that each of the three models has some shortcomings: The EGY model is ambiguous if the avalanche pressure is too small to entrain the entire snow layer, the IJ model neglects normal stresses, and the GO model disregards shear stresses and acceleration of the eroded mass. As they stand, neither the GO nor the IJ model capture situations―observed experimentally by means of profiling radar―in which the snow cover is not eroded progressively but suddenly fails on a buried weak layer as the avalanche flows over it. We suggest a way to resolve the ambiguity in the EGY model and sketch a more comprehensive model combining all three approaches to capture gradual entrainment from the snow-cover surface together with erosion along a buried weak layer.

How to cite: Issler, D.: Towards an Improved Parameter-Free Entrainment Model for Snow Avalanches, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16564, https://doi.org/10.5194/egusphere-egu21-16564, 2021.

EGU21-7978 | vPICO presentations | CR5.2

Hydrodynamic instability of downslope flow with respect to two-dimensional perturbations

Julia Zayko and Margarita Eglit

Hydrodynamic instability of open flows down inclines is an important phenomenon which leads perturbation growth, turbulence, roll waves formation etc. It has been widely studied for flows of Newtonian rheology with respect to longitudinal perturbations (perturbations that spread along the flow velocity vector), for example, see works [1 - 4]. From mathematical point of view, the study of the stability of open flow down an inclined planes with respect to two- or three-dimensional perturbations (i.e., with respect to oblique perturbations, spreading under an arbitrary angle to the flow velocity vector) is quite difficult, especially, if the fluid has non-Newtonian rheological properties, which can be important in the context of geophysical applications. Nonetheless, works exist, where these two factors (non-Newtonian rheology of the moving medium and arbitrary angle of spreading of perturbations) are taken into account, e.g., [5,6]. In more recent work [5], the problem of downslope flow linear stability is solved in complete formulation (continuity and momentum equations are used with no averaging over the depth, stability with respect to 3D perturbations is studied); this significant work uses complex mathematics, and can be difficult for applications.

This abstract is based on the work [6], where linear stability analysis was first conducted for the downslope flow that is described by hydraulic equations, but 1) the rheology of the flow and flow regime (laminar or turbulent) were arbitrary, 2) oblique perturbations were taken into account. The stability criterion is obtained analytically, it contains basic flow characteristics and can be applied to the flow if it's depth-averaged velocity u, depth h, relation between the bottom friction and h, u (u is the velocity modulus), slope angle are known. It is shown that the flow can be unstable (i.e., small perturbations grow, and this can lead, for example, to roll waves formation, or turbulisation of the flow) to oblique perturbations, even if standard stability criterion for longitudinal 1D perturbations is satisfied. This takes place, e.g., for dilatant fluids with power law index greater than 2).

The result is important not only for experimentalists, but for researchers who use numerical modeling, because knowledge of the flow behavior (for example, possible roll waves development) plays crucial role when choosing a computational scheme that will allow one to get the correct result.

[1] Benjamin T.B. Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 1957. V. 2. P. 554 – 574.

[2] Yih C-S. Stability of liquid flow down an inclined plane. Phys. Fluids. 1963. V. 6(3). P. 321 – 334.

[3] Trowbridge J.H. Instability of concentrated free surface flows. J. Geophys. Res. 1987. V. 92(C9). P. 9523 – 9530.

[4] Coussot P. Steady, laminar, flow of concentrated mud suspensions in open channel. J. Hydraul. Res. 1994. V. 32. P. 535 – 559.

[5] Mogilevskiy E. Stability of a non-Newtonian falling film due to three-dimensional disturbances. Phys. Fluids. 2020. V. 32. 073101.

[6] Zayko J., Eglit M. Stability of downslope flows to two-dimensional perturbations. Phys. Fluids. 2019. V. 31. No. 8. 086601.

How to cite: Zayko, J. and Eglit, M.: Hydrodynamic instability of downslope flow with respect to two-dimensional perturbations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7978, https://doi.org/10.5194/egusphere-egu21-7978, 2021.

EGU21-11983 | vPICO presentations | CR5.2

Numerical simulations of wet snow avalanches: interplay between cohesion and friction

Guillaume Chambon, Thierry Faug, and Mohamed Naaim

Wet snow avalanches present distinctive features such as unusual trajectories, peculiar deposit shapes, and a rheological behavior displaying a combination of granular and pasty features depending on the actual snow liquid water content. Complex transitions between dry (cold) and wet (hot) flow regimes can also occur during a single avalanche flow. In an attempt to account for this complexity, we report on numerical simulations of avalanches using a frictional-cohesive rheology implemented in a depth-averaged shallow-flow model. Through extensive sensitivity studies on synthetic and real topographies, we show that cohesion plays a key role to enrich the physics of the simulated flows, and to represent realistic avalanche behaviors. First, when coupled to a proper treatment of the yielding criterion, cohesion provides a way to define objective stopping criteria for the flow, independently of the issues incurred by artificial diffusion of the numerical scheme. Second, and more importantly, the interplay between cohesion and friction gives raise to a variety of nontrivial physical effects affecting the dynamics of the avalanches and the morphology of the deposits. The relative weights of frictional and cohesive contributions to the overall stress are investigated as a function of space and time during the propagation, and related to the formation of specific features such as lateral levées, hydraulic jumps, etc. This study represents a first step towards robust avalanches simulations, spanning the wide range of possible flow regimes, through shallow-flow approaches. Future improvements involving more refined cohesion parameterizations will be discussed.

How to cite: Chambon, G., Faug, T., and Naaim, M.: Numerical simulations of wet snow avalanches: interplay between cohesion and friction, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11983, https://doi.org/10.5194/egusphere-egu21-11983, 2021.

CR5.3 – Snow avalanche formation: from snow mechanics to avalanche detection

EGU21-1341 | vPICO presentations | CR5.3

Mechanical stability indicators derived from detailed snow cover simulations

Léo Viallon-Galinier, Pascal Hagenmuller, Nicolas Eckert, and Benjamin Reuter

The use of numerical modeling of the snow cover in support of avalanche hazard forecasting has been increasing in the last decade. Besides field observations and numerical weather forecasting, these numerical tools provide information otherwise unavailable on the present and future state of the snow cover. In order to provide useful input for avalanche hazard assessment, different mechanical stability indicators are typically computed from simulated snow stratigraphy. Such indicators condense the wealth of information produced by snow cover models, especially when dealing with large data (e.g., large domains, high spatial resolution, ensemble forecasting). Here, we provide an overview of such indicators. Mechanical stability indicators can be classified in two types i.e., whether they are solely based on mechanical rules or whether they include additional expert rules. These indicators span different mechanical processes involved in avalanche release: failure initiation and crack propagation, for instance. The indicators rely on mechanical properties of each layer. We discuss parameterizations of mechanical properties and the associated technical implementation details. We show simplified examples of snow stratigraphy to illustrate the benefit of different stability indicators in typical situations. There is no perfect indicator to describe the instability for any situation. All indicators are sensitive to the snow cover modeling assumptions and the computation of mechanical properties and hence, require some tuning before operational use. In practice, a combination of indicators should be considered to capture the variety of avalanche situations.

How to cite: Viallon-Galinier, L., Hagenmuller, P., Eckert, N., and Reuter, B.: Mechanical stability indicators derived from detailed snow cover simulations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1341, https://doi.org/10.5194/egusphere-egu21-1341, 2021.

EGU21-1578 | vPICO presentations | CR5.3

A tracking algorithm to identify slab and weak layer combinations for assessing snow instability and avalanche problem type

Benjamin Reuter, Léo Viallon-Galinier, Stephanie Mayer, Pascal Hagenmuller, and Samuel Morin

Snow cover models have mostly been developed to support avalanche forecasting. Recently developed snow instability metrics can help interpreting modeled snow cover data. However, presently snow cover models cannot forecast the relevant avalanche problem types – an essential element to describe avalanche danger. We present an approach to detect, track and assess weak layers in snow cover model output data to eventually assess the related avalanche problem type. We demonstrate the applicability of this approach with both, SNOWPACK and CROCUS snow cover model output for one winter season at Weissfluhjoch. We introduced a classification scheme for four commonly used avalanche problem types including new snow, wind slabs, persistent weak layers and wet snow, so different avalanche situations during a winter season can be classified based on weak layer type and meteorological conditions. According to the modeled avalanche problem types and snow instability metrics both models produced weaknesses in the modeled stratigraphy during similar periods. For instance, in late December 2014 the models picked up a non-persistent as well as a persistent weak layer that were both observed in the field and caused widespread instability in the area. Times when avalanches released naturally were recorded with two seismic avalanche detection systems, and coincided reasonably well with periods of low modeled stability. Moreover, the presented approach provides the avalanche problem types that relate to the observed natural instability which makes the interpretation of modeled snow instability metrics easier. As the presented approach is process-based, it is applicable to any model in any snow avalanche climate. It could be used to anticipate changes in avalanche problem type due to changing climate. Moreover, the presented approach is suited to support the interpretation of snow stratigraphy data for operational forecasting.

How to cite: Reuter, B., Viallon-Galinier, L., Mayer, S., Hagenmuller, P., and Morin, S.: A tracking algorithm to identify slab and weak layer combinations for assessing snow instability and avalanche problem type, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1578, https://doi.org/10.5194/egusphere-egu21-1578, 2021.

EGU21-4056 | vPICO presentations | CR5.3

A new experimental set-up to study the shear strength of snow-mortar interfaces

Gianmarco Vallero, Monica Barbero, Fabrizio Barpi, Mauro Borri-Brunetto, and Valerio De Biagi

The progressive failure of a snow layer deposited on a stiff substrate is at the base of the comprehension of several physical processes that can be found both in natural and artificial conditions. For instance, glide avalanches often originate from the reduction of the basal friction between the snowpack and the underlying ground due to the presence of liquid water film or depth hoar at the snow-ground interface. Moreover, the interaction between snow and construction materials relates to many other applications such as the study of new and more efficient snow removal techniques, the safety of travelers along snow covered roads, the snow redistribution from roofs and buildings, etc. 

Despite this large number of application fields, laboratory investigations are still limited. We performed cold room tests on artificially made snow-mortar interface specimens through a direct shear test device. The effects of confinement pressure, temperature and dry snow hardness (due to sintering times) were taken into account. The tests were carried out in displacement-controlled conditions in order to study the entire failure process at the interface and the following irreversible sliding. The results show some interesting and encouraging aspects for understanding the shear strength of the interface. From a micromechanical point of view we recorded the tests with a high-definition video camera and analyzed the data with the Particle Image Velocimetry technique to obtain the motion fields on the external side of the specimens. Here, we present and discuss some preliminary results of the experimental activity and suggest some future implementations and further developments of the studied topic.       

How to cite: Vallero, G., Barbero, M., Barpi, F., Borri-Brunetto, M., and De Biagi, V.: A new experimental set-up to study the shear strength of snow-mortar interfaces, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4056, https://doi.org/10.5194/egusphere-egu21-4056, 2021.

EGU21-5498 | vPICO presentations | CR5.3

Fabric based strength criterion and its application on a layered snowpack

Anurag Kumar Singh, Puneet Mahajan, and Praveen Kumar Srivastava

An existing orthotropic elasto-plastic model, which takes the microstructure fabric of trabecular bone into consideration, is extended for snow and used to study the stress response in a layered snowpack. The mean intercept length, determined from X-ray tomography, represents the microstructure fabric in the macroscopic constitutive law. The yield surface for snow accounts for strength asymmetry of snow in tension and compression and shows isotropic hardening till ultimate strength is reached and then softens till complete failure. Tomographic image dataset of various snow types in conjunction with 3D μ- FE analysis of these snow types was used to evaluate the elastic and failure criteria constants in the model. The macroscopic law is implemented as a user subroutine FE code to predict the stress-strain response of snow samples and shows good agreement with the μ-FE based data.

The stress-strain law is used to study stresses in a snowpack of length 5m and thickness between 0.11 to 0.81m with a strong layer of round grain and a weak layer of faceted grains. A plane strain finite element analysis is performed. The density of the strong and weak layers is approximately 210kg/m3, and 118kg/m3, respectively. The snowpack was subjected to gravity, and a skier loads (80kg) and stresses were investigated for slope angles of 0o, 30o, and 90o. The variation of compressive stress normal to slope and shear stress along the snowpack's length for different thicknesses of the strong layer is computed. The maximum normal compressive stress and shear stresses are observed at the centre of the weak layer. The normal compressive stress pattern obtained is in agreement with the previous studies.

How to cite: Singh, A. K., Mahajan, P., and Srivastava, P. K.: Fabric based strength criterion and its application on a layered snowpack, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5498, https://doi.org/10.5194/egusphere-egu21-5498, 2021.

EGU21-6108 | vPICO presentations | CR5.3

A unified framework for computational microstructure-based snow mechanics

Lars Blatny, Henning Löwe, Stephanie Wang, and Johan Gaume

The effective mechanical behavior of snow can be deduced from microstructural homogenization through numerical simulations. Although such numerical upscaling of elasticity and strength of snow microstructures is standard (using FEM), numerical schemes to study generic features of the transition from small to large strain situations that involve yielding and failure are scarce. This prevents the development of accurate homogenized constitutive models valid for the post-failure and large deformation regimes. It has been shown that treating this transition is feasible using DEM under the assumption of particulate microstructures. However, this requires snow microstructures to be segmented into a granular collection of (usually spherical) cohesive elements. Here, we suggest generating random porous microstructures by level-cutting Gaussian random fields and using the material point method to numerically simulate them under mechanical loading. This allows investigating both small and large deformation characteristics of irregular porous media, such as snow, where a segmentation into grains and bonds can be ambiguous. We demonstrate our approach by examining elasticity and failure as a function of a wide range of solid volume fractions, from 20% (low-density snow) to 80% (high-density firn), as the most important control on the mechanical behavior. Observing that onset of failure can be well described through the second order work, we show that the failure strength follows a power law similar to that of the elastic moduli. Moreover, we propose that the failure envelope can be approximated by a porosity-dependent quadratic curve in the space of the two first stress invariants. Furthermore, we observe that plastic deformation appears to be governed by an associative plastic flow rule. Finally, these results combined with a viscoplastic Perzyna model and a sintering (hardening) model should allow us to develop a universal homogenized snow constitutive model.

How to cite: Blatny, L., Löwe, H., Wang, S., and Gaume, J.: A unified framework for computational microstructure-based snow mechanics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6108, https://doi.org/10.5194/egusphere-egu21-6108, 2021.

EGU21-6154 | vPICO presentations | CR5.3 | Highlight

Data-driven automatic predictions of avalanche danger in Switzerland

Cristina Pérez-Guillén, Martin Hendrick, Frank Techel, Alec van Herwijnen, Michele Volpi, Olevski Tasko, Fernando Pérez-Cruz, Guillaume Obozinski, and Jürg Schweizer

Avalanche forecasting implies predicting current and future snow instability in time and space. In Switzerland, avalanche bulletins are issued daily during the winter season to warn the public about the avalanche hazard, described by region with one of five danger levels. Assessing avalanche danger is by large a data-driven, yet experience-based decision-making process. It involves analysing a multitude of data diverse in scale – time and space, and concluding by expert judgment on the avalanche scenario. Numerous statistical models were developed in the past, but rarely applied due to limited usefulness in operational forecasting. Modern machine learning techniques open up new possibilities for developing support tools for operational avalanche forecasting. With this aim, we developed a data-driven approach based on the supervised Random Forest (RF) classifier to automatically predict the danger level for dry-snow avalanche conditions in the Swiss Alps. A large database of more than 20 years of meteorological data and modelled snow stratigraphy data obtained with the numerical snow cover model SNOWPACK were used to train the RF algorithm. We optimized the model and selected the best set of input features that combine meteorological variables and features extracted from the simulated profiles, resampled at the same daily resolution as the forecasts. Our target variable was the regional danger level forecast in the public bulletin. We evaluated the predictive performance of the RF model with an independent test set with data of two winter seasons (2018-2019 and 2019-2020). The test set accuracy was 72 %, which is slightly lower than the accuracy estimate of the public forecasts (about 76 %). Given this uncertainty in our target variable, we trained an optimized RF model on a subset containing so-called verified avalanche danger levels. The test set accuracy then increased to 80 %. During the winter season 2020-2021, both RF models were tested in operational setting and automatically predicted a ‘nowcast’ and a ‘forecast’ in real-time.  In parallel, we also tested a deep recurrent neural network model, which used a 7-days time series with 3-hours time resolution as input and also predicted the avalanche danger level. We present a comparison of the performance of the three models. This is one of the first times that a data-driven approach is tested in real-time as a feasible tool for operational avalanche forecasting.

How to cite: Pérez-Guillén, C., Hendrick, M., Techel, F., van Herwijnen, A., Volpi, M., Tasko, O., Pérez-Cruz, F., Obozinski, G., and Schweizer, J.: Data-driven automatic predictions of avalanche danger in Switzerland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6154, https://doi.org/10.5194/egusphere-egu21-6154, 2021.

EGU21-6600 | vPICO presentations | CR5.3 | Highlight

Can Saharan dust deposition impact snow stability in the French Alps?

Oscar Dick, Léo Viallon-Galinier, Pascal Hagenmuller, Mathieu Fructus, Matthieu Lafaysse, and Marie Dumont
Mineral dust and black carbon are potent drivers of the snow cover evolution. After their deposition on the snow surface, they can impact snow albedo and thus the snowpack evolution including the timing of snow-melt. While BC deposition is rather constant along the winter season, mineral dust deposition is more sporadic in the French Alps, subject to large dust outbreak events coming from Sahara. The dust deposition drastically changes the snow color, its absorption of solar energy and, as a consequence, modifies the internal temperature of the snow layers and their metamorphism. While mountain practitioners often report higher avalanche activities after dust deposition events, there is, up to now, no clear evidence neither from observations nor modelling that dust deposition enhances avalanche activity. Here, we investigate, using ensemble detailed snowpack simulations, the impact of dust outbreak on snow metamorphism, snow stratigraphy and mechanical stability by comparing simulations with and without dust deposition under several meteorological conditions. The results show that the dust deposition can impact the spatial and temporal distribution of the unstable slopes. The effect of the deposition largely depends on the timing of dust deposition with respect to subsequent snowfalls. It also depends on the elevation, the aspect and the time since deposition event. By using multiphysics simulations, we were able to assess the robustness of our conclusions with respect to snowpack modelling errors.

How to cite: Dick, O., Viallon-Galinier, L., Hagenmuller, P., Fructus, M., Lafaysse, M., and Dumont, M.: Can Saharan dust deposition impact snow stability in the French Alps?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6600, https://doi.org/10.5194/egusphere-egu21-6600, 2021.

EGU21-7772 | vPICO presentations | CR5.3

Characteristics of dynamic crack propagation in a weak snowpack layer over its entire life cycle

Bastian Bergfeld, Alec van Herwijnen, Gregoire Bobillier, and Jürg Schweizer

For a slab avalanche to release, a weak layer buried below a cohesive snow slab is required, and the system of weak layer and slab must support crack propagation over large distances. This process, called “dynamic crack propagation”, is highly relevant for avalanche release, and computational models are nowadays able to model crack propagation over increasingly larger scales. Field measurements on dynamic crack propagation are however very scarce, although these are required to validate models. We therefore performed a series of flat field PST experiments up to ten meters long over a period of 10 weeks. During this time, PST results evolved from crack arrest to full propagation and back to crack arrest – reflecting the life cycle of the weak layer. All PST experiments were analyzed using digital image correlation to derive high-resolution displacement fields to compute dynamic crack propagation metrics, including crack length and speed as well as touchdown distance, the distance from the crack tip to the trailing point where the slab comes into contact with the substratum. Comparing the displacement fields during sawing to a mechanical model, we estimated the effective elastic modulus of slab and weak layer as well as the specific fracture energy of the weak layer. Our results show how dynamic crack propagation characteristics change over the life cycle of a weak layer and how these measures relate to snowpack properties such as load and effective elastic modulus of the slab. We found that crack speed was highest for PSTs resulting in full propagation and that the touchdown length increased with increasing elastic modulus of the slab. Our dataset provides unique insight into the dynamics of crack propagation, and provides valuable data to validate models used to study sustained crack propagation.

How to cite: Bergfeld, B., van Herwijnen, A., Bobillier, G., and Schweizer, J.: Characteristics of dynamic crack propagation in a weak snowpack layer over its entire life cycle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7772, https://doi.org/10.5194/egusphere-egu21-7772, 2021.

EGU21-8253 | vPICO presentations | CR5.3

From sub-Rayleigh to intersonic crack propagation in snow slab avalanche release

Bertil Trottet, Ron Simenhois, Gregoire Bobillier, Alec van Herwijnen, Chenfanfu Jiang, and Johan Gaume

Snow slab avalanche release can be separated in four distinct phases : (i) failure initiation in a weak snow layer buried below a cohesive snow slab, (ii) the onset and, (iii) dynamic phase of crack propagation within the weak layer across the slope and (iv) the slab release. The highly porous character of the weak layer implies volumetric collapse during failure which leads to the closure of crack faces followed by the onset of frictional contact. To better understand the mechanisms of dynamic crack propagation, we performed numerical simulations, snow fracture experiments, and analyzed the release of full scale avalanches. Simulations of crack propagation are based on the Material Point Method (MPM) and finite strain elastoplasticity. Experiments consist of the so-called Propagation Saw Test (PST). Concerning full scale measurements, an algorithm is applied to detect changes in image pixel intensity induced by slab displacements. We report the existence of a transition from sub-Rayleigh anticrack to supershear crack propagation following the Burridge-Andrews mechanism. In detail, after reaching the critical crack length, self-propagation starts in a sub-Rayleigh regime and is driven by slab bending induced by weak layer collapse. If the slope angle is larger than a critical value, and if a so-called super critical crack length is reached, supershear crack propagation occurs. The corresponding critical angle may be lower than the weak layer friction angle due to the loss of frictional resistance during volumetric collapse. The sub-Rayleigh regime is driven by mixed mode anticrack propagation while the supershear regime corresponds to a pure mode II propagation with intersonic crack speeds (v: crack speed, cs: shear wave speed, cp: longitudinal wave speed, E: slab Young's modulus and ρ: slab density). This intersonic regime of crack propagation thus leads to pure tensile slab fractures initiating from the bottom of the slab as opposed to top initiations induced by slab bending in the sub-Rayleigh regime. Key ingredients for the existence of this transition are discussed such as the role played by friction angle, collapse height and slab secondary fractures. 

How to cite: Trottet, B., Simenhois, R., Bobillier, G., van Herwijnen, A., Jiang, C., and Gaume, J.: From sub-Rayleigh to intersonic crack propagation in snow slab avalanche release, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8253, https://doi.org/10.5194/egusphere-egu21-8253, 2021.

EGU21-9475 | vPICO presentations | CR5.3

The use of seismic ground particle motion for snow avalanche release area identification

Pere Roig Lafon, Emma Suriñach, and Mar Tapia

Knowledge of the snow avalanche release area is key information in snow avalanche studies. However, it is not easy to obtain from a remote location. The study of the seismic vibrations produced in the initial stages of the snow avalanche, makes possible to identify their origin and to link them to the starting area of the snow avalanche. We developed a methodology for this purpose, applied to seismic data acquired from a 3D seismic station (2Hz eigenfrequency) placed at Cavern A in Vallée de la Sionne experimental site (VDLS, WSL-SLF), deployed in 2013 by UB-RISKNAT. This is the closest position to the snow avalanche release areas, at 700 m to the farthest point. We focus on spontaneous triggered snow avalanches to achieve better signal-to-noise ratio and to be more realistic on its application.

For the isolation of the Signal Onset (SON) section of seismic data, which corresponds to those vibrations produced by the initial stage of the snow avalanche, we use the STA/LTA ratios and seismic signal amplitude, common methodologies in seismology. The STA/LTA is used for the identification of the first vibrations produced by the movement of the snow mass and the seismic signal amplitude thresholds for the identification of the end of the SON section -when the snow avalanche front reaches the seismic sensor position-. The 3D seismic data [ZNE components] of the SON section were processed in time windows. The study of polarization of the particle motion to obtain the direction of the back-azimuth of the signal (Vidale, 1986; Jurckevicks, 1988) was carried out for each time window of the seismic signal. The accumulation of back-azimuth directions for the entire SON section is related to the origin of the vibrations and, by extension, to the snow avalanche release area.

The entire algorithm has been automated. In its application on all the trigger activations at VDLS since 2015 until 2020, it was achieved a success rate of 78% on snow avalanche release area identification. In addition, we defined an algorithm based on STA/LTA ratio to select the snow avalanches from other seismic events, used with a success rate of 95%.

We present the application of our method in a case study, a large spontaneous snow avalanche released on 16th February 2018 at VDLS. The snow avalanche had two main release areas, clearly identified in photos of the site. The two developed fronts can be recognized in the seismic data. The directions to the release areas from Cavern A position can be identified using the presented method. Also, more interpretations can be done on the downhill snow avalanche path.

How to cite: Roig Lafon, P., Suriñach, E., and Tapia, M.: The use of seismic ground particle motion for snow avalanche release area identification, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9475, https://doi.org/10.5194/egusphere-egu21-9475, 2021.

EGU21-11482 | vPICO presentations | CR5.3

Micro-mechanical modeling using DEM to study the effect of mechanical properties on crack propagation for snow slab avalanches

Bobillier Gregoire, Bergfled Bastian, Gaume Johan, van Herwijnen Alec, and Schweizer Jürg

Dry-snow slab avalanche release is a multi-scale process starting with the formation of localized failure in a highly porous weak snow layer below a cohesive snow slab, which can be followed by rapid crack propagation within the weak layer. Finally, a tensile fracture through the slab leads to its detachment. About 15 years ago, the propagation saw test (PST) was developed. The PST is a fracture mechanical field test that provides information on crack propagation propensity in weak snowpack layers. It has become a valuable research tool to investigate the processes involved in crack propagation. While this has led to a better understanding of the onset of crack propagation, much less is known about the ensuing propagation dynamics. Here, we use the discrete element method to numerically simulate PSTs in 3D and analyze the fracture dynamics using a micro-mechanical approach. Our DEM model reproduced the observed PST behavior extracted from experimental analysis. We developed different indicators to define the crack tip that allowed deriving crack speed. Our results show that crack propagation in level terrain reaches a stationary speed if the snow column is long enough. Moreover, we define stress concentration sections. Their length evolution during crack propagation suggests the development of a steady-state stress regime. Slab and weak layer elastic modulus, as well as weak layer shear strength, are the key input parameters for modeling crack propagation; they affect stress concentrations, crack speed, and the critical length for the onset of crack propagation. The results of our sensitivity study highlight the effect of these mechanical parameters on the emergence of a steady-state propagation regime and consequences for dry-snow slab avalanche release. Our DEM approach opens the possibility for a comprehensive study on the influence of the snowpack mechanical properties on the fundamental processes for avalanche release.

How to cite: Gregoire, B., Bastian, B., Johan, G., Alec, V. H., and Jürg, S.: Micro-mechanical modeling using DEM to study the effect of mechanical properties on crack propagation for snow slab avalanches, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11482, https://doi.org/10.5194/egusphere-egu21-11482, 2021.

EGU21-12259 | vPICO presentations | CR5.3

A random forest model to assess snow instability from simulated snow stratigraphy

Stephanie Mayer, Alec van Herwijnen, and Jürg Schweizer

Numerical snow cover models enable simulating present or future snow stratigraphy based on meteorological input data from automatic weather stations, numerical weather prediction or climate models. To assess avalanche danger for short-term forecasts or with respect to long-term trends induced by a warming climate, modeled snow stratigraphy has to be interpreted in terms of mechanical instability. Several instability metrics describing the mechanical processes of avalanche release have been implemented into the detailed snow cover model SNOWPACK. However, there exists no readily available method that combines these metrics to predict snow instability.

To overcome this issue, we compared a comprehensive dataset of almost 600 manual snow profiles with SNOWPACK simulations. The manual profiles were observed in the region of Davos over 17 different winter seasons and include a Rutschblock stability test as well as a local assessment of avalanche danger. To simulate snow stratigraphy at the locations of the manual profiles, we interpolated meteorological input data from a network of automatic weather stations. For each simulated profile, we manually determined the layer corresponding to the weakest layer indicated by the Rutschblock test in the corresponding observed snow profile. We then used the subgroups of the most unstable and the most stable profiles to train a random forest (RF) classification model on the observed stability described by a binary target variable (unstable vs. stable).

As potential explanatory variables, we considered all implemented stability indices calculated for the manually picked weak layers in the simulated profiles as well as further weak layer and slab properties (e.g. weak layer grain size or slab density).  After selecting the six most decisive features and tuning the hyper-parameters of the RF, the model was able to distinguish between unstable and stable profiles with a five-fold cross-validated accuracy of 88%.

Our RF model provides the probability of instability (POI) for any simulated snow layer given the features of this layer and the overlying slab. Applying the RF model to each layer of a complete snow profile thus enables the detection of the most unstable layers by considering the local maxima of the POI among all layers of the profile. To analyze the evolution of snow instability over a complete winter season, the RF model can provide the daily maximal POI values for a time series of snow profiles. By comparing this series of POI values with observed avalanche activity, the RF model can be validated.

The resulting statistical model is an important step towards exploiting numerical snow cover models for snow instability assessment.

How to cite: Mayer, S., van Herwijnen, A., and Schweizer, J.: A random forest model to assess snow instability from simulated snow stratigraphy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12259, https://doi.org/10.5194/egusphere-egu21-12259, 2021.

EGU21-13989 | vPICO presentations | CR5.3

Modeling snow slab failure in propagation saw test using Drucker-Prager model

Agraj Upadhyay, Puneet Mahajan, and Rajneesh Sharma

Abstract

Fracture propagation in weak snow layers followed by the failure of overlying homogeneous snow slab leads to the formation of snow slab avalanches. The extent of fracture propagation in the weak layer and size of the avalanche release area depends on the mechanical behavior of overlying snow layers. To model the snow slab failure in slab avalanche formation process, in present work, mechanical behavior of natural snow is studied through high strain rate (1×10-4 s-1 or higher) uniaxial tension and compression experiments on natural snow layers. Uniaxial loading and unloading experiments are also carried out to understand the permanent strains at high strain rates. Elastic modulus of snow is derived from loading unloading test data and compared with the tangent modulus obtained from maximum slope of the stress-strain curve. Tensile and compressive strengths are derived from peak load at failure and fracture energy is derived from post peak stress-strain curve. For a density range of 100-400 Kg/m3 the range of obtained mechanical properties of natural snow are: Elastic modulus: 0.1-45 MPa, Tensile strength: 0.24-20 kPa, Compressive strength: 0.1-105 kPa, Fracture energy: 0.007-0.15 J/m2. For low density snow (<150 Kg/m3) tensile and compressive strength values are quite close but for higher densities compressive strength is significantly higher than the tensile strength. At low strain rates (<1×10-4 s-1) snow generally exhibit no failure and large permanent deformations whereas, at high strain rates (1×10-3 s-1 or higher) failure strains are generally in the range 0.05-1.5 %. In all cases a sharp decrease in load at failure suggests a near brittle failure. By fitting the experimental dataset with power law, density dependent expressions for elastic modulus, tensile and compressive strength are obtained. On the basis of the experimental observations, a continuum elastic-plastic-damage material model is considered to model mechanical behavior of snow layers. To model the asymmetry in tensile and compressive strengths, pressure dependent Drucker-Prager model is considered for yield criterion and model parameters (friction angle and cohesion) are obtained using density dependent expressions of tensile and compressive strength of snow. Effective plastic strain based damage initiation and evolution models are used to model quasi-brittle failure of snow. This model has been used for modeling the snow slab failure in two dimensional propagation saw tests and the obtained results on the influence of slab density, thickness and slope angle on slab failure have been presented.



How to cite: Upadhyay, A., Mahajan, P., and Sharma, R.: Modeling snow slab failure in propagation saw test using Drucker-Prager model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13989, https://doi.org/10.5194/egusphere-egu21-13989, 2021.

EGU21-14534 | vPICO presentations | CR5.3

Tomography-based investigation of concurrent snow creep and isothermal metamorphism

Antoine Bernard, Pascal Hagenmuller, Guillaume Chambon, and Maurine Montagnat

Once on the ground, the microstructure of snow, i.e. the three-dimensional arrangement of ice and pores, quickly evolves with metamorphism and deforms under the overburden of the overlaying snow. Understanding these concurrent processes is important to predict the evolution of the physical and mechanical properties of snow which are crucial for many applications, such as avalanche forecasting. To this end, we monitored oedometric creep tests of snow under isothermal conditions at -8.6°C for about one week with X-ray tomography. We investigated the evolution of recent snow under a constant load of around 4 kPa, where both ice matrix creep and metamorphism are active. Our time-series comprises one of the most highly-resolved images of snow microstructure evolution, with a temporal resolution of 3 h and spatial resolution of 8.5 microns and thousands of images. Interestingly, we observed distinct effects of the overburden and of the vapor transport on the microstructure evolution. In particular, the quantification of the ice bond network through the Euler characteristic and the min-cut surface shows that metamorphism progressively increases the bond size almost independently of the applied overburden, while the application of an overburden yields a rapid increase of the bond coordination number. These distinct impacts exhibit the difficulty to accurately reproduce the time evolution of recent snow by snow cover models, whose snow microstructure representation with density and snow type remains too coarse. 

How to cite: Bernard, A., Hagenmuller, P., Chambon, G., and Montagnat, M.: Tomography-based investigation of concurrent snow creep and isothermal metamorphism, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14534, https://doi.org/10.5194/egusphere-egu21-14534, 2021.

EGU21-15260 | vPICO presentations | CR5.3 | Highlight

Induced glide-snow avalanches with low friction geotextiles

James Glover, Sebastian Althoff, Max Witek, Christine Seupel, Seraina Braun, and Imad Lifa

Gliding snow avalanches are of growing concern for the management of ski areas, transport corridors and spatial planning. With a warming climate there appear to be increasing reports of gliding snow hazards in alpine regions. The management of gliding snow avalanches can be achieved through either stabilization or artificially triggering a slide. Triggering sliding is attractive because it has the potential to remove the hazard entirely. In this research, we investigate the potential of managing gliding snow avalanches through the early release of snow accumulations using low friction geotextiles.

A series of geotextiles have been installed on slopes between 25 and 35° during the autumn months and the behavior of snow accumulations observed during the winter. Initial findings indicate that reducing the basal friction can be effective in inducing early release of gliding snow avalanches. However, the interaction of the flanking snow pack and stauchwall appear dominant in the behavior of the system. This contribution reports on the initial findings of these experiments and discusses the potential applications to managing gliding snow avalanches.  

How to cite: Glover, J., Althoff, S., Witek, M., Seupel, C., Braun, S., and Lifa, I.: Induced glide-snow avalanches with low friction geotextiles, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15260, https://doi.org/10.5194/egusphere-egu21-15260, 2021.

EGU21-16565 | vPICO presentations | CR5.3

Dynamic fracture mechanics in dry snow slab avalanche release

David McClung

Field observations and measurements show that dry snow slab avalanches initiate by propagating shear fractures within a relatively thin weak layer sandwiched between a planar, stronger, thicker slab above and stronger material below. After initiation, the weak layer fracture can propagate up and down slope for distances which range from about 10 to 100’s of meters to cause tensile fracture through the body of the slab which results in avalanche release.  In this paper, dynamic fracture mechanics is applied to slab tensile fracture after which avalanche release is imminent. Two mechanisms for production of tensile stress are explored employing field measurements of slab properties and lab measurements. The first considers inertial effects related to quasi-brittle fracture near the tip of a propagating weak layer shear fracture. The second is concerned with the tensile stress generation from the stress drop behind the crack front as the fracture propagates in the weak layer. Analysis suggest that both mechanisms can contribute to produce the tensile fracture line which precedes avalanche release. Even though both mechanisms may operate together, they are analyzed separately in this paper. 

How to cite: McClung, D.: Dynamic fracture mechanics in dry snow slab avalanche release, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16565, https://doi.org/10.5194/egusphere-egu21-16565, 2021.

CR5.4 – Risks from a changing cryosphere, and mountains under global change

EGU21-13366 | vPICO presentations | CR5.4 | Highlight

The role of sea ice for plastic pollution in the Arctic

Ilka Peeken, Elisa Bergami, Ilaria Corsi, Benedikt Hufnagl, Christian Katlein, Thomas Krumpen, Martin Löder, Qiuang Wang, and Claudia Wekerle

Marine plastic pollution is a growing worldwide environmental concern as recent reports indicate that increasing quantities of litter disperse into secluded environments, including Polar Regions. Plastic degrades into smaller fragments under the influence of sunlight, temperature changes, mechanic abrasion and wave action resulting in small particles < 5mm called microplastics (MP). Sea ice cores, collected in the Arctic Ocean have so far revealed extremely high concentrations of very small microplastic particles, which might be transferred in the ecosystem with so far unknown consequences for the ice dependant marine food chain.  Sea ice has long been recognised as a transport vehicle for any contaminates entering the Arctic Ocean from various long range and local sources. The Fram Strait is hereby both, a major inflow gateway of warm Atlantic water, with any anthropogenic imprints and the major outflow region of sea ice originating from the Siberian shelves and carried via the Transpolar Drift. The studied sea ice revealed a unique footprint of microplastic pollution, which were related to different water masses and indicating different source regions. Climate change in the Arctic include loss of sea ice, therefore, large fractions of the embedded plastic particles might be released and have an impact on living systems. By combining modeling of sea ice origin and growth, MP particle trajectories in the water column as well as MPs long-range transport via particle tracking and transport models we get first insights  about the sources and pathways of MP in the Arctic Ocean and beyond and how this might affect the Arctic ecosystem.

How to cite: Peeken, I., Bergami, E., Corsi, I., Hufnagl, B., Katlein, C., Krumpen, T., Löder, M., Wang, Q., and Wekerle, C.: The role of sea ice for plastic pollution in the Arctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13366, https://doi.org/10.5194/egusphere-egu21-13366, 2021.

EGU21-12793 | vPICO presentations | CR5.4

Increasing Mobility of High Arctic Sea Ice Increases Marine Hazards off the East Coast of Newfoundland

David Babb, David Barber, Jens Ehn, Wayne Chan, Lisa Mathes, Laura Dalman, Yanique Campbell, Madison Harasyn, Jennifer Lukovich, Tom Zagon, Tim Papakyriakou, David Capelle, and Alain Gariepy

As the Arctic ice cover has transitioned to a younger and thinner state it has become weaker and therefore increasingly mobile. One of the key indicators of this change is the increase in ice flux through Nares Strait, which connects the central Arctic to Baffin Bay and is an export pathway for some of the oldest and thickest sea ice remaining within the Arctic. Historically ice flux through the narrow Strait was seasonally limited by the formation of an ice arch, however as the ice cover has thinned the arch no longer forms every winter, and when it does form it tends to break up earlier. An increase in ice flux through Nares Strait not only affects the retention of old thick ice within the central Arctic, but also affects the icescape downstream of the Strait that extends from Baffin Bay, through the Labrador Sea and towards the southern ice edge around Newfoundland. While an ice cover does form annually around Newfoundland, it is typically a thin seasonal ice cover, which forms in January and is gone by May. However, during spring 2017 the ice conditions were considerably heavier, presenting hazardous conditions for the local maritime industry into June and requiring the Canadian Coast Guard research ice breaker Amundsen be pulled off of its scientific cruise and used to escort vessels and conduct search and rescue operations along Newfoundland’s northeast coast. The ice cover was considerably thicker and more extensive than previous years and sank two fishing vessels that became beset within the ice pack. Using a unique suite of in situ observations we confirmed that multiyear sea ice from the central Arctic was present within this anomalous ice cover. Using satellite imagery and regional ice charts we tracked the source of this multiyear ice back to Nares Strait and the central Arctic. While regional in focus, this work highlights how the decline of the Arctic ice pack has implications for downstream areas where risk may be increasing as the ice pack declines.

How to cite: Babb, D., Barber, D., Ehn, J., Chan, W., Mathes, L., Dalman, L., Campbell, Y., Harasyn, M., Lukovich, J., Zagon, T., Papakyriakou, T., Capelle, D., and Gariepy, A.: Increasing Mobility of High Arctic Sea Ice Increases Marine Hazards off the East Coast of Newfoundland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12793, https://doi.org/10.5194/egusphere-egu21-12793, 2021.

EGU21-335 | vPICO presentations | CR5.4

Earthquakes induced by ice-mass loss: A case example for southern Greenland

Rebekka Steffen, Holger Steffen, Robert Weiss, Benoit Lecavalier, Glenn Milne, Sarah Woodroffe, and Ole Bennike

Due to their large mass, ice sheets induce significant stresses in the Earth’s crust. Stress release during deglaciation can trigger large-magnitude earthquakes, as indicated by surface faults in northern Europe. Thus, the current ice-mass loss in Greenland can be accompanied by earthquakes. Here, we will present an example of a possible large magnitude earthquake that occurred during the large melting period of the Greenland Ice Sheet in the early Holocene. The glacially induced stresses showed an instability occurring at 10,600 years ago. An offset in past sea level indicators falls within the same time frame, which gave us indications that the stresses have been released by an earthquake. The potential fault could have slipped up to 47 m, resulting in a large magnitude earthquake, if only one event occurred. The earthquake may have shifted relative sea level observations by several meters. In addition, as the potential fault is located offshore, the earthquake could have produced a tsunami in the North Atlantic Ocean with runup heights of up to 7.2 m in the British Isles and up to 7.8 m along Canadian coasts. Thus, ice-mass loss is strongly linked to the occurrence of earthquakes and even earthquakes-related tsunami. These scenarios due to a changing cryosphere can have effects for all countries bordering the North Atlantic Ocean and are in addition to the well-known sea-level rise.

How to cite: Steffen, R., Steffen, H., Weiss, R., Lecavalier, B., Milne, G., Woodroffe, S., and Bennike, O.: Earthquakes induced by ice-mass loss: A case example for southern Greenland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-335, https://doi.org/10.5194/egusphere-egu21-335, 2021.

EGU21-13980 | vPICO presentations | CR5.4

The Arctic Rain on Snow Study

Andrew Barrett and Mark Serreze

When rain falls on an existing cover of snow, followed by low temperatures, or falls as freezing rain, it can leave a hard crust. These Arctic rain on snow (ROS) events can profoundly influence the physical environment, animals, and human livelihoods. Impacts can be immediate (e.g., on human travel, herding, or harvesting) or evolve or accumulate, leading, for example, to massive starvation-induced die offs of reindeer, caribou and musk oxen. The international Arctic Rain on Snow Study (AROSS) will detect and catalogue ROS events, and study their impacts, addressing human-environment relationships, associated meteorological conditions, and challenges in their detection. We offer a path forward to anticipate and mitigate impacts through knowledge co-production. Although ROS events can be detected, and their intensity and trends across the Arctic region evaluated by combining data from satellite remote sensing, atmospheric reanalyses and meteorological station records, information most germane to impacts, such as the thickness of ice layers, how ice layers form within a snowpack, and antecedent conditions that can amplify impacts, can only be obtained through collaboration with local and Indigenous knowledge-holders.

How to cite: Barrett, A. and Serreze, M.: The Arctic Rain on Snow Study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13980, https://doi.org/10.5194/egusphere-egu21-13980, 2021.

EGU21-1761 | vPICO presentations | CR5.4

Hazardous calving event on Isfallsglaciären in Northern Sweden as a result of climate warming

Per Holmlund, Nina Kirchner, and Erik Mannerfelt

Isfallsglaciären in Northern Sweden is a steep polythermal valley glacier located in the Kebnekaise Mountains, which is well studied and thoroughly observed because its proximity to Tarfala Research Station run by Stockholm University. Isfallsglaciären is also included in the Swedish monitoring program for glaciers reported to WGMS.

The glacier advanced during the 1990s, but continues to recede and thin at a high rate since the turn of the century. On August 26, 2018, a 5x 105 mlarge portion of Isfallsglaciärens ice tongue decoupled from the main glacier and began to slide down-valley. Within 5 days, a 50 m wide gap had formed which increased to a width of c. 80 m later during the autumn. The front of the decoupled ice section advanced 50 m (timeframe?) over moderately inclined bed topography, and came eventually to a halt, without developing into an ice avalanche. The upstream cliff of the main glacier advanced first at a high rate and then progressively slowed down forming a new glacier front. [NK1] 

The event is very well documented by recurrent aerial photography taken during 2016-2020, as well as more frequent inage acquisition a few weeks before, and shortly after, the event. The photos have been analyzed using structure-from-motion photogrammetry to reveal the magnitude of change at a decimeter-level.

Departing from a description of this event, we discuss the impact of hazardous changes on glaciers becoming steeper and thinner due to recession, as well as complications arising for glacier front monitoring as part of the WGMS program.

Similar events have been reported at glaciers elsewhere in Sweden but these events are less well documented and do not influence the monitoring program. In this paper we will describe how data have been handled and inspire to similar studies in any glacier area. We will also discuss the issue in a glacier monitoring perspective.

How to cite: Holmlund, P., Kirchner, N., and Mannerfelt, E.: Hazardous calving event on Isfallsglaciären in Northern Sweden as a result of climate warming, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1761, https://doi.org/10.5194/egusphere-egu21-1761, 2021.

EGU21-13666 | vPICO presentations | CR5.4

The August 2020 jökulhlaup from a marginal lake at Langjökull, W-Iceland: Course of events, discharge and volume estimates, future monitoring

Thorsteinn Thorsteinsson, Kristjana G. Eythórsdóttir, Esther H. Jensen, Ingibjörg Jónsdóttir, Finnur Pálsson, Andri Gunnarsson, Hlynur Sk. Pálsson, Oddur Sigurðsson, Guðbjörg H. Karlsdóttir, Ragnar H. Þrastarson, Gunnar Sigurðsson, Tómas Jóhannesson, and Matthew J. Roberts

Jökulhlaups from marginal and subglacial lakes are a considerable hazard in Iceland and the rapid retreat of glaciers and ice caps is leading to hydrological changes in many locations at or near the glaciers. This calls for careful monitoring of glaciers and proglacial areas.

On August 17 2020, increased discharge was observed in Hvítá, a glacial river originating in the ice cap Langjökull. Sediment-laden jökulhlaup waters filled a narrow gorge of the river near the farm and tourist resort Húsafell and dead salmon were found strewn over fields 30–40 km downstream.

Reconnaissance trips, overflights and satellite image studies revealed the following course of events:

A marginal glacial lake (current size: 1.3 km2) started forming at 890 m elevation at the western margin of Langjökull after the turn of the century. Sentinel-2 satellite images indicate that subglacial outflow from the lake had started in the morning of August 17. The exact path of the 2 km long subglacial water course can be inferred from a Landsat-8 image taken on November 11 2020. The image shows a narrow surface depression resulting from lowering of the glacier surface when the subglacial tunnel carrying the water was formed. The ice thickness averages 70 m along the flowpath.

Emerging from beneath the ice cap, the water flowed 13 km through the Svartá river canyon, eroding sediment from the river bed and canyon walls. Fresh colouring and sediment deposition was observed on sandur plains where Svartá joins the Geitá and Hvítá rivers.

Observations of the jökulhlaup (water level and flow velocity) as it passed beneath a bridge near Húsafell help constrain discharge levels and flood volume at a location 18 km from the outlet at Langjökull. In addition, real-time data on Hvítá river water level are available from the Kljáfoss hydrometric station 35 km further downstream, discharge started rising from a background value of 90 m3/s on August 17 at 16:00. The flood peaked there at 260 m3/s at 01:45 in the early morning of August 18 and had subsided again at noon on that day.

Using imagery from the Sentinel-2 satellites the area of the marginal lake is estimated to have diminished from 1.29 km2 to 0.46 km2 during the jökulhlaup. A lowering of 4 m has been determined from aerial imagery and the total volume released was 3.4 million m3 according to preliminary estimates. We estimate an average flow velocity of 3±1 m/s for the entire distance from the outlet at the glacier to Kljáfoss.

The glacier margin in the region has retreated by 500-1000 m and thinned by 3 m/a in the period 2004-2019 leading to the formation of the proglacial lake. Flooding events occurring in 2014 and 2017 have now been detected in hydrometric and remote sensing data. The lake is likely to become larger when retreat continues and further thinning of the ice may lead to more frequent jökulhlaups in coming years. Plans to monitor the lake level and install early warning systems will be outlined in the presentation.

How to cite: Thorsteinsson, T., Eythórsdóttir, K. G., Jensen, E. H., Jónsdóttir, I., Pálsson, F., Gunnarsson, A., Pálsson, H. Sk., Sigurðsson, O., Karlsdóttir, G. H., Þrastarson, R. H., Sigurðsson, G., Jóhannesson, T., and Roberts, M. J.: The August 2020 jökulhlaup from a marginal lake at Langjökull, W-Iceland: Course of events, discharge and volume estimates, future monitoring, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13666, https://doi.org/10.5194/egusphere-egu21-13666, 2021.

EGU21-1086 | vPICO presentations | CR5.4

Intensified paraglacial slope failures due to accelerating downwasting of a temperate glacier in Mt. Gongga, Southeastern Tibet Plateau

Yan Zhong, Qiao Liu, Yong Nie, Matthew Westoby, Bo Zhang, Jialun Cai, Haijun Liao, and Guoxiang Liu

Topographic development via paraglacial slope failure (PSF) represents a complex interplay between geological structure, climate, and glacial denudation. Where debris generated by PSFs is deposited on the surface of a glacier, this debris can increase the extent or thickness of a supraglacial debris-cover, in turn modifying glacier ablation and affecting meltwater generation. To date, little attention has been paid to intensity and frequency of PSFs and their significance as a geomorphic agent and hazard in glacierised, monsoon temperate regions of Southeast Tibet. We mapped PSFs along the 5 km-long, west-east trending ice tongue of Hailuogou Glacier (HLG), Mt. Gongga, using repeat satellite- and UAV-derived imagery between 1990 and 2020. Three types of PSF were identified: (A) rock fall, (B) slide and collapse of sediment-mantled slopes, and (C) gulley headwards erosion. We analyzed the formation, evolution and current state of these PSFs and discuss these aspects with relation to glacier dynamics and paraglacial geomorphological history. South-facing slopes (true left of HLG) showed more destabilization and higher PSF activity than north-facing slopes. We observed annual average rates of downslope sliding for type B PSFs of 1.6-2.6 cm d-1, whereas the average upward denudation rate for type C PSFs was 0.7-3.39 cm d-1. We show that type A PSFs are non-ice-contact rock collapses that occur as a long-term paraglacial response following glacier downwasting and the exposure of steep rocky cliffs and which could also be influenced by precipitation, freeze-thaw cycling, earthquakes or other factors. In contrast, type B and C PSFs are a more immediate response to recent glacier downwasting. We further argue that the accelerating downwasting of glacier are used as a preparatory or triggering factor, which could directly or indirectly cause the PSFs.

How to cite: Zhong, Y., Liu, Q., Nie, Y., Westoby, M., Zhang, B., Cai, J., Liao, H., and Liu, G.: Intensified paraglacial slope failures due to accelerating downwasting of a temperate glacier in Mt. Gongga, Southeastern Tibet Plateau, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1086, https://doi.org/10.5194/egusphere-egu21-1086, 2021.

In recent decades, slope instability in high-mountain regions has often been linked to the increase in temperature and the associated permafrost degradation and/or the increase in frequency/intensity of rainstorm events. In this context we analyzed the spatiotemporal evolution and potential controlling mechanisms of small to medium-size rockfalls and debris flows in a small catchment of the Italian Alps (Sulden/Solda basin). We found that rockfall events have been increasing since the 1990s, whereas debris flows have increased only since 2010. The current warming trend of mountain regions such as the Southern Alps is leading to an increased elevation of rockfall detachment areas (altitudinal shift of ca. 300-400 m in the study site), mostly controlled by frost-cracking and permafrost thawing. In contrast, the occurrence of debris flows does not exhibit such an altitudinal shift, as it is primarily driven by extreme precipitation events exceeding the 75th percentile of the intensity-duration rainfall distribution. The possible occurrence of a debris-flow event in this environment may be additionally influenced by the accumulation of unconsolidated debris over time, which is then released during extreme rainfall events. Overall, there is evidence that the upper Sulden basin (above ca. 2500 m asl), and especially the areas in the proximity of glaciers, have experienced a significant decrease in slope stability since the 1990s and that an increase in rockfalls and debris flows during spring and summer can be observed. Our study thus confirms that “forward-looking” hazard mapping should be undertaken in these increasingly frequented areas of the Alps, as these environmental changes have elevated the overall hazard level in these high-elevation regions.

How to cite: Savi, S., Comiti, F., and Strecker, M.: Global warming, slope stability, and the dynamization of geological hazards in high mountain regions: a case study from the Eastern Alps., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2070, https://doi.org/10.5194/egusphere-egu21-2070, 2021.

EGU21-13502 | vPICO presentations | CR5.4

Towards a better understanding of the role of glacier retreat and permafrost degradation in triggering secondary lahars

Theresa Frimberger, Daniel Andrade, and Michael Krautblatter

As everywhere in the Andes, tropical glaciers have been rapidly retreating since several decades. The glaciers of Cotopaxi volcano, Ecuador, have been reduced in area by about 50% since 1976 (Cáceres, 2017). The Cotopaxi is mostly famous for its capacity to produce massive lahars during volcanic eruptions, but comparably smaller, secondary lahars generated in post-eruptive periods by heavy rainfall occur more frequently on the volcano’s flanks. However, since a few years, secondary lahars that originate in proglacial areas without any clear trigger mechanism are recorded at Cotopaxi. This raises the question of whether there exists a process-based link between the occurrence of secondary lahars and the retreat of cold-based glaciers with accompanied permafrost degradation in the former subglacial frozen pyroclastic material over the following years and decades.

Here, we present the data obtained from laboratory-calibrated Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) conducted near the glacier margin between 5000 and 5300 m asl, which provide a better understanding of frozen/unfrozen conditions and the structure of the subsurface. In addition, data loggers have been recording surface air temperatures close to the glacier since May 2018. Our measurements show that permafrost cannot develop under current thermal conditions, but high electrical resistivities at depths of 10-20 m correspond to calibrated rock temperatures below 0 °C. The detected frozen lenses may act as detachment planes of periglacial secondary lahars in pyroclastic material recently exposed by glacier retreat.

 

Cáceres, B. (2017). Goal workshop 2017 Mexico 135 Evolución de los glaciares del Ecuador durante los últimos 60 años y su relación con el cambio climático. Conference paper: The role of Geosciences to societal development: A German-Latin American Perspective. GOAL Geo-Network of Latin American-German Alumini. P. 149. México: UANL-Monterrey-México.

How to cite: Frimberger, T., Andrade, D., and Krautblatter, M.: Towards a better understanding of the role of glacier retreat and permafrost degradation in triggering secondary lahars, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13502, https://doi.org/10.5194/egusphere-egu21-13502, 2021.

EGU21-8268 | vPICO presentations | CR5.4

Link between molards and permafrost degradation: an experimental study

Meven Philippe, Susan J. Conway, Marianne Font-Ertlen, Costanza Morino, and Olivier Bourgeois

Molards are cones of loose debris, from ~ 50 cm to ~ 15 m in height, and are the remnants of formerly ice-cemented blocks that moved within a landslide, then degraded progressively (e.g., [1]). Thus, presence of molards in landslide deposits implies an involvement of both ice-cemented and non-ice-cemented ground within the mass movement, and so the presence of an area of discontinuous permafrost at the level of the detachment zone. Permafrost is frozen or unfrozen ground that remains < 0°C for at least two consecutive years, and it can be sensitive to temperature variations [2]. Increasing temperatures can cause its degradation, which can create areas of discontinuous permafrost and enhance slope instability (e.g. [3]), which represents a threat for populations in polar and mountainous regions [4]. Therefore, accurately identifying areas of discontinuous permafrost is a contemporary challenge for assessments of the state and evolution of permafrost, and for understanding landslide-related hazards to protect local populations.

 

In this context, we will carry out physical modelling of the degradation of initial ice-cemented blocks made of sediments into molards. The M2C laboratory contains two cold rooms – the largest one > 12 m² – that can go down to -20°C, allowing near-field-scale simulations to be performed. We are developing an experimental protocol that consists in freezing mixes of sediment and water in 30 cm cubes, and then observing their degradation under controlled conditions. We identified grain size of the sediment and its ice content as the main two parameters that should influence the degradation process. Therefore, we will vary these parameters in the first series of experiments. We will observe the degradation processes that occur (e.g. grain falls, gravitational collapses, debris flows) using video cameras. The thaw-front propagation will be monitored by thermocouples within the frozen blocks. An array of time-lapse cameras will be used to produce time series of elevation models to monitor the 3D morphological evolution from blocks to molards. Air temperature and humidity will be monitored. Data on grain size, ice content, degradation processes and temperature/humidity will be used to calibrate a numerical model, which will allow us to explore a parameter space inaccessible/impractical for the laboratory (e.g. bigger scales, or realistic diurnal/seasonal thermal cycles). The final 3D shape (e.g. height, slope, basal area covered) of experimental molards should vary according to the initial parameters (i.e. grain size and ice content) and these measurements will inform the criteria used to distinguish molards from other similar landforms, such as hummocks or hummocky moraine, in the field and/or from remote sensing data.

 

Acknowledgements: authors thank the Agence Nationale de la Recherche for funding the ANR-19-CE01-0010 PERMOLARDS project, which supports this experimental work.

 

References: [1] Morino C. et al. (2019) EPSL 516, 136-147. [2] Hinzman L. D. et al. (2005) Climate Change 72, 251-298. [3] Dramis F. et al. (1995) PPP 6, 73-82. [4] Saemundsson Þ. et al. (2003) In: Rickenman, D., Chen, C.I. (Eds.), Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. 1, pp. 167–178.

How to cite: Philippe, M., J. Conway, S., Font-Ertlen, M., Morino, C., and Bourgeois, O.: Link between molards and permafrost degradation: an experimental study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8268, https://doi.org/10.5194/egusphere-egu21-8268, 2021.

EGU21-5178 | vPICO presentations | CR5.4

Geophysical and geomatic recent surveys at Whymper hanging Glacier (Aosta Valley – Italy)

Fabrizio Troilo, Simone Gottardelli, Daniele Giordan, Niccolò Dematteis, Alberto Godio, and Christian Vincent

The Grandes Jorasses Massif culminates at 4203m at the Punta Walker summit on the border between France and Italy. The south slope of Grandes Jorasses is widely glaciated and overlies a populated and highly frequented area, the Val Ferret, presenting the main infrastructure being the road in the valley bottom and different hamlets the most important being Planpincieux village. Located at an altitude between 3900 and 4100 m, the Whymper Serac is a hanging glacier that undergoes periodic gravity-driven instabilities. On 1st June of 1998, 150.000m3 of ice fell, and the resulting ice avalanche reached 1750m, at a mere 400m from houses of the Le Pont village and the main Road. The monitoring activity started in 1997: a  series of boreholes had been drilled to assess the basal thermal regime of the Serac and subsequently install a monitoring system for failure prediction time. Since then, no other thermal investigation was repeated.

In September 2020, three thermistor chains in three different boreholes were installed by means of hot water diesel-powered drill machine on Whymper Serac. Geophysical and topographic reconstructions at Whymper Serac are crucial for the volume estimation of possible instabilities; therefore, to assess ice thickness changes and morphological modifications, different geophysical soundings and topographical surveys were performed in 2020. The ice thicknesses were estimated employing a first airborne GPR survey on the 4th of July 2020 using a pair of orthogonal 25 MHz antennas; a second airborne GPR survey was performed using a single 40 MHz antenna on 14/12/2020. Moreover, an in-situ measure was performed through passive seismic sounding later processed as HVSR analysis to assess ice thickness estimation.

The geomatic analysis was performed by aero photogrammetric UAV surveys, and additional GCPs were materialized. The first assessment of thermal regime variation on the Serac suggests that risk scenarios, as well as monitoring possibilities, are rapidly evolving. According to these findings, bigger volumes could be involved in the destabilization of the Serac, and the evolution of the Serac from cold-based to polythermal poses a big challenge in the monitoring of deformations for the possibility of time prediction of failures. Therefore, experimentation of a long-range GB-InSAR surface deformations measures has begun to implement the existing monitoring network based on a robotized total station with reflective prisms used on the Serac. The installation of more thermistor chains is planned for summer 2021, to validate the previous results. Ground-based GPR soundings and more HVSR seismic measurements have as well been planned for 2021 for the more robust reconstruction of the bedrock geometry.

How to cite: Troilo, F., Gottardelli, S., Giordan, D., Dematteis, N., Godio, A., and Vincent, C.: Geophysical and geomatic recent surveys at Whymper hanging Glacier (Aosta Valley – Italy), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5178, https://doi.org/10.5194/egusphere-egu21-5178, 2021.

EGU21-4774 | vPICO presentations | CR5.4 | Highlight

A global inventory of potential future glacial lakes

Louis Frey, Holger Frey, Matthias Huss, Simon Allen, Daniel Farinotti, Christian Huggel, Adam Emmer, and Dan Shugar

A prominent phenomenon accompanying glacier retreat is the formation of new lakes. Such glacial lakes are the subject of numerous studies and investigations due to their potential to produce far-reaching glacial lake outburst floods (GLOFs), but also because they might provide opportunities for water resource management and energy production. Here we present a first global inventory of potential future glacial lakes, along with expected formation times under different RCP scenarios.

From published datasets of ice thickness distributions of all glaciers of the world, we identified glacier bed overdeepenings and extracted parameters of potential future lakes, such as area, depth and volume. The consideration of the ensemble of ice thicknesses allowed for a first-order quantification of uncertainties. We identified 67,000 (ranging from 55,000 to 87,000) overdeepenings with volumes larger than 1 x 106 m3, the total surface area and volume of corresponding potential lakes is 61,000 (56,000 to 64,000) km2 and 4,600 (3,100 to 7,200) km3, respectively. However, these numbers are based on the assumption of fully water-filled overdeepenings and therefore represent upper bound estimates. Global results are strongly influenced by very large depressions identified beneath (flat) polar glaciers and ice caps.  We then combined potential future lake sites with estimated future glacier extents from a global glacier evolution model (GloGEM), in order to estimate formation periods of these future lakes, considering different RCPs. Strong regional differences are also found in the anticipated formation periods: While in the low latitudes most future lakes are expected to form in the current decade, irrespective of the RCP, Arctic regions have highest lake formation rates towards the end of the 21st century, with the majority of bed overdeepening not being exposed by glacier retreat until 2100. In mid latitude mountain regions, large differences between RCP2.6 and RCP8.5 exist in regard of the timing of lake formation and the amount of total uncovered overdeepenings.

In addition to geometric properties and expected formation periods, the topographic potential for impacting mass movements, such as rock or ice avalanches, is determined for each overdeepening. In combination with potential lake volume and watershed area of the lake, these characteristics can be used for a first order estimation of lake outburst susceptibility. With a basic flow routing algorithm, potential outburst trajectories are modeled for each overdeepening. In combination with information on population density, settlements and further socio-economic and environmental datasets, this information can be used for future analyses of hazards, risks and opportunities associated with these potential future glacial lakes.

How to cite: Frey, L., Frey, H., Huss, M., Allen, S., Farinotti, D., Huggel, C., Emmer, A., and Shugar, D.: A global inventory of potential future glacial lakes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4774, https://doi.org/10.5194/egusphere-egu21-4774, 2021.

EGU21-12144 | vPICO presentations | CR5.4

Inventory and genesis of glacial lakes in Switzerland since the Little Ice Age

Nico Mölg, Christian Huggel, Thilo Herold, Florian Storck, Simon Allen, Wilfried Haeberli, Yvonne Schaub, and Daniel Odermatt

The deglaciation since the end of the Little Ice Age (LIA, ~1850) has given way to >700km² of “new” landscape in Switzerland. Glacial lakes are a conspicuous feature of this new landscape – with relevance for natural hazards, hydropower and landscape planning. In this study, we compiled an inventory of glacial lakes for Switzerland for the year 2016. Using existing data, we investigated the evolution of glacial lakes in Switzerland for six time periods since the LIA. Additionally, we compiled information constituting a basis for hazard assessment for all ice-contact lakes in 2016 and all lakes >0.5 ha, i.e. surface outflow, dam type and material, and lake freeboard.

We found that a total of 1230 lakes formed over the period of ~170 years, 982 still existing in 2016. The largest lakes are >0.4 km² (40 ha) in size, while the majority (>90%) are smaller than 0.01 km². Annual increase rates in area and number peaked in 1946-1973, decreased towards the end of the 20th century, and reached a new high in the latest period 2006-2016. For a period of 43 years, we compared modelled overdeepenings from previous studies to actual lake genesis. For a better prioritisation of formation probability, we included glacier-morphological criteria such as glacier width and visible crevassing. About 40% of the modelled overdeepened area actually filled with water. The inclusion of morphological aspects clearly aided in linking a lake formation probability to a modelled overdeepening.

Fig. 1: Glacial lake distribution in Switzerland and its evolution over time. 

How to cite: Mölg, N., Huggel, C., Herold, T., Storck, F., Allen, S., Haeberli, W., Schaub, Y., and Odermatt, D.: Inventory and genesis of glacial lakes in Switzerland since the Little Ice Age, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12144, https://doi.org/10.5194/egusphere-egu21-12144, 2021.

EGU21-9148 | vPICO presentations | CR5.4

A landslide-generated tsunami and outburst flood at Elliot Creek, coastal British Columbia  

Marten Geertsema, Brian Menounos, Dan Shugar, Tom Millard, Brent Ward, Göran Ekstrom, John Clague, Patrick Lynett, Pierre Friele, Andrew Schaeffer, Jennifer Jackson, Bretwood Higman, Chunli Dai, Camille Brillon, Derek Heathfield, Gemma Bullard, Ian Giesbrecht, and Katie Hughes

On 28 November 2020, about 18 Mm3 of quartz diorite detached from a steep rock face at the head of Elliot Creek in the southern Coast Mountains of British Columbia. The rock mass fragmented as it descended 1000 m and flowed across a debris-covered glacier. The rock avalanche was recorded on local and distant seismometers, with long-period amplitudes equivalent to a M 4.9 earthquake. Local seismic stations detected several earthquakes of magnitude <2.4 over the minutes and hours preceding the slide, though no causative relationship is yet suggested. More than half of the rock debris entered a 0.6 km2 lake, where it generated a huge displacement wave that overtopped the moraine at the far end of the lake. Water that left the lake was channelized along Elliot Creek, deeply scouring the valley fill over a distance of 10 km before depositing debris on a 2 km2 fan in the Southgate River valley. Debris temporarily dammed the river, and turbid water continued down the Southgate River to Bute Inlet, where it produced a 70 km turbidity current and altered turbidity and water chemistry in the inlet for weeks. The landslide followed a century of rapid glacier retreat and thinning that exposed a growing lake basin. The outburst flood extended the damage of the landslide far beyond the limit of the landslide, destroying forest and impacting salmon spawning and rearing habitat. We expect more cascading impacts from landslides in the glacierized mountains of British Columbia as glaciers continue to retreat, exposing water bodies below steep slopes while simultaneously removing buttressing support.

How to cite: Geertsema, M., Menounos, B., Shugar, D., Millard, T., Ward, B., Ekstrom, G., Clague, J., Lynett, P., Friele, P., Schaeffer, A., Jackson, J., Higman, B., Dai, C., Brillon, C., Heathfield, D., Bullard, G., Giesbrecht, I., and Hughes, K.: A landslide-generated tsunami and outburst flood at Elliot Creek, coastal British Columbia  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9148, https://doi.org/10.5194/egusphere-egu21-9148, 2021.

EGU21-13584 | vPICO presentations | CR5.4

Reconstruction of the sudden drainage of a moraine-dammed lake in the Cordillera Vilcabamba (Peru): the 2020 Salkantay event

Oscar Vilca, Martin Mergili, Adam Emmer, Holger Frey, and Christian Huggel

On 23rd February 2020, a landslide-triggered GLOF process chain was initiated from the SW slope of Nevado Salkantay, Cordillera Vilcabamba, Peru. An initial slide evolved into a rock/ice avalanche and part of the released material fell into the moraine-dammed Lake Salkantaycocha, triggering a displacement wave which overtopped and eroded the distal face of the dam. Dam overtopping resulted in a far-reaching GLOF causing fatalities and people missing in the valley downstream. In this contribution, we analyse the situation before and after the event as well as the dynamics of the GLOF process chain, based on field investigations, remotely sensed data, meteorological data, and a computer simulation with a two-phase flow model. Comparing pre- and post-event field photographs helped us to estimate the initial landslide volume of 1–2 million m³. Meteorological data suggest rainfall and/or melting/thawing processes as possible causes of the landslide. The simulation reveals that the landslide into the lake created a displacement wave height of up to 27 m. We reconstructed a released volume 57,000 m3 (less than 10% of lake volume) and estimated a total GLOF peak discharge almost 10,000 m³/s at the dam. The lake had 40 m dam freeboard at the time of a GLOF, and the lake level increased by 10–15 m directly after the event, since most of the volume of landslide material deposited in the lake (roughly 1.3 million m³). The model results show a good fit with the observations, including the travel time to the uppermost village. The findings of this study serve as a contribution to the understanding of landslide-triggered GLOFs in changing high-mountain regions.

How to cite: Vilca, O., Mergili, M., Emmer, A., Frey, H., and Huggel, C.: Reconstruction of the sudden drainage of a moraine-dammed lake in the Cordillera Vilcabamba (Peru): the 2020 Salkantay event, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13584, https://doi.org/10.5194/egusphere-egu21-13584, 2021.

EGU21-9744 | vPICO presentations | CR5.4

A new GLOF inventory for the Peruvian and Bolivian Andes

Adam Emmer, Simon Cook, Joanne L. Wood, Stephan Harrison, Ryan Wilson, Alejandro Diaz-Moreno, John M. Reynolds, and Juan Torres

Addressing the question of whether Glacial Lake Outburst Floods (GLOFs) are changing in frequency and magnitude in modern times requires historical context, but suffers from incomplete GLOF inventories, especially in remote mountain regions. Here, we exploit high-resolution, multi-temporal satellite and aerial imagery combined with documentary data to identify GLOF events across the glacierized Cordilleras of Peru and Bolivia, using a set of diagnostic geomorphic features. More than 150 GLOFs are characterised and analysed, far exceeding the number of previously reported events. We provide statistics on location, magnitude, timing and characteristics of these events. Further, we describe several cases in detail and document a wide range of process chains associated with GLOFs. Our findings outline implications for regional GLOF hazard identification and assessment and provide solid basis for enhanced understanding GLOF occurrence under changing climate conditions and glacier retreat.

How to cite: Emmer, A., Cook, S., Wood, J. L., Harrison, S., Wilson, R., Diaz-Moreno, A., Reynolds, J. M., and Torres, J.: A new GLOF inventory for the Peruvian and Bolivian Andes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9744, https://doi.org/10.5194/egusphere-egu21-9744, 2021.

EGU21-2185 | vPICO presentations | CR5.4

Landslide-GLOF cascade at the expanding Jinwuco in Tibet, 2020: a clear consequence of anthropogenic climate change 

Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel

Glacial Lake Outburst Floods (GLOFs) are amongst the most common and high-magnitude natural hydrological disasters in high-mountain regions that have resulted in severe casualties and socioeconomic losses over the last century. Here, we integrate various data and methods to analyse and reconstruct the GLOF process chain involving the moraine-dammed proglacial lake ‒ Jinwuco (30.356°N, 93.631°E) in eastern Nyainqentanglha, Tibet, China, which occurred on 26th June 2020. This lake underwent rapid expansion in area from 0.2 km2 to 0.56 km2 (1965-2020), and subsequently shrank to 0.26 km2 after the GLOF. Topographic reconstruction and empirical relationships indicate that the GLOF had a volume of 10 million m3, an average breach time of 0.62 hours, and an average peak discharge of 5,390 m3/s at the dam. Pre- and post-event high-resolution satellite scenes reveal a large progressive debris landslide originating from western lateral moraine. This landslide which occurred 5-17 days before the GLOF was most likely triggered by extremely heavy, south Asian monsoon-associated rainfall in June. The time lag between the landslide and the GLOF suggests that pre-weakening of the dam due to landslide-induced outflow pushed the system towards a tipping point, that was finally exceeded following subsequent rainfall, snowmelt, a secondary landslide, or calving of ice into the lake. We back-calculate a part of the GLOF process chain, using the GIS-based open source numerical simulation tool r.avaflow, considering two scenarios: Scenario A - a debris landslide-induced impact wave with overtopping and resulting retrogressive erosion of the moraine dam; and Scenario B - retrogressive erosion due to pre-weakening of the dam without a major impact wave. Both back-calculated scenarios yield plausible results which are in line with empirically derived ranges of peak discharge and breach time. The breaching process is characterized by a slower onset and a resulting delay in Scenario B, compared to Scenario A. Our evidence, however, points towards Scenario B. The 2020 Jinwuco GLOF caused severe destruction of infrastructure (e.g. roads and bridges) and property losses in downstream areas (no fatalities were reported).

This study corroborates the clear role of continued glacial retreat in destabilizing the adjacent lateral moraine slopes, and directly enabling the landslide to deposit into the expanding lake body. As such, the GLOF process chain can be robustly attributable to anthropogenic climate change, while downstream consequences have been driven by recent development of infrastructure on exposed flood plains. Such glacial lake related process chains could become more frequent under a warmer and wetter future climate, calling for comprehensive and forward-looking risk reduction planning. We anticipate our findings will provide critical new process understanding on GLOF triggering mechanisms and these new insights will improve GLOF hazard and risk assessment frameworks, highlighting the need to consider both complex instantaneous and gradual process chains.

 

How to cite: Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., and Stoffel, M.: Landslide-GLOF cascade at the expanding Jinwuco in Tibet, 2020: a clear consequence of anthropogenic climate change , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2185, https://doi.org/10.5194/egusphere-egu21-2185, 2021.

EGU21-14213 | vPICO presentations | CR5.4 | Highlight

Glacial lake outburst floods in High Mountain Asia: From large scale assessment to local disaster risk management

Simon Allen, Tobias Bolch, Holger Frey, Guoqing Zhang, Guoxiong Zheng, Suraj Mal, Ningsheng Chen, Ashim Sattar, and Markus Stoffel

Widespread retreat of glaciers has accelerated over recent decades in most mountain regions as a consequence of global warming, leading to rapid expansion of glacial lakes, bringing related risks.When water is suddenly released, Glacial Lake Outburst Floods (GLOFs) can devastate lives and livelihoods up to hundreds of kilometres downstream of their source. This threat is most apparent in High Mountain Asia (HMA), home to >200 million inhabitants, and where >150 GLOFs have been recorded from moraine dammed lakes alone. Here we reflect on our recent experience working across HMA to outline key learnings, challenges and perspectives in applying GLOF hazard and risk assessment at various scales, with an emphasis on how results have or can inform local response planning.

The number of large-scale assessment studies has increased exponentially over recent years, often giving inconsistent results in terms of what are considered potentially dangerous lakes. This makes it difficult for authorities and funding agencies to identify where more detailed hazard mapping and risk management strategies should be targeted, especially in cases where the science may not be aligned with local understanding and experience. We therefore recommend a consensus approach, drawing across multiple studies, and including the knowledge of local authorities to arrive at a final listing of high priority lakes which may be subject to further monitoring, Early Warning Systems and other response strategies. In our stakeholder interactions, we have particularly emphasised that GLOFs from even relatively small lakes can lead to significant damages when combined with other hazardous processes, e.g., the case of 2013 Chorabari GLOF combining with monsoon flooding and landslides in Northern India, or the 2016 outburst from Gongbatongshaco, Chinese Himalaya, Tibet, where erosion and bulking was significantly enhanced as a consequence of the Gorkha earthquake occurring a year earlier.

Looking to the future, several assessment studies have now combined modelling of glacier bed topography to identify where new lakes could emerge in the future, and even combined this information with changing exposure levels (e.g., planned hydropower development). However, there are challenges around communicating these uncertain future hazards and risks, and to what extent they should be considered in planning. In the transboundary Poiqu basin originating in Tibet, we have focussed on worst-case scenario modelling for such a future lake, demonstrating that flow depths and velocities would exceed the threat from current lakes, and the peak wave would reach the border with Nepal up to 20 minutes faster. Open questions remain around how triggering processes will evolve in the future. Most assessments currently focus on cascading process chains triggered by ice or rockfall, whereas under a wetter and warmer future climate, heavy rainfall and snowmelt as a direct or indirect trigger could become increasingly important. Further, major uncertainties arise from socio-economic developments and related changes in exposure and vulnerability, that could, in some regions, be the most significant drivers of future GLOF risk. Ultimately, forward-looking, GLOF hazard and risk assessment must ensure that response strategies remain robust in the face of ongoing environmental and societal change.

How to cite: Allen, S., Bolch, T., Frey, H., Zhang, G., Zheng, G., Mal, S., Chen, N., Sattar, A., and Stoffel, M.: Glacial lake outburst floods in High Mountain Asia: From large scale assessment to local disaster risk management, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14213, https://doi.org/10.5194/egusphere-egu21-14213, 2021.

EGU21-12475 | vPICO presentations | CR5.4

Susceptibility of glacial lakes to avalanche and rockfall in the Hindu-Kush-Himalaya

Saket Dubey, Manish Goyal, Ashim Sattar, and Umesh Haritashya

The Hindu-Kush-Himalayan region is home to numerous glacial lakes. Some of these lakes could fail and produce hazardous Glacial Lake Outburst Floods (GLOF). GLOFs are primarily triggered by an avalanche or a rockfall entering the lake that generates an overtopping displacement waves. In the present study, we investigate the susceptibility of all lakes present in the Hindu-Kush-Karakorum (HKH) region (Randolph Glacier inventory region 14 and 15) to the dynamic mass movement (avalanche and rockfall). Avalanche and rockfall trajectories are developed considering various depths and “Minimum Look-Up Angle” (MLUA: a term used to define the avalanche runout distance). These trajectories are also validated against the results obtained from the Rapid Mass Movement Simulation (RAMMS) model. The mass movement of avalanche or rockfall along the major axis may enhance the wave run-up leading to a higher impact on the damming structure. Therefore, each susceptible lake is critically assessed for the angle of intrusion of a mass movement. The stability of the glacial lakes was also evaluated using the steep lake front area method to understand the associated hazard. Obtained results suggest that out of 3725 glacial lakes, 239 are susceptible to an avalanche when the mean avalanche depth is considered 50 m, and only 43 if the assumed mean avalanche depth is reduced to 10 m. Furthermore, the rockfall trajectories suggest that 343 lakes are susceptible to rockfall while considering MLUA of 17˚, which falls to 217 when MLUA is increased to 23˚. Overall, glacial lakes in the Central Himalayas were more susceptible to mass movement than the Karakoram, Western and Eastern Himalayas. We hope that our work will enable stakeholders to make a well-informed decision for hazard management in the Hindu-Kush-Himalayas. In addition to this, developed avalanche and rockfall trajectories will also help identify critical regions and hazard susceptibility structures.

How to cite: Dubey, S., Goyal, M., Sattar, A., and Haritashya, U.: Susceptibility of glacial lakes to avalanche and rockfall in the Hindu-Kush-Himalaya, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12475, https://doi.org/10.5194/egusphere-egu21-12475, 2021.

EGU21-1260 | vPICO presentations | CR5.4

Hydrodynamic modelling of outburst flood hazard in the Pokhara Valley, Nepal

Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz

In May 2012, a sudden outburst flood along the Seti Khola river caused 72 fatalities and damaged infrastructure in the northern Pokhara Valley, Nepal. This destructive event raised concerns about possible future landslide- or glacier-surge-related outburst floods from the Higher Himalayas. The Seti Khola runs along one of the steepest topographic gradients in this mountain belt. The river is fed by the debris-covered Sabche glacier, Nepal’s only observed surging glacier, below the flanks of Annapurna III (c. 7500 m asl) and reaches Pokhara, the country’s second largest city, at about 850 m asl. Over a course of some 40 km, the Seti Khola shaped the Pokhara Valley’s distinctive landscape of unpaired, several tens of meters to >100-m high alluvial terraces that alternate with deep slot gorges of <1 km length, all mostly cut into deposits of medieval and earlier outburst and outwash deposits. These abrupt changes in channel cross section provide many potential locations of hydraulic ponding during floods. We present a reanalysis of the 2012 Seti Khola outburst flood, and combine field-based surveys of valley geometry, flood markers, and surface roughness (i.e. Manning’s n value estimates) with landform mapping from high-resolution satellite images and digital elevation models. These components form the input for a one-dimensional steady flow simulation in HEC-RAS that allows us to reconstruct the dynamics, stage height, and runout from the 2012 Seti Khola flood. Validated by both this recent and the catastrophic historic events, we use our model to simulate future scenarios of inundation by these infrequent but potentially highly destructive outburst floods and compare them to the Pokhara Valley’s recurring monsoonal floods.

How to cite: Fischer, M., Korup, O., Veh, G., and Walz, A.: Hydrodynamic modelling of outburst flood hazard in the Pokhara Valley, Nepal, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1260, https://doi.org/10.5194/egusphere-egu21-1260, 2021.

EGU21-10838 | vPICO presentations | CR5.4

Modeling glacial lake outburst flood process chains in Sikkim Himalaya: Hazard assessment of two potentially dangerous lakes

Ashim Sattar, Simon Allen, Holger Frey, Christian Huggel, and Martin Mergili

The presence of large and rapidly growing glacial lakes along the Himalayan Arc makes glacial lake outburst floods (GLOFs) a serious mountain hazard. While glacial lakes are mainly located in remote and unsettled mountain valleys, far-reaching GLOFs may claim lives and damage assets tens of kilometers downstream. Evaluating GLOF hazard is therefore of high importance, considering current and potential future climate-driven changes of glaciers and glacial lakes. A major concern in the Northeastern Indian Himalayan state of Sikkim is the damage potential these flood events can cause to hydropower plants and local vulnerable communities. This is particularly true for outburst floods potentially originating from the two lakes in Sikkim that are considered hazardous: the South Lhonak Lake and the Shako Cho Lake. Both lakes have been recognized in previous studies, and by local and state authorities, as being high priority sites for further monitoring and potential risk reduction measures. Recognizing the need for related risk reduction strategies to be based on robust scientific understanding, this study aims to combine remote sensing approaches with hydrodynamic flood modeling to identify key threats to lives and livelihoods.

This study also provides the first implementation of recently developed national guidelines on the management of GLOFs, where a detailed risk assessment including potential GLOF triggers, conditioning factors, and downstream impacts forms the scientific core. First results of only-water flow using HEC-RAS show that a high-potential scenario (dam breach depth = 40 m) produces flow depth and flow velocity up to 25 m and 9-12 m s-1, respectively, at Chungthang, a town located close to a major hydropower station, 62 km downstream of the lake. The fact that GLOF flow rheology is often changing as it propagates downstream, further modeling has been undertaken with r.avaflow, which can simulate the entire process chain from initial avalanche triggering, to dam erosion, and downstream flow propagation with a multi-phase modeling approach. Hence, we can evaluate the potential downstream impact in the case of a GLOF transitioning into a debris flow process. Our results provide flow hydraulics including flow velocities, flow heights, and total downstream inundation. These parameters will provide important insights for risk reduction strategies, such as early warning systems and land-use planning under current and future glacial conditions.

 

How to cite: Sattar, A., Allen, S., Frey, H., Huggel, C., and Mergili, M.: Modeling glacial lake outburst flood process chains in Sikkim Himalaya: Hazard assessment of two potentially dangerous lakes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10838, https://doi.org/10.5194/egusphere-egu21-10838, 2021.

EGU21-10821 | vPICO presentations | CR5.4

How can drone imagery and dendrogeomorphology contribute to GLOF hazard assessment in remote areas? A case study from Chilean Patagonia.

Sandra Gorsic, Alberto Muñoz-Torrero Manchado, Jérôme Lopez-Saez, Simon K. Allen, Juan A. Ballesteros-Canovas, Clara Rodríguez-Morata, Alejandro Dussaillant, and Markus Stoffel

With the substantial glacier mass reduction projected by the end of the century, the formation and rise of periglacial lakes has to be expected. Even though these changes often occur in remote areas, they can nevertheless have catastrophic impacts on populations and infrastructure through processes such as glacial lake outburst floods (GLOF). GLOFs are the result of complex geomorphic changes and subject to various timescales, thus urging the need for a multidimensional approach. The present study combines two approaches to analyze natural hazards in the secluded San Rafael National Park in Chilean Patagonia (North Patagonian Icefield). The Grosse glacier outlet was chosen after interpreting satellite imagery and historical pictures showing a historical emptying of a lateral lake, which was also supported by local testimonies. Dendrogeomorphology was primarily used with an automatic detection approach to identify possible dates of occurrence of past GLOFs at the Grosse outlet. A total of 105 disturbed Nothofagus trees were sampled highlighting 6 event years between 1958 and 2011. The second method aimed at complementing the tree-ring-based findings with UAV imagery acquired during fieldwork and the mapping of geomorphic evidence of past GLOFs. Huge boulders and deposits are one of the signs recognized as remnants of past lake outbursts and were thus used to differentiate small, rainfall-induced floods from high magnitude events. More precisely, through an object-based strategy, we mapped deposits and extrapolated a theoretical flow orientation. Whereas the first method allowed to select dates of potential events, the second facilitated identification and mapping of the spatial extent of past high-energy events. Analysis of imagery also allowed detection of the occurrence of a 200-m wide breach in the frontal moraine as well as the vanishing of a lateral lake estimated to be 1.8 × 106 m2 in the 1950s, which we date to 1958 using tree-ring records. When used together the two approaches can represent a valuable contribution to historical records and help future assessments of natural hazard at Grosse glacier, but also in other high-mountain environments.

How to cite: Gorsic, S., Muñoz-Torrero Manchado, A., Lopez-Saez, J., K. Allen, S., A. Ballesteros-Canovas, J., Rodríguez-Morata, C., Dussaillant, A., and Stoffel, M.: How can drone imagery and dendrogeomorphology contribute to GLOF hazard assessment in remote areas? A case study from Chilean Patagonia., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10821, https://doi.org/10.5194/egusphere-egu21-10821, 2021.

EGU21-5186 | vPICO presentations | CR5.4

Risk management and response process of moraine lakes GLOF in southwestern Tibet (China)

Xiang Wang, Guo Chen, Xiaoai Dai, Jingjing Zhao, Xian Liu, Yu Gao, Junmin Zhang, Yongjun Chen, Xiaozhen Li, Wenyi Qin, and Peng Wang

The southwestern part of Tibet in China is one of the hardest-hit areas where Glacier Lake Outburst Flood (GLOF) occurs frequently in the Moraine Lakes of Himalayas. In the face of the increasingly severe GLOF threat of Moraine Lakes, it is urgent to build a risk management and response process of moraine lakes GLOF in this region.  Therefore, we propose a multi-module, process-oriented approach to GLOF risk response (Monitoring-Evaluation-Simulation), which integrates remote sensing, field surveys, Geographic Information Science (GIS), mathematical evaluation models, and hydrodynamic models to carry out the monitoring and analysis of GLOF, susceptibility evaluation, and numerical simulation work in Moraine Lakes.  In the monitoring section (remote sensing and field surveys), we find that typical Moraine Lakes in southwestern Tibet continue to expand in area and are prone to GLOF, which is mainly due to significant area expansion, large-scale ice/avalanches and landslides, and overflow or seepage at the terminal moraine dam. In the assessment part, based on the susceptibility evaluation factor of the glacial lake obtained by monitoring. We creatively use the grey correlation model to filter the GLOF susceptibility evaluation factors, so that the constructed GLOF susceptibility evaluation model has achieved good results (the model evaluation accuracy rate reached 84%, and the AUC value reached 0.874). In the modeling part, the GLOF modeling was carried out for the glacial lakes with high GLOF susceptibility determined by the assessment. It is also the first time that the FLO-2D model is used to construct the GLOF process of a typical Moraine Lake in the Himalayas. The simulation results show the effective simulation capability of the FLO-2D model (the simulated flow depth and flow velocity errors are both within 10%). In short, realizing the organic combination of monitoring, evaluation and simulation are one of the main advantages of the "Monitoring-Evaluation-Simulation" method. This approach effectively supports the prevention and control of GLOF in Moraine Lakes in southwestern Tibet and provides a new application idea for the risk management and response of GLOF in regional Moraine Lakes.

 

How to cite: Wang, X., Chen, G., Dai, X., Zhao, J., Liu, X., Gao, Y., Zhang, J., Chen, Y., Li, X., Qin, W., and Wang, P.: Risk management and response process of moraine lakes GLOF in southwestern Tibet (China), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5186, https://doi.org/10.5194/egusphere-egu21-5186, 2021.

EGU21-15577 | vPICO presentations | CR5.4

Climate change and cryosphere in high mountains: updates from the Capanna Margherita hut study case (Punta Gnifetti, Monte Rosa Massif, Pennine Alps)

Marco Giardino, Antonio Montani, Andrea Tamburini, Francesco Calvetti, Davide Martelli, Graziano Salvalai, Federico Tognetto, and Luigi Perotti

Mountain glaciers and permafrost are among the most evident geomorphological tracers of climate change. In the last decades, they showed a growing and faster response also at very high elevations, leading to increased instability of the Alpine landscape. In the meanwhile, they became of great interest also for their possible interactions with human activities and infrastuctures.

On the highest massif of the Alps, as for example the Monte Rosa, this interaction is mainly represent by the one with mountaineering activities. The top of Gnifetti Peak (4554 m a.s.l.), with the Capanna Margherita hut (the highest in Europe), is under investigation to better understand the effects of global warming on hut stability and mountaineering routes safety. Thanks to the cooperation between the Italian Alpine Club (CAI), University of Turin (UniTo), Politecnico di Milano (PoliMi) and IMAGEO srl, a first assessment of geological and glacial settings of hut surroundings have been performed on 2019. Data collection continued on 2020, by means of comparative analyses designated to: a) identify the relevant geomechanical features for rock mass stability; b) verify permafrost related instabilities; c) reconstruct the ice-covered morphology of the Punta Gnifetti peak; d) calculate rock-building interactions. Here below the related results:

1) A 3D model of the area has been obtained by integrating helicopter-borne photogrammetry with terrestrial laser scanner surveys.

2) Glacier thickness at the Colle Gnifetti has been established thanks to GPR survey.

3) From the comparison of a large number of historical pictures a first multi-temporal stability analysis highlighted sector of greater instability. Results of this work are freely available on the website www.geositlab.unito.it/capanna .

4) The geomechanical features of the rock mass below and around the hut have been retrieved from the analysis of the dense point cloud provided by terrestrial laser scanner integrated with direct field investigations.

5) Constructive drawing of the hut have been obtained from the terrestrial laser scanner point cloud integrated with manual measurements taken inside the structure.

6) 3D numerical modelling are going to be applied in order to simulate the interactions between the hut and the foundation rock on the base of the above data.

The ongoing activities are addressed to a detailed study of more vulnerable sectors of the Punta Gnifetti to better understand morphodynamics and possible interactions with mountaineering activities. This will be performed through a two-way investigation. On one hand, a link with alpine guides and mountain hut keepers has been established, in order to have “sentries” ready to report instabilities and detect new hazards and risks. On the other hand, a monitoring network will be installed around Capanna Margherita in order to collect data on weather, glacier and permafrost conditions.

How to cite: Giardino, M., Montani, A., Tamburini, A., Calvetti, F., Martelli, D., Salvalai, G., Tognetto, F., and Perotti, L.: Climate change and cryosphere in high mountains: updates from the Capanna Margherita hut study case (Punta Gnifetti, Monte Rosa Massif, Pennine Alps), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15577, https://doi.org/10.5194/egusphere-egu21-15577, 2021.

EGU21-8004 | vPICO presentations | CR5.4

Investigating the concept of mountain forest protection and management as a means for flood protection

Janine Rüegg, Christine Moos, Alice Gentile, Gilles Luisier, Alexandre Elsig, Günther Prasicek, and Iago Otero

Environmental policies have the purpose to protect ecosystems in their structure and function to maintain the ecosystem services they provide. They are based on scientific knowledge at the time they are established, and rarely are those assumptions revisited or is the effectiveness of these policies in protecting or promoting a particular ecosystem service tested. In this study, we revisit the first Swiss Federal Forest Law which protects mountain forests as a means of protection from natural hazards. It was established in 1876 following catastrophic flood events to preserve and restore the protective service of mountain forests by prohibiting clear-cutting and an excessive use of forests. Here, we provide a conceptual and methodological framework to explore the effects of the Forest Law on flood occurrence based on insights from preliminary results of a feasibility study. For the conceptual framework, we summarize the current scientific knowledge on i) forest effects on hydrological regimes and their protection service against floods, ii) reasons for reforestation in mountains and how the law may have contributed, and iii) other watershed changes affecting both reforestation and the forest-runoff interaction. We then develop the methodological framework based on insights from a case study on the Upper Rhone catchments, which serves as a prototype of an interdisciplinary methodological approach to answer the question of whether a forest protection law can serve as a means of flood protection. We explore the feasibility of answering this question given data are at different scales and resolutions. We suggest modeling to fill data gaps and discuss collaboration among natural and social sciences. Specifically, we propose that both natural and social scientists need to collaborate, with frequent exchange, to collect the data necessary to evaluate the relationship between legal forest protection and flood occurrence. We found an environmental historian is needed to evaluate if changes in forest cover can be attributed to mandates by the law, or rather cultural and societal developments. Further, a forest scientist or engineer in collaboration with a hydrologist will need to adapt and improve hydrological models that specifically include forest cover and structure. All scientists need to collaborate to find the information on historical and current forest cover (e.g., maps, postcards, orthophotos) and floods (e.g., archival documents, journal, newspapers, hydrological stations). Our case study indicates that data to answer the overarching question may be available and emphasizes the necessity of a true interdisciplinary approach allowing for consideration and combination of a variety of data sources and different temporal and spatial scales. The interdisciplinary framework we developed can serve as example for other ecosystem services, where similar questions on the effects of environmental practices and policies arise.

How to cite: Rüegg, J., Moos, C., Gentile, A., Luisier, G., Elsig, A., Prasicek, G., and Otero, I.: Investigating the concept of mountain forest protection and management as a means for flood protection, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8004, https://doi.org/10.5194/egusphere-egu21-8004, 2021.

EGU21-2257 | vPICO presentations | CR5.4 | Highlight

Anthropogenic climate change detected in natural and human systems of the world’s mountains

Christian Huggel, Simon K. Allen, Indra D. Bhatt, Rithodi Chakraborty, Fabian Drenkhan, Robert Marchant, Samuel Morin, Laura Niggli, Ana Elizabeth Ochoa Sánchez, Julio Postigo, Estelle Razanatsoa, Valeria Rudloff, Aida Cuni Sánchez, Dáithí Stone, Jessica Thorn, and Daniel Viviroli

Mountains cover about a quarter of the Earth’s land surface and are home to or serve a substantial fraction of the global population with essential ecosystem services, in particular water, food, energy, and recreation. While mountain systems are expected to be highly exposed to climate change, we currently lack a comprehensive global picture of the extent to which environmental and human systems in mountain regions have been affected by recent anthropogenic climate change.

Here we undertake an unprecedented effort to detect observed impacts of climate change in mountains regions across all continents. We follow the approach implemented in the IPCC 5th Assessment Report (AR5) and follow-up research where we consider whether a natural or human system has changed beyond its baseline behavior in the absence of climate change, and then attribute the observed change to different drivers, including anthropogenic climate change. We apply an extensive review of peer-reviewed and grey literature and identify more than 300 samples of impacts (aggregate and case studies). We show that a wide range of natural and human systems in mountains have been affected by climate change, including the cryosphere, the water cycle and water resources, terrestrial and aquatic ecosystems, energy production, infrastructure, agriculture, health, migration, tourism, community and cultural values and disasters. Our assessment documents that climate change impacts are observed in mountain regions on all continents. However, the explicit distinction of different drivers contributing to or determining an observed change is often highly challenging; particularly due to widespread data scarcity in mountain regions. In that context, we were also able to document a high amount of impacts in previously under-reported continents such as Africa and South America. In particular, we have been able to include a substantial number of place-based insights from local/indigenous communities representing important alternative worldviews.

The role of human influence in observed climate changes is evaluated using data from multiple gridded observational climate products and global climate models. We find that anthropogenic climate change has a clear and discernable fingerprint in changing natural and human mountain systems across the globe. In the cryosphere, ecosystems, water resources and tourism the contribution of anthropogenic climate change to observed changes is significant, showing the sensitivity of these systems to current and future climate change. Furthermore, our analysis reveals the need to consider the plurality of knowledge systems through which climate change impacts are being understood in mountain regions. Such attempts at inclusivity, which addresses issues of representation and justice, should be deemed necessary in exploring climate change impacts.

How to cite: Huggel, C., Allen, S. K., Bhatt, I. D., Chakraborty, R., Drenkhan, F., Marchant, R., Morin, S., Niggli, L., Ochoa Sánchez, A. E., Postigo, J., Razanatsoa, E., Rudloff, V., Cuni Sánchez, A., Stone, D., Thorn, J., and Viviroli, D.: Anthropogenic climate change detected in natural and human systems of the world’s mountains, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2257, https://doi.org/10.5194/egusphere-egu21-2257, 2021.

EGU21-3448 | vPICO presentations | CR5.4

Mountain freshwater ecosystems and protected areas in the tropical Andes: insights and gaps for climate change adaptation

Estefania Quenta, Verónica Crespo-Pérez, Bryan Mark, Ana Lía Gonzales, and Aino Kulonen

Protected areas play an important role in ecosystem conservation and climate change adaptation. However, no systematic information is available on the protection of high elevation freshwater ecosystems (e.g.  lakes, glacierized catchments and streams), their biodiversity and ecosystem services. Here we addressed this issue by reviewing literature and analyzing maps of protected areas and freshwater ecosystems in the tropical Andes. Overall, our revision and inventory indicate: 1) seven national parks were created with the objective of water resources protection, but they were not designed for freshwater conservation (i.e., larger watersheds), and mainly protect small ecosystems. Furthermore, the creation of new local protected areas was needed for water resources conservation; 2) we quantified 12% and 31% of lakes and glacial lakes are protected, respectively. Around 12% of the total stream length is protected. First-order streams predominate in the study area, of which 14% are protected. Furthermore, 29% of glacierized catchments (average surface of 677 km2)are protected, and 46% of the total glacier area is protected. We quantified 31 Ramsar sites; 3) high-value biodiversity sites have not been protected, and ecosystems services information is limited. This review highlights the need for future research to fill knowledge gaps for effective freshwater conservation actions.

How to cite: Quenta, E., Crespo-Pérez, V., Mark, B., Gonzales, A. L., and Kulonen, A.: Mountain freshwater ecosystems and protected areas in the tropical Andes: insights and gaps for climate change adaptation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3448, https://doi.org/10.5194/egusphere-egu21-3448, 2021.

EGU21-3487 | vPICO presentations | CR5.4

Emerging water scarcity risks in tropical Andean glacier-fed river basins

Fabian Drenkhan, Erika Martínez, Charles Zogheib, Boris F. Ochoa-Tocachi, and Wouter Buytaert

In the tropical Andes and adjacent lowlands, human and natural systems often rely on high-mountain water resources. Glaciated headwaters play an essential role in safeguarding water security for downstream water use. However, there is mounting concern particularly about long-term water supply as the timing and magnitude of glacier meltwater contribution to river streamflow become less reliable with rapid glacier shrinkage. This concern matches an increase in water demand from growing irrigation, population and hydropower capacity in combination with high social-ecological vulnerabilities threatening sustained water security. Despite important progress in assessing the impacts of glacier shrinkage and consequences for meltwater availability, little is known about the associated hydrological risks and how they propagate downstream. Therefore, integrated approaches are needed that combine a detailed picture of the meltwater propagation through the terrestrial water cycle with human vulnerabilities and exposure to water scarcity. However, the complex topographic and sociocultural setting including scarce data, limited local capacities and frequent water conflicts hamper a more thorough process understanding and water security assessment at a basin scale.

Under high complexity and uncertainty, we propose a coupled risk framework combining water scarcity hazards, exposed people and multiple human vulnerabilities to address these limitations. An important aspect of the framework is the recognition of knowledge from indigenous and rural communities that can potentially be integrated into current scientific baselines and innovative adaptation debates. Our framework interlinks a broad set of hydroclimatic, socioeconomic and water management variables at unprecedented detail. We put particular emphasis on the quantification and understanding of multidimensional vulnerabilities as a key element for evaluating the enabling effects of these impacts in social-environmental systems. However, the assessment of corresponding vulnerabilities might not be relevant if the degree of the systems’ exposure is not sufficiently addressed. Therefore, we further analyse the interplay of the diverse variables and critical system thresholds that determine the dimensions and spatiotemporal patterns which enable meaningful assessments of cascading processes and interconnected risks to water scarcity.

Our risk framework provides a thorough baseline to support assessments of future water availability for guiding climate change adaptation, water management, and governance in rapidly changing mountain basins. Nonetheless, remaining uncertainties and limited understanding relate to the availability of local data and highlight the need for additional data collection. Lastly, we identify specific opportunities to explore the use of nature-based solutions, such as source water and wetland protection, in combination with a strong engagement of local communities and policy makers as an efficient pathway to cope with emerging risks to water scarcity in glacier-fed river basins.

How to cite: Drenkhan, F., Martínez, E., Zogheib, C., Ochoa-Tocachi, B. F., and Buytaert, W.: Emerging water scarcity risks in tropical Andean glacier-fed river basins, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3487, https://doi.org/10.5194/egusphere-egu21-3487, 2021.

EGU21-4725 | vPICO presentations | CR5.4

Natural and human systems of the Andes under climate change: local detection and attribution assessment of impacts in physical, biological and human systems

Ana Ochoa-Sánchez, Fabian Drenkhan, Dáithí Stone, Daniel Mendoza, Ronald Gualán, and Christian Huggel

Physical, biological, and human systems in mountain regions are highly sensitive to climate change due to strong feedbacks and low resilience. Detection of changes and attribution of them to climate and non-climate drivers provides ongoing monitoring of complex interactions of coupled natural and human systems and improving scientific assessments that inform mitigation and adaptation practices. In the IPCC 5th Assessment Report published in 2014, Central and South America was the region with the least evidence available for detection and attribution (D&A) of climate change impacts. Since then, much more evidence has accumulated due to an increasing number of studies detecting impacts in the Andean region. In this study, we therefore performed a systematic literature review of climate change impacts and made a local D&A expert impact assessment for a total of 12 natural and human systems in the Andes. We found the following confidence levels of detection and attribution of each impact for each system: medium and high, respectively, for energy; high and high, for snow and ice, tourism, and cultural values; high and medium for terrestrial and aquatic ecosystems, disasters, human health and migration; and medium and medium for agriculture and water systems. A total number of 65 sample impacts (in aggregate or case study form) could be attributed to climate change. Climate change was especially important in glacio-hydrological systems (49%) and terrestrial ecosystems (15%). Among the impacts that could be attributed to climate change with high confidence, snow and ice system dominated. About half of the total impact samples were attributed with medium confidence, of which 35% corresponded to water systems and 16% to agriculture. Finally, 14% of all impacts were assessed with low attribution confidence. Important results include: (1) glacier retreat leads to important cascading effects affecting most of the systems in the Andes; these impacts were primarily attributed to temperature increase caused by anthropogenic climate change; (2) numerous terrestrial and aquatic Andean ecosystems have been affected by climate change (e.g. upward plant colonization, changes in the abundance and distribution of species), and most of these impacts could be attributed to anthropogenic climate change; and (3) community changes and loss of cultural values are among the strongest impacts of human systems that were attributed to climate change; a broad set of studies detected that Andean communities perceived changes in their highly preserved long-standing cultural and spiritual rituals and cosmovision. These findings are key to understand current climate change impacts in the Andean region, and to advance our understanding of complex interactions of coupled natural and human systems in order to put particular attention on integrated scientific assessments and leverage local decision-making and management practices.

How to cite: Ochoa-Sánchez, A., Drenkhan, F., Stone, D., Mendoza, D., Gualán, R., and Huggel, C.: Natural and human systems of the Andes under climate change: local detection and attribution assessment of impacts in physical, biological and human systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4725, https://doi.org/10.5194/egusphere-egu21-4725, 2021.

EGU21-5033 | vPICO presentations | CR5.4 | Highlight

Adaptation to climate change induced water stress in major glacierized mountain regions

Anubha Aggarwal, Holger Frey, Graham McDowell, Fabian Drenkhan, Marcus Nuesser, Adina Racoviteanu, and Martin Hoelzle

Mountains are a critical source of water and home to a large proportion of the world’s population. Cryospheric and hydrological changes combined with increasing water demand are impacting water availability, livelihoods and cultural values, threatening long-term water security of downstream populations. Here, we present a global systematic review in which 83 peer-reviewed articles were critically evaluated to unravel and assess different types of adaptation measures that have been undertaken to manage water stress. We observe that changes in glacier extent and snowfall amount are the main cryospheric changes motivating adaptations. However, changes in precipitation patterns, such as increasing extremes or alterations of the rain-snow line, which lead to both increasing water stress and seasonal flooding or glacier lake outburst floods (GLOFs), and are also observed to be important motivators of adaptive actions. The main sectors affected by hydrological and cryospheric changes are agriculture, tourism, hydropower generation and health and safety. To reduce risks of water scarcity and water-related disasters, and to enhance the resilience of human and natural systems, a broad set of adaptation measures have been implemented in the world’s mountain regions. Such adaptations include crop diversification, new irrigation practices, dams and water storage infrastructure, training programs and the establishment of Early Warning Systems, artificial snow making, shifts to non-snow-based tourism, and changes to cultural practices. We find that globally the most commonly used adaptation practices correspond to the improvement of water storage infrastructure, agricultural and irrigation practices, economic diversification and water governance and laws. However, our systematic review reveals these and other adaptation actions have strong regional variation. For example, adaptation in the agricultural sector is most prevalent in Africa, Asia and South America; while in Europe, Australia and New Zealand responses in the tourism sector are more common. Socio-ecological trade-offs associated with adaptations are often reported. For example, the promotion of snow-making reduces socio-economic vulnerability but adds pressure on water resources and environment.

However, successful implementation of adaptation measures are limited by a diverse set of factors. This includes reduced capacities and resources in infrastructure maintenance, mismanagement, conflicts and mistrust in government together with lack of funding and insufficient collaboration between stakeholders as well as delayed implementation of laws and mountain development programs. Moreover, extreme events and climate change impacts together with discontinuities and errors in climate data need to be considered. In order to address or overcome these limitations, it is important to raise awareness of local communities about climate change and to demonstrate the positive effects of adaptation measures and environmental laws; increase funding for mountain programs and motivate combined activities of governments and stakeholders to build their trust on each other.

How to cite: Aggarwal, A., Frey, H., McDowell, G., Drenkhan, F., Nuesser, M., Racoviteanu, A., and Hoelzle, M.: Adaptation to climate change induced water stress in major glacierized mountain regions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5033, https://doi.org/10.5194/egusphere-egu21-5033, 2021.

Mountain permafrost in Asia incorporates permafrost in the mountains of the Hindu Kush Himalayan region, Central Asia, Russia, Mongolia, Qinghai Tibetan plateau and other mountain ranges in China. Changes in climate variables in recent decades have considerably influenced permafrost in these regions and produced vivid impacts. While climate change impacts on mountain permafrost in the alpine regions of Europe, US and Canada are relatively well documented, records about mountain permafrost in Asia are mostly available for the Qinghai Tibetan plateau region and a few other mountain ranges in China. Considerably little information is available for the Hindu Kush Himalayan region and other mountain ranges in Asia. This systematic review analyses climate change related impacts and adaptation in mountain permafrost regions of Asia and attempts to evaluate the status of knowledge based on peer-reviewed journal publications. Impacts on hydrology, geomorphology and ecology were examined and resulting socioeconomic effects were considered. Additionally, ongoing and potential adaptation practices were explored. Warming climate has been found responsible for a gradual shift of the lower limit of mountain permafrost in the region. Increased probabilities of mass wasting events due to reduced slope stability, changes in composition and quality of fresh water resources, irregularities in seasonal flows, changes in permafrost ecosystems and contemporaneous need for the protection of engineered constructions were identified as some of the key impacts. There is a high necessity for increased understanding of mountain permafrost and well-designed response actions to evaluate processes and interactions influencing changes in the natural environment and subsequent effects on sustainable living conditions. Therefore, suitable risk management practices need to be designed with a proper consideration of the anticipated future dynamics of climate, economy and society.

How to cite: Baral, P. and Allen, S.: Using systematic review to analyse climate change impacts and adaptation associated with mountain permafrost, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9381, https://doi.org/10.5194/egusphere-egu21-9381, 2021.

EGU21-15303 | vPICO presentations | CR5.4

Adaptation to climate change in the mountain regions of Central Asia: Assessment of the current knowledge

Zarina Saidaliyeva, Veruska Muccione, Maria Shahgedanova, Sophie Bigler, and Carolina Adler

The mountains of Central Asia, extending over 7000 m a.s.l. and accommodating diverse and complex natural and managed systems, are very vulnerable to climate change. They support valuable environmental functions and provide key ecosystem goods and services to the arid downstream regions which strongly depend on the melting snowpack and glaciers for the provision of water by the transboundary rivers starting in the mountains. Strong climate change adaptation (CCA) action is required to increase resilience of the vulnerable, low-income communities in the region. Our knowledge of the CCA actions in the mountains of Central Asia is limited in comparison with other mountainous regions. The aim of this study is to assess the existing adaptation projects and publications and to identify gaps in adaptation efforts by conducting a systematic review of the peer-reviewed literature published in English language. To be selected, the papers had to comply with the following criteria: (i) publication between 2013 and 2019; (ii) explicit focus on CCA in the mountain ranges of Central Asia; (iii) explanation of adaptation options; (vi) a clear methodology of deriving suitable adaptation options. Following the initial screening and subsequent reading of the publications, complying with the specified criteria, 33 peer-reviewed articles were selected for final analysis. This is considerably lower than the number of publications on the European Alps, Hindu-Kush – Himalayas, and the Andes. The number of publications on Central Asian mountains has declined since 2013.

The research is heavily focused on the problem of water resources, especially water availability at present and in the future 70 % of the analysed papers addressing these issues. These are followed by the papers considering adaptation in agriculture and in managing biodiversity. A critical finding is the lack of publications on adaptation to hazards and disasters including glacier outburst floods, mudflow, and landslides which are common and comparatively well-researched hazards in the Central Asian mountains, experiencing rapid deglaciation. About 50 % of the papers address the transboundary nature of the impacts of climate changes on water resources and land management reflecting the transboundary nature of the Central Asian catchments and the tensions which exist across the region but are especially prominent in the Aral Sea basin.

We conclude that while there is ample evidence of climate change and its impacts in the mountains of Central Asia and many publications mention the need for adaptation, a very limited number of publications explicitly focus on CCA and how it can be delivered.

How to cite: Saidaliyeva, Z., Muccione, V., Shahgedanova, M., Bigler, S., and Adler, C.: Adaptation to climate change in the mountain regions of Central Asia: Assessment of the current knowledge, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15303, https://doi.org/10.5194/egusphere-egu21-15303, 2021.

EGU21-7457 | vPICO presentations | CR5.4

GuMNet – The Guadarrama Monitoring Network initiative (Spain)

Fidel González-Rouco and the The GuMNet Consortium Team

GuMNet is a facility that operates continuous observation of the atmosphere, surface and subsurface at the Sierra de Guadarrama, located 50 km north-northwest of Madrid. It is composed of 10 real–time automatic stations and attempts to promote research on weather, soil thermodynamics, boundary layer physics, impacts of climate change on climate and ecosystems and air pollution in Sierra de Guadarrama. This infrastructure represents a first step into providing a unique observational network in a high protected environment that can serve a wide range of scientific and educational interests and also management.

The stations are located at heights ranging from 900 m.a.s.l. to 2225 m.a.s.l. Every station has been settled in open areas, except for one that can be found in a forested zone. High altitude sites are focused on periglacial areas, while low elevation sites are placed in pasture environments. The atmospheric instrumentation includes sensors used for the measurement of air temperature, air humidity, 4-component radiation, solid and liquid precipitation, snow depth, wind speed and wind direction. For the subsurface measurements, soil temperature and humidity sensors have been placed in 9 trenches up to 1 m depth and 12 boreholes up to 2 m and 20 m depth. One of the lowest stations has been equipped with a 3D sonic anemometer that includes a CO2/H2O analyzer. Wind profiles and eddy-covariance will be sampled, which is important for energy and water vapor exchanges. A portable station has also been equipped with a 3D sonic anemometer, which will enable the comparison between measurements at both sites. The entire network is connected via general packet radio service (GPRS) to the management software at the central laboratory located at the Campus of Excellence of Moncloa (Madrid, Spain).

The database generated by GuMNet is accessible through request and allows for developing studies concerning environmental and climate change in middle and high mountain areas. This valuable source of data aims at generating a space for scientific collaboration with other national and international institutions. The diversity of potential uses of the GuMNet observational network will be very useful in education at every level.

Website and contact: http://www.ucm.es/gumnet/

How to cite: González-Rouco, F. and the The GuMNet Consortium Team: GuMNet – The Guadarrama Monitoring Network initiative (Spain), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7457, https://doi.org/10.5194/egusphere-egu21-7457, 2021.

EGU21-1729 | vPICO presentations | CR5.4 | Highlight

Understanding the impacts of climate change on high mountain practices: the case of the Mont Blanc massif through an interdisciplinary approach

Emmanuel Salim, Jacques Mourey, Ludovic Ravanel, Pierre-Alain Duvillard, Maëva Cathala, Florence Magnin, Philip Deline, Suvrat Kaushik, Grégoire Guillet, Xavi Gallach, and Marie Olhasque

The intensity of the current climate change has strong consequences on high mountain tourism activities. Winter activities are currently the most studied (ski industry). However, the consequences of environmental changes are also strong in summer, as geomorphological processes are enhanced at high elevation. The Mont Blanc Massif (Western Alps) is a particularly favourable terrain for the development of research about these processes. Emblematic high summits (28 of the 82 peaks > 4000 m of the Alps), dozens of glaciers, strongly developed tourism with summer/winter equivalence, active mountaineering practice, etc. all contribute to the interest of studying this geographical area. A lot of work has been carried out on glaciological and geomorphological issues. These studies, which deal with "physical" impacts of the climate change on the high mountains, are also supplemented by studies of their consequences on human societies, as its impacts on practices such as mountaineering or glacier tourism. Risk-related issues are also taken into account with, for example, the stability of infrastructure (huts, ski lifts) or the impact of glacial shrinkage on the formation of new and potentially hazardous lakes. Accordingly, the aims of our presentation are to show the extent of the research developed on climate change in the Mont Blanc massif and how social and environmental sciences are interlinked to provide a holistic vision of the issues of this territory. As these experiments are not exactly interdisciplinary experiments, this presentation also aims to discuss the points that need to be further developed in order to promote inter- and trans-disciplinary research.

How to cite: Salim, E., Mourey, J., Ravanel, L., Duvillard, P.-A., Cathala, M., Magnin, F., Deline, P., Kaushik, S., Guillet, G., Gallach, X., and Olhasque, M.: Understanding the impacts of climate change on high mountain practices: the case of the Mont Blanc massif through an interdisciplinary approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1729, https://doi.org/10.5194/egusphere-egu21-1729, 2021.

CR6.1 – Permafrost Open Session

EGU21-1645 | vPICO presentations | CR6.1

Underestimated snow density in ERA5-Land as a cause for warm bias of soil temperature over permafrost regions

Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li

Vast areas of the Arctic host ice-rich permafrost, which is becoming increasingly vulnerable to terrain-altering thermokarst in a warming climate. Among the most rapid and dramatic changes are retrogressive thaw slumps. These slumps evolve by a retreat of the slump headwall during the summer months, making their change visible by comparing digital elevation models over time. In this study we use digital elevation models generated from single-pass radar TanDEM-X observations to derive volume and area change rates for retrogressive thaw slumps. At least three observations in the timespan from 2011 to 2017 are available with a spatial resolution of about 12 meter and a height sensitivity of about 0.5-2 meter. Our study regions include regions in Northern Canada (Peel Plateau/Richardson Mountains, Mackenzie River Delta Uplands, Ellesmere Island), Alaska (Noatak Valley) and Siberia (Yamal, Gydan, Taymyr, Chukotka) covering an area of 220.000 km2 with a total number of 1853 thaw slumps.

In this presentation we will focus on the area and volume change rate probability density functions of the mapped thaw slumps in these study areas. For landslides in temperate climate zones the area and volume change probability density function typically follow a distribution that can be characterized by three quantities: A rollover point defined as the peak in the distribution, a cutoff-point indicating the transition to a power law scaling for large landslides and the exponential beta coefficient of this power law. Here we will show that thaw slumps across the arctic follow indeed such a distribution and that the obtained values for the rollover, cutoff and beta coefficient can be used to distinguish between regions. Furthermore we will elaborate on possible reason why arctic thaw slumps can be described by such probability density functions as well as analyzing the differences between regions. This characterization can be useful to further improve our understanding of thaw slump initiation, the investigation of the drivers of their evolution as well as for modeling future thaw slump activity.

How to cite: Bernhard, P., Zwieback, S., and Hajnsek, I.: Area and volume quantification of arctic thaw slumps using time-series of digital elevation models generated from radar interferometry, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2280, https://doi.org/10.5194/egusphere-egu21-2280, 2021.

EGU21-3066 | vPICO presentations | CR6.1 | Highlight

Examination of Current and Future Permafrost Dynamics Across the North American Taiga-Tundra Ecotone

Bradley Gay, Amanda Armstrong, Batuhan Osmanoglu, Paul Montesano, Kenneth Ranson, and Howard Epstein

In the Arctic, the spatial distribution of boreal forest cover and soil profile transition characterizing the taiga-tundra ecological transition zone (TTE) is experiencing an alarming transformation. The SIBBORK-TTE model provides a unique opportunity to predict the spatiotemporal distribution patterns of vegetation heterogeneity, forest structure change, arctic-boreal forest interactions, and ecosystem transitions with high resolution scaling across broad domains. Within the TTE, evolving climatological and biogeochemical dynamics facilitate moisture signaling and nutrient cycle disruption, i.e. permafrost thaw and nutrient decomposition, thereby catalyzing land cover change and ecosystem instability. To demonstrate these trends, in situ ground measurements for active layer depth were collected to cross-validate below-ground-enhanced modeled simulations from 1980-2017. Shifting trends in permafrost variability (i.e. active layer depth) and seasonality were derived from model results and compared statistically to the in situ data. The SIBBORK-TTE model was then run to project future below-ground conditions utilizing CMIP6 scenarios. Upon visualization and curve-integrated analysis of the simulated freeze-thaw dynamics, the calculated performance metric associated with annual active layer depth rate of change yielded 76.19%. Future climatic conditions indicate an increase in active layer depth and shifting seasonality across the TTE. With this novel approach, spatiotemporal variation of active layer depth provides an opportunity for identifying climate and topographic drivers and forecasting permafrost variability and earth system feedback mechanisms.

How to cite: Gay, B., Armstrong, A., Osmanoglu, B., Montesano, P., Ranson, K., and Epstein, H.: Examination of Current and Future Permafrost Dynamics Across the North American Taiga-Tundra Ecotone, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3066, https://doi.org/10.5194/egusphere-egu21-3066, 2021.

EGU21-5788 | vPICO presentations | CR6.1

Contrasting thermal responses of permafrost to winter warming events under different snow regimes in the subarctic

Didac Pascual Descarrega and Margareta Johansson

Winter warming events (WWE) in the Swedish subarctic are abrupt and short-lasting (hours-to-days) events of positive air temperature that occur during wintertime, sometimes accompanied by rainfall (rain on snow; ROS). These events cause changes in snow properties, which affect the below-ground thermal regime that, in turn, controls a suite of ecosystem processes ranging from microbial activity to permafrost and vegetation dynamics. For instance, winter melting can cause ground warming due to the shortening of the snow cover season, or ground cooling as the reduced snow depth and the formation of refrozen layers of high thermal conductivity at the base of the snowpack facilitate the release of soil heat. Apart from these interacting processes, the overall impacts of WWE on ground temperatures may also depend on the timing of the events and the preceding snowpack characteristics. The frequency and intensity of these events in the Arctic, including the Swedish subarctic, has increased remarkably during the recent decades, and is expected to increase even further during the 21st Century. In addition, snow depth (not necessarily snow duration) is projected to increase in many parts of the Arctic, including the Swedish subarctic. In 2005, a manipulation experiment was set up on a lowland permafrost mire in the Swedish subarctic, to simulate projected future increases in winter precipitation. In this study, we analyse this 15-year record of ground temperature, active layer thickness, and meteorological variables, to evaluate the short- (days to weeks) and long-term (up to 1 year) impacts of WWE on the thermal dynamics of lowland permafrost, and provide new insights into the influence of the timing of WWE and the underlying snowpack conditions on the thermal response of permafrost. On the short-term, the thermal responses to WWE are faster and stronger in areas with a shallow snowpack (5-10 cm), although these responses are more persistent in areas with a thicker snowpack (>25 cm), especially after ROS events. On the long term, permafrost in areas with a thicker snowpack exhibit a more durable warming response to WWE that results in thicker active layers at the end of the season. On the contrary, we do not observe a correlation between WWE and end of season active layer thickness in areas with a shallow snowpack. 

How to cite: Pascual Descarrega, D. and Johansson, M.: Contrasting thermal responses of permafrost to winter warming events under different snow regimes in the subarctic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5788, https://doi.org/10.5194/egusphere-egu21-5788, 2021.

EGU21-6241 | vPICO presentations | CR6.1

Retrieving freeze/thaw-cycles using Sentinel 1 data in Eastern Nunavik (Québec, Canada)

Yueli Chen, Lingxiao Wang, Monique Bernier, and Ralf Ludwig

In the terrestrial cryosphere, freeze/thaw (FT) state transitions play an important and measurable role for climatic, hydrological, ecological, and biogeochemical processes in permafrost landscapes. Satellite active and passive microwave remote sensing has shown its principal capacity to provide effective monitoring of landscape FT dynamics. Sentinel-1 continues to deliver high-resolution microwave remote sensing than ever before and has therefore a large potential of usage for monitoring. In light of this, the capability and responses of its radar backscatter to landscape FT processes in different surface soil depths should be examined to provide a thorough grounding for a robust application of the F/T retrieval algorithm.

This study presents a seasonal threshold approach, which examines the time series progression of remote sensing measurements relative to signatures acquired during seasonal reference frozen and thawed states. It is developed to estimate the FT-state from the Sentinel 1 database and applied and evaluated for the region of Eastern Nunavik (Québec, Canada). In this course, the FT state transitions derived from Sentinel 1 data are compared to temporally overlapping situ measurements of soil moisture from different depths within the top 20cm soil. This work allows to explore differences in the sensitivity of the Sentinel 1 at different surface soil depths in higher detail; this information is used to examine the penetration performance of the Sentinel 1 under different conditions of permafrost and permafrost-dominated landscapes.

This work is dedicated to providing more accurate data to capture the spatio-temporal heterogeneity of freeze/thaw transitions. As Sentinel-1 continues to deliver high-quality information, the provided threshold algorithm delivers an extended time series to analyze FT-states and improve our understanding of related processes in permafrost landscapes.

How to cite: Chen, Y., Wang, L., Bernier, M., and Ludwig, R.: Retrieving freeze/thaw-cycles using Sentinel 1 data in Eastern Nunavik (Québec, Canada), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6241, https://doi.org/10.5194/egusphere-egu21-6241, 2021.

EGU21-6965 | vPICO presentations | CR6.1

Paleoclimate Inferred from Concentration of Greenhouse Gas and Ratios of O2/Ar and N2/Ar in Ice Wedges in Northeastern Siberia and Northern Alaska

Nayeon Ko, Ji-Woong Yang, Go Iwahana, Alexandre Fedorov, Andrei G. Shepelev, Thomas Opel, Sebastian Wetterich, and Jinho Ahn

Global warming is drawing keen attention to people all over the people. Especially, the history of climate in permafrost area is of great interest to better understand greenhouse gas emission due to the thaw of permafrost in the future. In this context, formation of ice wedges and greenhouse gas was studied based on gas chemistry in permafrost ice wedges. The study areas are Batagay and Zyryanka in northeastern Siberia, and North Slope in Alaska. The gas was extracted using a dry extraction method that physically breaks down ice, and cryogenically collects gas in a stainless steel tube. The gas mixing ratios were analyzed by gas chromatography. N2 and Ar occluded in the air bubbles in the ice are relatively unaffected by microbial activity, but if liquid water contacted atmospheric air and froze, the N2/Ar ratio in the ice will differ from the atmospheric value due to difference in the gas solubility in water. On the other hand, if O2 was consumed by microorganisms in the ice, the concentration of O2 will decrease and consequently the O2/Ar ratio will also decrease. Our results show that the δ(O2/Ar) and δ(N2/Ar) of the ice wedges in Zyryanka and North Slope areas range from -86.5% to -12.2% and from -16.0% to 5.5%, respectively with regard to modern air. The 14C ages of Zyryanka and North Slope samples are 810±30 BP and 1920±30 BP, respectively, corresponding to the late Holocene. Because the late Holocene was a relatively warm period, it may be interpreted that the ice wedges formed predominantly from snow melt water, resulting in the negative values of δ(N2/Ar). This is in contrast with our earlier study on ice wedges in Central Yakutia region (Syrdakh, Cyuie, and Churapcha) (Kim et al., 2019). The Central Yakutian ice wedges formed during the Last Glacial Maximum (LGM) and the δ(N2/Ar) values of ~0% indicates that the ice did not form from snow melting. The δ(O2/Ar) of the Zyryanka and North Slope is much less depleted than that of Central Yakutian (close to -100%). Oxygen consumption by microorganisms in the Central Yakutian ice is more completed probably by the longer time period for the biogeochemical reaction compared to the Zyranka and North Slope ice (>20,000 years vs. < 2,000 years). The ages of Batagay ice wedges range to earlier part of the Late Pleistocene, and may allow us to study longer biogeochemical reactions in ice. The concentrations of CO2, N2O and CH4 in the Batagay ice range 260-71,000 ppm, 0.11-68 ppm and 4.7-130 ppm, respectively. Further geochemical analyses are in progress. Future study will include scrutinizing correlations among the three greenhouse gas concentrations. Our study shows that the gas mixing ratios in ice wedges may hlep us better understand the biogeochemical reactions in the ice and climate conditions when the permafrost formed.

How to cite: Ko, N., Yang, J.-W., Iwahana, G., Fedorov, A., G. Shepelev, A., Opel, T., Wetterich, S., and Ahn, J.: Paleoclimate Inferred from Concentration of Greenhouse Gas and Ratios of O2/Ar and N2/Ar in Ice Wedges in Northeastern Siberia and Northern Alaska, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6965, https://doi.org/10.5194/egusphere-egu21-6965, 2021.

EGU21-137 | vPICO presentations | CR6.1

CH4 and CO2 fluxes at sites with different hydrological patterns in the polygonal tundra of Samoylov Island, Northeastern Siberia

Leonardo de Aro Galera, Christian Knoblauch, Tim Eckhardt, Christian Beer, and Eva-Maria Pfeiffer

In the last two decades, there were registered record high permafrost temperatures promoting permafrost thawing and leading to additional CO2 and CH4 emissions. It is crucial to assess the amount of C that is mineralized to CH4, due to its higher global warming potential (GWP) compared to CO2. The role of CH4 in the total C emissions is mainly governed by the hydrological patterns of ecosystems. CH4 oxidation is another critical process and is largely controlled by vegetation. The soil CO2:CH4 production ratio shows the contribution of CH4 to the C emission budget of a determined area. Few studies evaluated in situ CO2:CH4 production ratios. Our objective was to assess CH4 emissions and the heterotrophic CO2:CH4 production ratios in the Siberian tundra during the growing season. To accomplish these goals, we measured CH4 and CO2 fluxes using the chamber technique in the polygonal tundra of Samoylov Island in the Lena River Delta, Northeastern Siberia. The plant-mediated CH4 transport and the heterotrophic respiration (Rh) were determined by comparing plots with and without vegetation through a trenching experiment. To account for the differences between wet and dry tundra, one representative polygon was selected, measurements were made at its water-saturated center and at its drained rim. We also estimated the C budget of the polygonal tundra of Samoylov Island during the measurement period. This is the first study measuring and calculating in situ CO2:CH4 ratios from the Rh of the soil. The CH4 emissions at the polygon center were much higher than the rim and showed evident seasonality. The polygon center median CH4 flux of 26 mg.m-2.d-1 decreased by 80% when the vegetation was removed, indicating the relevance of plant-mediated CH4 transport in these emissions. This was not detected at the polygon rim that had much lower emissions (1.8 mg.m-2.d-1). The heterotrophic CO2:CH4 ratios varied from 1 to 100 at the polygon center, and from 100 to 1000 at the polygon rim, showing the greater importance of CH4 production to the heterotrophic C release at the polygon center. The polygonal tundra on Samoylov Island was a C sink during the measurement period. The wet tundra had a CO2-C sequestration rate (-23 kg CO2-C.ha-1.d-1) more than 3 times higher than the dry tundra (-7 kg CO2-C.ha-1.d-1). Overall, the CH4 emissions represent a decrease of just 5% in the total CO2-e offset of the tundra in Samoylov during the growing season. The CH4 emissions measured in this study were low. However, it is important to point out that only the growing season is considered, and the off-season and winter C emissions might be significant. Our results stress the high microscale variability of emissions of CO2 and CH4, specially related to hydrology, topography, and vegetation.

How to cite: Galera, L. D. A., Knoblauch, C., Eckhardt, T., Beer, C., and Pfeiffer, E.-M.: CH4 and CO2 fluxes at sites with different hydrological patterns in the polygonal tundra of Samoylov Island, Northeastern Siberia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-137, https://doi.org/10.5194/egusphere-egu21-137, 2021.

EGU21-7222 | vPICO presentations | CR6.1

Shrubs covered by snow in the high Arctic cool down permafrost in winter by thermal bridging through frozen branches

Florent Dominé, Kevin Fourteau, and Ghislain Picard

Warming-induced shrub expansion on Arctic tundra is generally thought to warm up permafrost, as shrubs trap blowing snow and increase the thermal insulation effect of snow, limiting permafrost winter cooling. We have monitored the thermal regime of permafrost on Bylot Island, 73°N in the Canadian high Arctic at nearby herb tundra and shrub tundra sites. Once adjusted for differences in air temperature, we find that shrubs actually cool permafrost by 0.6°C over November-March 2019, despite a snowpack twice as insulating in shrubs. By simulating the rate of propagation of thermal perturbations and using finite element calculations, we show that heat conduction through frozen shrub branches have a winter cooling effect of 1.5°C which compensates the warming effect induced by the more insulating snow in shrubs. In spring shrub branches under snow absorb solar radiation and accelerate permafrost warming. Over the whole snow season, simulations indicate that heat and radiation transfer through shrub branches result in a 0.3°C cooling effect. This is contrary to many previous studies, which concluded to a warming effect, sometimes based on environmental manipulations that may perturb the natural environment. The impact of shrubs on the permafrost thermal regime may need to be re-evaluated.

How to cite: Dominé, F., Fourteau, K., and Picard, G.: Shrubs covered by snow in the high Arctic cool down permafrost in winter by thermal bridging through frozen branches, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7222, https://doi.org/10.5194/egusphere-egu21-7222, 2021.

EGU21-8337 | vPICO presentations | CR6.1

Attributing the global increase in permafrost temperatures to human induced climate change

Lukas Gudmundsson, Josefine Kirchner, Anne Gädeke, Eleanor Burke, Boris K. Biskaborn, and Jeannette Noetzli

Permafrost temperatures are increasing at the global scale, resulting in permafrost degradation. Besides substantial impacts on Arctic and Alpine hydrology and the stability of landscapes and infrastructure, permafrost degradation can trigger a large-scale release of carbon to the atmosphere with possible global climate feedbacks. Although increasing global air temperature is unanimously linked to human emissions into the atmosphere, the attribution of observed permafrost warming to anthropogenic climate change has so far mostly relied on anecdotal evidence. Here we apply a climate change detection and attribution approach to long permafrost temperature records from 15 boreholes located in the northern Hemisphere and simulated soil temperatures obtained from global climate models contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We show that observed and simulated trends in permafrost temperature are only consistent if the effect of human emissions on the climate system is considered in the simulations. Moreover, the analysis also reveals that neither simulated pre-industrial climate variability nor the effects natural drivers of climate change (e.g. impacts of large volcanic eruptions) suffice to explain the observed trends. While these results are most significant for a global mean assessment, our analysis also reveals that simulated effects of anthropogenic climate change on permafrost temperature are also consistent with the observed record at the station scale. In summary, the quantitative combination of observed and simulated evidence supports the conclusion that anthropogenic climate change is the key driver of increasing permafrost temperatures with implications for carbon cycle-climate feedbacks at the planetary scale.

How to cite: Gudmundsson, L., Kirchner, J., Gädeke, A., Burke, E., Biskaborn, B. K., and Noetzli, J.: Attributing the global increase in permafrost temperatures to human induced climate change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8337, https://doi.org/10.5194/egusphere-egu21-8337, 2021.

EGU21-8528 | vPICO presentations | CR6.1

Intra-ice and intra-sediment cryopeg brine occurrence in permafrost near Utqiaġvik (Barrow)

Go Iwahana, Zachary Cooper, Shelly Carpenter, Jody Deming, and Hajo Eicken

Cryopeg is a volume of permafrost with a significant amount of cryotic unfrozen water as a result of freezing-point depression by dissolved salt content. Cryopeg and saline permafrost have been reported for coastal areas of the Arctic seas, and their current distribution and future changes are a great concern for the warming Arctic, as the state of permafrost controls ground stability and the functioning of ice cellars in Arctic villages. To describe the distribution and segregation of cryopeg lenses, and to explore the origin and development of the cryopeg and associated brines found near Utqiaġvik, we conducted extensive sampling campaigns in the Barrow Permafrost Tunnel during May of 2017 and 2018.

We found two types of cryopeg brines based on their distinctive spatial occurrences: (1) intra-ice brine (IiB), entirely bounded by massive ice; and (2) intra-sediment brine (IsB), found in unfrozen sediment lenses within permafrost. While two examples of IiB have been reported previously, they were each found within ice layers below ice-sealed lakes in the McMurdo Dry Valleys of Antarctica, geological settings very different from ours. In our study, the IiBs were at roughly atmospheric pressure and situated in small pockets of ellipsoidal or more complex shape (dimensions of up to about 30 cm wide and 3 cm height) within 17–41 cm above the underlying sediment layer. Several individual IiB pockets may have been connected by porous ice of low permeability. Radiocarbon dating suggests that, at the earliest, the IiB was segregated about 11 ka BP from IsB-bearing cryopeg underneath. IsB lenses were interpreted as having developed through repeated evaporation and cryoconcentration of seawater in a lagoonal environment, then isolated at the latest when the surrounding sediment froze up and became covered by an upper sediment unit around 40 ka BP or earlier.

Considering the common characteristics among the cryopeg brines accessed from the tunnel and those found in brine-bearing marine sediment around Utqiaġvik, all occurrences of cryopeg brine in the region may have experienced analogous development despite potentially contrasting salinities and estimated ages. An increase in permafrost temperature invariably will result in expansion of cryopeg lenses and may change movement of liquids within the permafrost, which potentially become threats to Arctic coasts, infrastructure, and food security.

How to cite: Iwahana, G., Cooper, Z., Carpenter, S., Deming, J., and Eicken, H.: Intra-ice and intra-sediment cryopeg brine occurrence in permafrost near Utqiaġvik (Barrow), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8528, https://doi.org/10.5194/egusphere-egu21-8528, 2021.

EGU21-9486 | vPICO presentations | CR6.1

Amorphous Si and Ca affect microbial community structure in arctic permafrost soils

Peter Stimmler and Jörg Schaller

Arctic warming affects the permafrost soils in different ways. Increase soil temperature and thawing of deeper horizons modifies the release of greenhouse gases (GHG) by release of nutrients. A lot of research was done about nutrient cycling of C, N and P, but little is known about the influence of Ca and amorphous Si (ASi) on this elements. To show the potential of this two elements in the Arctic systems, we analysed the effect of ASi and Ca on microbial community structure with next generation sequencing and qPCR. We analyzed fungal and bacterial community structure in two different soils from Greenland after incubation with different levels of ASi and Ca. Microbial community reacted differently in the high Arctic (Peary Land) and low Arctic soil (Disko Island) to changing concentrations of ASi and Ca. We found a significant change with linear correlation from gram-negative to gram-positive bacteria classes with increasing Ca and/or ASi levels. Further, abundance of Ascomycota and Basidiomycota changed. We postulate this changes as an important factor for changed GHG production as potential response to modified nutrient availability.

How to cite: Stimmler, P. and Schaller, J.: Amorphous Si and Ca affect microbial community structure in arctic permafrost soils, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9486, https://doi.org/10.5194/egusphere-egu21-9486, 2021.

Different approaches exist for a satellite-based estimation of mean annual ground temperature (MAGT). Landsurface temperature can be ingested by transient models. Surface status information (frozen/unfrozen days) has been shown to be applicable for the estimation of ground temperature as well. Such approaches are based on an empirically defined relationship. Both approaches have been evaluated with in situ bore hole measurements, but not yet compared with each other.

A comparison between yearly arctic mean temperatures, derived from the advanced scatterometer (ASCAT) and data from ESA’s CCI+ Permafrost project was carried out. The used ASCAT record is available from 2008 (first full year) onwards while the latest CCI+ Permafrost data is available from 1997 to 2018. The ASCAT data was recorded by satellites whose measurements are only intermittently available as one flyover over the whole arctic north of 60°N takes two days on average. To fill in the missing values exponentially weighted moving averages (EWMA) were used. From the number of frozen days an expected average temperature was derived based on Kroisleitner et al. (2018).

The CCI+ Permafrost data incorporates modelled MAGT for depths between the surface down to a depth of 10 meters. These data points were extracted from the raster files (~1km resolution) and averaged over polygons representing an approximation of the ASCAT grid (footprint approximation). Single polygon areas range from 150-160 km². Only footprints for which data is available in both records (and thus permafrost presence) have been eventually compared.

The CCI+ Permafrost data shows an average surface temperature of -1.42 °C for the areas analyzed between 2008 and 2018 while the statistically padded ASCAT data suggests a mean temperature of -1.18 °C over the same time period. The ASCAT retrieval corresponds to a general MAGT whereas CCI+ Permafrost values are available for certain depths. Water fraction within ASCAT footprint also affect the quality of the derivation of frozen days. New calibration considering certain depths and water fraction is suggested.

How to cite: Jakober, D., Bergstedt, H., Kroisleitner, C., and Bartsch, A.: Comparison of permafrost mean annual ground temperature derived from two different satellite-based schemes: land surface temperature based (ESA CCI+ Permafrost) versus surface status (Metop ASCAT), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9824, https://doi.org/10.5194/egusphere-egu21-9824, 2021.

EGU21-11395 | vPICO presentations | CR6.1

Applying Computed Tomography (CT) scanning for segmentation of permafrost constituents in drill cores

Damir Gadylyaev, Jan Nitzbon, Steffen Schlüter, John Maximilian Köhne, Guido Grosse, and Julia Boike

Computed X-ray Tomography is a non-destructive technique that allows three-dimensional imaging of soil samples' internal structures, determined by variations in their density and atomic composition. This study's objective was to develop an image processing workflow for the quantitative analysis of ice cores using high-resolution CT in order to determine the volume fraction and vertical distribution of ice, mineral, gas, and organic matter in permafrost cores. We analyzed a 155 cm permafrost core taken from a Yedoma permafrost upland on Kurungnakh Island in the Lena River Delta (northeast Siberia). The obtained results were evaluated and compared with the results of detailed, but sample-destructive laboratory analysis. The frozen permafrost core was subjected to a computerized X-ray imaging procedure with a resolution of 50 micrometers. As a result, we obtained 31000 images. Noise in the raw images is removed with a non-local means denoising filter. We chose multilevel thresholding method for the image segmentation step. Threshold values were determined based on the histograms of the images. We measured the volumetric ice content (VIC) using Java-based image processing software (ImageJ). In addition, the vertical profiles were analyzed in 1-2cm intervals. We received bulk densities and VIC by freeze-drying and standard laboratory analysis. From the top of the core and until roughly 86 cm, it mainly consists of ice and organic, with an average of 67% and 30% results, respectively. The rest of the volume is divided almost equally between air and mineral parts. Below 86 cm, it consists almost entirely of pure ice. The ice content constitutes around 97% of the composition, and air rises to roughly 3%, while mineral and organic are almost equal to zero. The difference between VIC derived through CT scan and laboratory-derived VIC lies within the range of -37% to 25%. However, the vast majority of values lie within the range of -10% to 10%. This image processing technique to quantify VIC provides a non-destructive analog to traditional laboratory analysis that could help increasing the vertical resolution for quantifying mineral, ice, gas, and organic components in permafrost cores as well as enhance the volumetric estimate.

How to cite: Gadylyaev, D., Nitzbon, J., Schlüter, S., Köhne, J. M., Grosse, G., and Boike, J.: Applying Computed Tomography (CT) scanning for segmentation of permafrost constituents in drill cores, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11395, https://doi.org/10.5194/egusphere-egu21-11395, 2021.

EGU21-11801 | vPICO presentations | CR6.1

Multi-methodological three-dimensional investigation of a closed-system Pingo in Northwestern Canada

Julius Kunz and Christof Kneisel

The Mackenzie-Delta region is known for widespread permafrost and the association of different landforms, which are characteristic of a periglacial landscape development. Especially the density of closed-system pingos is nowhere on earth higher than in the area of the Tuktoyaktuk Peninsula. This type of pingos is common only in the continuous permafrost zone and is very sensitive to changing thermal conditions. In this study, we investigated the surface and subsurface conditions in the area of such a closed-system Pingo near Parsons Lake in the southern part of the Tuktoyaktuk Peninsula to study its internal structure and evolutional state. Therefore, we used a combined approach of electrical resistivity tomography (ERT), ground-penetrating radar (GPR) and manual frost probing. In addition, a high-resolution digital elevation model and an orthophoto were generated using in situ drone acquisitions. These enabled a detailed and areawide mapping of surface characteristics (e.g. vegetation height or type) and should contribute to the investigation of linkages between surface and subsurface characteristics.

Such a linkage could be observed comparing the mapped vegetation type and heights with active layer depths derived from manual frost probing and GPR measurements. Both parameters show a significant zonation in the area of the pingo and its surrounding. In addition, the results of the quasi three-dimensional ERT measurements could deliver new insights into the three-dimensional internal structure of the pingo and a massive ice core could be detected. However, the shape as well as the position of the massive ice core in relation to the elevated surface of the pingo differ from the previous theory of closed-system pingo formation and therefore raises some questions. Also the existence of a talik could be confirmed, but its position beside the ice core within the eastern flank of the pingo and not below the massive ice core also differs from the theoretical models and should be discussed.

How to cite: Kunz, J. and Kneisel, C.: Multi-methodological three-dimensional investigation of a closed-system Pingo in Northwestern Canada, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11801, https://doi.org/10.5194/egusphere-egu21-11801, 2021.

EGU21-12231 | vPICO presentations | CR6.1 | Highlight

Abrupt thaw enhances annual global warming potential of an actively degrading permafrost peatland

Inge Althuizen, Casper Christiansen, Peter Dörsch, Sigrid Kjær, Anders Michelsen, David Risk, Sebastian Westermann, and Hanna Lee

Global scale warming has led to permafrost thaw, which may release large amounts of carbon to the atmosphere as CO2 and CH4, potentially accelerating global warming (i.e. a positive feedback). However, uncertainty in the mechanisms controlling carbon mineralization is compounded by concurrent changes in soil hydrology associated with permafrost thaw. Thawing permafrost can lead to surface water accumulation in some areas and seasonal or permanent soil drying in areas where permafrost thaw opens up new channels of water to penetrate into the groundwater system. The complexity of the hydrologic response to permafrost thaw increases the challenge in generating reliable estimates of the permafrost carbon climate feedback. Furthermore, limited observational data exist to i) quantify the effects of permafrost thaw on net tundra carbon budgets, particularly on an annual basis, and ii) as well as constrain the underlying processes governing carbon release under aerobic and anaerobic conditions.

Here, we investigated how changes in local hydrology affects CO2 and CH4 release from permafrost soils by establishing a field gradient study in northern Norway (69ᵒ N), where recent abrupt degradation of permafrost created thaw ponds in palsa-mire ecosystems.  The site exhibits a natural gradient of permafrost thaw, which also corresponds to a strong hydrological gradient (i.e. dry palsas with intact permafrost, seasonally inundated thaw slumps, and thaw ponds). Since 2017, we have used a range of manual and automated techniques to measure changes in vegetation, soil and water microclimate, biogeochemistry, and soil CO2 and CH4 concentrations and efflux across the permafrost thaw gradient.

Our preliminary results show that abrupt permafrost thaw and landscape subsidence – both intermediate slumping and thaw pond formation – increase net annual carbon loss from this type of subarctic wetland. Permafrost thaw approximately doubles CO2 emissions from thaw slumps compared to vegetated or soil palsas. Furthermore, CH4 release greatly increased across the permafrost thaw gradient. While vegetated palsas were small sinks of atmospheric CH4 during the growing season, permafrost thaw slumping and pond formation led to a dramatic increase in CH4 efflux compared to bare palsas. In contrast, bare soil palsas on were the most important source of N2O. Soil profile CO2 and CH4 concentrations in thawed permafrost plots were overall highly enriched relative to palsa profiles, reflecting soil conditions with inundated pore space and low oxygen availability along the permafrost thaw gradient. We therefore conclude that abrupt thaw will increase annual carbon loss in subarctic palsa wetlands. 

How to cite: Althuizen, I., Christiansen, C., Dörsch, P., Kjær, S., Michelsen, A., Risk, D., Westermann, S., and Lee, H.: Abrupt thaw enhances annual global warming potential of an actively degrading permafrost peatland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12231, https://doi.org/10.5194/egusphere-egu21-12231, 2021.

EGU21-12828 | vPICO presentations | CR6.1

High-Northern-latitudes permafrost extend in MPI-ESM simulations of SSP126 and SSP585 

Goran Georgievski, Philipp De Vrese, Stefan Hagemann, and Victor Brovkin

The representation of permafrost related processes in Earth System Models (ESM) remains a challenge. A recent collaboration between two related projects (Kohlenstoff im Permafrost (Carbon in Permafrost) – KoPf, and Study Of the Development of Extreme Events over Permafrost areas – SODEEP) yielded a new vertical structure of the soil column in JSBACH, the land component of the Max Planck Institute (MPI) for Meteorology ESM (MPI-ESM). This feature resulted in a better representation of the vertical soil moisture dynamics and the energy transfer due to soil freezing and thawing, which is particularly relevant for the high northern latitudes.

Although, air temperatures are simulated reasonably well with the MPI-ESM, care must be taken not to introduce a bias when implementing new processes in the model or changing existing parametrizations. Here we investigate the permafrost extent in two Shared Socioeconomic Pathways (SSP) simulations (SSP126 and SSP585) with the MPI-ESM using prescribed ocean surface boundary conditions. Our results show a consistency between terrestrial and atmospheric dynamics, when comparing the permafrost extent determined on basis of simulated active layer thickness (soil variable) and Day Degree Thaw Index (DDTI; atmospheric variable). The latter is calculated as the annual sum of positive average daily 2m air temperatures and its square root can be used as an indicator of annual maximum thaw depth.

The SSP126 simulation shows that both DDTI and thaw depth stabilize within the range of the present-day interannual variability, while SSP585 indicates a substantial deepening of the active layer – resulting in a complete disappearance of near-surface permafrost in large parts of the high northern latitudes - and DDTI in SSP585 simulation increases in excess of 2000°C. These values at present characterize northern mid-latitudes i.e. landscapes not underlined by permafrost. A preliminary analysis indicates that the decline of the permafrost extent in SSP585 occurs mostly during the second half of 21st century. Furthermore, the SSP585 simulation also shows an increase in the number of extreme events relevant for permafrost degradation. The investigated extreme climate patterns (as defined in the frame of the SODEEP project) include abrupt warming (defined as occurrence of annual mean temperature above 5-year running mean) and increase in seasonal precipitation anomalies, as well as changes in specific snow characteristics.

How to cite: Georgievski, G., De Vrese, P., Hagemann, S., and Brovkin, V.: High-Northern-latitudes permafrost extend in MPI-ESM simulations of SSP126 and SSP585 , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12828, https://doi.org/10.5194/egusphere-egu21-12828, 2021.

EGU21-13099 | vPICO presentations | CR6.1 | Highlight

Legacy effects of climate overshoot scenarios in permafrost-affected regions

Philipp de Vrese and Victor Brovkin

Difficulties to quickly reduce carbon emissions to levels compatible with the long-term goal of the Paris Agreement increase the likelihood of scenarios that temporarily overshoot the respective climate targets. We used simulations with JSBACH, the land surface component of the Max-Planck-Institute for Meteorology’s Earth system model MPI-ESM1.2 to investigate the long-term response of the terrestrial Arctic to climate stabilization at such a climate target. In particular, we seek to answer the question whether the state of permafrost-affected soils and the Arctic carbon cycle could converge to different equilibria depending on the climate trajectory that precedes climate stabilization at 1.5°C above pre-industrial levels. To this end, we compare simulations that are forced with the same non-transient atmospheric conditions – corresponding to the 1.5°C-target --, but started from different initial conditions. One simulation was initialized with the conditions before and one simulation with the conditions after a temperature overshoot which follows SSP5-8.5 until the year 2100 subsequent to which the atmospheric conditions are reversed to the 1.5°C-target. Our results reveal that feedbacks between water-, energy- and carbon cycles allow for path-dependent steady-states in permafrost-affected regions. These depend on the soil organic matter content at the point of climate stabilization, which is significantly affected by the soil carbon loss resulting from overshooting the climate target. Here, the simulated steady-states do not only differ with respect to the amount of carbon stored in the frozen fraction of the soil, but also with respect to soil temperatures, the soil water content and even net primary productivity and soil respiration.

How to cite: de Vrese, P. and Brovkin, V.: Legacy effects of climate overshoot scenarios in permafrost-affected regions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13099, https://doi.org/10.5194/egusphere-egu21-13099, 2021.

Retrogressive thaw slumps (RTS) are a common thermokarst landform along arctic coastlines with an increasing thermoerosional activity. They underlay a rapid change in topographical as well as internal structures due to various external factors, e.g. changing climate conditions.

In 2011 and 2019 electrical resistivity tomography (ERT) measurements were carried during field campaigns to Herschel Island (Yukon Territory, Canada). Transects crossing Herschel Islands largest slump were performed, as well as quasi 3D-ERT-profiles. For better understanding these changes we compared the datasets focusing on the internal structures just as variations in the topography.

The aim for our study is gaining an impression of structural and topographical changes over several years, leading towards a better comprehension of long-term processes in retrogressive thaw slumps.

How to cite: Eppinger, S. and Krautblatter, M.: How retrogressive thaw slumps change over time - a study from Herschel Island (Canada) using 3D electrical resistivity tomography (ERT), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14989, https://doi.org/10.5194/egusphere-egu21-14989, 2021.

EGU21-13344 | vPICO presentations | CR6.1

Spatial variability in periglacial terrain conditions, northwestern Canada

Peter Morse, Wendy Sladen, Steve Kokelj, Ryan Parker, Sharon Smith, and Ashley Rudy

Throughout much of northern Canada there is an inadequate knowledge of permafrost and periglacial terrain conditions, which impedes development of climate-resilient northern infrastructure, identification of potential geohazards, decision making regarding resource development, and inferring past and future landscape evolution. Using a land systems approach to better understand formation of landscapes and thaw-sensitive terrains of northern Yukon and northwestern Northwest Territories, we aim to describe the permafrost-related landform-sediment assemblages that exist in the region. Permafrost is continuous in the region, but variations in geology, landscape history, climate, relief, ecology, and other natural processes have produced a diverse range of permafrost conditions and landforms. Using the 875 km-long Dempster and Inuvik-to-Tuktoyaktuk highway corridors (DH-ITH) as a regional transect, and high-resolution satellite imagery, a robust methodology was implemented to identify and digitize (at 1:5000 scale) 8793 landforms (589 km2) within a 10 km-wide corridor (8530 km2) and classify them according to main formational process (hydrological, periglacial, and mass movement). Surficial geology data were extracted from available data sets. Landform densities in all feature classes vary substantially along the transect according to physiographic region and surficial geology. The northern 39% of the corridor is characterized by generally rolling or planar relief, numerous waterbodies (19%), and the remaining land area by mostly morainal (67%), glaciofluvial (12%), lacustrine (7%), and alluvial (7%) deposits. By count, it contains 53% of mapped features and the majority of periglacial (67%) and hydrological (70%) features. In particular, the Tuktoyaktuk Coastlands, Peel Plain, and Mackenzie Delta, contain the greatest density of mapped landforms within the corridor, which cover nearly 23%, 15%, and 15% of the land area of these physiographic regions, respectively. These extents reflect the amount of ground ice and level of permafrost-thaw sensitivity of these regions. In contrast, the physiographic regions of the southern 61% of the study area are characterized by high relative relief, few waterbodies (0.2%), and the land area mainly by colluvial (63%), alluvial (18%), and morainal (14%) deposits. Most mass movement features occur here (85% by count), and are concentrated in the Ogilvie Mountains (n = 1027; 108 km2). This feature inventory provides the basis for developing spatial models of landscape-thaw susceptibility, which can inform risk assessment and improve decision making regarding public safety and environmental management.

How to cite: Morse, P., Sladen, W., Kokelj, S., Parker, R., Smith, S., and Rudy, A.: Spatial variability in periglacial terrain conditions, northwestern Canada, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13344, https://doi.org/10.5194/egusphere-egu21-13344, 2021.

EGU21-13756 | vPICO presentations | CR6.1

Advances in Cryoplanation Terrace Research: Recent Contributions

Raven Mitchell, Frederick Nelson, Kelsey Nyland, and Clayton Queen

Cryoplanation terraces (CTs) are large, staircase-like erosional features found in upland periglacial environments throughout the circum-Arctic region. They are ubiquitous in unglaciated Beringia. This presentation summarizes recent research on these features conducted in interior and western Alaska and northwestern British Columbia. The work falls into several categories:

(1) Relative dating: Relative weathering indices (fracture counts, Cailleux roundness and flatness, Krumbein sphericity, rebound, and weathering rind thickness) were measured at a series of sites extending across eastern Beringia. Patterns of these indices indicate that inner treads were more recently exposed than distal locations. A model of time-transgressive CT development through nivation-driven scarp retreat addresses the removal of weathered material from terrace treads down side slopes through piping and gravity-driven mass-wasting processes.

(2) Absolute dating: Several 10Be and 36Cl Terrestrial Cosmogonic Nuclide ages reveal that terrace scarps in the Alaskan Yukon-Tanana Upland were last actively eroding during the last glacial maximum (LGM). CT treads exhibit time-transgressive development. Boulder exposure ages and distances between sampled boulder locations were used to estimate rates of scarp retreat. The numerical exposure ages demonstrate that CTs are diachronous surfaces actively eroding during multiple cold intervals.

(3) Landscape evolution: The unusual deglaciation history of “Frost Ridge” in northwestern British Columbia facilitates estimation of long-term denudation attributable to nivation processes since the LGM. Snowbanks accumulated and persisted in marginal drainage features on the ridge’s north-facing ridge flank, creating a series of CTs through nivation. Data obtained from an unmanned aerial vehicle were used to estimate the volumes of eroded material. Estimated erosion rates are comparable to short-term nivation rates reported from Antarctica and mid-latitude alpine periglacial areas.

(4) Process monitoring: Soil thermal and moisture records, particle-size analysis, apparent thermal diffusivity calculations, and sediment-deposition patterns were used to examine periglacial processes operating on two active CTs. The coarse portions of sorted stripes function as underground channels (pipes) for sediment transportation across CT treads by flowing water. Late-lying snowbank environments are highly dynamic during warm weather, with large amounts of sediment transported over short periods.

(5) Geomorphometry: Semi- and fully automated recognition algorithms (CTAR) were applied to high-resolution DEMs to identify the locations of CTs. CTAR achieved an overall accuracy of 90 percent. A strong linear relation exists between the size of CTAR-delimited terraces and those identified in a previous study. Hypsometric analysis was applied over extensive areas of eastern Beringia. Glaciated areas have hypsometric signatures distinctly different than those of cryoplanated terrain, across a spectrum of geographical scale. Results from fluvial morphometric analysis of a sorted-stripe field verifies the origins of such networks and their effectiveness for transporting water and suspended sediment across CT surfaces.

(6) Climatic dependencies: Geospatial analysis involving nearly 700 CTs in eastern Beringia demonstrates that their elevation rises from Bering Sea islands to the Alaska-Canada border at rates nearly identical to those of Wisconsinan cirques, indicating close genetic links between the two classes of feature. Cryoplanation terraces can be considered the periglacial equivalent of glacial cirques.

How to cite: Mitchell, R., Nelson, F., Nyland, K., and Queen, C.: Advances in Cryoplanation Terrace Research: Recent Contributions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13756, https://doi.org/10.5194/egusphere-egu21-13756, 2021.

EGU21-13891 | vPICO presentations | CR6.1

Model improvement and projection of permafrost degradation and greenhouse gas emission

Tokuta Yokohata, Kazuyuki Saito, Go Iwahana, Akihiko Ito, and Katsumasa Tanaka

To date, the treatment of permafrost in earth system models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost physical processes in a state-of-the-art earth system model (MIROC) by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to freezing (https://doi.org/10.1186/s40645-020-00380-w). As a result, the improved version of the model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter. The improved modeling of permafrost processes also had a significant effect on future projections. Using the conventional formulation, the predicted cumulative reduction of the permafrost area by year 2100 was approximately 60% (40–80% range of uncertainty from a multi-model ensemble) in the RCP8.5 scenario, while with the improved formulation, the reduction was approximately 35% (20–50%). Our results indicate that the improved treatment of permafrost processes in global climate models is important to ensuring more reliable future projections.

In addition, the processes of greenhouse gas (GHG) emissions due to permafrost degradation are not considered in many earth-system models. Therefore, we developed a model to diagnose that processes by using the output of earth system models (https://doi.org/10.1186/s40645-020-00366-8). The model called PDGEM (Permafrost Degradation and GHG Emission Model) describes the thawing of the Arctic permafrost including the Yedoma layer due to climate change and the GHG emissions. Our model simulations show that the total GHG emissions from permafrost degradation in the RCP8.5 scenario was estimated to be 31-63 PgC for CO2 and 1261-2821 TgCH4 for CH4 (68th percentile of the perturbed model simulations, corresponding to a global average surface air temperature change of 0.05–0.11 °C), and 14-28 PgC for CO2 and 618-1341 TgCH4 for CH4 (0.03–0.07 °C) in the RCP2.6 scenario. An advantage of PDGEM is that geographical distributions of GHG emissions can be estimated by combining a state-of-the-art land surface model featuring detailed physical processes with a GHG release model using a simple scheme, enabling us to consider a broad range of uncertainty regarding model parameters. In regions with large GHG emissions due to permafrost thawing, it may be possible to help reduce GHG emissions by taking measures such as restraining land development.

 

How to cite: Yokohata, T., Saito, K., Iwahana, G., Ito, A., and Tanaka, K.: Model improvement and projection of permafrost degradation and greenhouse gas emission, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13891, https://doi.org/10.5194/egusphere-egu21-13891, 2021.

EGU21-13922 | vPICO presentations | CR6.1

Equilibrium Spin-up of Cold and Warm Permafrost Models

Cameron Ross, Ryley Beddoe, and Greg Siemens

Initialization (spin-up) of a numerical ground temperature model is a critical but often neglected step for solving heat transfer problems in permafrost. Improper initialization can lead to significant underlying model drift in subsequent transient simulations, distorting the effects on ground temperature from future climate change or applied infrastructure.  In a typical spin-up simulation, a year or more of climate data are applied at the surface and cycled repeatedly until ground temperatures are declared to be at equilibrium with the imposed boundary conditions, and independent of the starting conditions.

Spin-up equilibrium is often simply declared after a specified number of spin-up cycles. In few studies, equilibrium is visually confirmed by plotting ground temperatures vs spin-up cycles until temperatures stabilize; or is declared when a certain inter-cycle-temperature-change threshold is met simultaneously at all depths, such as ∆T ≤ 0.01oC per cycle. In this study, we investigate the effectiveness of these methods for determining an equilibrium state in a variety of permafrost models, including shallow and deep (10 – 200 m), high and low saturation soils (S = 100 and S = 20), and cold and warm permafrost (MAGT = ~-10 oC and >-1 oC). The efficacy of equilibrium criteria 0.01oC/cycle and 0.0001oC/cycle are compared. Both methods are shown to prematurely indicate equilibrium in multiple model scenarios.  Results show that no single criterion can programmatically detect equilibrium in all tested models, and in some scenarios can result in up to 10oC temperature error or 80% less permafrost than at true equilibrium.  A combination of equilibrium criteria and visual confirmation plots is recommended for evaluating and declaring equilibrium in a spin-up simulation.

Long-duration spin-up is particularly important for deep (10+ m) ground models where thermal inertia of underlying permafrost slows the ground temperature response to surface forcing, often requiring hundreds or even thousands of spin-up cycles to establish equilibrium. Subsequent transient analyses also show that use of a properly initialized 100 m permafrost model can reduce the effect of climate change on mean annual ground temperature of cold permafrost by more than 1 oC and 3 oC under RCP2.6 and RCP8.5 climate projections, respectively, when compared to an identical 25 m model. These results have important implications for scientists, engineers and policy makers that rely on model projections of long-term permafrost conditions.

How to cite: Ross, C., Beddoe, R., and Siemens, G.: Equilibrium Spin-up of Cold and Warm Permafrost Models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13922, https://doi.org/10.5194/egusphere-egu21-13922, 2021.

EGU21-14093 | vPICO presentations | CR6.1

Thaw subsidence and frost heave caused by 2018-20 forest fires around Batagay: validation with multiple InSAR data and field observation

Kazuki Yanagiya, Masato Furuya, Go Iwahana, and Petr Danilov

The Arctic has experienced numerous fires in last year, and from June to August 2020, satellite data showed record carbon dioxide emissions from forest fires. Peatland in the Arctic contains large amounts of organic carbon, and their release into the atmosphere can create positive feedbacks for further increase of air temperature. In addition, forest fires burn the surface vegetation layer that has been acting as a heat insulator, which will accelerate the thawing of permafrost on scales of years to decades. Although the thaw depth can recover together with the recovery of surface vegetation, the massive segregated ice is not recoverable once it melted. Our study area is around the Batagay, Sakha Republic, Eastern Siberia. In June 2020, Verkhoyansk, located about 55 km west of Batagay, recorded the highest daily maximum temperature of 38.0 degrees Celcius. The Sentinel-2 optical satellite images showed a number of forest fires in 2019-20. We detected the surface deformation signals at each fire site with the remote-sensing method called InSAR (Interferometric Synthetic Aperture Radar). Also, we conducted a field observation in September 2019 for validations: 1) installed a soil thermometer and soil moisture meter; 2) established a reference point for leveling and first survey; 3) measured the thawing depth with a frost probe.

 For seasonal ground deformations immediately after the fire, we mainly analyzed Sentinel-1 images. Sentinel-1 is the ESA's C-band SAR satellite, which has a short imaging interval of 12 days. As the short wavelength, vegetation changes lost coherence, and some pairs failed to detect ground deformation signals immediately after the fire. However, after the end of September, we detected displacements toward the satellite line-of-sight direction at all the fire sites. It indicates uplift signals due presumably to frost heave at the fire scar. For long-term deformations over one year, we used ALOS2 imaged derived by JAXA's L band SAR satellite. In the previous studies in Alaska, the ground deformation signal immediately after a fire could not be detected due to the coherence loss in the pairs derived from pre-fire and post-fire SAR images. Indeed, we could not detect deformation signals at the fire scars from the June pairs derived before and after the fire. However, the January pairs and March pairs, both of which were acquired before and after the fire, showed relatively high coherence even in the fire scar and indicated clear subsidence signals by as much as 15 cm. We interpret that, because the studied Verkhoyansk Basin is very dry and has little snow cover, the microwaves could penetrate the snow layer, which allowed us to detect deformation signals even in winter. Yanagiya and Furuya (2020) validated the consistency of the winter uplift signal for the 2014 fire site. We also analyzed the SM1 high spatial resolution mode (3 m) ALOS2 InSAR to investigate the specific ground deformation at each fire site.

How to cite: Yanagiya, K., Furuya, M., Iwahana, G., and Danilov, P.: Thaw subsidence and frost heave caused by 2018-20 forest fires around Batagay: validation with multiple InSAR data and field observation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14093, https://doi.org/10.5194/egusphere-egu21-14093, 2021.

EGU21-14455 | vPICO presentations | CR6.1

Multi-scale remote sensing observations of a palsa in degradation phase

Heather Reese, Mats Olvmo, Sofia Thorsson, and Björn Holmer

The Vissátvuopmi palsa complex (N 68°74′50′′, E 21°11′30”) is the largest coherent palsa complex in Sweden (ca 274 ha). Aerial photo-interpretation over an area covered by plateau palsas showed a 30% decline in lateral area -- from ca 70 to 49 ha -- that occurred between 1955 to 2016 (Olvmo et al., 2020). Within Vissátvuopmi, we have more closely studied two single palsas, one dome-shaped and one ridge-shaped, for changes in extent, height and vegetation composition. Manual interpretation of aerial photography between 1955 and 2016 show lateral degradation of 35% and 54% for the dome and ridge palsas, respectively. Since 2018 we have monitored the palsas using images from drones as well as analysis of Planet Dove and Sentinel-2 satellite imagery. Photogrammetry is used to produce orthophotos as well as digital surface models (DSMs) from the drone images, and compared to earlier LiDAR and aerial photo DSMs, to study lateral and vertical degradation.

The drone-generated DSMs from 2018, 2019 and 2020 show further lateral degradation of the two large palsas. In 2020 a rapid change in vegetation composition was seen on the dome-shaped palsa, where a 250 m2 area of Betula nana and Empetrum hermaphroditum transitioned to lichen. This vegetation change could be seen in spectral data from both drone and satellite platforms. The future development of this palsa, monitored annually using both fine and medium spatial resolution data, will give insight into the timing and signs of the individual palsas in stages of degradation.

How to cite: Reese, H., Olvmo, M., Thorsson, S., and Holmer, B.: Multi-scale remote sensing observations of a palsa in degradation phase, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14455, https://doi.org/10.5194/egusphere-egu21-14455, 2021.

EGU21-14883 | vPICO presentations | CR6.1

Seasonal Variations in Bottom Water Temperatures and their Influence on Subaquatic Permafrost Thermal Regimes

Frederieke Miesner, Pier Paul Overduin, and Christopher Stevens

The thermal regime in sediment below the ocean or lakes is mostly governed by the sea or lake bed temperature and by the geothermal heat flow. This thermal regime will determine whether permafrost beneath water bodies is preserved or how rapidly it thaws. Thermal modelling uses mean annual bottom water temperatures to calculate permafrost presence or absence, while predictions of shallow sediment thermal regimes must be forced with time series of changing bottom water temperatures that also account for freezeback of the water column to the bottom, forming bottom-fast ice. However, continuous, annual measurements of bottom water temperatures in Arctic lakes and coastal marine settings are hard to obtain and therefore scarce. Waves and sea ice movement make deployment and recovery of instruments difficult.

We provide a parameterization of the bottom water temperature function that relies on easier to obtain variables, such as the mean, minimum and maximum air temperature and the water depth, by comparing measured and modelled shallow sediment thermal regimes from the Arctic. We use a parameterization based on a simple cosine for the water temperature with mean temperature, amplitude and time shift and add the minimum water temperature to obtain a 4 parameter function. For shallow regions with bottom-fast ice, additionally the duration of the ice-growth and -melting period as well as the minimum air temperature are needed.

We test our parameterizations with a globally unique data set of 4 years of ground temperature data collected from the seabed to a depth of 10 m from the near shore zone of the Mackenzie Delta. At the instrumented sites, permafrost is present beneath mostly freshwater bottom-fast and floating ice. Forward modeling of sediment temperatures is performed using the 1D heat transfer model CryoGrid with depth dependent thermal properties. We neglect advective processes and long-term temperature trends in the bottom water temperatures.

 

Rough parameterization of the annual variation of water bottom temperatures reproduce measured water temperatures with a RMSE of 20-40 %. The resulting modeled sediment temperature field based on 10 years of repeated parameterized bottom water temperatures matches the modeled sediment temperature field based on measured water temperatures in terms of permafrost characteristics, including the depth of the active layer defined by the 0°C isotherm over the year. However, both modelled temperature fields yield significantly higher sediment temperatures than the measured sediment temperature field. This may be the result of choice of sediment thermal properties in the thermal model or shifts in the duration of bottom-fast ice contact or on-ice snow Since modelled temperature fields from both repeated measured and parameterized bottom water temperatures show the same deviation, it suggests that the bottom water temperatures were warmer during the measurement period than the average over the previous 10 years.

How to cite: Miesner, F., Overduin, P. P., and Stevens, C.: Seasonal Variations in Bottom Water Temperatures and their Influence on Subaquatic Permafrost Thermal Regimes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14883, https://doi.org/10.5194/egusphere-egu21-14883, 2021.

EGU21-15247 | vPICO presentations | CR6.1

Experimental Investigation of Freeze-Thaw Processes in Soils and Grouting Materials

Jan Christopher Hesse, Jan-Henrik Kupfernagel, Markus Schedel, Bastian Welsch, Lutz Müller, and Ingo Sass

Freezing and thawing in the subsurface is often related to complex technical handling of possible influences on the engineered structures (e.g. permafrost or geothermal heat pumps). Freeze-thaw processes in the vicinity of borehole heat exchangers can significantly impair the system. However, for groundwater protection and thermal efficiency, the hydraulic and thermal integrity of such systems must be permanently ensured for the complete operation time. Detailed knowledge on freeze-thaw processes in porous media, such as soils or geotechnical grouts, and the driven parameters, is still pending. Freezing in porous media does not occur as a sudden transition from pure liquid water to the ice phase, but rather within a freezing interval strongly depending on various boundary conditions such as soil type or pore water chemistry. As the content of frozen and unfrozen water has a strong impact on material properties, it is essential to have suitable information about the different factors influencing freezing processes as well as the thermo-hydraulic-mechanical (THM) effects on porous media due to phase change. Thus, a THM laboratory experiment was developed and built to gain more knowledge on freeze-thaw processes and their effects on soil and grouting materials. The experiment consists of a modified triaxial test, enabling for controlled temperature and hydraulic flow conditions, that is combined with an ultrasonic measurement device to determine the unfrozen water content.

In this contribution, results of the THM experiment are presented, whereas the following parameters were investigated: The freezing interval using P-wave velocity, freezing pressure as well as axial and radial volume expansion due to ice formation as well as the influence of hydraulic flow on the ice formation. First, benchmark experiments were conducted on well-characterized solid rock samples to avoid any influence of a variable sample pore structure during the experiments. Further experiments focused on the investigation of soil samples of different texture classes. For upscaling to real scale applications, the experimental findings will be implemented in numerical models.

How to cite: Hesse, J. C., Kupfernagel, J.-H., Schedel, M., Welsch, B., Müller, L., and Sass, I.: Experimental Investigation of Freeze-Thaw Processes in Soils and Grouting Materials, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15247, https://doi.org/10.5194/egusphere-egu21-15247, 2021.

EGU21-14497 | vPICO presentations | CR6.1

Active layer and bedrock mapping in permafrost with Electrical Resistivity Tomography and Induced Polarization – A case study from Svalbard 

Asgeir Kydland Lysdahl, Sara Bazin, Andreas Olaus Harstad, and Regula Frauenfelder

 

Design and construction of infrastructure in frozen permafrost soils demands for detailed investigation of the ground characteristics prior to the construction process. Variations in ground temperature affect the physical properties of permafrost, such as amount of unfrozen water content and ice content. In addition, aggradation and degradation of permafrost induce changes of its physical properties. Ground-based Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) surveying can be used to characterize near-surface ground conditions to a few tens of meters depth, especially when calibrated by boreholes. 

Measured electrical resistivity is temperature‐dependent, which makes ERT a suitable tool in permafrost investigations. The temperature dependence is most pronounced for temperatures below freezing point. Electrical resistivity rises exponentially during freezing, when unfrozen water content within a substrate decreases. The electrical resistivity is, thus, very sensitive to phase changes between water and ice and we usually observe a lack of resistivity contrast at lithological interfaces. Direct translation from resistivity to lithology is, therefore, seldomly possible in permafrost. While ERT is successful for mapping the active layer, further interpretation of resistivity profiles is thus impeded by the lack of resistivity contrast within the permafrost. Indeed, the lithological structures are hidden by the strong resistivity of the frozen layer. By adding complementary information, IP measurements can help separate effects due to freezing and lithology. The IP effect can be measured in the time-domain, simultaneously with the ERT measurements, and with the same equipment. The IP effect occurs after abruptly interrupting the current flow between the current electrodes. The voltage across the potential electrodes does not drop to zero instantaneously, but  decays exponentially. The decay time can be used to estimate the chargeability of the ground. 

Here, we present three examples where combined ERT- and IP-surveying was used to detect the interface between sediments and bedrock within permafrost soils, and to investigate potential environmental hazards related to run-off paths from existing and planned landfills. Study sites were an active landfill near the town of Longyearbyen, and two potentially new landfills near Longyearbyen and Barentsburg, respectively (the latter one for surplus masses resulting from coal mining). As permafrost traditionally had been seen as a natural flow barrier for such landfills, understanding its degradation owing to climate change was considered key in the planning of future sites. Eight profiles were carried out in September 2018, when expected active layer thicknesses were at their maxima. Two-dimensional inversion was performed with the commercial software RES2DINV for the resistivity data and Ahrusinv for the chargeability data.  

The results of our case studies show the benefit of simultaneous ERT- and IP-measurements, to both map active layer depths and determine sediment depths in permafrost areas. They also gave valuable insights in understanding potential environmental hazards related to run-off from the landfill, as a consequence of water entering the landfill in the summer period. ERT/IP surveys are flexible and relatively easy to deploy. The technique is non-destructiv and is, therefore, also suitable for maintenance studies in vulnerable arctic Tundra environments. 

 

How to cite: Lysdahl, A. K., Bazin, S., Harstad, A. O., and Frauenfelder, R.: Active layer and bedrock mapping in permafrost with Electrical Resistivity Tomography and Induced Polarization – A case study from Svalbard , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14497, https://doi.org/10.5194/egusphere-egu21-14497, 2021.

EGU21-14598 | vPICO presentations | CR6.1

Seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps detected by spectral induced polarization

Theresa Maierhofer, Jonas K. Limbrock, Timea Katona, Elisabetta Drigo, Christin Hilbich, Umberto Morra Di Cella, Andreas Kemna, Christian Hauck, and Adrian Flores-Orozco

Warming of permafrost regions with an associated increase in subsurface temperatures has been reported worldwide. Thus, long-term monitoring of the thermal state of permafrost and the associated ground ice contents has become an essential task also for the European Alps. Geophysical methods have proven to be well-suited to support and interconnect spatially sparse borehole data and investigate the distribution and temporal evolution of permafrost. In particular, electrical resistivity tomography (ERT) is a widely applied technique for permafrost characterization, commonly associated with a significant increase in the electrical resistivity upon freezing. However, air is also characterized by high electrical resistivity values complicating the interpretation of ERT results. Recent studies have revealed that the spectral induced polarization (SIP) response of frozen rocks is affected by the temperature-dependent polarization behaviour of ice at higher frequencies. Thus, the SIP or complex resistivity method offers potential for an improved characterization of permafrost sites.

We here present SIP imaging results conducted over a broad range of frequencies (0.1-225 Hz) at an operational long-term permafrost monitoring site covering a period of one and a half years. The selected study area Cervinia Cime Bianche (Italian Alps) is situated at an elevation of ~3100m and provides comprehensive geophysical, borehole temperature and water content data for validation. Shielded cables and an adequate measuring protocol were deployed to minimize the electromagnetic coupling in the SIP data. Data were collected as normal and reciprocal pairs for the quantification of data error, and we developed an analysis scheme for data quality that considers changes in time and in the frequency to remove spatial and temporal outliers and erroneous measurements. To understand the temperature dependence of the polarization response, we compare our field results with SIP laboratory measurements on water-saturated rock samples, collected in close proximity to the monitoring profile, in a frequency range of 10 mHz to 45 kHz during controlled freeze-thaw cycles (+20°C to -40°C).

Our field results show clear seasonal changes in the complex resistivity images. Resistivity magnitude shows an increase in winter and decrease in summer throughout the image plane, with most prominent changes at shallow depths, where also resistivity phase shows distinctly increased (absolute) values in winter for frequencies above 10 Hz. This region coincides with the active layer as monitored by borehole temperature logging, suggesting that especially the polarization response is indicative of the seasonal freezing and thawing of the ground. This interpretation is confirmed by the laboratory measurements on the rock samples from the site, which upon freezing and thawing exhibit an absolute phase increase with decreasing temperature at higher frequencies (above 10 Hz for temperatures down to -10°C), with the general spectral behaviour being consistent with the known polarization properties of ice. We conclude that with appropriate measurement and processing procedures, the characteristic dependence of the SIP response of frozen rocks on temperature, and thus ice content, can be utilized in field surveys for an improved assessment of thermal state and ice content at permafrost sites.

How to cite: Maierhofer, T., Limbrock, J. K., Katona, T., Drigo, E., Hilbich, C., Morra Di Cella, U., Kemna, A., Hauck, C., and Flores-Orozco, A.: Seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps detected by spectral induced polarization, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14598, https://doi.org/10.5194/egusphere-egu21-14598, 2021.

In the context of climate change, permafrost degradation is a key variable in understanding rock slope failures in high mountain areas. Permafrost degradation imposes a variety of environmental, economic and humanitarian impacts on infrastructure and people in high mountain areas. Therefore, new high-quality monitoring and modelling strategies are needed.

We developed a new, numerical, thermo-geophysical rock permafrost model (TGRPM) to assess spatial-temporal variations of the ground thermal regime in steep permafrost rock walls on the basis of 13-years of Electrical Resistivity Tomography (ERT) monitoring of permafrost at the Zugspitze. TGRPM is a simple to understand and workable numerical 2D MATLAB-model, which is adaptable to different topographic and sub-surface conditions, and further relies on a minimum of input-data to assess the surface energy balance and the ground thermal regime. It simulates the thermal response for permafrost rock walls, including their complex topography, to climate forcing over multiple years. It aims to assess seasonal and long-term permafrost development in steep alpine rock walls, as well as serving as a straightforward calculation routine, which is solely based on physical processes and does not require any fitting of certain parameters.

At first, the model was tested against direct temperature measurements from the LfU-borehole at the Zugspitze summit to prove its accuracy. Then, it is run against a 13-year ERT data-set from the Zugspitze Kammstollen to validate the ERT measurements.

Here, we show the first thermo-geophysical model referencing thermal evolution in a permafrost rock wall with temperature-calibrated ERT. The TGRPM successfully computes the thermal evolution within the Zugspitze mountain ridge from a 2D coupled energy balance and heat conduction scheme in complex topography. It furthermore validates the temperature-resistivity relationship by Krautblatter et al. (2010) for natural rock walls reaching a correlation of 85 to 95 % between measured, ERT-derived and modelled temperatures.

Krautblatter, M., Verleysdonk, S., Flores-Orozco, A. & Kemna, A. (2010): Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps). J. Geophys. Res. 115: F02003.

How to cite: Schroeder, T. and Krautblatter, M.: A high-resolution multi-phase thermo-geophysical permafrost rock model to verify long-term ERT monitoring at the Zugspitze (German/Austrian Alps), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15231, https://doi.org/10.5194/egusphere-egu21-15231, 2021.

Geophysical techniques are widely used to detect and characterise permafrost. Among them, electrical methods such as Electrical Resistivity Tomography (ERT) or Vertical Electrical Soundings (VES) , which measure the electrical resistivity of the ground, have a very long and successful tradition in all kind of permafrost applications in polar, mountain and subsea terrain. Similarly, electromagnetic methods, which measure the inverse of resistivity, the electrical conductivity, are more and more used for permafrost applications.

The reason for the good applicability lies in the fact that the electrical resistivity of most materials increases sharply at the freezing point. The nature of this increase is due to several processes such as the reduction of the electrically conducting liquid water content during phase change and the reduced mobility of the ions in the liquid phase. How much the resistivity increases upon freezing depends therefore on the specific physical properties of the material (e.g. porosity, pore water resistivity), which can be completely different for the different permafrost environments and lithospheric materials.

On the other hand, when plotting the resistivity of the active layer against the resistivity of the frozen layer for a multitude of data sets, most permafrost occurrences follow a similar quantitative relationship, although their lithopsheric and geomorphological characteristics are very different. In this contribution we will analyse the reasons for this relationship using theoretical considerations and verify it with a newly compiled resistivity data set of more than 100 permafrost occurrences.

How to cite: Hauck, C.: Electrical resistivity contrast between active layer and frozen ground: why is it similar for different sites over many order of magnitudes ?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15414, https://doi.org/10.5194/egusphere-egu21-15414, 2021.

According to consdidered influence of snow cover thickness and air temperature on variations of ground freezing depth at the site of meteorological observatory of Moscow State University and also according to the data of observatories in the Moscow region it is expected to make conclusions about the impact of the urban heat island to a ground freezing depth in Moscow region. For this purpose, the values of the maximum ground freezing depth were analyzed for MSU meteorological observatory and for the weather stations of the Moscow region: Kolomna, Mozhaisk and Sukhinichi. And since not always the data of actual observations are avaliable, for these weather stations the calculated values of the maximum ground freezing depth were obtained. The calculations were performed according to the previously developed calculation scheme, based on the problem of thermal conductivity of a three-layer medium (snow, frozen and thawed ground) with a phase transition at the boundary. The heat balance equation included the energy of the phase transition, the inflow of heat from the thawed ground and the outflow to the frozen ground and, in the presence of snow cover, through it to the atmosphere. The heat flow was calculated according to Fourier's law as the product of the thermal conductivity and the temperature gradient. It was assumed that the temperature in each medium varies linearly. For snow cover and frozen ground, the formula of thermal conductivity of a two-layer medium was used. The obtained calculated values were compared with the actual values of the ground freezing depth. The coefficients R2 of the reliability of the linear trend line approximation when comparing the calculated and actual values for Moscow and the Moscow region were at the level of 0.6-0.7. The maximum ground freezing depth in Moscow and in the Moscow region in the same years may differ by an average of 10 cm. This confirms that the designed scheme well describes ground freezing depth based on data on air temperature and snow cover thickness and can be used to model the underground heat island of the Moscow region. In report it is also supposed to present the results of the recent years observations of snow cover and freezing depth variations in Moscow and the Moscow region. The past  2020 year is considered as the warmest in the entire history of observations according to the MSU Meteorological Observatory for Moscow, according to the Hydrometeorological Center of Russia for the whole of Russia and according to the Copernicus Climate Change Service (C3S) for the entire Globe. So the winter season of 2019/20 in Moscow region was also unusually warm, and therefore in the winter season of 2019/20 there was very little snow in the Moscow region. However, the warm summer of 2020 resulted in one of the lowest summer values of sea ice extent in the Arctic and, as a result, abnormally strong minimum temperatures and heavy snowfall in the winter of 2020/21 in Eurasia and Moscow. The work was done in a frame of state topic AAAA-A16-116032810093-2.

How to cite: Frolov, D.: Influence of snow cover and air temperature on variations of ground freezing depth in Moscow and the Moscow region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4455, https://doi.org/10.5194/egusphere-egu21-4455, 2021.

EGU21-8466 | vPICO presentations | CR6.1

Analysis of the spatial distribution and characteristics of the rock glaciers in the Ampato, Vilcanota and La Viuda Cordilleras southern and central Peru 

Katy Medina, Edwin Loarte, Edwin Badillo-Rivera, Hairo León, Xavier Bodin, and Christian Huggel

Rock glaciers (RG) are visual evidence of mountain permafrost, and are one of the most important geomorphological features in the Peruvian Andes. The main objective of this research was to determine the spatial distribution of RG, their degree of activity, as well as their morphological and climatic characteristics in Cordilleras Vilcanota (Southeast), Ampato (Southwest) and La Viuda (Center). For this study, we used high-resolution images from Google Earth-Pro, SASPlanet and a DEM ALOS PALSAR (12.5 m) to identify and digitize the RG based on their geomorphological attributes, and we derived  the potential incoming solar radiation (PISR), based on the DEM . The WorldClim dataset (1970-2000) was used to determine the mean annual air temperature (MAAT) and the precipitation in the analyzed zones.

The Cordillera Ampato, with 139 RGs, presents the lowest minimum altitude of the RGs inventory (4537 m a. s. l.), the lowest MAAT (-0.4°C), lower slope (18°) and concentrates the highest PISR (1083 kWh/m2). The Cordillera Vilcanota concentrates a lower number of RGs (54), a higher minimum altitude of RGs (4733 m a. s. l.) and a relatively higher MAAT (1.9°C). Comparing both southern Cordilleras with respect to Cordillera central (La Viuda), it has the lowest amount of RG (8), a higher minimum altitude of RG (4747 m a. s. l.), higher slope (23°), higher MAAT (2.2°C) and lower persistence of snow cover. With regard to the RG activity, it was found that the quantity of active RG compared to inactive RG is in a proportion of 1.6 in Cordillera Ampato and 0.2 in Cordilleras Vilcanota and La Viuda.

Finally, the spatial distribution analysis shows that the greatest amount of RGs is located in the southern zone, decreasing towards the northern regions of Peru while the opposite occurs with the average MAAT of the RG, that is, the MAAT decreases as the RG moves to southern regions of Peru. On the other hand, the SW zone (dry climate) concentrates the largest amount of RG compared to the SE zone (wet climate). In addition, the topoclimatic parameters condition the formation of RG in the Cordilleras of study. 

How to cite: Medina, K., Loarte, E., Badillo-Rivera, E., León, H., Bodin, X., and Huggel, C.: Analysis of the spatial distribution and characteristics of the rock glaciers in the Ampato, Vilcanota and La Viuda Cordilleras southern and central Peru , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8466, https://doi.org/10.5194/egusphere-egu21-8466, 2021.

EGU21-9377 | vPICO presentations | CR6.1

Determining permafrost active layer thermal properties of the Qinghai–Tibet Plateau using field observations and numerical modelling

Jelte de Bruin, Victor Bense, and Martine van der Ploeg

Permafrost has become thermally instable as a result of surface warming, which has an uncertain impact on future hydrogeological conditions and the associated mobilisation of carbon and release into the atmosphere. Numerical modelling can provide insights into future permafrost spatial and temporal dynamics. However, crucial observational data of permafrost active-layer thermal properties; thermal conductivity and heat capacity are sparse, resulting in a large uncertainty in forecasts of the future development of the active layer. Therefore, our study aims to develop a methodology to numerically determine the permafrost thermal and soil properties from observations of temperature time-series in the subsurface, in order to reduce the current model uncertainty.

We used an ensemble of 786 numerical 1D permafrost models fitted against observed active layer temperature data from the Qinghai-Tibetan Plateau (QTP)1 to find the optimal values for the soil thermal conductivity, heat capacity and porosity. Optimal parameter values are determined by finding the minimum RMSE, KGE and using the Russell error measure. We find optimized values for bulk volumetric heat capacity 1.3-1.85 106J/m3°C , bulk thermal conductivity 0.9-1.1 W/m°C and porosity between 0.25-0.35 (-), which are in agreement with typical ranges reported in literature for similar settings on the QTP. In a further sensitivity study, the 3 optimal parameter combinations were used to model the active layer thickness over a 100-year period with a gradual hypothetical air temperature increase of 5°C. The results indicate a substantial difference in rate of thawing and increase in depth of the active layer for these models, with a maximum time-lag of roughly 15 years in before the models reach the same active layer thawing depth. The study shows how numerical models can be applied to determine active layer thermal properties without the need for field samples, opening up new possibility for in-situ permafrost temperature observation.

1. Luo, D. L., Jin, H. J., He, R. X., Wang, X. F., Muskett, R. R., Marchenko, S. S., & Romanovsky, V. E. (2018). Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123, 10,057–10,075. https://doi.org/10.1029/2018JD028298

How to cite: de Bruin, J., Bense, V., and van der Ploeg, M.: Determining permafrost active layer thermal properties of the Qinghai–Tibet Plateau using field observations and numerical modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9377, https://doi.org/10.5194/egusphere-egu21-9377, 2021.

EGU21-12135 | vPICO presentations | CR6.1

Modeling recent permafrost thaw and associated hydrological changes in an endorheic Tibetan watershed

Walter Immerzeel, Léo Martin, Fanny Brun, Sebastian Westermann, Joel Fiddes, Philip Kraaijenbrink, and Tamara Mathys

Permafrost has a crucial influence on sub-surface water flow and thus on the hydrology of catchments. Its thawing drives the release of frozen water and a transition from surface-water-dominated systems to groundwater-dominated systems. In the context of global warming, these hydrological modifications are of critical importance for extensive headwater regions such as the Qinghai-Tibet Plateau (QTP) and the Himalayas. Permafrost covers a significant proportion of these regions (40% of the QTP), which are major water towers of the world. Therefore, improving our understanding and ability to quantify these changes are a key scientific challenge.

Many watersheds of the QTP have seen their hydrologic budget modified over the last decades as evidenced by strong lake level variations observed in endorheic basins. Yet, the possible contribution of permafrost thaw to these variations has not been assessed. The Paiku basin (central Himalayas, southern TP) finds itself in a similar situation. The Paiku lake at the lowest point of this endorheic basin has exhibited important level decreases since the 70’s and thus offers the possibility to test the potential role of permafrost thaw on these hydrologic changes. We present permafrost simulations at the scale of the basin over the last four decades that reproduce its degradation as result of regional climatic change. We use the Cryogrid model to simulate the surface energy balance, snow pack dynamics and the ground thermal regime while accounting for the phase changes and the soil water budget. Because the surface radiative, sensitive and latent heat fluxes in alpine environments are strongly dependent on the physiography the model is forced with distributed downscaled forcing data produced with the TOPOSCALE model to account for this spatial variability. Simulated surface conditions are evaluated against meteorological data acquired within the basin and remotely sensed surface temperatures.

The simulations show that, contrary to large scale estimates of permafrost occurrence probability, an important part of the basin is underlaid by permafrost. During the simulated period, permafrost distribution and active layer exhibit limited variations (active layer deepening neighboring 10 cm) yet deeper ground temperatures (7-8 m) show a warming close to 0.8 degree (0.2 degree per decade). These first results tend to indicate a limited contribution of permafrost to the catchment hydrology over the last decades, a trend that could be significantly modified in the future if the simulated warming rates persist and lead to increased permafrost thawing.

How to cite: Immerzeel, W., Martin, L., Brun, F., Westermann, S., Fiddes, J., Kraaijenbrink, P., and Mathys, T.: Modeling recent permafrost thaw and associated hydrological changes in an endorheic Tibetan watershed, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12135, https://doi.org/10.5194/egusphere-egu21-12135, 2021.

EGU21-12553 | vPICO presentations | CR6.1

Towards accurate quantification of ground ice content in permafrost of the Central Andes: geophysics-based estimates from three different regions

Christin Hilbich, Tamara Mathys, Christian Hauck, and Lukas Arenson

Continued climate change is projected to cause significant temperature increase, yielding substantial water shortage especially in the semi-arid mountain regions of the Central Andes. The role of permafrost occurrences for the hydrological cycle in the Central Andes is currently discussed in a controversial way. On the one hand, permafrost in general, and especially rock glaciers are considered key stores of frozen water in view of the recession of glaciers, and degrading permafrost is expected to partly compensate the decreasing glacial discharge in future. On the other hand, the methodology to quantify ground ice resources in Andean permafrost regions as well as the time scales involved for significant discharge from permafrost bodies are currently disputed.

Comprehensive and quantitative field-based data on the local variability of internal structure, ground ice content and the hydrological contribution of different permafrost landforms are mostly lacking, and the current debate mostly focuses on rock glaciers as the prominent ice-rich permafrost landforms, as they can easily be identified by remote sensing.

To ameliorate this lack of ground truth data, we present a quantitative analysis of > 50 Electrical Resistivity Tomography and > 20 Refraction Seismic Tomography profiles from several permafrost sites in different geomorphologic settings, including ice-rich and ice-poor permafrost occurrences. The surveys were conducted between 2016 and 2019 in three different regions of the Central Andes of Chile and Argentina (28 - 32° S) in the framework of several Baseline studies in mining environments. For some sites borehole and test pit data are available and used to validate the quantitative estimates of ground ice contents by the 4-phase model (Hauck et al. 2011).

We demonstrate the value of geophysical surveys to detect ice-rich permafrost in various landforms (also beyond rock glaciers), and to estimate ground ice volumes in permafrost regions. Our data show, that remote-sensing based approaches tend to significantly overestimate ice volumes of rock glaciers, and on the other hand, that ice-rich permafrost is not restricted to rock glaciers, but also observed in non-rock-glacier permafrost slopes in the form of interstitial ice and layers with excess ice. In regions with widespread occurrence of such permafrost slopes, even relatively thin ice-rich layers can sum up to substantial total ground ice contents, which can be close to the volumes observed in rock glaciers. Consequently, non-rock-glacier permafrost terrain, whose role for local hydrology is basically neglected in remote-sensing based approaches, may be of equal hydrological significance regarding stored ground ice volumes on the catchment scale in some cases, and shall not be ignored.

The presented data may therefore serve as one of the first available field-based and validated data sets regarding the presence and total quantities of ground ice, and as input for modelling studies about the relative contributions of rock glacier and non-rock glacier permafrost to runoff in the Central Andes.

 

References

Hauck C, Böttcher M and Maurer H 2011. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. The Cryosphere 5(2): 453-468.

How to cite: Hilbich, C., Mathys, T., Hauck, C., and Arenson, L.: Towards accurate quantification of ground ice content in permafrost of the Central Andes: geophysics-based estimates from three different regions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12553, https://doi.org/10.5194/egusphere-egu21-12553, 2021.

EGU21-13419 | vPICO presentations | CR6.1

4D-Quantification of alpine permafrost degradation in a bedrock ridge using multiple inversion schemes and deformation measurements

Maike Offer, Riccardo Scandroglio, Daniel Draebing, and Michael Krautblatter

Warming of permafrost in steep rock walls decreases their mechanical stability and could triggers rockfalls and rockslides. However, the direct link between climate change and permafrost degradation is seldom quantified with precise monitoring techniques and long-term time series. Where boreholes are not possible, laboratory-calibrated Electrical Resistivity Tomography (ERT) is presumably the most accurate quantitative permafrost monitoring technique providing a sensitive record for frozen vs. unfrozen bedrock. Recently, 4D inversions allow also quantification of frozen bedrock extension and of its changes with time (Scandroglio et al., in review).

In this study we (i) evaluate the influence of the inversion parameters on the volumes and (ii) connect the volumetric changes with measured mechanical consequences.

The ERT time-serie was recorded between 2006 and 2019 in steep bedrock at the permafrost affected Steintälli Ridge (3100 m asl). Accurately positioned 205 drilled-in steel electrodes in 5 parallel lines across the rock ridge have been repeatedly measured with similar hardware and are compared to laboratory temperature-resistivity (T–ρ) calibration of water-saturated samples from the field. Inversions were conducted using the open-source software BERT for the first time with the aim of estimating permafrost volumetric changes over a decade.

(i) Here we present a sensitivity analysis of the outcomes by testing various plausible inversion set-ups. Results are computed with different input data filters, data error model, regularization parameter (λ), model roughness reweighting and time-lapse constraints. The model with the largest permafrost degradation was obtained without any time-lapse constraints, whereas constraining each model with the prior measurement results in the smallest degradation. Important changes are also connected to the data error estimation, while other setting seems to have less influence on the frozen volume. All inversions confirmed a drastic permafrost degradation in the last 13 years with an average reduction of 3.900±600 m3 (60±10% of the starting volume), well in agreement with the measured air temperatures increase.

(ii) Average bedrock thawing rate of ~300 m3/a is expected to significantly influence the stability of the ridge. Resistivity changes are especially evident on the south-west exposed side and in the core of the ridge and are here connected to deformations measured with tape extensometer, in order to precisely estimate the mechanical consequences of bedrock warming.

In summary, the strong degradation of permafrost in the last decade it’s here confirmed since inversion settings only have minor influence on volume quantification. Internal thermal dynamics need correlation with measured external deformation for a correct interpretation of stability consequences. These results are a fundamental benchmark for evaluating mountain permafrost degradation in relation to climate change and demonstrate the key role of temperature-calibrated 4D ERT.

 

Reference:

Scandroglio, R. et al. (in review) ‘4D-Quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated ERT approach’, Near Surface Geophysics.

How to cite: Offer, M., Scandroglio, R., Draebing, D., and Krautblatter, M.: 4D-Quantification of alpine permafrost degradation in a bedrock ridge using multiple inversion schemes and deformation measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13419, https://doi.org/10.5194/egusphere-egu21-13419, 2021.

CR6.2 – Evolution of debris covered glacier land systems

EGU21-2036 | vPICO presentations | CR6.2

Debris-cover on glaciers in the Austrian Alps. Regional patterns, Changes and Significance.

Jan-Christoph Otto, Fabian Fleischer, Robert Junker, and Daniel Hölbling

Debris cover on glaciers is an important component of glacial systems as it influences climate-glacier dynamics and thus the lifespan of glaciers. Increasing air temperatures, permafrost thaw, as well as rock faces freshly exposed by glacier downwasting results in increased rockfall activity and debris input into the glacier system. In the ablation zone, negative mass balances result in an enhanced melt-out of englacial debris to the glacier system. Glacier debris cover thus represents a signal of climate warming in mountain areas. To assess the temporal development of debris on glaciers of the Eastern Alps, Austria, we mapped debris cover on 255 of the more than 800 glaciers using Landsat data at three time steps between 1996 and 2015. We applied a ratio-based threshold classification technique using existing glacier outlines. The debris cover evolution was subsequently compared to glacier changes. Glacier and glacier catchment characteristics have been analysed using GIS techniques and statistics in order to investigate potential reasons for debris cover change.

Across the Austrian Alps debris cover increased by more than 10% between 1996 and 2015 while glaciers retreated significantly in response to climate warming. Debris cover distribution shows regional variability with some mountain ranges being characterised by mean debris cover on glaciers of up to 75%. We also observed a general rise of mean elevation of debris cover on glaciers in Austria. Debris cover distribution and dynamics are highly variable due to topographic, lithological and structural settings that determine the amount of debris delivered to and stored in the glacier system. Lower relative debris cover is observed on glaciers with higher mean and maximum elevation. Additionally, glaciers with increased mean slope, as well as catchments with large areas of steep slopes and a high elevation range of these slopes tend to show higher debris cover. Both parameters indicate that the influence of the steep rockwalls in the glacier catchment is a first order control on debris cover at regional scale. We can also show that catchments with a high percentage of potential permafrost distribution contain glaciers with a higher relative debris cover.

Despite strong variation in debris cover, all glaciers investigated melted at increasing rates. We conclude that the retarding effects of debris cover on the mass balance and melt rate of Austrian glaciers is strongly subdued compared to other mountain areas. The study indicates that if this trend continues many glaciers in Austria may become fully debris covered in the future. However, since debris cover seems to have little impact on melt rates in the study area it will therefore not lead to a prolonged existence of debris-covered ice compared to clean ice glaciers.

How to cite: Otto, J.-C., Fleischer, F., Junker, R., and Hölbling, D.: Debris-cover on glaciers in the Austrian Alps. Regional patterns, Changes and Significance., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2036, https://doi.org/10.5194/egusphere-egu21-2036, 2021.

In this study ground-based thermal infrared imaging was used to obtain surface temperatures distribution and to estimate the thickness of supraglacial debris on a mountain glacier. The study area is the eastern tongue of Gran Zebrù glacier (Ortles-Cevedale group, Central Italian Alps, Italy), having an area of about 0.23 km2. The glacier surface includes some areas completely covered by debris. 
We used a FLIR E85 Thermal Camera to take 17 thermal images of the glacier surface on 30 September 2019, the images were taken from a distance of about 100 m from the glacier front. The thermal images were combined into a single panoramic image and calibrated in order to obtain surface temperatures. In addition, we manually measured the debris thickness and took thermal images at 18 points on the glacier, in a sector with a continuous debris cover. From these data, an exponential equation correlating measured debris thickness and debris surface temperature was obtained and applied to the panoramic thermal image to estimate debris thickness at each pixel with surface temperature > 0 °C.
This method allowed us to obtain the distribution of surface temperatures and of debris thicknesses with a high spatial resolution, between 0.11 and 1.10 m. The obtained surface temperatures show a spatial variability, ranging between -10.7 and 26.4 °C, with a mean of 5.8 °C. Snow and ice have mean temperature of -1.2 °C, while the debris cover a mean temperature of 14.1 °C. The estimated debris thicknesses have an inhomogeneous distribution on the glacier, ranging between 0.03 and 0.51 m, with a calculated mean debris thickness of 0.14 m in the areas completely covered by debris, that is in good agreement with field data.

How to cite: Tarca, G. and Guglielmin, M.: Using ground-based thermography to analyse surface temperature distribution and estimate debris thickness on Gran Zebrù glacier (Ortles-Cevedale, Italy), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3497, https://doi.org/10.5194/egusphere-egu21-3497, 2021.

EGU21-10805 | vPICO presentations | CR6.2

Development of debris cover and changes in fluvial sediments at Eastern Alpine glaciers

Kay Helfricht, Clemens Hiller, Severin Hohensinner, Gabriele Schwaizer, Florian Haas, Andrea Fischer, and Stefan Achleitner

High mountain environments showed substantial geomorphological changes forced by rising temperatures over the past 150 years. Glacier retreat is the most visible manifestation of climate change in alpine areas and has a significant impact on glacier land systems, high mountain runoff and, thus, on sediment transport in headwaters. Downwasting glaciers face an increase debris cover due to sediment flux onto glacier surfaces and melt out of englacial debris. Continuous debris transport from the glacier to the glacier forefield enhances its sediment available for being mobilized in case of higher or extreme runoff events.

The presented results arise from the Hidden.Ice project, which serves to investigate the hydrological impact of supraglacial debris deposits in the transition zone from glacier ice to the proglacial area. A detailed study focusses on the debris connectivity to bed load transport at the LTER site Jamtalferner (Silvretta mountains, Austria) and the evolution of the debris cover on glaciers in Austria.

A first spatio-temporal analysis of the long-term land cover evolution along the river channel from historical maps and remote sensing data shows increasing shares of fluvial sediments to about 12% of the area deglaciated after the LIA glacier maximum until the 1920s. However, the ongoing exposure of additional sediment plains is compensated by sediment export and covering of former stream banks by vegetation at decadal scale. Vegetation developed on up to 20% of the area in a 50 m buffer around the present glacier stream. This complementary documentation increases our knowledge on the temporal evolution of the sediment-rich proglacial zone evolved with glacier retreat.

To tackle the present interaction of the debris-covered glacier tongue with the runoff, the connectivity of supraglacial debris to bed load transport is estimated based on multi-annual and sub-seasonal high-resolution surface information. The underlying point cloud analysis employs Structure-from-Motion photogrammetry from UAV surveys and airborne laser scanning acquisitions. The deposition and renewed movement of debris in the glacier forefield is calculated from sediment volume changes. Strong variations in the stream position suggest high connectivity of the entire proglacial sediment body to bed load transport, and considerable shifts of the main channel have been documented from year to year. Multi-spectral analysis of Landsat and Sentinel-2 optical satellite data time series from 1985 to 2020 show the development of debris cover on glaciers in the study region with increasing relative share of total glacier area over the past decades.

How to cite: Helfricht, K., Hiller, C., Hohensinner, S., Schwaizer, G., Haas, F., Fischer, A., and Achleitner, S.: Development of debris cover and changes in fluvial sediments at Eastern Alpine glaciers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10805, https://doi.org/10.5194/egusphere-egu21-10805, 2021.

EGU21-14842 | vPICO presentations | CR6.2

Evolution of the debris-covered Miage Glacier

Anne Stefaniak, Ben Robson, Simon Cook, Ben Clutterbuck, Nicholas Midgley, and Jillian Labadz

Glaciers in high-mountain regions typically exhibit a debris cover that moderates their response to climatic change. Here we present an integrated study that integrates long-term observations of debris-covered glacier mass balance, velocity, surface debris evolution and geomorphological changes (such as ponds and ice cliffs) of Miage Glacier, Italian Alps over the period 1952 – 2018. Analysis of the evolution of Miage Glacier highlighted a reduction in glacier activity associated with a period of sustained negative mass balance (-0.86 ± 0.27 metres per year water equivalent [m w.e. a-1]) and a substantial reduction in surface velocity (-46%). Ice mass loss of Miage Glacier was quantified using satellite imagery and derived digital elevation models (DEMs) applying the geodetic approach over a 28-year time period, 1990 – 2018. Temporal analysis highlighted an increase in surface lowering rates from 2012 – 2018. Further, the increase in debris-cover extent, supraglacial ponds and ice cliffs was evident since the 1990s. Supraglacial ponds and ice cliffs accounted for up to 8 times the magnitude of the average glacier surface lowering, whilst only covering 1.2 – 1.5% of the glacier area.

Ground-based photogrammetry and bathymetry surveys undertaken in 2017 and 2018 indicated the total volume of water storage at Miage Glacier increased by 46%, however, intermittent drainage events suggest this is highly variable over both seasonal and annual timescales. All ice cliffs underwent substantial vertical retreat upto a maximum rate of -8.15 ma-1 resulting in ice loss of 39,569 m3. Thus, ice loss from supraglacial ponds and ice cliffs are important to account for and have the potential to substantially impact future glacier evolution.

How to cite: Stefaniak, A., Robson, B., Cook, S., Clutterbuck, B., Midgley, N., and Labadz, J.: Evolution of the debris-covered Miage Glacier, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14842, https://doi.org/10.5194/egusphere-egu21-14842, 2021.

EGU21-15674 | vPICO presentations | CR6.2

Debris cover and the thinning of Kennicott Glacier, Alaska

Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Dirk Scherler

Many glaciers in High Mountain Asia are experiencing the debris-cover anomaly. The Kennicott Glacier, a large Alaskan Glacier, is also thinning most rapidly under debris cover. This contradiction has been explained by melt hotspots, such as ice cliffs, streams, or ponds scattered within the debris cover or by declining ice flow in time. We collected abundant in situ measurements of debris thickness, sub-debris melt, and ice cliff backwasting, allowing for extrapolation across the debris-covered tongue. A newly developed automatic ice cliff delineation method is the first to use only optical satellite imagery. The adaptive binary threshold method accurately estimates ice cliff coverage even where ice cliffs are small and debris color varies. We also develop additional remotely-sensed datasets of ice dynamical variables, other melt hot spots, and glacier thinning.

Kennicott Glacier exhibits the highest fractional area of ice cliffs (11.7 %) documented to date. Ice cliffs contribute 26 % of total melt across the glacier tongue. Although the relative importance of ice cliffs to area-average melt is significant, the absolute area-averaged melt is dominated by debris. At Kennicott Glacier, glacier-wide melt rates are not maximized in the zone of maximum thinning. Declining ice discharge through time therefore explains the rapid thinning. Through this study, Kennicott Glacier is the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.

We also carefully explore the relationship between debris, melt hotspots, ice dynamics, and thinning across the debris-covered tongue. In doing so we reveal a chain of linked processes that can explain the striking patterns expressed on the debris-covered tongue of Kennicott Glacier.

How to cite: Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Scherler, D.: Debris cover and the thinning of Kennicott Glacier, Alaska, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15674, https://doi.org/10.5194/egusphere-egu21-15674, 2021.

EGU21-13641 | vPICO presentations | CR6.2

The influence of a supraglacial debris cover on the mass balance and dynamics of the Djankuat Glacier, Caucasus, Russian Federation

Yoni Verhaegen, Oleg Rybak, Victor V. Popovnin, and Philippe Huybrechts

We have modelled the influence of a supraglacial debris cover on the behavior of the Djankuat Glacier, a northwest-facing and partly debris-covered temperate valley glacier near the border of the Russian Federation and Georgia, which has been selected as a ‘reference glacier’ for the Caucasus region by the WGMS. A calibrated 1D coupled ice flow-mass balance-supraglacial debris cover model is used to assess the impact of the melt-altering effect of various supraglacial debris profiles on the overall steady state characteristics of the glacier. Additional experiments are also carried out to simulate the behavior of this specific debris-covered glacier in a warming future climate. The main results show that, when compared to its clean-ice version, the debris-covered version of the Djankuat Glacier exhibits longer but thinner ablation zones, accompanied by lower ice flow velocities, lower runoff production, as well as a dampening of the mass balance-elevation profile near the terminus. Experiments for warming climatic conditions primarily point out towards a significant delay of glacier retreat, as the dominant process for ice mass loss encompasses thinning out of the ablation zone. The above-mentioned effects are modelled to be increasingly pronounced with an increasing thickness and extent of the superimposed supraglacial debris cover.

How to cite: Verhaegen, Y., Rybak, O., Popovnin, V. V., and Huybrechts, P.: The influence of a supraglacial debris cover on the mass balance and dynamics of the Djankuat Glacier, Caucasus, Russian Federation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13641, https://doi.org/10.5194/egusphere-egu21-13641, 2021.

EGU21-13872 | vPICO presentations | CR6.2

Ancient Ice Buried Below a Meter of Regolith; Ong Valley, Antarctica

Marie Bergelin, Jaakko Putkonen, Greg Balco, Dan Morgan, Ronald K. Matheney, and Lee B. Corbett

We have discovered and cored a massive ice mass buried underneath a meter of glacial debris in Ong Valley, Antarctica, which we report here to consist of two stacked ice bodies dated at >2 Ma. Glacial ice is known to be a great archive of atmospheric gasses, chemical compounds, and airborne particles. An ice mass of such antiquity, as reported here, may reveal information about our past which is otherwise unknown.

We determine the age of the ice directly by dating the dirt suspended within the ice and by dating the till layer covering the ice using cosmogenic nuclide: 10Be, 26Al, and 21Ne. These cosmogenic nuclides are produced by cosmic-ray interactions with minerals near the Earth’s surface, and in this case in suspended dirt embedded in the ice. As the production rate of cosmogenic nuclides decreases rapidly with increasing depth below the Earth’s surface, the cosmogenic nuclide concentration profile yields information about the exposure history and further aid to constrain geological processes such as sublimation rates, and surface erosion rates. We further compare the cosmogenic nuclide model results with mapped glacial moraines adjacent to the current ice, and stable water isotope analysis throughout the core in order to explore the unique history that these two stacked ice masses have.

We find the uppermost section of this buried ice mass to be >2 Ma old. Large variation of cosmogenic nuclide concentrations downcore and stable water isotopes, suggests that the deepest section of the ice core may belong to a separate, older ice mass that has previously been exposed at the surface. Lateral moraines and measurements of cosmogenic nuclides in glacial debris further up valley suggest that this deeper, older ice may be >2.6 Ma old, and was most likely buried during glacial advancement into Ong Valley < 4 Ma ago.

How to cite: Bergelin, M., Putkonen, J., Balco, G., Morgan, D., Matheney, R. K., and Corbett, L. B.: Ancient Ice Buried Below a Meter of Regolith; Ong Valley, Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13872, https://doi.org/10.5194/egusphere-egu21-13872, 2021.

EGU21-13304 | vPICO presentations | CR6.2

Evolution of a debris-covered glacier in the Kerguelen Archipelago (49°S, 69°E) over the past 15,000 years constrained by in situ cosmogenic 36Cl dating

Vincent Jomelli, Joanna Charton, Irene Schimmelpfennig, Deborah Verfaillie, Vincent Favier, Fatima Mokadem, Adrien Gilbert, Fanny Brun, Georges Aumaître, Didier L. Bourlès, and Karim Keddadouche

Debris-covered glaciers constitute a substantial part of the worldwide cryosphere (Scherler et al. 2018). However, their long-term response to multi-millennial climate variability has rarely been studied, in particular in the Southern Hemisphere. The presence of both debris-covered and debris-free glaciers on Kerguelen Archipelago (49°S, 69°E) offers therefore an excellent opportunity to investigate and compare long-term evolution of these two types of glaciers. To do so, we used the cosmogenic 36Cl surface dating method on moraine boulders that allows to establish temporal constraints of glacier oscillation. We provide here the first Late Glacial and Holocene glacier chronology of a still active debris-covered glacier from the archipelago: the Gentil Glacier. Results show that the Gentil Glacier advanced once at ~14.3 ka, i.e. during the Late Glacial (19.0 – 11.6 ka), and re-advanced during the Late Holocene at ~2.6 ka (Charton et al., 2020). Both debris-covered and debris-free glaciers experienced a broadly synchronous advance during the Late Glacial, that may be assigned to the Antarctic Cold Reversal event (14.5 – 12.9 ka) (Jomelli et al., 2017; 2018). This suggests that both types (debris-covered and debris-free) of glaciers at Kerguelen were sensitive to large amplitude temperature fluctuations recorded in Antarctic ice cores (WAIS divide Project Members, 2013), associated with increased precipitations (Van der Putten, 2015). However, during the Late Holocene, the advance at about ~2.6 ka was not observed on other glaciers and seems to be a specific response of the debris-covered Gentil Glacier, either related to distinct ice dynamics or an individual response to precipitation changes.

 

 

Charton et al., 2020 : Ant. Sci. 1-13

Jomelli et al., 2017 : Quat. Sci. Rev. 162, 128-144

Jomelli et al., 2018 : Quat. Sci. Rev. 183, 110-123

Scherler et al., 2018 : GRL. 45, 11,798-11,805

Van der Putten et al., 2015 : Quat. Sci. Rev. 122, 142-157

WAIS Divide Project Members, 2013: Nature. 500, 440-444

How to cite: Jomelli, V., Charton, J., Schimmelpfennig, I., Verfaillie, D., Favier, V., Mokadem, F., Gilbert, A., Brun, F., Aumaître, G., Bourlès, D. L., and Keddadouche, K.: Evolution of a debris-covered glacier in the Kerguelen Archipelago (49°S, 69°E) over the past 15,000 years constrained by in situ cosmogenic 36Cl dating, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13304, https://doi.org/10.5194/egusphere-egu21-13304, 2021.

EGU21-7026 | vPICO presentations | CR6.2

Modelling the contribution of ice cliff melt to glacier mass loss at the catchment scale

Pascal Buri, Evan S Miles, Jakob Steiner, Silvan Ragettli, and Francesca Pellicciotti

The melt rates of debris-covered glaciers in High Mountain Asia are highly heterogeneous and poorly constrained. Supraglacial cliffs are typical surface features of debris-covered glaciers and act as windows of energy transfer from the atmosphere to the ice, locally enhancing melt and mass losses of otherwise insulated ice. Despite this, their contribution to the glacier mass budget has never been quantified at the glacier scale.

Here we simulate the specific melt of all supraglacial ice cliffs individually in a Himalayan catchment (Langtang Valley, Nepalese Himalayas), using a process-based ice cliff melt model that has previously been validated in the catchment. Cliff outlines and initial topography are derived from high-resolution stereo SPOT6-imagery and the model is forced by meteorological data from on- and off-glacier automatic weather stations within the valley, both for the 2014 melt season. The model simulates ice cliff backwasting by considering the cliff-atmosphere energy-balance, reburial by debris and the effects of adjacent ponds. We estimate the contribution of ice cliffs to glacier surface mass balance derived from ensemble mean geodetic thinning observations and emergence flux calculations for the same glaciers 2006-2015.

We show that ice cliffs, although covering only 2.1 ±0.6 % of the debris-covered tongues, are partially responsible for the high thinning rates of debris-covered glacier tongues, leading to a catchment mass loss underestimation of 17 ±4 % if not considered. We show that cliffs enhance melt where other processes would suppress it, i.e. at high elevations or where debris is thick, and confirm that they contribute relatively more to glacier mass loss if oriented north.

Our approach bridges a scale gap in our understanding of the processes of debris-covered glacier mass losses, and a new quantification of their catchment wide melt and mass balance.

How to cite: Buri, P., Miles, E. S., Steiner, J., Ragettli, S., and Pellicciotti, F.: Modelling the contribution of ice cliff melt to glacier mass loss at the catchment scale, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7026, https://doi.org/10.5194/egusphere-egu21-7026, 2021.

EGU21-7627 | vPICO presentations | CR6.2

Structural Controls on Himalayan Glacial Lake Expansion

Matthew Peacey, Tom Holt, Neil Glasser, and John Reynolds

As glaciers in the Himalaya have lost mass, their proglacial lakes have expanded. Despite increasing interest in hazard assessment and mitigation of Glacial Lake Outburst Floods (GLOFs) over more than the last two decades, the role of glacier structures in controlling patterns and rates of glacier recession, and subsequently of lake expansion, have not yet been investigated in detail. This study aims to identify and map glacier structures over a 20-year period and investigate their significance in ice front recession. Four glacial lakes and their associated debris-covered glaciers have been examined in the Everest Region of Nepal and China: Imja Tsho, Tsho Rolpa, Lumdin Tsho, and Dang Pu Tsho. Lake area was mapped between 2000 and 2020 using images acquired from Landsat 5/7/8 and Sentinel 2. Discrete glacier flow units were identified and specific structures were digitised using the finest-resolution panchromatic bands. We reveal a distinct pattern of transverse features across each glacier that can be related to ice frontal position through time. While this is not the only controlling factor contributing towards ice front recession from lake-terminating glaciers in the Himalaya, it is clear that pre-existing structures influence the ice front shape and are involved in ice front deterioration. These observations could be used to indicate future ice front positions and behaviour, and rates of glacier recession and of lake expansion.  This would also enable GLOF hazard assessments to include more detailed glaciological factors and help in the recognition of such legacy structures in the behaviour of stagnant debris-covered ice masses that are part of terminal moraine complexes.

How to cite: Peacey, M., Holt, T., Glasser, N., and Reynolds, J.: Structural Controls on Himalayan Glacial Lake Expansion, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7627, https://doi.org/10.5194/egusphere-egu21-7627, 2021.

Glaciers in High Mountain Asia (HMA) have been experiencing enhanced mass loss and velocity slowdown since the late 1990s, coincident with rising global and regional temperatures. In each HMA region with distinct climatic characteristics, the dynamical responses of glaciers vary substantially; yet these intra-regional variations are overlooked in regional assessments due to large-scale oversampling. In particular, the role of glacier morphological factors (e.g. size, elevation, hypsometry) in causing the different responses is poorly understood.

We investigated the velocity changes of the glaciers in three regions — the Eastern Himalaya, Spiti Lahaul, and Karakoram — between 2000 and 2016 in order to understand the key components of glacier sensitivity and their relationship with glacier morphology. Using the NASA Inter-Mission Time Series of Land Ice Velocity and Elevation dataset as input, we extracted glacier-specific velocities (and associated errors) using a bespoke MATLAB script, and compiled these into “mean annual velocity anomaly” series following established methods. Anomalies were analysed with glacier morphometric parameters using a linear regression approach, with statistically significant relationships identified.

Our results show that mean velocity anomaly within the Eastern Himalaya varies with glacier aspect, with mean annual anomalies of 0.09 ± 2.32 m yr-1 per year for north-flowing glaciers and –0.1 ± 1.59 m yr-1 per year for south-flowing glaciers. Glaciers in the Karakoram also show opposing trends, with anomalies of –0.86 ± 5.69 m yr-1 per year and –3.23 ± 2.53 m yr-1 per year in the north west, and 1.00 ± 3.80 m yr-1 per year in the south east. Glacier slowdown in Spiti Lahaul is –0.37 ± 4.50 m yr-1 per year, and we do not document contrasts in intra-regional glacier response. Overall, glacier size, minimum elevation and hypsometric integral are the most significantly correlated parameters to mean velocity anomaly. Percentage and area of debris, flow line length, slope and termination environment were also found to be important autocorrelations. Importantly, we find no consistent morphometric interactions contributing to glacier anomaly between all three regions, implying that glacier responses are unique and a cumulative product of their morphometric variability.

How to cite: Curry, C. S., Rowan, A. V., and Ng, F. S. L.: Exploring the causes of glacier velocity anomalies in High Mountain Asia: Analysis from the Karakoram, Spiti Lahaul and Eastern Himalaya, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11907, https://doi.org/10.5194/egusphere-egu21-11907, 2021.

Debris thermal conductivity is a critical parameter in calculating a glacier’s sub-debris ice melt. The method widely used in publications to calculate apparent thermal conductivity of supraglacial debris layers is based on an estimate of volumetric heat capacity of the debris and simple heat diffusion principles and is presented in . The analysis of heat diffusion requires a vertical array of temperature measurements through the supraglacial debris cover. This study explores the effect of the temperature sampling interval on the thermal conductivity values derived using this method. Initial results indicate that the thermal diffusivity decreases linearly with an increasing sampling time from 30min to 6h by 0.2-0.4 mm²/s for glaciers in high mountain Asia during the monsoon season. These results suggest that care must be taken in choosing the analysis time interval for computing debris thermal conductivity and for comparing values between datasets sampled at different intervals. Current research aims to further investigate the cause of the artifact and determine how this problem can be solved. An open-source web application is therefore developed to help other scientists investigate the effect of the sampling interval on their calculated sub-debris ice melt. This study falls under the remit of the on debris-covered glaciers and is supported by data provided from within this group.

How to cite: Beck, C. and Nicholson, L.: Assessing the time-step dependency of calculating supraglacial debris thermal diffusivity from vertical temperature profiles, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13402, https://doi.org/10.5194/egusphere-egu21-13402, 2021.

EGU21-7143 | vPICO presentations | CR6.2

Debris-induced stagnation and ensuing morphological evolution of a central Himalayan glacier

Purushottam Kumar Garg, Aparna Shukla, Santosh Kumar Rai, and Jairam Singh Yadav

This study presents field evidences (October 2018) and remote sensing measurements (2000-2020) to show stagnant conditions of lower ablation zone (LAZ) of the ‘companion glacier’, central Himalaya, India and its implication on the morphological evolution. The Companion glacier is named so as it accompanied the Chorabari glacier (widely studied benchmark glacier in the central Himalaya) in the distant past. Supraglacial debris thickness, supraglacial ponds anf other morphological features (e.g. lateral moraine height, supraglacial mounds) were measured/observed in the field. Glacier area, length, debris extent, surface elevation change and surface ice velocity were estimated using satellite remote sensing data from Landsat-TM/ETM+/OLI, Sentinel-MSI, Terra-ASTER and SRTM, Cartosat-1 and Google Earth images. Results show that the glacier has very small accumulation area and it is mainly fed by avalanches. The headwall of glacier is very steep which causes frequent avalanches leading to voluminous debris addition to the glacier system. Consequently, about 80% area of the glacier is debris-covered. The debris is very thick in the LAZ exceeding several meters in the LAZ and comprised of big boulders making debris thickness measurements practically impossible particularly in the snout region. However, debris thickness decreases with increasing distance from the snout and is in the order of 20-40 cm at about 2.5 km upglacier. The huge debris cover has protected the glacier ice from rapid melting. That’s why surface lowering of the glacier is less as compared to nearby Chorabari glacier. Moreover, due to (a) less mass supply from upper reaches and (b) huge debris cover, the glacier movement is very slow. The movement is too low that is allowed vegetation (some big grasses with wooded stems) to grow and survive on the glacier surface. The slow moving LAZ also causing bulging on the upper ablation zone (UAZ). Consequently, several mounds have developed on the UAZ. Thin debris slides down from mounds exposing the ice underneath for melting. Owing to these processes, spot melting is now a dominant mechanism of glacier wastage in the companion glacier. Thus, it can be summarized that careful field observations along with remote sensing estimates can be very important for understanding the glacier evolution.

How to cite: Garg, P. K., Shukla, A., Rai, S. K., and Yadav, J. S.: Debris-induced stagnation and ensuing morphological evolution of a central Himalayan glacier, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7143, https://doi.org/10.5194/egusphere-egu21-7143, 2021.

EGU21-9308 | vPICO presentations | CR6.2

Automated debris-covered glacier mapping – development for and application to Afghanistan

Jamal Abdul Naser Shokory and Stuart Lane

Over the past two decades, several semi-automated approaches for identifying debris covered ice have been proposed but challenges remain. Manual delineation of debris-covered glaciers has been recognized as an accurate method but is labor- and time-intensive for large regions. Geomorphological mapping in complex mountain environments is recognized as difficult and the accuracy of the associated maps is also highly dependent on the expertise of the mapper and their visual interpretation. Other methods seek to move beyond just optical or DEM-assisted classification to make use of the fact that there may be thermal differences in the temperature between debris-covered ice and the temperature of the surrounding non ice-cored zones, making it possible to identify debris-covered ice. Of course, with very thick debris cover, the signal of ice temperature will disappear, but this method may allow identification of zones that are ice cored that would otherwise be classed as non-glacier using other methods. In this study, we take advantage of thermal differences and near infrared measurements for both thin- and thick debris-covered ice that allows automated mapping of remote regions like Afghanistan. However, for debris-covered ice mapping, previous studies observed that using single thermal band misclassified the clean ice as debris-covered ice in transitional zones where clean ice and debris-covered ice meet, due to the coarser spatial resolution of available data (90 – 120 m). Therefore, this study investigated several Landsat 8 spectral bands with better spatial resolution to find correlation over debris-covered ice and to merge it with the thermal band. In a systematic test of all bands over the specific debris-covered ice, we determined that panchromatic band has significant reflectance on clean ice and debris-covered ice, from higher to lower value. Then, a new normalized index was developed accordingly, which increased the spatial resolution and improved the result. The Normalized Supraglacial Debris Index (NSDI) (eq. 1), has been tested for Afghanistan glaciers and validated through a fieldwork campaign on a specific glacier. For the test glacier, the method had 96% overall accuracy and a Kappa coefficient of 0.87.

  [1]

In addition we also tested the threshold values of NSDI based on the region of interest (ROI), and the ROI was selected up on five glaciers where the detailed map were available. During the process of mapping debris-covered ice using [1], we found several zones of likely debris-covered ice were not being detected with the threshold value neither with any near range. Then we performed a reflectance test up on each single band of Landsat 8 by classifying band value into equal classes of histograms, and found that SWIR has better reflectance in range of 6,230-7,160 values for the region where the debris-covered ice was missing. In addition the green band (B3) also had lower reflectance. Thus, in combination of both SWIR and Green bands we developed second index separately (eq. 2).

 [2]

In conclusion, the two newly developed indexes were abled to correctly map the debris covered ice with two different debris characteristics.

How to cite: Shokory, J. A. N. and Lane, S.: Automated debris-covered glacier mapping – development for and application to Afghanistan, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9308, https://doi.org/10.5194/egusphere-egu21-9308, 2021.

EGU21-10955 | vPICO presentations | CR6.2

Global differences in the energy balance and melt rates of debris-covered glacier surfaces

Evan Miles, Jakob Steiner, Pascal Buri, Walter Immerzeel, and Francesca Pellicciotti

Supraglacial debris covers 4% of mountain glacier area globally and generally reduces glacier surface melt. Studies have identified enhanced energy absorption at ice cliffs and supraglacial ponds scattered across the debris surface. Although these features generally cover a small portion of glacier surface area (5-10%) they contribute disproportionately to mass loss at the local glacier scales (20-40%). While past studies have identified their melt-enhancing role in High Mountain Asia, Alaska, and the Alps, it is not clear to what degree they enhance mass loss in other areas of the globe.

We model the surface energy balance for debris-covered ice, ice cliffs, and supraglacial ponds using meteorological records (4 radiative fluxes, wind speed, air temperature, humidity) from a set of on-glacier automated weather stations representing the global prevalence of debris covered glaciers. We generate 5000 random sets of values for physical parameters using probability distributions derived from literature. We also model the hypothetical energy balance of a debris-free glacier surface at each site, which we use to investigate the melt rates of distinct surface types relative to that of a clean ice glacier. This approach allows us to isolate the melt responses of debris, cliffs and ponds to the site specific meteorological forcing.

For each site we determine an Østrem curve for sub-debris melt as a function of debris thickness and a probabilistic understanding of surface energy absorption for ice cliffs, supraglacial ponds, and debris-covered ice. While debris leads to strong reductions in melt at all sites, we find an order-of-magnitude spread in sub-debris melt rates due solely to climatic differences between sites. The melt enhancement of ice cliffs relative to debris-covered ice is starkly apparent at all sites, and ice cliffs melt rates are generally 1.5-2.5 times the ablation rate for a clean ice surface. The supraglacial pond energy balance varies regionally, and is sensitive to wind speed and relative humidity, leading to energy absorption 0.4-1.2 times that of clean ice, but 5-10 times higher than debris-covered ice. Our results support the few past assessments of melt rates for cliffs and ponds, and indicate sub-regional coherence in the energy balance response of these features to climate.

How to cite: Miles, E., Steiner, J., Buri, P., Immerzeel, W., and Pellicciotti, F.: Global differences in the energy balance and melt rates of debris-covered glacier surfaces, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10955, https://doi.org/10.5194/egusphere-egu21-10955, 2021.

CR7.1 – Polar Meteorology and Climate and their Links to the Rapidly Changing Cryosphere

EGU21-11110 | vPICO presentations | CR7.1

Atmospheric Drivers of Melt on Larsen C Ice Shelf: Surface Energy Budget Regimes and the Impact of Foehn

Andy Elvidge, Peter Kuipers Munneke, John King, Ian Renfrew, and Ella Gilbert

Recent ice shelf retreat on the east coast of the Antarctic Peninsula has been principally attributed to atmospherically driven melt. However, previous studies on the largest of these ice shelves—Larsen C—have struggled to reconcile atmospheric forcing with observed melt. This study provides the first comprehensive quantification and explanation of the atmospheric drivers of melt across Larsen C, using 31‐months' worth of observations from Cabinet Inlet, a 6‐month, high‐resolution atmospheric model simulation and a novel approach to ascertain the surface energy budget (SEB) regime. The dominant meteorological controls on melt are shown to be the occurrence, strength, and warmth of mountain winds called foehn. At Cabinet Inlet, foehn occurs 15% of the time and causes 45% of melt. The primary effect of foehn on the SEB is elevated turbulent heat fluxes. Under typical, warm foehn conditions, this means elevated surface heating and melting, the intensity of which increases as foehn wind speed increases. Less commonly—due to cooler‐than‐normal foehn winds and/or radiatively warmed ice—the relationship between wind speed and net surface heat flux reverses. This explains the seemingly contradictory results of previous studies. In the model, spatial variability in cumulative melt across Larsen C is largely explained by foehn, with melt maxima in inlets reflecting maxima in foehn wind strength. However, most accumulated melt (58%) occurs due to solar radiation in the absence of foehn. A broad north‐south gradient in melt is explained by the combined influence of foehn and non‐foehn conditions.

How to cite: Elvidge, A., Kuipers Munneke, P., King, J., Renfrew, I., and Gilbert, E.: Atmospheric Drivers of Melt on Larsen C Ice Shelf: Surface Energy Budget Regimes and the Impact of Foehn, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11110, https://doi.org/10.5194/egusphere-egu21-11110, 2021.

EGU21-6628 | vPICO presentations | CR7.1

Major Surface Melting over the Ross Ice Shelf, Antarctica

Xun Zou, David Bromwich, Alvaro Montenegro, Sheng-Hung Wang, and Lesheng Bai

West Antarctica (WA), especially the Ross Ice Shelf (RIS), has experienced more frequent surface melting during austral summer over the past three decades. Surface melting will jeopardize the stability of ice shelves and cause potential ice loss in the future. We investigate four major melt cases over the RIS via Polar WRF simulations driven by ERA5 reanalysis data and MODIS observed albedo. Direct warm air advection, recurring foehn effect, and cloud/upper warm air introduced radiative warming are the three major regional causes of surface melting over WA. Warm marine air can warm the ice surface directly. With significant moisture transport occurring over more than 40% of the time during the melting period, the impact from net radiation can be amplified via the formation of low-level liquid water clouds. Consequently, extensive downward longwave radiation favors the melting expansion over the middle and coastal RIS. Also, for 3 of 4 melt cases, more than 50% of the melting period experiences foehn warming, which can cause a 2 – 4 ºC increase in surface temperature. Isentropic drawdown is usually the dominant foehn mechanism and contributes a 14 ºC temperature increase, especially when strong low-level blocking occurs on the upwind side. Foehn clearance and decreasing surface albedo respectively increase the downward shortwave radiation and decrease the upward shortwave radiation, significantly contributing to surface melting in areas like western Marie Byrd Land. Moreover, frequent foehn cases can enhance the turbulent mixing on the leeside and benefit sensible heat transfer when Froude number is around 1. With better understanding of the regional factors for the surface melting, the prediction of the future stability of West Antarctic Ice Shelves will be improved.

How to cite: Zou, X., Bromwich, D., Montenegro, A., Wang, S.-H., and Bai, L.: Major Surface Melting over the Ross Ice Shelf, Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6628, https://doi.org/10.5194/egusphere-egu21-6628, 2021.

EGU21-10127 | vPICO presentations | CR7.1

Validation of atmospheric reanalyses over the Weddell Sea, Antarctica, using observations from drifting buoys

John King, Gareth Marshall, Steve Colwell, Clare Allen-Sader, and Tony Phillips

 

Global atmospheric reanalyses are frequently used to drive ocean-ice models but few data are available to assess the quality of these products in the Antarctic sea ice zone. We utilise measurements from three drifting buoys that were deployed on sea ice in the southern Weddell Sea in the austral summer of 2016 to validate the representation of near-surface atmospheric conditions in the ERA-Interim and ERA5 reanalyses produced by the European Centre for Medium Range Weather Forecasts (ECMWF). The buoys carried sensors to measure atmospheric pressure, air temperature and humidity, wind speed and direction, and downwelling shortwave and longwave radiation. One buoy remained in coastal fast ice for most of 2016 while the other two drifted northward through the austral winter and exited the pack ice during the following austral summer. Comparison of buoy measurements with reanalysis data indicates that both reanalyses represent the surface pressure field in this region accurately. Reanalysis temperatures are, however, biased warm by around 2 °C in both products, with the largest biases seen at the lowest temperatures. We suggest that this bias is a result of the simplified representation of sea ice in the reanalyses, in particular the lack of an insulating snow layer on top of the ice. We use a simple surface energy balance model to investigate the impact of the reanalysis biases on sea ice thermodynamics.

How to cite: King, J., Marshall, G., Colwell, S., Allen-Sader, C., and Phillips, T.: Validation of atmospheric reanalyses over the Weddell Sea, Antarctica, using observations from drifting buoys, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10127, https://doi.org/10.5194/egusphere-egu21-10127, 2021.

EGU21-9763 | vPICO presentations | CR7.1

Dynamical analysis of extreme tropopause folding events in the coastal region of Antarctica

Masashi Kohma, Masatoshi Mizukoshi, and Kaoru Sato

Rapid and deep descent in the tropopause (the so-called tropopause folding; TF) is often observed in the extratropics. Previous studies pointed out that the frequency of deep TF is maximized along the coast of Antarctica. However, the dynamics of TF in the Antarctic region have not yet been studied adequately. In the present study, the extreme TF in the Antarctic are examined using the state-of-art reanalysis data to clarify the uniqueness of TF in the Antarctic.

First, the distribution of TF frequency in the extra-tropics of the Southern hemisphere is examined. In austral winter, extreme TF often occurs along the coast of Antarctica. Around Syowa Station (69.0S, 39.6E), the frequency of extreme TF is maximized in August while the frequency is small in austral summer. It is interesting that the coast of Antarctica is located to the south of the maximum of the synoptic-scale eddy kinetic energy. This implies that the maximum of TF frequency along the coast of Antarctica cannot be explained only by the geographical distribution of the storm track.

Next, to examine the dynamics of the extreme TF events along the coast of Antarctica, we perform composite analyses of the extreme TF events at Syowa Station. When the negative anomaly of tropopause height is maximized, the significant downwelling is observed at the location of the extreme TF. From the analyses using the quasi-geostrophic Q-vector, it is found that the divergence of the Q-vector is observed around Syowa Station. The distribution of Q-vector is explained by the local westerly jet and strengthening of the frontal structure associated with a synoptic low-pressure system extending west-east centered at 70°S over Antarctica. The mechanism of the low-pressure system extending along the coast of Antarctica based on ray-tracing theory under the WKB approximation is also discussed.

How to cite: Kohma, M., Mizukoshi, M., and Sato, K.: Dynamical analysis of extreme tropopause folding events in the coastal region of Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9763, https://doi.org/10.5194/egusphere-egu21-9763, 2021.

EGU21-10415 | vPICO presentations | CR7.1

Evaluating the potential of MODIS-LST for monitoring ground surface temperatures in the Maritime Antarctic (Barton Peninsula, King George Island, Antarctic). 

Alejandro Corbea-Pérez, Gonçalo Vieira, Carmen Recondo, Joana Baptista, Javier F.Calleja, and Hyoungseok Lee

Land surface temperature is an important factor for permafrost modelling as well as for understanding the dynamics of Antarctic terrestrial ecosystems (Bockheim et al. 2008). In the South Shetland Islands the distribution of permafrost is complex (Vieira et al. 2010) and the use of remote sensing data is essential since the installation and maintenance of an extensive network of ground-based stations are impossible. Therefore, it is important to evaluate the applicability of satellites and sensors by comparing data with in-situ observations. In this work, we present the results from the analysis of land surface temperatures from Barton Peninsula, an ice-free area in King George Island (South Shetlands). We have studied the period from March 1, 2019 to January 31, 2020 using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and in-situ data from 6 ground temperature loggers. MOD11A1 and MYD11A1 products, from TERRA and AQUA satellites, respectively, were used, following the application of MODIS quality filters. Given the scarce number of high-quality data as defined by MODIS, all average LST with error ≤ 2K were included. Dates with surface temperature below -20ºC, which are rare in the study area, and dates when the difference between MODIS and in-situ data exceeded 10ºC were also examined. In both cases, those days on which MOD09GA/MYD09GA products showed cloud cover were eliminated. Eight in-situ ground temperature measurements per day were available, from which the one nearest to the time of satellite overpass was selected for comparison with MODIS-LST. The results obtained show a better correlation with daytime data than with nighttime data. Specifically, the best results are obtained with daytime data from AQUA (R2 between 0.55 and 0.81). With daytime data, correlation between MODIS-LST and in-situ data was verified with relative humidity (RH) values provided by King Sejong weather station, located in the study area. When RH is lower, the correlation between LST and in-situ data improves: we obtained correlation coefficients between 0.6 - 0.7 for TERRA data and 0.8 - 0.9 for AQUA data with RH values lower than 80%. The results suggest that MODIS can be used for temperature estimation in the ice-free areas of the Maritime Antarctic.

References:

Bockheim, J. G., Campbell, I. B., Guglielmin, M., and López- Martınez, J.: Distribution of permafrost types and buried ice in ice free areas of Antarctica, in: 9th International Conference on Permafrost, 28 June–3 July 2008, Proceedings, University of Alaska Press, Fairbanks, USA, 2008, 125–130.

Vieira, G.; Bockheim, J.; Guglielmin, M.; Balks, M.; Abramov, A. A.; Boelhouwers, J.; Cannone, N.; Ganzert, L.; Gilichinsky, D. A.; Goryachkin, S.; López-Martínez, J.; Meiklejohn, I.; Raffi, R.; Ramos, M.; Schaefer, C.; Serrano, E.; Simas, F.; Sletten, R.; Wagner, D. Thermal State of Permafrost and Active-layer Monitoring in the Antarctic: Advances During the International Polar Year 2007-2009. Permafr. Periglac. Process. 2010, 21, 182–197.

 

Acknowledgements

This work was made possible by an internship at the IGOT, University of Lisbon, Portugal, funded by the Principality of Asturias (code EB20-16).

 

How to cite: Corbea-Pérez, A., Vieira, G., Recondo, C., Baptista, J., F.Calleja, J., and Lee, H.: Evaluating the potential of MODIS-LST for monitoring ground surface temperatures in the Maritime Antarctic (Barton Peninsula, King George Island, Antarctic). , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10415, https://doi.org/10.5194/egusphere-egu21-10415, 2021.

EGU21-365 | vPICO presentations | CR7.1

Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979-2017

Mauro Hermann, Lukas Papritz, and Heini Wernli

We systematically investigate the dynamical and thermodynamic processes that lead to 77 large-scale melt events affecting high-elevation regions of the Greenland Ice Sheet (GrIS) in June-August (JJA) 1979-2017. For that purpose, we compute 8 day kinematic backward trajectories from the lowermost ~500 m above the GrIS. The key synoptic feature accompanying the melt events is an upper-tropospheric ridge over Southeast Greenland associated with a surface high-pressure system. This circulation pattern is favorable to induce rapid poleward transport (up to 40° latitude) of warm (~15 K warmer than climatological air masses arriving on the GrIS) and moist air masses from the lower troposphere to the western GrIS and subsequently to distribute them in the anticyclonic flow over north and east Greenland. During transport to the GrIS, the melt event air masses cool by ~15 K due to ascent and radiation, which keeps them just above the critical threshold to induce melting.

The thermodynamic analyses reveal that the final warm anomaly of the air masses is primarily owed to anomalous horizontal transport from a climatologically warm region of origin. However, before being transported to the GrIS, i.e., in their region of origin, these air masses were not anomalously warm. Latent heating from condensation of water vapor, occurring as the airstreams are forced to ascend orographically or dynamically, is of secondary importance. These characteristics were particularly pronounced during the most extensive melt event in early July 2012. In this event, importantly, the warm anomaly was not preserved from anomalously warm source regions such as North America experiencing a record heat wave. Considering the impact of moisture on the surface energy balance, we find that radiative effects are closely linked to the air mass trajectories and enhance melt over the entire GrIS accumulation zone due to (i) enhanced downward longwave radiation related to poleward moisture transport and a shift in the cloud phase from ice to liquid primarily west of the ice divide and (ii) increased shortwave radiation in clear-sky regions east of the ice divide.

The temporal evolution, positioning, and intensity of synoptic scale weather systems deserve further attention as they are responsible for strong and partly opposing atmospheric forcing of the GrIS surface mass balance. Also, the mechanisms identified here are in contrast to melt events in the low-elevation high Arctic and to midlatitude heat waves, where the upper-tropospheric ridge is essential to induce adiabatic warming by large-scale subsidence. Given the ongoing increase in the frequency and the melt extent of large-scale melt events, the understanding of upper-tropospheric ridges over the North Atlantic, i.e., also Greenland blocking, and its representation in climate models is crucial in determining future GrIS accumulation zone melt and thus global sea level rise. 

How to cite: Hermann, M., Papritz, L., and Wernli, H.: Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979-2017, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-365, https://doi.org/10.5194/egusphere-egu21-365, 2021.

EGU21-6137 | vPICO presentations | CR7.1

The influence of atmospheric rivers on winter melt and accumulation in the northeast of Greenland.

Jenny Turton, Kyle Mattingly, and Thomas Mölg

The Greenland Ice Sheet (GrIS) has been losing mass at an accelerated rate in the last few decades, of which, approximately 50% is related to surface melting and runoff (Imbie Team, 2020). Since the mid 2010’s, the highest melt anomalies were found in the northeast of Greenland, where the North East Greenland Ice Stream drains 8 - 12 % of the GrIS. Unsurprisingly, the vast majority of melting occurs in the summer months, however the increasing trend in air temperatures is larger in winter. Similarly, very warm winter periods have been observed recently in the north of Greenland and Arctic Ocean. Due to our previous focus on summer melting, our understanding of glacial hydrology and surface mass balance in winter is still poor.

Here, we present the frequency and amount of surface melting and precipitation, as simulated by the Modèle Atmosphérique Régional (MAR) at 15 km spatial resolution (from 1980 to 2018) and the COupled Snowpack and Ice surface energy and mass balance model in PYthon (COSIPY) at 1 km spatial resolution (from 2014 to 2018). Observations from two automatic weather stations are also used to analyse the meteorological setting. We find that both periods of winter melt and extreme precipitation are related to the presence of atmospheric rivers along the east coast of Greenland and in the Atlantic Ocean (specifically in the Greenland Sea and Fram Strait). On average, the detection of atmospheric rivers in the vicinity of the northeast of Greenland leads to a daily warming of +8°C and can raise temperatures to the melting point for a short period of time. We also present the changes in precipitation type (rainfall vs snowfall), from 1980 to 2018 from both MAR and the ERA5 reanalysis product, which are related to atmospheric rivers and passing storms.

How to cite: Turton, J., Mattingly, K., and Mölg, T.: The influence of atmospheric rivers on winter melt and accumulation in the northeast of Greenland., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6137, https://doi.org/10.5194/egusphere-egu21-6137, 2021.

EGU21-8002 | vPICO presentations | CR7.1

The contribution of föhn winds to northeast Greenland summer melt and their relationship with atmospheric rivers

Kyle Mattingly, Jenny Turton, Jonathan Wille, Xavier Fettweis, and Brice Noël

Atmospheric Rivers (ARs), narrow filaments of concentrated water vapor transport, have direct impacts on the surface mass balance (SMB) of the western Greenland Ice Sheet through increased summer melting in the ablation area and increased snowfall in higher altitudes. Here, we show that an additional effect of ARs on SMB comes from the development of föhn winds, whereby the air is adiabatically warmed as it descends. As ARs pass over the ice sheet and deposit precipitation in northwest Greenland, the air subsequently flows down the leeward slope and the warm, dry conditions contribute to increased melting in the northeast, and more specifically on the Nioghalvfjerdsfjorden (or 79N) Glacier.

 

We identify föhn conditions using an automated detection algorithm applied to MAR and RACMO2 regional climate model output. These data are paired with an AR detection algorithm and self-organizing map (SOM) classification applied to MERRA-2 and ERA5 reanalyses, in order to investigate connections between regional circulation patterns, ARs, föhn winds, and ice sheet SMB. We find that föhn conditions and associated surface melt are increased for periods of 1–3 days after anomalous southerly and southwesterly water vapor transport by ARs through Baffin Bay and the Nares Strait. Approximately 70% of the ARs which make landfall in the northwest sector of Greenland lead to the development of föhn winds on the northeast coast. The frequency of AR-induced föhn conditions in the northeast has increased in the last 40 years, in line with an increase in the strongest ARs in the northwest. We also find that anomalous northerly moisture transport from the Lincoln Sea generates enhanced melt in the lowest (0–500m) elevations of northeast Greenland, while below-average surface melt occurs during all other identified moisture transport regimes.

How to cite: Mattingly, K., Turton, J., Wille, J., Fettweis, X., and Noël, B.: The contribution of föhn winds to northeast Greenland summer melt and their relationship with atmospheric rivers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8002, https://doi.org/10.5194/egusphere-egu21-8002, 2021.

EGU21-16100 | vPICO presentations | CR7.1

Physics, Resolution and Data Assimilation: Making sense of Greenland climate and ice sheet Surface Mass Balance with HARMONIE Climate

Ruth Mottram, Oskar Landgren, Rasmus Anker Pedersen, Kristian Pagh Nielsen, Ole Bøssing Christensen, Martin Olesen, Fredrik Boberg, Nicolaj Hansen, Bjarne Amstrup, and Xiaohua Yang

The development of the HARMONIE model system has led to huge advances in numerical weather prediction, including over Greenland where a numerical weather prediction (NWP) model is used to forecast daily surface mass budget over the Greenland ice sheet as presented on polarportal.dk. The new high resolution Copernicus Arctic Reanalysis further developed the possibilities in HARMONIE with full 3DVar data assimilation and extended use of quality-controlled local observations. Here, we discuss the development and current status of the climate version of the HARMONIE Climate model (HCLIM). The HCLIM system has opened up the possibility for flexible use of the model at a range of spatial scales using different physical schemes including HARMONIE-AROME, ALADIN and ALARO for different spatial and temporal resolutions and assimilating observations, including satellite data on sea ice concentration from ESA CCI+, to improve hindcasts. However, the range of possibilities means that documenting the effects of different physics and parameterisation schemes is important before widespread application. 

Here, we focus on HCLIM performance over the Greenland ice sheet, using observations to verify the different plausible set-ups and investigate biases in climate model outputs that affect the surface mass budget (SMB) of the Greenland ice sheet. 

The recently funded Horizon 2020 project PolarRES will use the HCLIM model for very high resolution regional downscaling, together with other regional climate models in both Arctic and Antarctic regions, and our analysis thus helps to optimise the use of HCLIM in the polar regions for different modelling purposes.

How to cite: Mottram, R., Landgren, O., Anker Pedersen, R., Pagh Nielsen, K., Bøssing Christensen, O., Olesen, M., Boberg, F., Hansen, N., Amstrup, B., and Yang, X.: Physics, Resolution and Data Assimilation: Making sense of Greenland climate and ice sheet Surface Mass Balance with HARMONIE Climate, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16100, https://doi.org/10.5194/egusphere-egu21-16100, 2021.

EGU21-8103 | vPICO presentations | CR7.1

Cloud effects on surface radiation balance at Helheim and Jakobshavn Glaciers (Greenland) using ground-based observations 

Georges Djoumna, Sebastian H. Mernild, and David Holland

The surface radiation budget is an essential component of the total energy exchange between the atmosphere and the Earth’s surface. Measurements of radiative fluxes near/on ice surfaces are sparse in the polar regions, including on the Greenland Ice Sheet (GrIS), and the effects of cloud on radiative fluxes are still poorly studied. In this work, we assess the impacts of cloud on radiative fluxes using two metrics: the longwave-equivalent cloudiness, derived from long-wave radiation measurements, and the cloud transmittance factor, obtained from short-wave radiation. The metrics are applied to radiation data from two automatic weather stations located over the bare ground near the ice front of Helheim (HG) and Jakobshavn Isbræ (JI) on the GrIS. Comparisons of meteorological parameters, surface radiation fluxes, and cloud metrics show significant differences between the two sites. The cloud transmittance factor is higher at HG than at JI, and the incoming short-wave radiation in the summer at HG is 50.0 W m−2 larger than at JI. Cloud metrics derived at the two sites reveal   a high dependency on the wind direction. The total cloud radiative effect (CREnet) generally increases during melt season at the two stations due to long-wave CRE enhancement by cloud fraction.  CREnet decreases from May to June and increases afterward, due to the strengthened short-wave CRE. The annually averaged CREnet were 3.0 ± 7.4 W m-2 and 1.9 ± 15.1 W m−2 at JI and HG.  CREnet estimated from AWS indicates that clouds cool the JI and HG during melt season at different rates.

How to cite: Djoumna, G., Mernild, S. H., and Holland, D.: Cloud effects on surface radiation balance at Helheim and Jakobshavn Glaciers (Greenland) using ground-based observations , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8103, https://doi.org/10.5194/egusphere-egu21-8103, 2021.

EGU21-1521 | vPICO presentations | CR7.1

Dynamics and drivers of extreme seasons in the Arctic region

Katharina Hartmuth, Lukas Papritz, Maxi Boettcher, and Heini Wernli

Single extreme weather events such as intense storms or blocks can have a major impact on polar surface temperatures, the formation and melting rates of sea-ice, and, thus, on minimum and maximum sea-ice extent within a particular year. Anomalous weather conditions on the time scale of an entire season, for example resulting from an unusual sequence of storms, can affect the polar energy budget and sea-ice coverage even more. Here, we introduce the concept of an extreme season in a distinct region using an EOF analysis in the phase space spanned by anomalies of a set of surface parameters (surface temperature, precipitation, surface solar and thermal radiation and surface heat fluxes). To focus on dynamical instead of climate change aspects, we define anomalies as departures of the seasonal mean from a transient climatology. The goal of this work is to study the dynamical processes leading to such anomalous seasons in the polar regions, which have not yet been analysed. Specifically, we focus here on a detailed analysis of Arctic extreme seasons and their underlying atmospheric dynamics in the ERA5 reanalysis data set.

We find that in regions covered predominantly by sea ice, extreme seasons are mostly determined by anomalies of atmospheric dynamical features such as cyclones and blocking. In contrast, in regions including large areas of open water the formation of extreme seasons can also be partially due to preconditioning during previous seasons, leading to strong anomalies in the sea ice concentration and/or sea surface temperatures at the beginning of the extreme season.

Two particular extreme season case studies in the Kara-Barents Seas are discussed in more detail. In this region, the winter of 2011/12 shows the largest positive departure of surface temperature from the background warming trend together with a negative anomaly in the sea ice concentration. An analysis of the synoptic situation shows that the strongly reduced frequency of cold air outbreaks compared to climatology combined with several blocking events and the frequent occurrence of cyclones transporting warm air into the region favored the continuous anomalies of both parameters. In contrast, the winter of 2016/17, which shows a positive precipitation anomaly and negative anomaly in the surface energy balance, was favored by a strong surface preconditioning. An extremely warm summer and autumn in 2016 caused strongly reduced sea ice concentrations and increased sea surface temperatures in the Kara-Barents Seas at the beginning of the winter, favoring increased air-sea fluxes and precipitation during the following months.

Our results reveal a high degree of variability of the processes involved in the formation of extreme seasons in the Arctic. Quantifying and understanding these processes will also be important when considering climate change effects in polar regions and the ability of climate models in reproducing extreme seasons in the Arctic and Antarctica.

How to cite: Hartmuth, K., Papritz, L., Boettcher, M., and Wernli, H.: Dynamics and drivers of extreme seasons in the Arctic region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1521, https://doi.org/10.5194/egusphere-egu21-1521, 2021.

EGU21-6085 | vPICO presentations | CR7.1

High-Resolution Regional Climate Simulations of Arctic Hydroclimatic Change

Andrew Newman, Yifan Cheng, Keith Musselman, Anthony Craig, Sean Swenson, Joseph Hamman, and David Lawrence

The Arctic has warmed during the recent observational record and is projected to keep warming through the end of the 21st century in nearly every future emissions scenario and global climate model. This will drive continued thawing of permafrost-rich soils, alter the partitioning of rain versus snow events, and greatly affectthe water cycle and land-surface processes across the Arctic. However, previous analyses of these impacts using dynamical models have relied on global climate model output or relatively coarse regional climate model simulations. In the coarse simulations, projections of changes to the water cycle and land-surface processes in areas of complex orography and high land-surface heterogeneity, which are characteristic of many regions in the Arctic, may thus be limited. 

Here, we discuss recent work examining high-resolution regional climate simulations over Alaska and NW Canada. Completed and upcoming simulations have been and will be run at a 4 km grid spacing, which is sufficient to resolve orography across this region’s mountain ranges. The initial simulation results are very encouraging and show the regional climate model yields a realistic representation of the seasonal and spatial evolution of precipitation, temperature, and snowpack compared to previous studies across Alaska and other Arctic regions. A paired future climate simulation uses the Pseudo-Global Warming (PGW) approach, where the end of century ensemble mean monthly climate perturbations (CMIP5 RCP8.5) are used to incorporate the thermodynamic effects of future warming into the present-day climate as represented by ERA-Interim reanalysis data. Changes in major components of the hydroclimate (e.g. precipitation, temperature, snowfall, snowpack) are projected to sometimes be significant in this future scenario. For example, the seasonal snow cover in some regions is projected to mostly disappear. However, there are also projected increases in snowpack in historically very cold areas (e.g. high elevations) that are able to stay cold enough in the future to support snowfall and snowpack.

Finally, we will present a new effort to couple an advanced land-surface model, the Community Terrestrial Systems Model (CTSM), within the Regional Arctic Systems Model (RASM) in an effort to better represent complex land-surface and subsurface (e.g. permafrost, streamflow availability timing and temperatures) processes for climate change impact studies. CTSM is a complex physically based land-surface model that is able to represent multiple snow layers, a complex canopy, and multiple soil layers including organic matter and frozen soils, which enables us to explicitly represent spatial variability in the regional hydroclimate and land states (e.g. permafrost) at relatively high spatial resolutions relative to other simulations (4 km land and atmosphere grids).  Successful coupling of CTSM within RASM has been completed and we will discuss some preliminary land-atmosphere coupled test results.

How to cite: Newman, A., Cheng, Y., Musselman, K., Craig, A., Swenson, S., Hamman, J., and Lawrence, D.: High-Resolution Regional Climate Simulations of Arctic Hydroclimatic Change, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6085, https://doi.org/10.5194/egusphere-egu21-6085, 2021.

EGU21-6594 | vPICO presentations | CR7.1

Impact of latent and dry-static atmospheric energy transport on the Arctic sea ice variability

Marte G. Hofsteenge, Rune G. Graversen, and Johanne H. Rydsaa

Superimposed on a strong observed decline in Arctic sea ice extent there is large inter-annual variability. Recent research indicates that atmospheric temperature fluctuations are the main drivers for this variability. They can result both from local ocean heat release and from poleward atmospheric energy transport. Previous studies have emphasised a significant warming effect associated with latent energy transport into the Arctic region. In particular this is due to enhanced greenhouse effect associated with the convergence of the humidity transport over the Arctic. While previously some sea ice minima events have been linked to anomalous moist air convergence, a systematic study of this linkage between energy transport and sea ice variability was missing. Through a regression analysis we here investigate the coupling between transport anomalies of both latent and dry-static energy and sea ice anomalies. From the state-of-the-art ERA5 reanalysis product the latent and dry-static transport over the Arctic boundary (70°N) is calculated. The transport is then split into transport by planetary and synoptic-scale waves using a Fourier decomposition. Lagged regression analysis of sea ice concentration anomalies on the transport anomalies reveal the statistical linkage between the occurrence of sea ice anomalies after transport events. The results show that latent energy transport as compared to that of dry-static energy induces a much stronger decrease in sea ice concentration. One day after maximum of the latent transport event by planetary waves, sea-ice concentration shows a significant decrease lasting up to at least 45 days. In addition, the energy transport by planetary waves shows a greater effect on the sea ice concentration than transport by synoptic-scale waves. Hence, this study emphasizes the important impact of latent energy transport by planetary waves on the sea ice variability.

How to cite: Hofsteenge, M. G., Graversen, R. G., and Rydsaa, J. H.: Impact of latent and dry-static atmospheric energy transport on the Arctic sea ice variability, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6594, https://doi.org/10.5194/egusphere-egu21-6594, 2021.

EGU21-8130 | vPICO presentations | CR7.1

Drivers of the Spatial Pattern of Arctic Sea Ice Response to Arctic Cyclones

Robin Clancy, Cecilia Bitz, Ed Blanchard-Wrigglesworth, and Marie McGraw

The effects of Arctic cyclones on sea ice are the subject of many papers, however aside from individual case studies, few address the heterogeneity in the spatial pattern of the sea ice response.

We composite atmospheric conditions from ERA5 reanalysis and satellite sea ice concentrations on Arctic cyclones using a storm-centered approach to reveal the typical atmosphere and sea ice responses at different bearings and distances relative to an Arctic cyclone.

Asymmetry in the pattern of the sea ice concentration response to cyclones is revealed, with increased growth/reduced melt to the west of cyclones and decreased growth/increased melt to the east.

In part, this is explained by heterogeneity in the spatial patterns of atmospheric temperature and cloud fraction associated with cyclones, which result in heterogeneity in patterns of the surface energy fluxes.

Using the CICE sea ice model forced with prescribed atmospheric reanalysis from the Japan Meteorological Agency, we reveal the relative importance of the dynamic and thermodynamic forcing of cyclones on sea ice, as well as the spatial patterns of each. The dynamic and thermodynamic responses of sea ice concentration to cyclones are comparable in magnitude, however dynamic processes dominate the response of sea ice thickness.

These results highlight and explain important details often missed when answering “do cyclones cause an increase or decrease sea ice?”, as it appears the answer is both.

How to cite: Clancy, R., Bitz, C., Blanchard-Wrigglesworth, E., and McGraw, M.: Drivers of the Spatial Pattern of Arctic Sea Ice Response to Arctic Cyclones, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8130, https://doi.org/10.5194/egusphere-egu21-8130, 2021.

EGU21-7737 | vPICO presentations | CR7.1

Polar Lows - Moist Baroclinic Cyclones Developing in Four Different Vertical Wind Shear Environments

Patrick Stoll, Thomas Spengler, and Rune Grand Graversen

Polar lows are intense mesoscale cyclones that develop in polar marine air masses. Motivated by the large variety of their proposed intensification mechanisms, cloud structure, and ambient sub-synoptic environment, we use self-organising maps to classify polar lows.

We identify five different polar-low configurations which are characterised by the vertical wind shear vector, the change of the horizontal-wind vector with height, relative to the propagation direction. Four categories feature a strong shear with different orientations of the shear vector, whereas the fifth category contains conditions with weak shear. This confirms the relevance of a previously identified categorisation into forward and reverse-shear polar lows. We expand the categorisation with right and left-shear polar lows that propagate towards colder and warmer environments, respectively.

For the strong-shear categories, the shear vector organises the moist-baroclinic dynamics of the systems. This is apparent in the low-pressure anomaly tilting with height against the shear vector, and the main updrafts occurring along the warm front located in the forward-left direction relative to the shear vector. These main updrafts contribute to the intensification through latent-heat release and are typically associated with comma-shaped clouds.

Polar low situations with a weak shear, that often feature spirali-form clouds, occur mainly at decaying stages of the development. We thus find no evidence for hurricane-like intensification of polar lows and propose instead that spirali-form clouds are associated with a warm seclusion process.

How to cite: Stoll, P., Spengler, T., and Graversen, R. G.: Polar Lows - Moist Baroclinic Cyclones Developing in Four Different Vertical Wind Shear Environments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7737, https://doi.org/10.5194/egusphere-egu21-7737, 2021.

EGU21-14537 | vPICO presentations | CR7.1

Marine cold air outbreaks in Fram Strait – General increase in March and a special case in 2020

Sandro Dahlke, Amelie Solbes, and Marion Maturilli

Marine Cold Air Outbreaks (MCAOs) are common features above the open water surfaces of the Nordic Seas. They are characterized by marked vertical temperature gradients, which typically persist over several days, and strongly shape air-sea heat exchanges, convection, weather and boundary layer characteristics in the affected region. Based on the novel ERA-5 reanalysis product, we are analyzing climatological and recent aspects of MCAOs in the Fram Strait region of the North Atlantic, which is a “hot spot” particularly during winter and early spring. MCAOs in Fram Strait occur preferably when persistent low pressure systems occupy Northern Scandinavia and the Barents/Kara Sea, which exerts strong zonal pressure gradients across Fram Strait. Based on the vertical gradients of potential temperature, occurrence frequencies of MCAOs of different strengths are investigated.  It is found that MCAOs of moderate strength occur at an average of 7-9 days per month between December and March, while especially strong MCAOs occur at an average of 1-3 days in that time. Regarding the former, March is the only month for which a significant trend of +1.7 days/month/decade was found over the 1979-2020 period. While regional MCAO expression is dependent on both the relative location of the ice edge and on the atmospheric circulation, MCAO increase in Fram Strait in March can be explained mainly with the latter and the associated zonal pressure gradient.

February and March 2020 serve as examples of particularly strong and persistent MCAOs in Fram Strait. The record-breaking strong polar vortex at that time, which had received global attention in the media and literature, had left its associated footprint in near surface and tropospheric circulation fields, hence providing anomalous northerly flow across the ice edge in Fram Strait. While this clearly shaped MCAOs in Fram Strait, associated anomalies were also observed in the North Atlantic Sea Ice edge, and were even detected in upper air profiles and sea ice conditions on Svalbard.

For the detailed study of such northerly advection events, atmospheric data gathered during the year-long MOSAiC expedition 2019/2020 in the central Arctic are expected to provide valuable information in the upstream direction of the anomalies in Fram Strait.

How to cite: Dahlke, S., Solbes, A., and Maturilli, M.: Marine cold air outbreaks in Fram Strait – General increase in March and a special case in 2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14537, https://doi.org/10.5194/egusphere-egu21-14537, 2021.

EGU21-7357 | vPICO presentations | CR7.1

Airborne water vapor isotope measurements over the Iceland Sea in winter conditions

Alexandra Touzeau, Hans-Christian Steen-Larsen, Ian Renfrew, Þorsteinn Jónsson, Andrew Elvidge, Thomas Lachlan-Cope, Yongbiao Weng, Árný Sveinbjörnsdóttìr, Heidi Midtgarden Golid, Christiane Duscha, and Harald Sodemann

Improved understanding of evaporation and condensation processes is critical to improve the representation of the water cycle in atmospheric models. Thereby, in-situ measurements along the entire moisture transport pathway, covering evaporation, mixing between different air masses in the atmospheric boundary layer and the free troposphere, and resulting precipitation are highly valuable to obtain new insight. In particular, coherent measurements of the stable isotope composition in atmospheric vapour can provide additional constraints on phase change processes of water vapour from source to sink, enabling direct comparison within isotope-enabled models.

Here we present stable isotope measurements from the Iceland Greenland Seas Project field campaign that took place in February-March 2018. This unique dataset includes simultaneous measurements from a land-station in Husavik, Iceland, a ship and an air plane in the subpolar region. Alternation between cold-air outbreaks and mid-latitude airmasses characterized the measurement period. Here we focus on the stable water isotope composition in water vapour obtained from 10 research flights, covering a large geographic range (64 °N to 72 °N). Careful data treatment was applied to ensure the quality of isotope measurements in the predominant cold, dry conditions with large gradients in isotope composition and humidity.

From an intercomparison flight over the Husavik station, we find good agreement between ground and airborne measurements. Out of 7 flights dedicated to the study of atmosphere-ocean-ice interactions, with both low-levels legs and vertical sections in predominant Cold Air Outbreak (CAO) conditions, we focus on the marginal ice zone and regions covered by shallow cumulus clouds. For open water flights, we find the horizontal and vertical distribution of δ18O in the marine boundary layer to covary with cloud cover. Thereby, downdrafts bring dry and 18O-depleted air from the free troposphere towards the surface, corresponding to openings in cloud cover. For flights passing over sea ice edge, both δ18O and specific humidity show a clear east-west gradient, with increasing values towards the open sea reflecting ocean moisture availability. Additionally, open leads in the sea ice also have a visible impact on isotope values. Lastly, relatively low d-excess values are observed over the sea-ice, which could either be caused by local processes or advection.

How to cite: Touzeau, A., Steen-Larsen, H.-C., Renfrew, I., Jónsson, Þ., Elvidge, A., Lachlan-Cope, T., Weng, Y., Sveinbjörnsdóttìr, Á., Midtgarden Golid, H., Duscha, C., and Sodemann, H.: Airborne water vapor isotope measurements over the Iceland Sea in winter conditions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7357, https://doi.org/10.5194/egusphere-egu21-7357, 2021.

CR7.2 – Coupled modelling in the polar regions & Facilitating remote sensing applications across the terrestrial Arctic

EGU21-11918 | vPICO presentations | CR7.2

Analysis of the Marine Ice Sheet-Ocean Model Intercomparison Project first phase (MISOMIP1)

Xylar Asay-Davis, Christopher Y. S. Bull, Stephen Cornford, Eva Cougnon, Jan De Rydt, Benjamin K. Galton-Fenzi, Rupert Gladstone, Daniel Goldberg, David Gwyther, James Jordan, Nicolas Jourdain, Gunter Leguy, William Lipscomb, Gustavo Marques, Daniel F. Martin, Yoshihiro Nakayama, Kaitlin A. Naughten, Robin S. Smith, Hélène Seroussi, and Chen Zhao

The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort sponsored by the Climate and Cryosphere (CliC) project.  MISOMIP aims to design and coordinate a series of MIPs—some idealized and realistic—for model evaluation, verification with observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS).  The first phase of the project, MISOMIP1, was an idealized, coupled set of experiments that combined elements from the MISMIP+ and ISOMIP+ standalone experiments for ice-sheet and ocean models, respectively.  These MIPs had 3 main goals: 1) to provide simplified experiments that allow model developers to compare their results with those from other models; 2) to suggest a path for testing components in the process of developing a coupled ice sheet-ocean model; and 3) to enable a large variety of parameter and process studies that branch off from these basic experiments.

Here, we describe preliminary analysis of the MISOMIP1 results.  Eight models in 14 configurations participated in the MIP.   In keeping with analysis of the MISMIP+ experiment, we find that the choice of basal friction parameterizations in the ice-sheet component (Weertman vs. Coulomb limited) has a particularly significant impact on the rate of ice-sheet retreat but the choice of stress approximation (SSA, SSA* or L1Lx) seems to have little impact.  Models with Coulomb-limited basal friction also tend to be those with the highest melt rates, confirming a positive feedback between melt and retreat in the MISOMIP1 configuration seen in previous work.  The ocean component’s treatment of the boundary layer below the ice shelf also has a significant impact on melt rates and resulting retreat, consistent with findings based on ISOMIP+.  Feedbacks between the components lead to localized features in the melt rates and the ice geometry not seen in standalone simulations, though the ~2-km horizontal and ~20-m vertical resolution of these simulations appears to be too coarse to produce long-lived, sub-ice-shelf channels seen at higher resolution.

How to cite: Asay-Davis, X., Bull, C. Y. S., Cornford, S., Cougnon, E., De Rydt, J., Galton-Fenzi, B. K., Gladstone, R., Goldberg, D., Gwyther, D., Jordan, J., Jourdain, N., Leguy, G., Lipscomb, W., Marques, G., Martin, D. F., Nakayama, Y., Naughten, K. A., Smith, R. S., Seroussi, H., and Zhao, C.: Analysis of the Marine Ice Sheet-Ocean Model Intercomparison Project first phase (MISOMIP1), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11918, https://doi.org/10.5194/egusphere-egu21-11918, 2021.

EGU21-9977 | vPICO presentations | CR7.2

Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic ice sheets

Robin Smith, Pierre Mathiot, Antony Siahaan, Victoria Lee, Stephen Cornford, Jonathan Gregory, Antony Payne, Adrian Jenkins, Paul Holland, and Colin Jones

In this presentation we describe how models of the Greenland and Antarctic ice sheets have been incorporated in the global U.K. Earth System model (UKESM1) with a two-way coupling that passes fluxes of energy, water and the locations of ice surfaces between the component models. Offline, file-based coupling is used throughout to pass information between the components, which is both physically appropriate and convenient within the UKESM1 structure. Ice sheet surface mass balance is computed in the land surface model using sub-gridscale multi-layer snowpacks. Icebergs calved from the ice sheets are fed into a Langrangian iceberg drift scheme in the ocean. Ice shelf basal melt is explicitly calculated in cavities resolved by the ocean model, and ice sheet and shelf geometries are kept consistent in all components. We demonstrate that our coupled model remains stable when simulating changes in ice sheet height, extent and grounding-line position of hundreds of kilometres.

How to cite: Smith, R., Mathiot, P., Siahaan, A., Lee, V., Cornford, S., Gregory, J., Payne, A., Jenkins, A., Holland, P., and Jones, C.: Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic ice sheets, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9977, https://doi.org/10.5194/egusphere-egu21-9977, 2021.

EGU21-12533 | vPICO presentations | CR7.2

Evaluating Met Office uncoupled and coupled forecasts during the Iceland Greenland Seas Project field campaign in 2018

Chris Barrell, Ian Renfrew, Steven Abel, Andrew Elvidge, and John King

During a cold-air outbreak (CAO) a cold polar airmass flows from the frozen land or ice surface, over the marginal ice zone (MIZ), then out over the comparatively warm open ocean. This constitutes a dramatic change in surface temperature, roughness and moisture availability, typically causing rapid change in the atmospheric boundary layer. Consequently, CAOs are associated with a range of severe mesoscale weather phenomena and accurate forecasting is crucial. Over the Nordic Seas CAOs also play a vital role in global ocean circulation, causing densification and sinking of ocean waters that form the headwaters of the Atlantic meridional overturning circulation. 

To tackle the lack of observations during wintertime CAOs and improve scientific understanding in this important region, the Iceland Greenland Seas Project (IGP) undertook an extensive field campaign during February and March 2018. Aiming to characterise the atmospheric forcing and the ocean response, particularly in and around the MIZ, the IGP made coordinated ocean-atmosphere measurements, involving a research vessel, a research aircraft, a meteorological buoy, moorings, sea gliders and floats.  

The work presented here employs these novel observational data to evaluate output from the UK Met Office global operational forecasting system and from a pre-operational coupled ocean-ice-atmosphere system. The Met Office aim to transition to a coupled operational forecast in the coming years, thus verification of model versions in development is essential. Results show that this coupled model’s sea ice is generally more accurate than a persistent field. However, it can also suffer from cold-biased sea surface temperatures around the MIZ, which influences the modelled near-surface meteorology. Both these effects demonstrate the crucial importance of accurate sea ice simulation in coupled model forecasting in the high latitudes. Hence, an ice edge metric is then used to quantify the accuracy of the coupled model MIZ edge at two ocean grid resolutions. 

How to cite: Barrell, C., Renfrew, I., Abel, S., Elvidge, A., and King, J.: Evaluating Met Office uncoupled and coupled forecasts during the Iceland Greenland Seas Project field campaign in 2018, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12533, https://doi.org/10.5194/egusphere-egu21-12533, 2021.

EGU21-14017 | vPICO presentations | CR7.2

Surface Mass Balance of the Greenland Ice Sheet in the Energy Exascale Earth System Model

Adam Schneider, Stephen Price, Jonathan Wolfe, and Charles Zender

Since 1993, nearly 10 percent of the observed rise in global mean sea level can be attributed to the coincident increase in surface mass loss from the Greenland Ice Sheet (GrIS) (Meredith et al., 2019; WCRP, 2018). To determine the GrIS surface mass balance (SMB), defined as the ice sheet’s annual net (surface) mass increase due to snow accumulation minus ablation, a climate model can be coupled to a snowpack model, which enables simulating relevant hydrologic processes including precipitation, phase changes, and runoff. Recent developments within the Energy Exascale Earth System Model (E3SM) include an active ice sheet component. To explore GrIS snowpack conditions relevant to present-day climate, we conduct simulations demonstrating the evolution of SMB and accumulation of snowpack depth, first in E3SM’s land component (ELM). After forcing ELM’s surface condition using 20th century atmospheric reanalysis, we couple ELM to E3SM’s atmosphere component (EAM) and simulate both atmospheric and snowpack conditions over a fixed GrIS geometry. Finally, we activate the MPAS-Albany Land Ice model (MALI), which enables prognostic SMB calculations including elevation-change feedbacks. We find broad agreement in the spatial patterns of GrIS SMB compared to regional climate model (RACMO) and Community Earth System Model (CESM) simulations. We provide insights regarding the use of a statistical downscaling method, which involves using multiple elevation classes with time-varying areal coverages within ELM grid-cells. Within this dynamic system, we can begin investigating elevation feedbacks, where the atmospheric temperature lapse rate allows the SMB to accelerate both positively and negatively in a rapidly changing climate.

References

  • Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas, A. Mackintosh, J. Melbourne-Thomas, M.M.C. Muelbert, G. Ottersen, H. Pritchard, and E.A.G. Schuur, 2019: Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.
  • WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018.

How to cite: Schneider, A., Price, S., Wolfe, J., and Zender, C.: Surface Mass Balance of the Greenland Ice Sheet in the Energy Exascale Earth System Model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14017, https://doi.org/10.5194/egusphere-egu21-14017, 2021.

EGU21-13457 | vPICO presentations | CR7.2

Ice-shelf Basal Melt Rates in the Energy Exascale Earth System Model (E3SM)

Darin Comeau, Xylar Asay-Davis, Carolyn Begeman, Matthew Hoffman, Wuyin Lin, Mark Petersen, Stephen Price, Andrew Roberts, Luke Van Roekel, Milena Veneziani, Jonathan Wolfe, and Adrian Turner

The processes responsible for freshwater flux from the Antarctic Ice Sheet (AIS) -- ice-shelf basal melting and iceberg calving -- are generally poorly represented in current Earth System Models (ESMs). Here, we document the first effort to date at simulating the ocean circulation and exchanges of heat and freshwater within ice-shelf cavities in a coupled ESM, the Department of Energy's Energy Exascale Earth System Model (E3SM). As a step towards full ice-sheet coupling, we implemented static Antarctic ice-shelf cavities and the ability to calculate ice-shelf basal melt rates from the heat and freshwater fluxes computed by the ocean model. In addition, we added the capability to prescribe forcing from iceberg melt, allowing us to realistically represent the other dominant mass loss process from the AIS. In global, low resolution (i.e., non-eddying ocean) simulations, we find high sensitivity of modeled ocean/ice shelf interactions to the ocean state, which can result in a tipping point to high melt regimes under certain ice shelves, presenting a significant challenge to representing the ocean/ice shelf system in a coupled ESM. We show that inclusion of a spatially dependent parameterization of eddy-induced transport reduces biases in water mass properties on the Antarctic continental shelf. With these improvements, E3SM produces realistic and stable ice-shelf basal melt rates across the continent under pre-industrial climate forcing. We also show preliminary results using an ocean/sea-ice grid that makes use of E3SM’s regional-refinement capability, where increased resolution (down to 12km) is placed in the Southern Ocean around Antarctica, bypassing the need for parameterization of eddy-induced transport in this region. The accurate representation of these processes within a coupled ESM is an important step towards reducing uncertainties in projections of the Antarctic response to climate change and Antarctica's contribution to global sea-level rise.

How to cite: Comeau, D., Asay-Davis, X., Begeman, C., Hoffman, M., Lin, W., Petersen, M., Price, S., Roberts, A., Van Roekel, L., Veneziani, M., Wolfe, J., and Turner, A.: Ice-shelf Basal Melt Rates in the Energy Exascale Earth System Model (E3SM), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13457, https://doi.org/10.5194/egusphere-egu21-13457, 2021.

EGU21-8317 | vPICO presentations | CR7.2

Sea-ice freeboard or thickness? Design choices in the context of data assimilation in the coupled numerical prediction system EC-Earth3 for seasonal Arctic sea ice prediction

Francois Massonnet, Sara Fleury, Florent Garnier, Ed Blockley, Pablo Ortega Montilla, Juan C. Acosta Navarro, Leandro Ponsoni, and François Klein

It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.

How to cite: Massonnet, F., Fleury, S., Garnier, F., Blockley, E., Ortega Montilla, P., Acosta Navarro, J. C., Ponsoni, L., and Klein, F.: Sea-ice freeboard or thickness? Design choices in the context of data assimilation in the coupled numerical prediction system EC-Earth3 for seasonal Arctic sea ice prediction, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8317, https://doi.org/10.5194/egusphere-egu21-8317, 2021.

EGU21-15716 | vPICO presentations | CR7.2

Effect of Southern Ocean freshwater export on the AMOC using an earth system model with interactive icebergs 

Lars Ackermann, Thomas Rackow, Paul Gierz, Gregor Knorr, and Gerrit Lohmann

EGU21-799 | vPICO presentations | CR7.2

Decadal climate sensitivity of contouritic sedimentation in a dynamically coupled ice-ocean-sediment model of the Pan-Arctic region

Catherine Drinkorn, Jan Saynisch-Wagner, Gabriele Uenzelmann-Neben, and Maik Thomas

Ocean sediment drifts contain important information about past bottom currents but a direct link from the study of sedimentary archives to ocean dynamics is not always possible. To close this gap for the North Atlantic, we set up a  new coupled Ice-Ocean-Sediment Model of the entire Pan-Arctic region. In order to evaluate the potential dynamics of the model, we conducted decadal sensitivity experiments. In our model contouritic sedimentation shows a significant sensitivity towards climate variability for most of the contourite drift locations in the model domain. We observe a general decrease of sedimentation rates during warm conditions with decreasing atmospheric and oceanic gradients and an extensive increase of sedimentation rates during cold conditions with respective increased gradients. We can relate these results to changes in the dominant bottom circulation supplying deep water masses to the contourite sites under different climate conditions. A better understanding of northern deep water pathways in the Atlantic Meridional Overturning Circulation (AMOC) is crucial for evaluating possible consequences of climate change in the ocean.

How to cite: Drinkorn, C., Saynisch-Wagner, J., Uenzelmann-Neben, G., and Thomas, M.: Decadal climate sensitivity of contouritic sedimentation in a dynamically coupled ice-ocean-sediment model of the Pan-Arctic region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-799, https://doi.org/10.5194/egusphere-egu21-799, 2021.

EGU21-10448 | vPICO presentations | CR7.2

Representation of basal melting in idealised coupled ice sheet ocean models

Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and David Gwyther

The ocean-driven basal melting has important implications for the stability of ice shelves in Antarctic, which largely affects the ice sheet mass balance, ocean circulation, and subsequently global sea level rise. Due to the limited observations in the ice shelf cavities, the couple ice sheet ocean models have been playing a critical role in examining the processes governing basal melting. In this study we use the Framework for Ice Sheet-Ocean Coupling (FISOC) to couple the Elmer/Ice full-stokes ice sheet model and the Regional Ocean Modeling System (ROMS) ocean model to model ice shelf/ocean interactions for an idealised three-dimensional domain. Experiments followed the coupled ice sheet–ocean experiments under the first phase of the Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1). A periodic pattern in the simulated mean basal melting rates is found to be highly consistent with the maximum barotropic stream function and also the grounding line retreat row by row,  which is likely to be related with the gyre break down near the grounding line caused by some non-physical instability events from the ocean bottom. Sensitivity tests are carried out, showing that this periodic pattern is not sensitive to the choice of couple time intervals and horizontal eddy viscosities but sensitive to vertical resolution in the ocean model, the chosen critical water column thickness in the wet-dry scheme, and the tracer properties for the nudging dry cells at the ice-ocean interface boundary. Further simulations are necessary to better explain the mechanism involved in the couple ice-ocean system, which is very significant for its application on the realistic ice-ocean systems in polar regions.

How to cite: Zhao, C., Gladstone, R., Galton-Fenzi, B., and Gwyther, D.: Representation of basal melting in idealised coupled ice sheet ocean models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10448, https://doi.org/10.5194/egusphere-egu21-10448, 2021.

EGU21-6063 | vPICO presentations | CR7.2

First results from coupling the Parallel Ice Sheet Model with the Modular Ocean Model via an Antarctic ice-shelf cavity module

Moritz Kreuzer, Ronja Reese, Willem Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann

The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high resolution configurations, limiting these studies to individual glaciers or regions over short time scales of decades to a few centuries. To study global and long term interactions, we developed a framework to couple the dynamic ice sheet model PISM with the global ocean general circulation model MOM5 via the ice-shelf cavity module PICO. Since ice-shelf cavities are not resolved by MOM5, but parameterized with the box model PICO, the framework allows the ice sheet and ocean model to be run at resolution of 16 km and 3 degrees, respectively. We present first results from our coupled setup and discuss stability, feedbacks, and interactions of the Antarctic Ice Sheet and the global ocean system on millennial time scales.

How to cite: Kreuzer, M., Reese, R., Huiskamp, W., Petri, S., Albrecht, T., Feulner, G., and Winkelmann, R.: First results from coupling the Parallel Ice Sheet Model with the Modular Ocean Model via an Antarctic ice-shelf cavity module, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6063, https://doi.org/10.5194/egusphere-egu21-6063, 2021.

EGU21-4325 | vPICO presentations | CR7.2

Impact of ice sheet – ocean interactions on the Southern Ocean using fully coupled models over a circumpolar domain

Charles Pelletier, Lars Zipf, Konstanze Haubner, Deborah Verfaillie, Hugues Goosse, Frank Pattyn, Pierre Mathiot, and Thierry Fichefet

From at least 1979 up until 2016, the surface of the Southern Ocean cooled down, leading to a small Antarctic sea ice extent increase, which is in stark contrast with the Arctic Ocean. The attribution of the origin of these robust observations is still very uncertain. Among other phenomena, the direct, two-way interactions between the Southern Ocean and the Antarctic ice sheet, through basal melting of its numerous and large ice-shelf cavities, have been suggested as a potentially important contributor of this cooling. In order to address this question, we perform multidecadal coupled ice sheet – ocean numerical simulations relying on f.ETISh-v1.7 and NEMO3.6-LIM3 for simulating the Antarctic ice sheet and Southern Ocean (including sea ice), respectively. This presentation is twofold. First, we present the technical aspects of the coupling infrastructure (e.g. workflow and exchanged information in between models). Second, we investigate the ice sheet – ocean feedbacks on the Southern Ocean, their interactions, and the roles of the related physical mechanisms on the ocean surface cooling.

How to cite: Pelletier, C., Zipf, L., Haubner, K., Verfaillie, D., Goosse, H., Pattyn, F., Mathiot, P., and Fichefet, T.: Impact of ice sheet – ocean interactions on the Southern Ocean using fully coupled models over a circumpolar domain, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4325, https://doi.org/10.5194/egusphere-egu21-4325, 2021.

EGU21-12417 | vPICO presentations | CR7.2

Ice sheet response to sub-shelf melt rates in coupled and uncoupled peri-Antarctic ice-sheet model simulations

Lars Zipf, Charles Pelletier, Konstanze Haubner, Sainan Sun, and Frank Pattyn

Sub-shelf melting is the main driver of Antarctica's ice sheet mass loss. However, sub-shelf melt rate parameterizations for standalone ice models lack the capability to capture complex ocean circulation within ice shelf cavities. To overcome drawbacks of standalone models and to improve melt parameterizations, high resolution coupling of ice sheet and ocean models are capable of hindcasting past decennia and be compared to observations.

Here, we present first results of a hindcast (1985-2018) of the new circumpolar coupled Southern Ocean – Antarctic ice sheet configuration, developed within the framework of the PARAMOUR project. The configuration is based on the ocean and sea ice model NEMO3.6-LIM3 and the ice sheet model f.ETISh v1.7. The coupling routine facilitates exchange of monthly sub-shelf melt rates (from ocean to ice model) and evolving ice shelf cavity geometry (from ice to ocean model).

We investigate the impact of the coupling frequency (more precisely, the frequency of updating the ice shelf cavity geometry within the ocean model) on the sub-shelf melt rates and its feedback on the ice dynamics. We further compare the sub-shelf melt rates of the coupled setup to those of the standalone ice sheet model with different sub-shelf melt rate parametrizations (ISMIP6, plume, PICO, PICOP) and investigate the sensitivity of the response of the ice sheet for the different basal melt rate patterns on decadal time scales.

How to cite: Zipf, L., Pelletier, C., Haubner, K., Sun, S., and Pattyn, F.: Ice sheet response to sub-shelf melt rates in coupled and uncoupled peri-Antarctic ice-sheet model simulations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12417, https://doi.org/10.5194/egusphere-egu21-12417, 2021.

EGU21-13707 | vPICO presentations | CR7.2

Ice-mass changes in Aurora basin, East Antarctica, in coupled and uncoupled ice-ocean simulations

Konstanze Haubner, Guillian Van Achter, Charles Pelletier, Lars Zipf, Thierry Fichefet, Hugues Goosse, and Frank Pattyn

EGU21-985 | vPICO presentations | CR7.2

Identifying ice-rich permafrost using remotely sensed late-season subsidence

Simon Zwieback and Franz Meyer

Despite the critical role of ground ice for permafrost ecosystems and terrain stability, we lack fine-scale ground ice maps across almost the entire Arctic. This is chiefly because ground ice cannot be observed directly from space. Here, we analyse late-season subsidence from Sentinel-1 InSAR satellite observations as a physically based indicator of vulnerable excess ground ice at the top of permafrost. The key idea is that the thaw front can penetrate materials that were previously perennially frozen at the end of a warm summer, triggering subsidence where the permafrost is ice rich. We assess the idea by comparing the InSAR observations to permafrost cores and an independently derived ground ice classification. 

We find that the late-season subsidence in an exceptionally warm summer was 4 - 8 cm (5th - 95th percentile) in the ice-rich areas, while it was lower in ice-poor areas (-1 - 2 cm). The observed distributions for ice-rich and ice-poor terrain overlapped by only 2%, demonstrating high sensitivity and specificity for identifying top-of-permafrost excess ground ice. 

The strengths of late-season subsidence include the ease of automation and its applicability to areas that lack conspicuous manifestations of ground ice, as often occurs on hillslopes. The biggest limitation is that it is not sensitive to excess ground ice below the thaw front and thus the total ice content. A further challenge is the sub-resolution variability in ground ice, ice-wedge polygons being a striking example, which needs to be accounted for when interpreting and validating the results.

We expect late-season subsidence to enhance the automated mapping of ice-rich permafrost terrain, complementing existing (predominantly non-automated) approaches based on largely indirect associations of ice content with vegetation and periglacial landforms. The suitability of satellite-observed late-season subsidence for mapping ice-rich permafrost can contribute to anticipating terrain instability in the Arctic and sustainably stewarding its ecosystems.

How to cite: Zwieback, S. and Meyer, F.: Identifying ice-rich permafrost using remotely sensed late-season subsidence, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-985, https://doi.org/10.5194/egusphere-egu21-985, 2021.

EGU21-15632 | vPICO presentations | CR7.2

Evaluation of PAZ satellite imagery for the assessment of intra-seasonal dynamics of permafrost coasts (Beaufort Sea, Canada)

Carla Mora, Gonçalo Vieira, Pedro Pina, Dustin Whalen, and Annett Bartsch

Arctic permafrost coasts represent about 34% of the Earth’s coastline, with long sections affected by high erosion rates, increasingly threatening coastal communities. Year-round reduction in Arctic sea ice is forecasted and by the end of the 21st century, models indicate a decrease in sea ice area from 43 to 94% in September and from 8 to 34% in February (IPCC, 2014). An increase of the ice-free season leads to a longer exposure to wave action. Monitoring the Arctic coasts is limited by remoteness, climate harshness and difficulty of access for direct surveying, but also, when using satellite remote sensing, by frequent high cloudiness conditions and by illumination. In order to overcome these limitations, three sites at the Beaufort Sea Coast (Clarence lagoon, Hopper Island and Qikiqtaruk/Herschel Island) have been selected for monitoring using very high-resolution microwave X-band spotlight PAZ imagery from Hisdesat. Bluff top, thaw-slump headwalls and water lines were digitised from images acquired during the ice-free seasons of 2019 and 2020 at sub-monthly time-steps. The effects of coastal exposure on delineation accuracy in relation to satellite overpass geometry have been assessed and coastal changes have been quantified and compared to meteorological and tide-gauge data. The results show that PAZ imagery allow for monitoring and quantifying coastal changes at sub-monthly intervals and following the evolution of coastal features, such as small mud-flow fans and retrogressive thaw slumps. This shows that high resolution microwave imagery has a strong potential for significantly advancing coastal monitoring in remote Arctic areas. This research is part of project Nunataryuk funded under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 773421) and of Hisdesat project Coastal Monitoring for Permafrost Research in the Beaufort Sea Coast (Canada). 

How to cite: Mora, C., Vieira, G., Pina, P., Whalen, D., and Bartsch, A.: Evaluation of PAZ satellite imagery for the assessment of intra-seasonal dynamics of permafrost coasts (Beaufort Sea, Canada), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15632, https://doi.org/10.5194/egusphere-egu21-15632, 2021.

Warming of the circumpolar north is accelerating permafrost thaw, with implications for landscapes, hydrology, ecosystems and the global carbon cycle. In subarctic Canada, abrupt permafrost thaw is creating widespread thermokarst lakes. Little attention has been given to small waterbodies with area less than 10,000 m2, yet these are biogeochemically more active than larger lakes. Additionally, the landscapes where they develop show intense shrubification and terrestrialization processes, with increases in area and height of shrub and tree communities. Tall vegetation that is colonizing waterbody margins can cast shadows that impact productivity, thermal regime and the water spectral signal, which in satellite data generates pixels with mixed signatures between sunlit and shaded surfaces. We undertook UAV surveys using optical and multispectral sensors at long-term monitoring sites of the Center for Northern Studies (CEN) in subarctic Canada, from the sporadic (SAS/KWAK) to the discontinuous (BGR) permafrost zones in the boreal forest-tundra transition zone. This ultra-high spatial resolution data enabled spectral characterization and 3D reconstruction of the study areas. Ultra-high resolution digital surface models were produced to model shadowing at satellite overpass time (WorldView, PlanetScope and Sentinel-2). We then analyzed the impacts of surrounding vegetation and cast shadows on lake surface spectral reflectance derived from satellite imagery. Ultra-high resolution UAV data allows generating accurate shadow models and can be used to improve the assessment of errors and accuracy of satellite data analysis. Particularly, we identify different spectral signal impacts of cast shadows according to lake color, which highlight the need for special attention of this issue onto lakes with more turbidity.

This research is funded by the Portuguese Foundation for Science and Technology (FCT) under the project THAWPOND (PROPOLAR), by the Centre of Geographical Studies (FCT I.P. UIDB/00295/2020 and UIDP/00295/2020), with additional support from ArcticNet (NCE), Sentinel North (CFREF) and CEN and is a contribution to T-MOSAiC. PF is funded by FCT (SFRH/BD/145278/2019).

How to cite: Freitas, P., Vieira, G., Mora, C., Canário, J., Folhas, D., and Vincent, W. F.: Ultra-high resolution assessment of potential impacts of vegetation shadows on satellite-derived spectral signals from small thermokarst lakes in the boreal forest-tundra transition zone (subarctic Canada), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15405, https://doi.org/10.5194/egusphere-egu21-15405, 2021.

EGU21-13497 | vPICO presentations | CR7.2

Landscape-level remote sensing for upscaling of land cover, above ground biomass and above ground carbon fluxes in the Lena River Delta (Northern Yakutia, Russia)

Birgit Heim, Iuliia Shevtsova, Stefan Kruse, Ulrike Herzschuh, Agata Buchwal, Grzegorz Rachlewicz, and Annett Bartsch

Vegetation biomass is a globally important climate-relevant terrestrial carbon pool. Landsat, Sentinel-2 and Sentinel-1 satellite missions provide a landscape-level opportunity to upscale tundra vegetation communities and biomass in high latitude terrestrial environments. We assessed the applicability of landscape-level remote sensing for the low Arctic Lena Delta region in Northern Yakutia, Siberia, Russia. The Lena Delta is the largest delta in the Arctic and is located North of the treeline and the 10 °C July isotherm at 72° Northern Latitude in the Laptev Sea region. We evaluated circum-Arctic harmonized ESA GlobPermafrost land cover and vegetation height remote sensing products covering subarctic to Arctic land cover types for the central Lena Delta. The products are freely available and published in the PANGAEA data repository under https://doi.org/10.1594/PANGAEA.897916, and https://doi.org/10.1594/PANGAEA.897045.

Vegetation and biomass field data (30 m x 30 m plot size) and shrub samples for dendrology were collected during a Russian-German expedition in summer 2018 in the central Lena Delta. We also produced a regionally optimized land cover classification for the central Lena Delta based on the in-situ vegetation data and a summer 2018 Sentinel-2 acquisition that we optimized on the biomass and wetness regimes. We also produced biomass maps derived from Sentinel-2 at a pixel size of 20 m investigating several techniques. The final biomass product for the central Lena Delta shows realistic spatial patterns of biomass distribution, and also showing smaller scale patterns. However, patches of high shrubs in the tundra landscape could not spatially be resolved by all of the landscape-level land cover and biomass remote sensing products.

Biomass is providing the magnitude of the carbon flux, whereas stand age is irreplaceable to provide the cycle rate. We found that high disturbance regimes such as floodplains, valleys, and other areas of thermo-erosion are linked to high and rapid above ground carbon fluxes compared to low disturbance on Yedoma upland tundra and Holocene terraces with decades slower and in magnitude smaller above ground carbon fluxes.

How to cite: Heim, B., Shevtsova, I., Kruse, S., Herzschuh, U., Buchwal, A., Rachlewicz, G., and Bartsch, A.: Landscape-level remote sensing for upscaling of land cover, above ground biomass and above ground carbon fluxes in the Lena River Delta (Northern Yakutia, Russia), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13497, https://doi.org/10.5194/egusphere-egu21-13497, 2021.

Increased industrial development in the Arctic has led to a rapid expansion of infrastructure in the region. Past research shows that infrastructure in the form of roads, pipelines and various building types impacts the surrounding landscape directly and indirectly by changing vegetation patterns, locally increasing ground temperatures, changing the local hydrology, introducing road dust into the natural environment, and affecting the distribution and timing of seasonal snow cover. Localized impacts of infrastructure on snow distribution and snow melt timing and duration feedbacks into the coupled Arctic system causing a series of cascading effects that remain poorly understood.  In this study, we quantify spatial and temporal patterns of snow-off dates in the Prudhoe Bay Oilfields (PBO), North Slope, Alaska using multispectral remote sensing data from the Sentinel-2 constellation. The Sentinel-2 satellite constellation provides good spatial and temporal coverage of Arctic regions with adequate spatial resolution to quantify and monitor infrastructure impacts on the natural environment in polar regions. We derive the Normalized Difference Snow Index (NDSI) to quantify the presences and absences of snow on a pixel-by-pixel basis between 2015 and 2020. Additional indices, like the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) were derived to understand linkages between patterns in vegetation and surface hydrology, respectively, to patterns in snow-off dates that are influenced by the presence and type of infrastructure on a regional basis at PBO. Newly available infrastructure data sets derived from Sentinel-1 and 2 data were employed to quantify differences in snow melt patterns in relation to distance to roads and other types of infrastructure. Near-surface ground temperature measurements from multiple transects oriented in a perpendicular direction from the road up to 100 m provided ground-truth observations for snow-off timing derived from the remote sensing analysis. Our results from the regional remote sensing analysis show a relationship between snow-off date and distance to different types of infrastructure that vary by their use and traffic load during the snowmelt period as well as their orientation relative to the prevailing wind direction. Results from field data observations indicate that the early onset of snowmelt near heavily traveled infrastructure corridors impacts near-surface soil freezing degree days, vegetation productivity, and waterbody surface cover.

How to cite: Bergstedt, H., Jones, B., Walker, D., Pierce, J., Bartsch, A., and Pointner, G.: Quantifying the spatial and temporal influence of infrastructure on seasonal snow melt timing and its influence on vegetation productivity and early season surface water cover in the Prudhoe Bay Oilfields, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10296, https://doi.org/10.5194/egusphere-egu21-10296, 2021.

EGU21-15639 | vPICO presentations | CR7.2

Facilitating rain-on-snow detection with satellite data

Annett Bartsch

Rain-on-snow modifies snow properties and can lead to the formation of ice crusts which impact wildlife and also vegetation. Events in the Arctic have been recently linked to specific sea ice conditions (longer open water season) for Siberia. Specifically microwave satellite data have been shown applicable for identification of such events across the Arctic. Related snow structure changes can be observed specifically over Scandinavia, northern European Russia and Western Siberia as well as Alaska (Bartsch, 2010). Events which had severe impacts for reindeer herder herding have occurred several times in the last two decades.

Challenges further include the categorization of severity of events and attribution of observations to rain-on-snow events.

Calibration and validation of detection schemes have been largely based on indirect measures. Usually a combination of air temperature and snow height measurements, supported by reports of such events are analysed.

In this presentation, the utility of current calibration and validation approaches are discussed. Requirements towards in situ data from the viewpoint of satellite based retrievals are outlined.

Bartsch, A. Ten Years of SeaWinds on QuikSCAT for Snow Applications. Remote Sens. 2010, 2, 1142-1156.

How to cite: Bartsch, A.: Facilitating rain-on-snow detection with satellite data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15639, https://doi.org/10.5194/egusphere-egu21-15639, 2021.

CC BY 4.0