Content:

GI – Geosciences Instrumentation & Data Systems

GI1.1 – Open session on geoscience instrumentation and methods

EGU21-1107 | vPICO presentations | GI1.1

An improved analytical method for Re-Os isotope analysis and its application to GSJ geochemical reference materials, JCu-1 and JZn-1

Mizuki Ogasawara, Junichiro Ohta, Mizuki Ishida, Moei Yano, Kazutaka Yasukawa, and Yasuhiro Kato

The Re-Os isotope system is an effective tool in geological studies, especially in radiometric dating. Since both Re and Os are highly siderophile and chalcophile elements, they tend to be concentrated in various sulfide minerals. Therefore, the Re-Os geochronology has been employed for direct age determination of sulfide mineralization [1, 2]. However, conventional analytical methods for the Re-Os dating are complex and consume much time and cost.

Here we present an improved analytical method for Re-Os in sulfides combined with acid digestion using HClO4 [3] and sparging introduction of Os [4]. In our method, 0.4 g of powdered sulfide was digested by 1 mL of HClO4 in addition to 4 mL of inverse aqua regia in Carius tube, and then the Re and Os isotope ratios were measured by MC-ICP-MS. We applied this method to the GSJ geochemical reference materials JCu-1 (copper ore from Kamaishi mine, northeastern Japan) and JZn-1 (zinc ore from Kamioka mine, central Japan). The Re-Os concentrations of JCu-1 and JZn-1 were 255-280 ppt and 4622-4828 ppt for Re, and 39.7-41.7 ppt and 21.7-30.0 ppt for Os, respectively. Furthermore, the analytical results (Re-Os concentrations, 187Os/188Os, and 187Re/188Os) of separated chalcopyrite from Kamaishi mine showed good agreements with those by the conventional method digesting 0.5 g of sample by 10 mL of inverse aqua regia and measured with N-TIMS.

The new method, using less total volume of acids for sample digestion, enables MC-ICP-MS analysis of sulfides with relatively lower Re and Os concentrations. In addition, for Os isotopes, a sparging method using MC-ICP-MS [4] can be utilized as a simplified analytical procedure. This simplified and improved method may be useful for dating a wider range of sulfide deposits efficiently.

 

1: Nozaki, T. et al. (2013) Sci. Rep. 3, 1889.

2: Kato, Y. et al. (2009) Earth Planet. Sci. Lett., 278, 40-49.

3: Gao, B. et al. (2019) Microchem. J. 150, 104165.

4: Nozaki, T. et al. (2012) Geostand. Geoanal. Res. 36, 131-148.

How to cite: Ogasawara, M., Ohta, J., Ishida, M., Yano, M., Yasukawa, K., and Kato, Y.: An improved analytical method for Re-Os isotope analysis and its application to GSJ geochemical reference materials, JCu-1 and JZn-1, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1107, https://doi.org/10.5194/egusphere-egu21-1107, 2021.

EGU21-1523 | vPICO presentations | GI1.1

From Point Clouds to Surfaces: Overview on a Case Study

Kacper Pluta and Gisela Domej

The process of transforming point cloud data into high-quality meshes or CAD objects is, in general, not a trivial task. Many problems, such as holes, enclosed pockets, or small tunnels, can occur during the surface reconstruction process, even if the point cloud is of excellent quality. These issues are often difficult to resolve automatically and may require detailed manual adjustments. Nevertheless, in this work, we present a semi-automatic pipeline that requires minimal user-provided input and still allows for high-quality surface reconstruction. Moreover, the presented pipeline can be successfully used by non-specialists and only relies commonly available tools.

Our pipeline consists of the following main steps: First, a normal field over the point cloud is estimated, and Screened Poisson Surface Reconstruction is applied to obtain the initial mesh. At this stage, the reconstructed mesh usually contains holes, small tunnels, and excess parts – i.e., surface parts that do not correspond to the point cloud geometry. In the next step, we apply morphological and geometrical filtering in order to resolve the problems mentioned before. Some fine details are also removed during the filtration process; however, we show how these can be restored – without reintroducing the problems – using a distance guided projection. In the last step, the filtered mesh is re-meshed to obtain a high-quality triangular mesh, which – if needed – can be converted to a CAD object represented by a small number of quadrangular NURBS patches.

Our workflow is designed for a point cloud recorded by a laser scanner inside one of seven artificially carved caves resembling chapels with several niches and passages to the outside of a sandstone hill slope in Georgia. We note that we have not tested the approach for other data. Nevertheless, we believe that a similar pipeline can be applied for other types of point cloud data, – e.g., natural caves or mining shafts, geotechnical constructions, rock cliffs, geo-archeological sites, etc. This workflow was created independently, it is not part of a funded project and does not advertise particular software. The case study's point cloud data was used by courtesy of the Dipartimento di Scienze dell'Ambiente e della Terra of the Università degli Studi di Milano–Bicocca.

How to cite: Pluta, K. and Domej, G.: From Point Clouds to Surfaces: Overview on a Case Study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1523, https://doi.org/10.5194/egusphere-egu21-1523, 2021.

EGU21-2510 | vPICO presentations | GI1.1

Correcting position of delayed on-the-go field measurements by optimizing nearest neighbor statistics

Alfonso Gonzalez Jimenez, Yakov Pachepsky, José Luis Gómez Flores, Mario Ramos Rodríguez, and Karl Vanderlinden

On-the-go field measurements of soil and plant characteristics, including yield, are commonplace in current Precision Agriculture applications. Yet, such measurements can be affected by positional inaccuracies that result from equipment configuration or operation characteristics (e.g. GPS antenna position with respect to sensor position) and delays in the data transmission, reception or logging. The resulting time and position lags cause a misfit between the measurements and their attributed GPS position.

In order to compensate for this effect a simple coordinate translation along the measurement direction is proposed, depending on the local velocity and a field- and measurement configuration-specific time lag, which is estimated by minimizing the average absolute difference between the nearest neighbors. The correction procedure is demonstrated using electromagnetic induction data with different spatial configurations and by comparing
variograms for corrected and non-corrected data.


Best results are obtained when overlapping measurements are available, obtained in opposite driving directions, while the worst results are found when no overlapping measurements exist or only those corresponding to headland turns. Further improvements in the nearest neighbor search algorithm, e.g. by imposing the search in adjacent measurement swaths are discussed. The results are valid beyond motorized soil sensing applications.

Acknowledgement
This work is funded by the Spanish State Agency for Research through grant PID2019-104136RR-C21 and by IFAPA/FEDER through grant AVA2019.018.

How to cite: Gonzalez Jimenez, A., Pachepsky, Y., Gómez Flores, J. L., Ramos Rodríguez, M., and Vanderlinden, K.: Correcting position of delayed on-the-go field measurements by optimizing nearest neighbor statistics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2510, https://doi.org/10.5194/egusphere-egu21-2510, 2021.

EGU21-4112 | vPICO presentations | GI1.1

A dual-tube sampling technique for snowpack studies

Remi Dallmayr, Johannes Freitag, Maria Hörhold, Thomas Laepple, Johannes Lemburg, Damiano Della Lunga, and Frank Wilhelms

The validity of any glaciological paleo proxy used to interpret climate records is based on the level of understanding of their transfer from the atmosphere into the ice sheet and their recording in the snowpack. Large spatial noise in snow properties is observed, as the wind constantly redistributes the deposited snow at the surface routed by the local topography. To increase the signal-to-noise ratio and getting a representative estimate of snow properties with respect to the high spatial variability, a large number of snow profiles is needed. However, the classical way of obtaining profiles via snow-pits is time and energy-consuming, and thus unfavourable for large surface sampling programs. In response, we present a dual-tube technique to sample the upper metre of the snowpack at a variable depth resolution with high efficiency. The developed device is robust and avoids contact with the samples by exhibiting two tubes attached alongside each other in order to (1) contain the snow core sample and (2) to access the bottom of the sample, respectively. We demonstrate the performance of the technique through two case studies in East Antarctica where we analysed the variability of water isotopes at a 100 m and 5 km spatial scales.

How to cite: Dallmayr, R., Freitag, J., Hörhold, M., Laepple, T., Lemburg, J., Della Lunga, D., and Wilhelms, F.: A dual-tube sampling technique for snowpack studies, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4112, https://doi.org/10.5194/egusphere-egu21-4112, 2021.

EGU21-6055 | vPICO presentations | GI1.1

RS41 GRUAN Data Product Version 1 (RS41-GDP.1) - Reference Radiosonde Data for the Troposphere and Lower Stratosphere

Michael Sommer, Christoph von Rohden, Tzvetan Simeonov, and Ruud Dirksen

One of the main goals of the GCOS Reference Upper Air Network (GRUAN) is to perform reference observations of profiles of atmospheric temperature, humidity and wind for monitoring climate change. Two essential criteria for establishing a reference observation are measurement-traceability and the availability of measurement uncertainties. Radiosoundings have proven valuable in providing in-situ profiles of temperature, humidity, pressure and wind at unmatched vertical resolution. Data products from commercial radiosondes often rely on black-box or proprietary algorithms, which are not disclosed to the scientific user. Furthermore, long-term time-series from these products are frequently hampered by changes in the hardware and/or the data processing.

The GRUAN data products (GDP’s) comply with the above-mentioned criteria for a reference product. Correction algorithms are open-source and well documented and the data include vertically resolved best estimates of the uncertainties. Another major advantage of a GRUAN data product is that it includes the radiosonde’s raw measurement data, which allows for reprocessing when new or improved corrections become available. Currently, GDP’s are available for the Vaisala RS92 and Meisei RS-11G radiosondes. Data products for additional radiosonde models, as well as for other measurement techniques are in the making. The GDP’s are used to determine trends, constrain and calibrate data from more spatially‐comprehensive observing systems (including satellites and current radiosonde networks), and provide appropriate data for studying atmospheric processes.

This presentation introduces the GRUAN processing of Vaisala RS41 radiosoundings, the correction algorithms that are applied, and the derivation of the vertically resolved uncertainty estimates. Well-known, dominant error sources for the RS41 profiles are related to solar radiation, causing a temperature error, and time-lag of the humidity sensor at low temperatures. The corrections for these error sources are based on dedicated experiments that were performed at Lindenberg observatory to measure the response of the RS41 temperature sensor to solar irradiance and to determine the time-lag of the humidity sensor at temperatures down to -70 °C. The RS41-GDP.1 is planned to become available in 2021. The majority of the 30, globally distributed, GRUAN sites employ the RS41, and its predecessor the RS92 before, establishing a continuous data record of more than 10 years of reference climate observations.

How to cite: Sommer, M., von Rohden, C., Simeonov, T., and Dirksen, R.: RS41 GRUAN Data Product Version 1 (RS41-GDP.1) - Reference Radiosonde Data for the Troposphere and Lower Stratosphere, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6055, https://doi.org/10.5194/egusphere-egu21-6055, 2021.

EGU21-6646 | vPICO presentations | GI1.1

Low-cost sensor network in remote alpine environments

Federico Dallo, Daniele Zannoni, Jacopo Gabrieli, Paolo Cristofanelli, Francescopiero Calzolari, Fabrizio de Blasi, Andrea Spolaor, Dario Battistel, Rachele Lodi, Warren R. L. Cairns, Ann Mari Fjæraa, Paolo Bonasoni, Fred Bauman, and Carlo Barbante

We present the results obtained using an original open-source low-cost sensor (LCS) system developed to measure tropospheric O3 in a remote high altitude alpine site. We conducted our study at the Col Margherita Observatory (2543 m a.s.l.), a World Meteorological Organization Global Atmosphere Watch Regional Station (WIGOS Id: 0-380-0-MRG), located in the Italian Eastern Alps. The sensing system mounts three equivalent commercial low-cost sensors that have been calibrated using a laboratory standard (Thermo 49iPS), referenced to the Standard Reference Photometer #15 calibration scale by the WMO, before field deployment. Intra and inter-comparison between sensors and reference (Thermo 49c) have been conducted for six months from May to December 2018. The sensor’s dependence on the environmental meteorological variables has been considered and discussed. The evaluation of the analytical performances of this sensing system provides a limit of detection < 5 ppb, limit of quantitation < 17 ppb, linear dynamic range up to 250 ppb, intra-Pearson correlation coefficient (PCC) up to 0.96, inter-PCC > 0.8, bias > 3.5 ppb and ±8.5 at 95% of confidence. Thanks to the first implementation of an LCS System in an alpine site, we demonstrated how it is possible to obtain valuable data from a low-cost instrument in a remote harsh environment. This opens new perspectives for the adoption of a low-cost sensor network in atmospheric sciences. We further present our recent experience using LoRa to integrate the sensing system into a low-power wide-area network (LPWAN). We developed an end-node and a gateway, designing PCBs derived from the Arduino Mega, optimizing their power consumption and equipping them with batteries, a proper solar panel or wind turbine to ensure their autonomy while collecting environmental ozone and meteorological (T, RH, WS, WD) data. We drafted the communication software to send compressed data from end-nodes to gateways. The gateways are part of an openVPN with the main server located in Venice. The server also provides a postgreSQL database and a R-shiny web application for data visualization and manipulation. To enhance redundancy, the local data are also synchronized to a cloud database. In the next years, thanks to the Marie Skłodowska-Curie grant PIONEER, we will exploit our experiences to provide a comprehensive low-cost wireless sensor network to characterize transport of polluted air masses and provide long term climate data collection in support of the state-of-the-art instrumentation and established networks in remote alpine areas.

Bibliography

Dallo F. et al.: Calibration and assessment of electrochemical low-cost sensors in remote alpine harsh environments, Atmospheric Measurement Techniques, amt-2020-483. In review

Acknowledgements. This work was part of the Arctic Field Grant O3NET project, funded by the Research Council of Norway. The work received financial support by the National Project of Interest Next-Data (MIUR). The exploitation of the LoRa technology was performed with the ITIS "Max Planck" through the Remote Observatory SYstem (ROSY) "Alternanza scuola-lavoro" project. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 844526

How to cite: Dallo, F., Zannoni, D., Gabrieli, J., Cristofanelli, P., Calzolari, F., de Blasi, F., Spolaor, A., Battistel, D., Lodi, R., Cairns, W. R. L., Fjæraa, A. M., Bonasoni, P., Bauman, F., and Barbante, C.: Low-cost sensor network in remote alpine environments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6646, https://doi.org/10.5194/egusphere-egu21-6646, 2021.

EGU21-6960 | vPICO presentations | GI1.1

Core-CT:  A MATLAB application for the quantitative analysis of sediment and coral cores from X-ray computed tomography (CT) 

Yu Ting Yan, Stephen Chua, Thomas DeCarlo, Philipp Kempf, Kyle Morgan, and Adam Switzer

X-ray computed tomography (CT) is a non-destructive imaging technique that provides three-dimensional (3D) visualisation and high-resolution quantitative data in the form of CT numbers. CT numbers are derived as a function of the X-ray energy, effective atomic number and density of the sample. The sensitivity of the CT number to changes in material density allows it to successfully identify facies changes within sediment cores by detecting downcore shifts in sediment properties, and quantify skeletal linear extension rates and the volume of internal voids from biological erosion of coral cores. Here we present two algorithms to analyse CT scan images specific to geoscience research packaged within an open source MATLAB application (Core-CT). The first algorithm facilitates the computation of representative CT numbers from a user-defined region of interest to identify boundaries of density change (e.g. sedimentary facies, laminations, coral growth bands). The second algorithm enables the segmentation of regions with major density contrast (e.g. internal void space or biogenic material) and the geometric measurements of these irregularities. The versatility of Core-CT for geoscience applications is then demonstrated by utilising CT scans from a range of environmental settings comprising both sediment (Lake Huelde, Chile and Kallang River Basin, Singapore) and coral cores (Thuwal region of Red Sea, Saudi Arabia). Analysis of sediment cores show the capabilities of Core-CT to: 1) locate tsunami deposits from lacustrine sediments, 2) provide rapid and detailed measurement of varved sediments, and 3) identify sedimentary facies from an unsplit shallow marine sediment core. Analysis of coral cores allow us to successfully measure skeletal linear extension from annual growth bands, and provide volumetric quantification and 3D visualisation of internal bioerosion. Core-CT is an accessible, multi-use MATLAB based program that is freely available at GitHub  (https://github.com/yuting-yan/Core-CT).

 

How to cite: Yan, Y. T., Chua, S., DeCarlo, T., Kempf, P., Morgan, K., and Switzer, A.: Core-CT:  A MATLAB application for the quantitative analysis of sediment and coral cores from X-ray computed tomography (CT) , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6960, https://doi.org/10.5194/egusphere-egu21-6960, 2021.

EGU21-7984 | vPICO presentations | GI1.1

Innovative software solutions for subsea positionings

Pierre-Yves Morvan and Gary Bagot

Improving operational efficiency is a recurring challenge for subsea operations. Throughout the life of a field, from construction up to decommissioning, several subsea vehicles will be deployed to cover various tasks to perform underwater observations. An ROV or AUV assigned to a specific task will require multiple positioning sensors (LBL, USBL, INS…) to complete its mission. Defining the “good enough” subsea positioning strategy, i.e. to ensure a minimum accuracy without compromise on safety, can be a complex exercise. For instance, an overestimation of the LBL transponders required will directly induce vessel time and finally costly operations. On the other hand, a certain level of positioning redundancy may be requested for a vehicle operating close to a subsea asset in production.

To ease the design and monitoring of a subsea vehicle navigation, iXblue has developed an integrated solution. Not only has the company broadened its product range with the new intelligent Canopus LBL Transponder and the new generation Ramses transceiver, but with Delph Subsea Positioning Software, iXblue now provides a complete integrated solution for subsea positioning that goes a step further by bringing significant efficiency. Divided in 4 modules (LBL Array Planning, Navigation Simulation, Operations, DelphINS) with an intuitive user interface, Delph Subsea Positioning (DSP) is an integrated software suite for the preparation, the operation and the post-processing of iXblue positioning devices (USBL, LBL and INS).

How to cite: Morvan, P.-Y. and Bagot, G.: Innovative software solutions for subsea positionings, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7984, https://doi.org/10.5194/egusphere-egu21-7984, 2021.

EGU21-8624 | vPICO presentations | GI1.1

Investigations based on biaxial tiltmeter array and uniaxial hydrostatic levelling system at the Mont Terri rock laboratory

Dorothee Rebscher, Yves Guglielmi, Inma Gutierrez, Edi Meier, and Senecio Schefer

In order to enable investigations and further comprehensive understanding of dynamical processes, it is clear one has to identify all relevant parameters and aim to record them all under best conditions concerning e.g. resolution, coverage in space, and in many cases on a multitude of scales in time. Obviously, it is also difficult to satisfy all these constrains in full. Especially scientific long-term observations often suffer the lack of necessary lasting commitment; secure funding, continual high quality maintenance, protected environment, or sufficient planning stability. Fortunately, the Swiss Mont Terri rock laboratory, with its history of now 25 years of forefront scientific expertise, a long-standing fruitful cooperation formed by the partners of the consortium and in consequence thereof state-of-the-art results obtained through 100 completed individual experiments and 45 additional experiments actually ongoing, ensures the conditions listed above.

Based on this favorable prospect, a now growing tiltmeter array is established at the underground laboratory. The instruments are embedded in several multidisciplinary experiments, dedicated to numerous, different scientific questions. Starting in April 2019, the first two platform tiltmeters became operational. Less than two years later, ten biaxial instruments are quasi-continuously monitoring deformation at various locations within the galleries and niches at Mont Terri. The envisioned, increasing spatial coverage of the network will facilitate geodetic observations of the underground rock laboratory as a whole and of its subregions as well.

Already in September 2012, a 50 m long hydrostatic levelling system (HLS) was installed along a gallery in the underground laboratory to detect displacements across an active geological fault zone. The combination of both, i.e. the uniaxial, integral deformations data provided by HLS together with the array of biaxial, point measurements acquired by the tiltmeters offers a unique concerted opportunity to achieve detailed deformation data in a large underground rock laboratory and to survey the associated dynamical processes occurring on timeframes covering seconds to decades.

How to cite: Rebscher, D., Guglielmi, Y., Gutierrez, I., Meier, E., and Schefer, S.: Investigations based on biaxial tiltmeter array and uniaxial hydrostatic levelling system at the Mont Terri rock laboratory, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8624, https://doi.org/10.5194/egusphere-egu21-8624, 2021.

EGU21-9287 | vPICO presentations | GI1.1

A Novel Approach for a better exploitation of a 3D seismic on a development field 

Nasrine Medjdouba, Zahia Benaissa, and Sabiha Annou

The main hydrocarbon-bearing reservoirover the study area is the lower Triassic Argilo-Gréseux reservoir. The Triassic sand is deposited as fluvial channels and overbank sands with a thickness ranging from 10 to 20 m, lying unconformably on the Paleozoic formations. Lateral and vertical distribution of the sand bodies is challenging which makes their mapping very difficult andnearly impossible with conventional seismic analysis. 

In order to better define the optimum drilling targets, the seismic attribute analysis and reservoir characterization process were performed targeting suchthin reservoir level, analysis of available two seismic vintages of PSTM cubes as well as post and pre stack inversion results were carried out.The combination of various attributes analysis (RMS amplitude, Spectral decomposition, variance, etc.) along with seismic inversion results has helped to clearly identify the channelized feature and its delineation on various horizon slices and geobodies, the results were reviewed and calibrated with reservoir properties at well location and showed remarkable correlation.

Ten development wells have been successfully drilledbased on the seismic analysis study, confirming the efficiency of seismic attribute analysis to predicted channel body geometry.

Keywords: Channel, Attributes, Amplitude, Inversion, Fluvial reservoir.

How to cite: Medjdouba, N., Benaissa, Z., and Annou, S.: A Novel Approach for a better exploitation of a 3D seismic on a development field , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9287, https://doi.org/10.5194/egusphere-egu21-9287, 2021.

EGU21-9793 | vPICO presentations | GI1.1

Digital zenith camera VESTA and its applications

Inese Varna, Ansis Zarins, and Augusts Rubans

The portable digital zenith camera (DZC) VESTA (VErtical by STArs) determines the deflection of vertical (DoV) components as the difference between the direction to the ellipsoidal zenith (calculated from reference star observations, fixing precise time moment and site coordinates) and the direction of the plumb line, which is determined with a sensitive tiltmeter. DZC VESTA was developed at the University of Latvia and has been used extensively for the determination of the Latvian quasi-geoid model since 2016. The typical accuracy of VESTA is ~0.1 arc second.

Unlike levelling, relative gravimetry or GNSS measurements, the method used by the zenith camera determines DoV directly, allowing validation of data from other geodetic techniques, for example, DZCs are used for geoid slope validations.

Currently, the focus is on further improving the accuracy of the digital zenith camera. Investigation of the limiting factors to achieve the highest accuracy for applied and scientific applications includes:

  • testing the digital zenith camera in different environments to investigate and mitigate the phenomenon of anomalous refraction at zenith; anomalous refraction is the main limiting factor of ground-based astrometric observation’s precision, as it causes irregular angular displacements of the observed stars. The proposed tests include more thorough long-term observations to search for the anomalous refraction properties at multiple test sites (such as near the seacoast, on a hill slope, in a forest, in an open field, covering a wide range of environmental conditions) under different weather conditions. Simultaneous observations with several adjacent DZCs would be an efficient method to distinguish instrument-related variations from changes in the measured quantity itself and to find the spatial properties of the anomalous refraction effects.
  • performing accuracy analysis in a permanent test site to esti­mate the spatial and temporal properties of the measured DoV values. Astrogeodetic determination of DoVs is an absolute observational technique, and any undetected systematic errors remain in the data. Various instrumental settings will be tested during the observations.

However, digital zenith cameras are not limited to geodetic applications; there are other ideas for possible fields of application:

  • research focusing on applications in a geological survey;
  • monitoring of changes in mass distribution in the Earth's crust in case of active tectonic movements.

These areas of geoscience would benefit from an additional measurement technique that complements the traditional method of relative gravimetry.

This research is funded by PostDoc Latvia grant contract No. 1.1.1.2/VIAA/4/20/666.

How to cite: Varna, I., Zarins, A., and Rubans, A.: Digital zenith camera VESTA and its applications, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9793, https://doi.org/10.5194/egusphere-egu21-9793, 2021.

EGU21-9848 | vPICO presentations | GI1.1

The tilt and strainmeter network of NE Italy: multi-decadal observations of crustal deformation as ground truth for DinSAR.

Carla Braitenberg, Alberto Pastorutti, Barbara Grillo, and Marco Bartola

Decade-long series of tilt- and strain-meter observations in NE Italy allow monitoring the crustal deformation from short transient to long-term phenomena. These recordings, some of them started in 1960, are generated by sources spanning a wide spectrum of spatial scales, such as sudden underground flooding due to extreme rainfall [1, 2], years-long fluid diffusion transients due to fault behavior [3], the free oscillation arising from megathrust earthquakes (e.g. Chile 1960, Sumatra 2004, Tohoku 2011).
The instrumental sites lie on karst formations, in an area of continental collision and active seismicity, the northeastern portion of the Adria microplate, where the south-directed thrusts of the Alpine system merge with the NW-SE transpressive regime of the External Dinarides. Measurements include the ongoing interseismic strain accumulation processes, including the peculiar observation of episodic disturbances and southward tilting in the three years preceding the 1976 Mw6.4 Friuli earthquake [4].

The channel systems of Karst hydrology, which undergo complete flooding and overpressure buildup in extremely short time spans (e.g. near-simultaneous flooding over a distance of 30 km) result in observable surface deformation and a change in the gravity field. Tilt time series allow to extract and model this type of hydrology-forced uplift and associated deformation [2,5].

Tilt- and strain-meters allow for accuracy and precision in measuring crustal deformation, to a level which space-borne geodesy cannot provide. The main drawback, however, is that only point measurements are provided, in locations where stations could be set up.
On the other hand, the thousands of points on the surface that DInSAR can provide are affected by coarser accuracy and influenced by atmospheric effects - resulting in LoS displacements uncorrelated to the actual surface deformations. We aim at enabling the transfer of knowledge from tilt- and strain-meters observations to DInSAR-derived data, thus allowing a first assessment of ground-truth constrained displacement models.

[1] Braitenberg C. (2018). The deforming and rotating Earth - A review of the 18th International Symposium on Geodynamics and Earth Tide, Trieste 2016 , Geodesy and Geodynamics, 187-196, doi::10.1016/j.geog.2018.03.003

[2] Braitenberg C., Pivetta T., Barbolla D. F., Gabrovsek F., Devoti R., Nagy I. (2019). Terrain uplift due to natural hydrologic overpressure in karstic conduits. Scientific Reports, 9:3934, 1-10, doi.:10.1038/s41598-019-38814-1

[3] Rossi, G., Fabris, P. & Zuliani, D. Overpressure and Fluid Diffusion Causing Non-hydrological Transient GNSS Displacements. Pure Appl. Geophys. 175, 1869–1888 (2018). https://doi.org/10.1007/s00024-017-1712-x

[4] Dragoni M., Bonafede M., and Boschi E. (1985). On the interpretation of slow ground deformation precursory to the 1976 Friuli earthquake. Pure and Applied Geophysics 122, 781–792. doi:10.1007/978-3-0348-6245-5_3

[5] Grillo B., Braitenberg C., Nagy I., Devoti R., Zuliani D., Fabris P. (2018). Cansiglio Karst-Plateau: 10 years of geodetic-hydrological observations in seismically active northeast Italy. Pure and Applied Geophysics, 175, 5, 1765-1781, doi:10.1007/s00024-018-1860-7.

 

How to cite: Braitenberg, C., Pastorutti, A., Grillo, B., and Bartola, M.: The tilt and strainmeter network of NE Italy: multi-decadal observations of crustal deformation as ground truth for DinSAR., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9848, https://doi.org/10.5194/egusphere-egu21-9848, 2021.

EGU21-9974 | vPICO presentations | GI1.1

Spectral X-ray computed micro tomography: a tool for 3-dimensional chemical imaging

Jonathan Sittner, Margarita Merkulova, Jose Ricardo da Assuncao Godinho, Axel Renno, Veerle Cnudde, Marijn Boone, Thomas De Schryver, Denis Van Loo, Antti Roine, Jussi Liipo, Bradley Martin Guy, and Stijn Dewaele

Image-based analytical tools in geosciences are indispensable for the characterization of minerals, but most of them are limited to the surface of a polished plane in a sample and lack 3D information. X-ray micro computed tomography (micro CT) provides the missing 3D information of the microstructures inside samples. However, a major drawback of micro CT in the characterization of minerals is the lack of chemical information that makes mineral classification challenging.

Spectral X-ray micro computed tomography (Sp-CT) is a new and evolving tool in different applications such as medicine, security, material science, and geology. This non-destructive method uses a multi-pixel photon-counting detector (PCD) such as cadmium telluride (CdTe) in combination with a conventional CT scanner (TESCAN CoreTOM) to image a sample and detect its transmitted polychromatic X-ray spectrum. Based on the spectrum, elements in a sample can be identified by an increase in attenuation at specific K-edge energies. Therefore, chemically different particles can be distinguished inside a sample from a single CT scan. The method is able to distinguish elements with K-edges in the range from 25 to 160 keV, which applies to elements with Z > 48 (Sittner et al., 2020).

We present results from various sample materials. Different pure elements and element oxides were measured to compare the position of theoretical and measured K-edge energies. All measured K-edge energies are slightly above the theoretical value, but based on the results a correction algorithm could be developed. Furthermore, different monazite grains were investigated, which can be divided into two groups with respect to the content of different RE elements on the basis of the spectrum: La-Ce-rich and La-Ce-poor. In addition, samples from the Au-U Witwatersrand Supergroup demonstrate the potential applications of Sp-CT for geological samples. We measured different drill core samples from the Kalkoenkrans Reef at the Welkom Gold field. Sp-CT can distinguish gold, uraninite and galena grains based on their K-edge energies in the drill core without preparation.

Sittner, J., Godinho, J. R. A., Renno, A. D., Cnudde, V., Boone, M., De Schryver, T., Van Loo, D., Merkulova, M., Roine, A., & Liipo, J. (2020). Spectral X-ray computed micro tomography: 3-dimensional chemical imaging. X-Ray Spectrometry, September, 1–14.

How to cite: Sittner, J., Merkulova, M., Godinho, J. R. D. A., Renno, A., Cnudde, V., Boone, M., De Schryver, T., Van Loo, D., Roine, A., Liipo, J., Guy, B. M., and Dewaele, S.: Spectral X-ray computed micro tomography: a tool for 3-dimensional chemical imaging, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9974, https://doi.org/10.5194/egusphere-egu21-9974, 2021.

EGU21-11168 | vPICO presentations | GI1.1

Spectral method for processing hydromagnetic survey data at shallow depths

Kirill Kuznetsov, Kiryukhina Elena, Bulychev Andrey, and Lygin Ivan

Magnetic surveys are commonly used for solving variety of geotechnical and geological challenges in offshore areas, jointly with a set of other geophysical methods. The most popular technique employed is hydromagnetic surveying with towed magnetometers. One of the most significant challenges encountered during processing of the magnetic data is related to temporal variations of the Earth's magnetic field. Accounting for diurnal magnetic field variations is often done by carrying out differential hydromagnetic surveys, a technique developed in the 1980-s. It is based on simultaneous measurements of the magnetic field using two sensors towed behind the vessel with a given separation. This technique allows to calculate along-course gradient which is free of magnetic field temporal variations. This measurement system resembles a gradiometer, with the distance between two sensors being referred to as the base of the gradiometer. It is possible to calculate anomalous magnetic field by integrating obtained magnetic field gradient. Studies have shown that accuracy of its reconstruction decreases with increasing base of the gradiometer. This becomes most significant when distance between the sensors and sources of magnetic field anomalies is small. This situation occur when the survey area is located in shallow water (i.e. for shallow marine, river or lake surveys).

An approach for deriving magnetic anomalies and accounting for diurnal variations in differential hydromagnetic surveys based on the frequency (spectral) representation of the measurements was proposed in 1987 [Melikhov, 1987]. This approach utilizes the fact that it is possible to reconstruct the spectrum of magnetic field anomalies along the vessel course from the spectra of measured signals from the first S1(ω) and second S2(ω) sensors. Assuming that the sensors are located at the same depth, it can be achieved via the following transform:

where ω - spatial frequency, l - base of the gradiometer, and i - imaginary unit. Assuming that at a single moment in time magnetic field variations equally affect both sensors, resulting Fourier spectrum T(ω) will correspond the spectrum of anomalous magnetic field, free of the magnetic variations. It should be noted that, similar to the along-course gradient integration approach, anomalous magnetic field is restored to a certain accuracy level.

Estimates made on model examples showed that accuracy of the field reconstruction using this method is comparable to the accuracy levels of modern marine magnetic surveys (±1-3 nT). It could be noted that for gradiometer bases comparable or larger than depths to magnetic anomaly sources, errors of the field reconstruction are significantly lower for the spectral transformation-based approach compared to along-course gradient integration.

References:

Melikhov V.R., Bulychev A.A., Shamaro A.M. Spectral method for solving the problem of separating the stationary and variable components of the geomagnetic field in hydromagnetic gradiometric surveys // Electromagnetic research. - Moscow. IZMIRAN, 1987. - P. 97-109. (in Russian)

 

How to cite: Kuznetsov, K., Elena, K., Andrey, B., and Ivan, L.: Spectral method for processing hydromagnetic survey data at shallow depths, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11168, https://doi.org/10.5194/egusphere-egu21-11168, 2021.

EGU21-12116 | vPICO presentations | GI1.1

Improvement of high resolution measurements of neodymium isotope compositions to reconstruct past ocean circulation

Eva M. Rückert, Julius Förstel, and Norbert Frank

Palaeoceanographic studies of ocean circulations are crucial for understanding the ocean´s impact on the Earth´s climate system. Circulation patterns and the provenance of water masses can be detected from temporal variations of the neodymium isotopic composition (εNd) of authigenic neodymium, preserved in deep sea sediment.

Inductively coupled plasma source mass spectrometry allows for the precise and accurate determination of εNd-values of samples and reference material.

Here, we reevaluate the mass spectrometric measurement protocol and instrument setting with respect to precision and accuracy defined by neodymium standards.

The shape of the ion beam plays a crucial role, which is manifested in the result that an optimal adjustment of the beam shaping quadrupoles can increase precision by a factor of 4.

In addition, the optimal standard neodymium concentration level is roughly 50 ppb yielding uncertainties of the mean of repeated measurements as low as 0.07 ε units whereas 5 times lower concentrations yield 10 times higher uncertainties.

The statistical nature of precision is further demonstrated through an uncertainty inversely proportional to the square root of N measurements. As a consequence, with an increase from 30 to 80 consecutive measurements precision was improved by a factor of 1.22.

Taking all evaluated aspects into account, precision and accuracy of standards and thus sediment samples can be strongly improved, hence contributing to a better comprehension of past ocean circulation, where neodymium isotope gradients are small.

How to cite: Rückert, E. M., Förstel, J., and Frank, N.: Improvement of high resolution measurements of neodymium isotope compositions to reconstruct past ocean circulation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12116, https://doi.org/10.5194/egusphere-egu21-12116, 2021.

EGU21-12735 | vPICO presentations | GI1.1

Intercomparison of the Vaisala RS92 and RS41 Radiosonde GRUAN Data Products (GDP) in the Troposphere and Lower Stratosphere

Tzvetan Simeonov, Ruud Dirksen, Christoph von Rohden, and Michael Sommer

The GCOS Reference Upper Air Network (GRUAN) consists of 30 globally distributed measurement sites that provide reference observations of essential climate variables such as temperature and water vapour for climate monitoring. At these sites, radiosondes provide in-situ profiles of temperature, humidity and pressure at high vertical resolution. However, data products from commercial radiosondes often rely on black-box or proprietary algorithms, which are not disclosed to the scientific user. Furthermore, long-term time-series from these products are frequently hampered by changes in the hardware and/or the data processing. Therefore, GRUAN data products (GDP) are developed, that employ open-source and well-documented corrections to the measured data, thereby complying with the requirements for reference data, which include measurement traceability and the availability of measurement uncertainties. The GRUAN data processing is applied to the raw measurement data of temperature, humidity, pressure, altitude, and wind, and includes corrections of errors from known sources, such as for example solar radiation error for temperature and sensor time lag for humidity measurements. The vertically resolved uncertainty estimates include the uncertainty of the applied corrections and the calibration uncertainty of the sensors.

A substantial number of GRUAN sites employ the Vaisala RS41 radiosonde, and its predecessor, the RS92, before that. This large-scale change of instrumentation poses a special challenge to the network, and great care is taken to characterize the differences between these instruments in order to prevent inhomogeneities in the data records. As part of this effort, the GRUAN data products for both radiosonde types are compared. In this study we used data from approximately 1000 RS92+RS41 twin-soundings (two sondes on a rig attached to one balloon) that were performed at 11 GRUAN sites, covering the main climate zones.

The first analysis shows that daytime temperature differences in the stratosphere increase steadily with altitude, with RS92-GDP up to 0.5 K warmer than RS41-GDP above 25 km. In addition, at daytime the RS41-GDP is 0.2 K warmer than the manufacturer-processed RS41-EDT product above 15 km. Analysis of the humidity profiles shows a slight moist bias of the RS41 compared to the RS92 for both GDP and manufacturer-processed data. Differences between the RS41-EDT and GDP humidity products are most pronounced in the upper troposphere - lower stratosphere region and are attributed to the time lagcorrection. The analysis of the temperature differences will be refined by investigating the influence of the solar radiation in conjunction with sonde orientation and ventilation. Furthermore, the uncertainty of the humidity data will be assessed by comparing with coincident measurements of the water vapor profile by the Cryogenic Frostpoint Hygrometer (CFH).

Key words: Radiosonde, RS41, RS92, humidity, temperature, uncertainty, GRUAN, troposphere, lower stratosphere

How to cite: Simeonov, T., Dirksen, R., von Rohden, C., and Sommer, M.: Intercomparison of the Vaisala RS92 and RS41 Radiosonde GRUAN Data Products (GDP) in the Troposphere and Lower Stratosphere, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12735, https://doi.org/10.5194/egusphere-egu21-12735, 2021.

EGU21-12850 | vPICO presentations | GI1.1

Long-term recordings at the FSU Jena Geodynamic Observatory Moxa (Thuringia, central Germany)

Nina Kukowski, Ronny Stolz, Theo Scholtes, Cornelius Schwarze, and Andreas Goepel

The remote location of the Geodynamic Observatory Moxa of Friedrich-Schiller University Jena, about 30 km south of Jena in the Thuringian slate mountains, results in very low ambient noise and thus very good conditions for long-term geophysical observations, which are further improved, as many sensors are installed in the subsurface in galleries or in boreholes.

So far, the focus of Moxa observatory has been on observing transients signals of deformation and fluid movements in the subsurface. This is accomplished by sensors like a superconducting gravimeter CD-034, three laser strain meters measuring nano-strain along three galleries in north-south, east-west and NW-SE directions, or borehole tiltmeters. Further, information on fluid flow is gained from downhole temperature measurements employing an optical fiber. These sensors are complemented by a climate station and two shallow drill-holes, one of which has been fully cored, which in addition to the temperature times series provide information on water level and rock physical properties. Near surface geophysical profiling using e.g. electrical resistivity tomography has led to a good knowledge of the structurally complex subsurface of the observatory.

Recently, a node for the Global Network of Optical Magnetometers for Exotic physics (GNOME) has been installed in the temperature-stabilized room at Moxa observatory close to the superconducting gravimeter. The GNOME is a world-spanning collaboration employing optically pumped magneto­meters (OPM) to search for space-time correlated transient signatures heralding exotic physics beyond the Standard Model. GNOME is sensitive to prominent classes of dark-matter scenarios, e.g., axion or axion-like particles forming macroscopic structures in the Universe. The installation in close vicinity to the superconducting gravimeter ensures well-controlled and -monitored ambient conditions such as temperature, air pressure and especially vibrations, allowing improved vetoing of false-positive detection events in the Moxa GNOME node.

Here, we focus on introducing Moxa Observatory’s sensor systems with an emphasis of actual sensor configurations and further on highlighting how various information on fluid flow coming from the specific sensors lead to an improved understanding of the direction and magnitude of subsurface fluid flow.

How to cite: Kukowski, N., Stolz, R., Scholtes, T., Schwarze, C., and Goepel, A.: Long-term recordings at the FSU Jena Geodynamic Observatory Moxa (Thuringia, central Germany), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12850, https://doi.org/10.5194/egusphere-egu21-12850, 2021.

EGU21-13053 | vPICO presentations | GI1.1

Joint ESA and NASA Imaging Spectrometer Airborne Campaign to Support CHIME and SBG

Robert Green, Michael Rast, Michael Schaepman, Andreas Hueni, and Michael Eastwood

In 2018 a joint ESA and NASA airborne campaign was orchestrated with the University of Zurich to advance cooperation and harmonization of algorithms and products from imaging spectrometer measurements.  This effort was intended to benefit the future candidate European Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) and NASA Surface Biology and Geology mission. For this campaign, the Airborne Visible/Infrared Imaging Spectrometer Next Generation was deployed from May to July 2018.  Twenty-four study sites were measured across Germany, Italy, and Switzerland.  All measurements were rapidly calibrated, atmospherically corrected, and made available to NASA and ESA investigators.  An expanded 2021 campaign is now planned with goals to: 1) further test and evaluate new state-of-the-art science algorithms: atmospheric correction, etc; 2)  grow international science collaboration in support of ESA CHIME and NASA SBG; 3) test/demonstrate calibration, validation, and uncertainty quantification approaches;  4) collect strategic cross-comparison under flights of space missions: DESIS, PRISMA, Sentinels, etc.  In this paper, we present an overview of the key results from the 2018 campaign and plans for the 2021 campaign.

 

How to cite: Green, R., Rast, M., Schaepman, M., Hueni, A., and Eastwood, M.: Joint ESA and NASA Imaging Spectrometer Airborne Campaign to Support CHIME and SBG, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13053, https://doi.org/10.5194/egusphere-egu21-13053, 2021.

EGU21-13138 | vPICO presentations | GI1.1

Challenges and opportunities from large volume, multi-offset Ground Penetrating Radar data

Dimitrios Angelis, Craig Warren, Nectaria Diamanti, James Martin, and Peter Annan

The most frequently used survey mode for acquiring Ground Penetrating Radar (GPR) data is common offset (CO) – where a single transmitter and receiver pair move along a survey line at a constant (offset) separation distance. This allows rapid and dense data acquisition, and therefore high-resolution large-scale investigations, to be carried out with relative ease, and at relatively low cost. However, it has long been known that multi-offset survey methods, such as common mid-point (CMP) and wide-angle reflection-refraction (WARR), can offer many benefits over CO: detailed subsurface EM wave velocity models; enhanced reflection sections with higher signal-to-noise ratio (SNR); the potential to adapt well-established advanced seismic processing schemes for GPR data [1-2].

Despite the advantages of multi-offset GPR data, these methods have seen limited adoption as, in the past, they required significantly more time, effort, and hence cost, to collect. However, recent advances in GPR hardware, particularly in timing and control technology, have enabled the development of multi-concurrent sampling receiver GPR systems such as the “WARR Machine” manufactured by Sensors & Software Inc. [3-4]. These newly developed GPR systems have the potential to provide all the aforementioned benefits with considerably less effort and therefore reduced survey cost, as they allow for the fast acquisition of multi-offset WARR soundings.

In this work, we look at the challenges and opportunities from collecting and processing multi-offset GPR data. We demonstrate a processing workflow that combines standard GPR processing approaches, with methods adapted from seismic processing, as well as our own algorithms. This processing framework has been implemented into a GUI-based software written in MATLAB [5], and has been tested using both synthetic [6] and real multi-offset GPR data. Some of the specific challenges with multi-offset GPR that we investigate are time zero misalignments, CMP balancing, velocity analysis, and automated velocity picking. We show how addressing these issues can result in improved velocity analysis, and ultimately in improved subsurface velocity models, and stacked sections.

References

[1] Ursin, B., 1983. Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics, 48(8), pp.1063-1081.

[2] Carcione, J. and Cavallini, F., 1995. On the acoustic-electromagnetic analogy. Wave Motion, 21(2), 149-162.

[3] Annan, A. P., and Jackson, S., 2017. The WARR machine. 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR).

[4] Diamanti, N., Elliott, J., Jackson, R. and Annan, A. P., 2018, The WARR Machine: System Design, Implementation and Data: Journal of Environmental & Engineering Geophysics, 23, pp.469-487.

[5] Angelis, D., Warren, C. and Diamanti, N., 2020. A software toolset for processing and visualization of single and multi-offset GPR data. 18th International Conference on Ground Penetrating Radar.

[6] Warren, C., Giannopoulos, A. and Giannakis, I., 2016. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications, 209, pp.163-170.

How to cite: Angelis, D., Warren, C., Diamanti, N., Martin, J., and Annan, P.: Challenges and opportunities from large volume, multi-offset Ground Penetrating Radar data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13138, https://doi.org/10.5194/egusphere-egu21-13138, 2021.

EGU21-13341 | vPICO presentations | GI1.1

Experiences on production - usage reasoned malfunctions & development of  X-ray tubes used in science and their effects on sediment measurements

Dursun Acar, Namık Çagatay, Ş. Can Genç, K. Kadir Eriş, Demet Biltekin, and Nurettin Yakupoğlu

Surface fractures at the filament of X-ray tube increase more with metal fatique or wrong cooling  and heating processes. Fractured filament continue to work as repeating open circuit positions in random times with  turning fully conductive state in short time. We are explaining how open circuit flashes at the filament providing wrong measurement results. Their low voltage electric circuit conductive problems  repeat in milliseconds periods. At  the results, it gives the impression of healthy measurement values. Because that the measured sample absorbs photonic energy and direct it to neighbouring elements in continuous element  electron scattering  circulations , by the way that delayed secondary electron energy scatters hide all electron supply extinctions on the semi broken flament wire and indirect counts  continue by the detector from coming reflection energy. ( real counts are not from exact beam  target of sample surface during energy deprivations , and it is impossible to understand that the measurement is inaccurate because it causes similarity as discrete element counts in sedimentation layers ).  Filament voltage arcs do not warn machine with error reporting systems until to whole ruptured filament touch to anode walls or their far displaced edges of 2 broken filament positioning. Erroneous records take their place in the world of science if the lithology was not followed. We collected faulty measurement data from our experiences for indicate when and  how possible to facing such as events.

For eliminate  explained reasons at above , the tubes must be gently heated and  cooled. Excessive cooling or heating of the tubes or oxid placement and leakeage  at gasget contacts reduces the surface contact areas of the insilators with the corrosion by  condensing water around the rubber insulation gasgets , it causes cooling liquid leakage or increasing humidity at the tube housing block via following serial failures of HV unit such as increasing amounts of the broken tube events. During the replacement of insulating gasgets, enough care should be taken for gasket contact points as oiling  them with  silicone grease as a form of the thin film. High responsibility must be with continuous  result control  and reference correlations on the scientific sample. With this way we can eliminate possible  negative results by malfunctions on measurements.

How to cite: Acar, D., Çagatay, N., Genç, Ş. C., Eriş, K. K., Biltekin, D., and Yakupoğlu, N.: Experiences on production - usage reasoned malfunctions & development of  X-ray tubes used in science and their effects on sediment measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13341, https://doi.org/10.5194/egusphere-egu21-13341, 2021.

EGU21-14085 | vPICO presentations | GI1.1

Overview of the Airborne Phased Array Radar Observing Simulator

Wen-Chau Lee, Jothiram Vivekanandan, Scott Ellis, Kevin Manning, George Bryan, Lou Lussier, Vanda Grubišić, and Bradley Klotz

The proposed airborne phased array radar (APAR) system consists of four removable, dual-polarized, C-band AESAs (Active Electronic Scanning Array) strategically located on the fuselage of the NSF/NCAR C-130. Conceptually, the radar system is divided into the front-end, the backend, and aircraft-specific section with the front-end primarily consisting of AESAs and the signal processor is in the backend. The aircraft specific section includes a power system and a GPS antenna.

As part of the risk reduction of the APAR development, the APAR Observing Simulator (AOS) system has been developed to provide simulated APAR data collection sampled from a C-130 flying by/through realistic numerical weather simulations of high-impact weather events. Given that APAR is designed to extend beyond capabilities of the existing airborne tail Doppler radars (e.g., NOAA TDRs and the retired NSF/NCAR ELDORA), a verification of signal processing software and algorithms is needed before the radar is physically built to ensure that the signal processing software infrastructure can handle high data rates and complicated, multiplex scanning that will be part of normal APAR operations.  Furthermore, several algorithms that will need to ingest large amounts of APAR data at very high rates are under development, including dual-Doppler wind synthesis, radar reflectivity attenuation correction, rain rate estimation, and hydrometeor classification. These algorithms need to be tested and verified before the implementation. 

The AOS will also serve as a planning tool for future Principal Investigators (PIs) who will use it to design and test different flight and scanning strategies based on simulated storms to yield the best scientific outcomes before their field deployment takes place. This will enable better understanding of trade-offs among various sampling regimes/strategies during the planning and enhance future field programs' efficiency and effectiveness.

How to cite: Lee, W.-C., Vivekanandan, J., Ellis, S., Manning, K., Bryan, G., Lussier, L., Grubišić, V., and Klotz, B.: Overview of the Airborne Phased Array Radar Observing Simulator, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14085, https://doi.org/10.5194/egusphere-egu21-14085, 2021.

EGU21-15640 | vPICO presentations | GI1.1

Optical frequency dissemination via fiber networks: The Clock Network Services (CLONETS) project and potential applications in the geosciences

Juergen Kusche and the CLOck NETwork Services - Design Study (CLONETS DS) Team

Precise measurement of time and frequency has been instrumental in the development of modern geosciences. It has enabled us to quantify many observations, including plate motion, the variations of Earth rotation, and modern-day sea level rise.

Over the past decade, European National Metrology Institutes (NMIs), together with National Research and Education Networks (NRENs) and partners from universities and research institutes have pioneered the dissemination of ultra-stable optical frequency and timing signals via optical fibers. Initially started as proof-of-concept experiments, this technology has matured to aim for a paradigm change: making precise time and frequency signals available to the wider scientific community and thereby enabling new research avenues.

The CLOck NETwork Services Design Study (CLONETS-DS) is a research and innovation action intended to facilitate the vision of a sustainable, pan-European optical fiber network for precise time and frequency reference dissemination.

Here, we will present the envisioned technology, its performance parameters, and discuss potential applications, requirements and limitations for geophysical applications, for example in geodesy (chronometric levelling, gravity field observation), seismology, and very-long-baseline interferometry (VLBI).

How to cite: Kusche, J. and the CLOck NETwork Services - Design Study (CLONETS DS) Team: Optical frequency dissemination via fiber networks: The Clock Network Services (CLONETS) project and potential applications in the geosciences, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15640, https://doi.org/10.5194/egusphere-egu21-15640, 2021.

EGU21-16275 | vPICO presentations | GI1.1

Development and implementation of a low-cost long-period telluric recorder for deep Earth electrical investigations

Tarek Arafa-Hamed, Hossam Marzouk, Michael Becken, Ahmed Lethy, and Hatem Odah
Magnetotelluric loggers are key instruments for deep geophysical studies of crust and mantle. However, conducting a large-scale survey requires the implementation of a series of magnetotelluric instruments to complete the measurements in an efficient time. The main efforts and costs of a magnetotelluric survey are devoted to magnetic recordings. Therefore, using a compination of magnetotelluric stations along with parallel tellurics recorders can significantly reduce the time and costs needed to complete a regional survey. Based on this motivation, we present the construction, implementation and case studies of a long period telluric recorder (LPTR). The telluric recorder is based on a 24 bit ADC with a multiplexer that enables 2 differential channels devoted to the Ex and Ey telluric components. The multiplexer is adjusted to provide 1sample per second from each channel that corresponds to 2Hz sampling rate at the ADC. The multiplexing at this rate reduces the ADC efficient resolution to 20 bit. As the full measuring range is +/- 1.25V the least significant bit LSB is about 2.4 micro V. The output of the ADC is transferred via USB to a mini PC for time stamping and saving. The time of each record is provided from a GPS with accuracy of 1 ms. The LPTR is connected to the ground using a Cu-CuSo4 nonpolarizable electrodes. The electrodes are specially constructed to provide good and longterm connection to the ground in arid environments. The LPTR has been tested throughout several field implementations in Egypt. The setup for contiuous telluric acquisition is realized in Moghra, Dakhla, Farafra and in Fayoum. These locations covers a variety of northern and southern Egypt as well as western desert and Nile valy. During the test implementations the recorder is put to run parallel to an ADU07-e magnetotelluric system for 1-3 days then for 2-4 months to be compared and integrated with the magnetic observatories at Fayoum and Abo Simble. Both observatories are running MAGSON fluxgate magnetometers at a sampling rate of 1 Hz. The resultant data showed that the LPTR synchronizes with the ADU07-e at periods from 5s and with the magnetic observatory data at periods 25s. This indicates an efficient low-cost system that can be used for deep Earth resistivity investigations. A case study of 2-4 months of continuous telluric recordings that have been processed with magnetic observatories data provided impedances for periods up to 42000 seconds. The results are 1D modeled for depths of more than 800KM. A comparison between the obtained 1D MT model and global Earth-models (LITHO1) based on seismological data shows a quite good matching at the deep interfaces like upper crust, middle crust and lower crust. The delineation of seismic discontinuities at 410 KM and 680 KM shows corresponding clear change in resistivity at 410 KM and then at 700 KM as well.

How to cite: Arafa-Hamed, T., Marzouk, H., Becken, M., Lethy, A., and Odah, H.: Development and implementation of a low-cost long-period telluric recorder for deep Earth electrical investigations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16275, https://doi.org/10.5194/egusphere-egu21-16275, 2021.

GI1.2 – New frontiers of multiscale monitoring, analysis, modeling and decisional support (DSS) of environmental systems

EGU21-11023 | vPICO presentations | GI1.2 | Highlight

Modelling ground deformation in Tenerife (Canary Islands) during 2003-2010

Monika Przeor, Luca D'Auria, Susi Pepe, and Pietro Tizzani

Tenerife is the biggest island of the Canaries and one of the most active from the volcanological point of view. The island is geologically complex, and its main volcano-tectonic features are three volcanic rifts and the composite volcanic complex of Teide-Las Cañadas. The latter is located in the central part of the island at the intersection of Tenerife principal rifts. Teide volcano, with its 3718 m of elevation constitutes the most prominent topographical feature of the island. Being a densely populated active volcanic island, Tenerife is characterised by a high volcanic risk. For this reason, the island requires an advanced and efficient volcano monitoring system. Among the geophysical parameters that could be useful to forecast an oncoming volcanic eruption, the ground deformation is relevant for detecting the approach of magma to the surface.

This study aim is to analyse the ground deformation in the surroundings of the Teide-Las Cañadas complex.  For this purpose, we studied the ground deformation of Tenerife by using a set of Synthetic Aperture Radar (SAR) images acquired between 2003 and 2010 by the ENVISAT ASAR sensor and processed through a DInSAR-SBAS technique. The DInSAR SBAS time series revealed a ground deformation in the central part of the island, coinciding with the Teide volcano. A similar deformation was already evidenced by Fernández et al. (2009) from 2004 to 2005.

We investigated the source of this ground deformation by applying the statistical tool of Independent Component Analysis (ICA) to the dataset. ICA allowed separating the spatial patterns of deformation into four components. We attributed three of them to an actual ground deformation, while the fourth seems to be only related to the noise component of data. The first component (ICA1) displays a spatial pattern localised in Teide volcano neighbourhoods and consists of a ground uplift of few centimetres. The deformation associated with this component starts in 2005 and persists along the rest of the time series. The second component (ICA2) of the ground deformation is localised in the South/South-West part of Las Cañadas rim while the third component (ICA3) is localised to the East of Teide volcano. We performed inverse modelling to analyse the source of the ground deformation related to ICA1 to retrieve the location, the geometry and the temporal evolution of this source. The inversion was based on analytical models of ground deformation as well as on Finite-Element-Modelling. The result showed that the ground deformation is associated with a shallow sill-like structure, located beneath Teide volcano, possibly reflecting a hydrothermal reservoir. The knowledge of this source geometry could be of significant interest to better understand ground deformation data of possible future volcanic crisis. 

How to cite: Przeor, M., D'Auria, L., Pepe, S., and Tizzani, P.: Modelling ground deformation in Tenerife (Canary Islands) during 2003-2010, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11023, https://doi.org/10.5194/egusphere-egu21-11023, 2021.

EGU21-9881 | vPICO presentations | GI1.2

Non-uniqueness in the inversion of volcano deformation data: change of volume or change of position?

Erika Ronchin, Raffaele Castaldo, Susi Pepe, Pietro Tizzani, Giuseppe Solaro, and Maurizio Battaglia

The detailed spatial and temporal information of surface deformation detected during volcanic unrest by InSAR images suggests a degree of complexity of volcanic systems (e.g., source geometries and distribution of material properties) that cannot be correctly represented by simple models of a pressure source embedded in an elastic, homogeneous, isotropic half-space.

The inversion of deformation data, performed for the characterization of the source of deformation, is based on the model we choose to represent the volcanic system. Therefore the quality of the chosen model influences the source size and its temporal changes estimated through the inversion, and thus their interpretation. In fact, our assumptions about geometries and/or magma and rock properties affect the estimations of changes in magma volumes and reservoir pressure. To obtain a more reliable interpretation of surface signals, it is thus paramount to have more realistic models, where the distribution of material properties is constrained by multiple data sets, with greater flexibility in the definition of sources in space and time.

Assuming we could invert InSAR data with models that can deal with a complex and arbitrarily shaped deformation source, how unique could this solution be? How much could we say about the evolution of the deformation source over time? Furthermore, how much information about the spatial complexity of the source and its evolution in space and time would be missed?

To answer these questions, we characterize the deformation source from the inversion of InSAR data based on a finite element method (FEM) forward model without an a-priori source geometry. The deformation source is bound by estimating the strength of an amorphous cluster of deformation sources distributed over a grid. This uses the principle of superposition already applied to point or cuboid volume elements, embedded in a homogeneous half-space. Also, the numerical model integrates the cluster-source with a heterogeneous distribution of material properties and the topography.

In our study, we quantify the ambiguity in the estimation of arbitrary geometries of sources of deformation composed by clusters of Finite Element Method unit sources distributed over a grid. The regularized least-squares solutions of the steady-state PDEs inverse model are obtained using a COMSOL Multiphysics-based routine. Through the inversion of the InSAR time series of the unrest at Uturuncu volcano (Bolivia), we quantify the ability of the employed cluster-source approach to identify the changes of deformation sources in time. 

This research is financed by an individual fellowship of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 793811.

How to cite: Ronchin, E., Castaldo, R., Pepe, S., Tizzani, P., Solaro, G., and Battaglia, M.: Non-uniqueness in the inversion of volcano deformation data: change of volume or change of position?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9881, https://doi.org/10.5194/egusphere-egu21-9881, 2021.

EGU21-11104 | vPICO presentations | GI1.2

Multiscale Spatial and Temporal Analysis of the b-value in volcanic areas

Rubén García-Hernández, Luca D'Auria, José Barrancos, and German D. Padilla

Determining the b-value of the Gutenberg-Richter law is of great importance in Seismology. However, its estimate is strongly dependent upon selecting a proper temporal and spatial scale due to the multiscale nature of the seismicity. This characteristic is especially relevant in volcanoes where dense clusters of earthquakes often overlap the background seismicity and where this parameter displays a higher spatial and temporal variability.

For this reason, we devised a novel approach called MUST-B (MUltiscale Spatial and Temporal estimation of the B-value) which allows a consistent estimate of the b-value, avoiding subjective “a priori ” choices, by considering simultaneously different temporal or spatial scales. This approach also includes a consistent estimation of the completeness magnitude (Mc) and the uncertainties over both b and Mc. We applied this method to datasets in volcanic areas proving its effectiveness to analyze complex seismicity patterns and its utility in volcanic monitoring and geothermal exploration. Besides, it may provide a way to distinguish seismicity caused by tectonic faults and volcanic sources in zones where there is a mix of both of them.

We present MUST-B applications to three volcanic areas: Long Valley caldera (USA), Tenerife and El Hierro (Canary Islands). The spatial analysis of the b-value in Long Valley shows an impressive chimney-like volume characterized by high b-values which coincide with the main pathway of geothermal fluids inferred by independent studies. For Tenerife, we applied MUST-B to analyze both spatial and temporal variations. The spatial pattern shows an interesting variation between 2004-2005 and the period 2016-2020. In both cases, high b-values appear in an area that hosted increased seismicity because of seismo-volcanic crises. These high b-values are also evidenced by the temporal analysis, which shows an increase in correspondence between these two periods. For El Hierro, we analyzed the seismicity preceding the 2011 submarine eruption of Tagoro volcano using a joint spatio-temporal analysis. Results show high b-values in the area where the vent opened and a drop of this parameter just before the beginning of the eruption.

How to cite: García-Hernández, R., D'Auria, L., Barrancos, J., and Padilla, G. D.: Multiscale Spatial and Temporal Analysis of the b-value in volcanic areas, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11104, https://doi.org/10.5194/egusphere-egu21-11104, 2021.

EGU21-12143 | vPICO presentations | GI1.2

Analysis of magnetotelluric data from Las Cañadas caldera (Tenerife, Spain)

David Martínez van Dorth, Federico Di Paolo, Katarzyna Slezak, Iván Cabrera-Pérez, Perla Piña-Varas, Juanjo Ledo, Garazi Bidaurrazaga Aguirre, Lucía Sáez Gabarrón, Monika Przeor, William Hernández, Luca D'Auria, and Nemesio M. Pérez

Tenerife is the second-largest island in the Canarian archipelago with an area of 2034 km2. It consists of three ancient volcanic massifs (Anaga, Adeje and Teno) located at the edges of the island connected by rift zones to the centre of the island, in correspondence of Las Cañadas caldera. The caldera hosts the most relevant topographic element of Tenerife, the volcanic edifice of Teide – Pico Viejo. Previous studies already suggested the presence of geothermal resources inside and around the caldera. For this reason, in the present study, we have applied the magnetotelluric method (MT) in the central part of the island to better understand subsurface structures in this area.

The MT method is a useful tool successfully applied to detect conductive and resistive structures located in the subsoil. It is commonly used in volcanic areas to detect volcano-tectonic features and geothermal systems to evaluate exploitable geothermal resources. Furthermore, continuous magnetotelluric measurements can also be employed for volcanic monitoring, allowing tracking temporal changes of the resistivity because of fluid transfer processes in the volcanic system.

Between 2019 and 2020 we realised a detailed study of Las Cañadas caldera resistivity structure thought 45 magnetotelluric soundings. The instrumentation consisted of four Metronix ADU-08e, equipped with EPF-06 electrodes and MFS-06e magnetic coils, which registered electric and magnetic fields along the N-S and E-W directions. We also installed three remote stations at different times inside the caldera. Depending on the station quality, we obtained the MT response functions for periods of 0.001 – 1000 s. The dimensionality of the data has been analysed using the phase tensor.  The first preliminary results of dimensionality and strike analysis indicate a 1D/2D behaviour for the first layers which present a decreasing resistivity, evolving to a 3D behaviour from 1s and with an increase of resistivity with depth.

Furthermore, we present some results obtained by a permanent MT station to check the possibility of temporal changes in the electrical resistivity. During the time this station was recording two electrical blackouts which took place on the island. This allowed quantitatively estimating the level of anthropogenic electromagnetic noise in the recorded time series.

How to cite: Martínez van Dorth, D., Di Paolo, F., Slezak, K., Cabrera-Pérez, I., Piña-Varas, P., Ledo, J., Bidaurrazaga Aguirre, G., Sáez Gabarrón, L., Przeor, M., Hernández, W., D'Auria, L., and Pérez, N. M.: Analysis of magnetotelluric data from Las Cañadas caldera (Tenerife, Spain), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12143, https://doi.org/10.5194/egusphere-egu21-12143, 2021.

EGU21-13038 | vPICO presentations | GI1.2 | Highlight

Modeling of major environmental risks for the Kyiv city,  Ukraine from the Dnieper river waters  -  inundation of coastal areas and contamination by the radionuclides deposited in bottom sediments after the Chornobyl accident

Sergii Kivva, Mark Zheleznyak, Roman Bezhenar, Oleksandr Pylypenko, Maxim Sorokin, Andriy Demydenko, Volodymyr Kanivets, Gennady Laptev, Oleg Votsekhovich, Victoria Boyko, and Dmitri Gudkov

There are two partially linked risks to the Kyiv city associated with the Dnieper river: (A) risk of the inundation of the urban coastal areas during the extremely high floods or due to the break of the Hydropower Plant dam located upstream Kyiv, and, (B) risk of the secondary radioactive contamination of the Dnieper waters due to the intensification of the dynamics of "Chornobyl" radionuclides during high floods and man-made impacts -  dredging in Kyiv Reservoirs for navigation routes and other purposes.

The Chornobyl Nuclear Power Plant has located 130 km from Kyiv at the bank of Pripyat river, which is 20 km downstream from ChNPP inflows into the Kyiv reservoir of the Dnieper River. After the Chornobyl accident, about 5.4×1013 Bq of 137Cs and 1013 Bq of 90Sr were deposited in the bottom sediments of the Kyiv Reservoir. Nowadays, 35 years after the Chornobyl accident, the population of Kyiv still is very sensitive to the risks of secondary environmental contaminations by the “Chornobyl radionuclides”. Therefore even low levels of such risks should be carefully assessed by well-grounded methods.

The main goals of our multidisciplinary study are:

  • to develop a model/data based Decision Support System (DSS) for the assessment of both kind of the described above risks A) and B),
  • to analyze the influence of the natural hazard – extremely high river floods on the resuspension of contaminated sediments and environmental risks due to the man-made impacts – dredging, dam breaks, and others.

The components of these research and development activities are following:

  • field and laboratory studies of the contemporary contamination of the bottom sediments and biota in the Kyiv reservoir to receive the input data for the model calibration and improvement of the model structure;
  • customization for the Kyiv Reservoir and the Dnieper river at Kyiv of the 2D COASTOX model which the hydrodynamic module is based on the nonlinear shallow water equations, and the sediment/radionuclide transport model using the advection-diffusion equations with specific sink/source terms for radionuclides;
  • customization for the Kyiv Reservoir of the hydro-ecological POSEIDON model that simulates the influence of resuspension of radioactive sediments on the contamination of fishes and other hydrobionts;
  • improvement of methods for the numerical solution of model equations and algorithms based on finite volume methods for their parallelization using multiprocessor systems and graphics cards to speed up computations;
  • to create high-performance DSS with a user-friendly interface that can use GPUs to quickly predict the radiation status of surface waters and inundation of river banks in emergencies.

The DSS is installed in the Department of Hydrological Forecasting of the Ukrainian Hydrometeorological Center and is used for the quantification of the risk scenarios and analyses of the links of both risks. Due to the high computational performance, the DSS can be used for the real-time numerical predictions with the zoning of the flood risks in a case of emergency.

How to cite: Kivva, S., Zheleznyak, M., Bezhenar, R., Pylypenko, O., Sorokin, M., Demydenko, A., Kanivets, V., Laptev, G., Votsekhovich, O., Boyko, V., and Gudkov, D.: Modeling of major environmental risks for the Kyiv city,  Ukraine from the Dnieper river waters  -  inundation of coastal areas and contamination by the radionuclides deposited in bottom sediments after the Chornobyl accident, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13038, https://doi.org/10.5194/egusphere-egu21-13038, 2021.

EGU21-15403 | vPICO presentations | GI1.2

Diffuse H2 degassing studies: a useful geochemical tool for monitoring Cumbre Vieja volcano, La Palma, Canary Islands

Nemesio M. Pérez, Gladys V. Melián, Pedro A. Hernández, María Asensio-Ramos, Eleazar Padrón, Fátima Rodríguez, Mar Alonso, Alba Martín-Lorenzo, Cecilia Amonte, Luca D'Auria, José Barrancos, and Germán D. Padilla

Hydrogen (H2) is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas. Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al. 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. Cumbre Vieja volcano (La Palma, Canary Islands) is the most active basaltic volcano in the Canaries with seven historical eruptions being Teneguía eruption (1971) the most recent one. Cumbre Vieja volcano is characterized by a main north–south rift zone 20 km long, up to 1950 m in elevation and covering an area of 220 km2 with vents located at the northwest and northeast. Cumbre Vieja does not show any visible degassing (fumaroles, etc.). For that reason, the geochemical volcano monitoring program at Cumbre Vieja volcano has been focused on soil degassing surveys.  Here we show the results of soil H2 emission surveys that have been carried out regularly since 2001. Soil gas samples were collected in about 600 sampling sites selected to obtain a homogeneous distribution at about 40 cm depth using a metallic probe and 60 cc hypodermic syringes and stored in 10 cc glass vials. H2 content was analysed later by a VARIAN CP4900 micro-GC. A simple diffusive emission mechanism was applied to compute the emission rate of H2 at each survey. Diffuse H2 emission values were used to construct spatial distribution maps by using sequential Gaussian simulation (sGs) algorithm, allowing the estimation of the emission rate from the volcano. Between 2001-2003, the average diffuse H2 emission rate was ∼2.5 kg·d−1 and an increase of this value was observed between 2013-2017 (∼16.6 kg·d−1), reaching a value of 36 kg·d−1 on June 2017, 4 month before the first recent seismic swarm in October, 2017 at Cumbre Vieja volcano. Six additional seismic swarms had occurred at Cumbre Vieja volcano (February 2018, July-August 2020; October 8-10, 2020; October 17-19, 2020, November 21, 2020 and December 23-26, 2020) and changes of diffuse H2 emission related to this unrest had been observed reaching values up to ∼70 kg·d−1. Diffuse H2 emission surveys have demonstrated to be sensitive and excellent precursors of magmatic processes occurring at depth in Cumbre Vieja. Periodic diffuse H2 emission surveys provide valuable information to improve and optimize the detection of early warning signals of volcanic unrest at Cumbre Vieja volcano.

How to cite: Pérez, N. M., Melián, G. V., Hernández, P. A., Asensio-Ramos, M., Padrón, E., Rodríguez, F., Alonso, M., Martín-Lorenzo, A., Amonte, C., D'Auria, L., Barrancos, J., and Padilla, G. D.: Diffuse H2 degassing studies: a useful geochemical tool for monitoring Cumbre Vieja volcano, La Palma, Canary Islands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15403, https://doi.org/10.5194/egusphere-egu21-15403, 2021.

EGU21-15421 | vPICO presentations | GI1.2

Changes in the thermal energy and the diffuse 3He and 4He degassing prior to the 2014-2015 eruption of Pico do Fogo volcano, Cape Verde

Mar Alonso, Nemesio M. Pérez, Eleazar Padrón, Pedro A. Hernández, Gladys V. Melián, Hirochika Sumino, Germán D. Padilla, José Barrancos, Fátima Rodríguez, Samara Dionis, María Asensio-Ramos, Cecilia Amonte, Sonia Silva, and José Manuel Pereira

Cape Verde archipelago is a cluster of several volcanic islands arranged in a westward opening horseshoe shape located in the Atlantic Ocean, between 550 and 800 km-west of the coast of Senegal (Africa). Fogo Island is located in the southwest of the archipelago, and as main feature is a 9-km-north to south wide collapse caldera opened toward the east, within Pico do Fogo volcano rises 2,829 m.a.s.l. Pico do Fogo crater has an area of 0.142 km2 and its characterized by a fumarolic field composed by low and moderate temperature fumaroles, with temperatures around 95ºC and reaching 400ºC respectively. The last eruption of Fogo volcanic system took place between November 2014 and February 2015, when four new eruptive vents were formed, and destroyed partially the villages of Portela and Bangaeira (Silva et. al., 2015) forcing the evacuation of 1,300 inhabitants. In this work we present the temporal evolution of 3He/4He isotopic ratio, 3He and 4He emission and thermal energy released data measured from March 2007 to November 2018 in the crater of Pico do Fogo. In all the studied temporal evolutions, we can observe two main increases in the above parameters, the first in early 2010, suggesting a magmatic intrusion, and the second several months before the eruption onset. We have also observed that changes in the 3He emission might be accompanied by a significant increase in thermal output if the system is in an eruptive cycle. Our results confirm 3He emission studies are highly reliable indicator of imminent volcanic eruption and constitute a powerful tool to monitor the activity of volcanic areas around the world.

Silva et al., (2015), Geophysical Research Abstracts Vol. 17, EGU2015-13378, EGU General Assembly.

How to cite: Alonso, M., Pérez, N. M., Padrón, E., Hernández, P. A., Melián, G. V., Sumino, H., Padilla, G. D., Barrancos, J., Rodríguez, F., Dionis, S., Asensio-Ramos, M., Amonte, C., Silva, S., and Pereira, J. M.: Changes in the thermal energy and the diffuse 3He and 4He degassing prior to the 2014-2015 eruption of Pico do Fogo volcano, Cape Verde, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15421, https://doi.org/10.5194/egusphere-egu21-15421, 2021.

EGU21-1698 | vPICO presentations | GI1.2

Automatic tree species classification by using field data, image analysis and deep learning techniques in riparian forests

Sarah Kentsch, Maximo Larry Lopez Caceres, and Yago Diez

Mixed forests are still little understood ecosystems. Their structure and composition are not well known and not clearly classified. In times of climate change, monitoring of forests is becoming increasingly important. Forest stands were usually researched by field work, which requires high costs and man-power. Field surveys are further only conducted in small patches of the forests, which does often not represent the whole forest. For mixed forests, usually only a dominate species is mentioned but the forests are not classified further. The greater need of better methods with high accuracies to detect and classify tree species in the forest encouraged this study.

UAVs have been proven to be an efficient tool to conduct automatic field surveys in forestry applications. These easy-to-use and cheap tools are able to gather images with a high resolution. Image processing with image analysis and deep learning techniques is an emerging part in forestry investigations. Therefore, we combined manual field surveys, image analysis and automatic classifications in our study.

The forests, we were investigating, are riparian forests in Shonai area, Japan, which are classified as mixed forests. 7 sites were chosen and field surveys were conducted. Most of the sites are located in flat areas, but 3 sites are located on slopes, where the access is difficult and field work barely possible. We imaged all sites in different seasons with UAVs and performed image analysis with computer vision and ArcGIS methods. Trees were detected and classified manually and automatically. A comparison of all applied methods was drawn, evaluated and will be provided.

Our first results are promising to characterize forests in a new dimension. We will provide detailed information about tree species composition, tree locations and forest structures. Mixed forests can be deeper analysed by maps of dominate and subdominant tree species. Area calculations for tree canopies will be highlighted for the main tree species. We will provide winter images for tree counting in heavy snowfall regions and classification accuracies of deep learning techniques.  

How to cite: Kentsch, S., Lopez Caceres, M. L., and Diez, Y.: Automatic tree species classification by using field data, image analysis and deep learning techniques in riparian forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1698, https://doi.org/10.5194/egusphere-egu21-1698, 2021.

EGU21-10436 | vPICO presentations | GI1.2

Contribution to the discussion on processing and measurement methodology of apatite fission-track analysis

Lucie Novakova, Raymond Jonckheere, Bastian Wauschkuhn, and Lothar Ratschbacher

Apatite fission track dating and T,t-modelling are now a well-established thermochronological instruments for investigating geological problems (Malusà and Fitzgerald, 2019). In the course of their development, complicating factors that affect the track counts and confined track lengths in geological samples were corrected for, foremost among them the crystallographic orientation of the confined track and the chemical composition of the apatite (Green et al., 1986, and subsequent papers). Methods have also been proposed to improve the confined track statistics, using 252Cf irradiation, ion irradiation, fracturing, and re-etching (Yamada et al., 1998). However, there is to date no adequate correction for the protocol used to reveal the tracks, which differs from lab to lab although all are based on nitric acid.

Recent step-etch experiments with the most used etchants show that both the duration of the etch and the temperature and concentration of the solution have non-negligible effects on the measured lengths (Sobel and Seward, 2010; Jonckheere et al., 2017 and references therein; Tamer et al., 2019). Earlier attempt to overcome these problems investigated etching for such a time that the track openings conform to a pre-determined size (Ravenhurst et al., 2003) or measuring confined tracks of a given minimum width (Yamada et al., 1993). The first method has the drawback that the widths of the host tracks and confined tracks are not directly related, whereas the second fails to consider the anisotropic width of confined tracks.

In our geological investigation of the German Naab area, we adopt a step-etch approach, measuring the c-axis angle, length, width and dip of each individual confined track after 20s and 30s immersion in 5.5 M HNO3. From the width increase we calculate the rate of widening of the track (apatite etch rate; Aslanian et al., 2021), and from that the effective etch time tE, i.e., the true duration that the confined track has been etched, equal to the immersion time minus the time needed for the etchant to reach the specific confined track. Our results show that the confined track lengths are correlated with their effective etch times. This information is used to account for etch-protocol-related differences between the induced and fossil track lengths entered in the T,t-modelling software. We envisage this will improve the accurateness and resolution of the resulting T,t-paths. We will check this against the excellent independent geological constraints that exist for the Naab region.

The research was funded by the EU/MEYS (CZ.02.2.69/0.0/0.0/19_074/0014756).

 

References

Aslanian et al., 2021. American Mineralogist. In press.

Green et al., 1986. Chemical Geology 59, 237-253.

Jonckheere et al., 2017. American Mineralogist 102, 987-996.

Malusà and Fitzgerald, 2019.  Fission-Track Thermochronology and its Application to Geology. Pp 393.

Ravenhurst et al., 2003. Canadian Journal of Earth Sciences 40, 995-1007.

Sobel and Seward, 2010. Chemical Geology 271, 59-69.

Tamer et al., 2019. American Mineralogist 104(10), 1421-1435.

Yamada et al., 1993. Chemical Geology 122, 249-258

Yamada et al., 1998. Chemical Geology 149, 99–107.

How to cite: Novakova, L., Jonckheere, R., Wauschkuhn, B., and Ratschbacher, L.: Contribution to the discussion on processing and measurement methodology of apatite fission-track analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10436, https://doi.org/10.5194/egusphere-egu21-10436, 2021.

EGU21-13772 | vPICO presentations | GI1.2

A Multi-Use Case Scientific Sensor Node

Valarie Hamilton and Andrew Moores

Nanometrics' Pegasus digitizer is the basis for a scientific grade node and is the latest development in many years of designing and building reliable seismic instruments for the scientific and monitoring community. Coupled in a grab-and-go quick deploy package with a variety of sensors enables responses to many types of events and environmental measurements. These types of systems are not only for hazards, such as earthquakes and volcanoes, but can form the basis of better tools used for critical structure and microzonation studies using ambient noise.  Pegasus takes advantage of a complete ecosystem of software, making planning, deploying and data harvesting very simple and straightforward as well as providing a dataset that includes automatically generated metadata in the form of StationXML and standard miniSEED data files.  Pegasus design criteria was based on optimal SWaP (Size, Weight and Power) and makes it unique in short to long duration deployments without swapping of units in the field, while its broad sensor compatibility enables many types of measurements and is completely compatible with the advantages of Nanometrics smart sensors.

How to cite: Hamilton, V. and Moores, A.: A Multi-Use Case Scientific Sensor Node, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13772, https://doi.org/10.5194/egusphere-egu21-13772, 2021.

GI2.1 – Data fusion, integration, correlation and advances of non-destructive testing methods and numerical developments for engineering and geosciences applications

EGU21-12125 | vPICO presentations | GI2.1

An Ontology-based approach to enable data-driven research in the field of NDT in Civil Engineering

Benjamin Moreno-Torres, Christoph Völker, and Sabine Kruschwitz

Non-destructive testing (NDT) data in civil engineering is regularly used for scientific analysis. However, there is no uniform representation of the data yet. An analysis of distributed data sets across different test objects is therefore too difficult in most cases.

To overcome this, we present an approach for an integrated data management of distributed data sets based on Semantic Web technologies. The cornerstone of this approach is an ontology, a semantic knowledge representation of our domain. This NDT-CE ontology is later populated with the data sources. Using the properties and the relationships between concepts that the ontology contains, we make these data sets meaningful also for machines. Furthermore, the ontology can be used as a central interface for database access. Non-domain data sources can be integrated by linking them with the NDT ontology, making them directly available for generic use in terms of digitization. Based on an extensive literature research, we outline the possibilities that result for NDT in civil engineering, such as computer-aided sorting and analysis of measurement data, and the recognition and explanation of correlations.

A common knowledge representation and data access allows the scientific exploitation of existing data sources with data-based methods (such as image recognition, measurement uncertainty calculations, factor analysis or material characterization) and simplifies bidirectional knowledge and data transfer between engineers and NDT specialists.

How to cite: Moreno-Torres, B., Völker, C., and Kruschwitz, S.: An Ontology-based approach to enable data-driven research in the field of NDT in Civil Engineering, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12125, https://doi.org/10.5194/egusphere-egu21-12125, 2021.

EGU21-8798 | vPICO presentations | GI2.1 | Highlight

Uncertainty quantification for a sparse machine learning (ML) data set in non-destructive testing in civil engineering (NDT-CE) 

Christoph Völker, Sabine Kruschwitz, and Philipp Benner

ML has been successfully applied to solve many NDT-CE tasks. This is usually demonstrated with performance metrics that evaluate the model as a whole based on a given set of data. However, since in most cases the creation of reference data is extremely expensive, the data used is generally much sparser than in other areas, such as e-commerce. As a result, performance indicators often do not reflect the practical applicability of the ML model. Estimates that quantify transferability from one case to another are necessary to meet this challenge and pave the way for real world applications.

In this contribution we invetigate the uncertainty of ML in new NDT-CE scenarios. For this purpose, we have extended an existing training data set for the classification of corrosion damage by a new case study. Our data set includes half-cell potential mapping and ground-penetrating radar measurements. The measurements were performed on large-area concrete samples with built-in chloride-induced corrosion of reinforcement. The experiment simulated the entire life cycle of chloride induced exposed concrete components in the laboratory. The unique ability to monitor deterioration and initiate targeted corrosion initiation allowed the data to be labelled - which is crucial to ML. To investigate transferability, we extend our data by including new design features of the test specimen and environmental conditions. This allows to express the change of these features in new scenarios as uncertainties using statistical methods. We compare different sampling and statistical distribution-based approaches and show how these methods can be used to close knowledge gaps of ML models in NDT.

How to cite: Völker, C., Kruschwitz, S., and Benner, P.: Uncertainty quantification for a sparse machine learning (ML) data set in non-destructive testing in civil engineering (NDT-CE) , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8798, https://doi.org/10.5194/egusphere-egu21-8798, 2021.

EGU21-8293 | vPICO presentations | GI2.1

BIM and GIS integration for infrastructure analysis

Alessandro Di Benedetto, Salvatore Barba, Margherita Fiani, Marco Limongiello, and Anna Sanseverino

The use of Building Information Modeling (BIM) is certainly increasing, especially in the field of Civil Engineering and Architecture. In recent years, research for new solutions has focused on the integration of BIM and GIS (Geographic Information System), referred to as GeoBIM. Most applications focus on issues related to the import and interoperability of BIM data into a GIS environment and vice versa. Data integration in a well-designed GeoBIM should address the following aspects: i) data harmonization and consistency (e.g., accuracy estimation, geometric and semantic representation, amount of detail, geo-referencing); ii) interoperability of data coming from different sources; iii) transformation of a set of data into a standardized format. One of the most evident inconsistencies if working with BIM or GIS is in the georeferencing of data: BIM designers work in a local Cartesian system while the terrain morphology is referred to a Geodetic Reference System, in the case of Europe, and therefore also for Italy, such system is the ETRS89, realization ETRF2000. The objective of this work is to achieve a true integration between BIM and GIS through the use and combination of the strengths of both technologies: the semantic and spatial component of GIS with the 3D and detailed information coming from the BIM model. A model that meets these requirements will allow a management of the structure and / or infrastructure in a wider and more complete context; therefore, not only at the local level but will be applicable to structures that have a strong impact with the territory and located in areas subject to hydrogeological risk. One of the innovative aspects of the study is the integration of the regional Topographic Database (TDB) with the altimetric component extracted automatically from LiDAR data; the process aims to allow the reconstruction of the volumes in an automated way of each object to define the 3D spatial attribute for the purposes of three-dimensional modeling. The study area is located near the “Monti Lattari” in the Campania Region, in southern Italy. The whole area consists of areas exposed to high hydrogeological risk, characterized by the presence of a complex infrastructural network (railway, highway, national and provincial roads), rich in viaducts, tunnels and galleries. In details, the GeoBIM model of a viaduct (Olivieri Viaduct), built between the years ‘50 and ‘60, has been made. The main structure is a Maillart-arch-type bridge, made of reinforced concrete with a continuous frame deck and two access viaducts. The structural model has been generated from the point cloud acquired by Terrestrial Laser Scanner (TLS). The BIM model has been realized by using Revit software package (Autodesk), which allowed to organize the information useful to define the entire viaduct: each virtual element has been “informed” with all the parameters and characteristics of the structural elements. The next work phase was addressed to the design of a workflow able to combine the BIM model into a GIS developed by using ESRI tools. So, the parametric model produced in Revit is transformed into a GeoDatabase.

How to cite: Di Benedetto, A., Barba, S., Fiani, M., Limongiello, M., and Sanseverino, A.: BIM and GIS integration for infrastructure analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8293, https://doi.org/10.5194/egusphere-egu21-8293, 2021.

EGU21-15804 | vPICO presentations | GI2.1

An Ontology-based Visual Analytics for Apple Variety Testing

Ekaterina Chuprikova, Abraham Mejia Aguilar, and Roberto Monsorno

Increasing agricultural production challenges, such as climate change, environmental concerns, energy demands, and growing expectations from consumers triggered the necessity for innovation using data-driven approaches such as visual analytics. Although the visual analytics concept was introduced more than a decade ago, the latest developments in the data mining capacities made it possible to fully exploit the potential of this approach and gain insights into high complexity datasets (multi-source, multi-scale, and different stages). The current study focuses on developing prototypical visual analytics for an apple variety testing program in South Tyrol, Italy. Thus, the work aims (1) to establish a visual analytics interface enabled to integrate and harmonize information about apple variety testing and its interaction with climate by designing a semantic model; and (2) to create a single visual analytics user interface that can turn the data into knowledge for domain experts. 

This study extends the visual analytics approach with a structural way of data organization (ontologies), data mining, and visualization techniques to retrieve knowledge from an extensive collection of apple variety testing program and environmental data. The prototype stands on three main components: ontology, data analysis, and data visualization. Ontologies provide a representation of expert knowledge and create standard concepts for data integration, opening the possibility to share the knowledge using a unified terminology and allowing for inference. Building upon relevant semantic models (e.g., agri-food experiment ontology, plant trait ontology, GeoSPARQL), we propose to extend them based on the apple variety testing and climate data. Data integration and harmonization through developing an ontology-based model provides a framework for integrating relevant concepts and relationships between them, data sources from different repositories, and defining a precise specification for the knowledge retrieval. Besides, as the variety testing is performed on different locations, the geospatial component can enrich the analysis with spatial properties. Furthermore, the visual narratives designed within this study will give a better-integrated view of data entities' relations and the meaningful patterns and clustering based on semantic concepts.

Therefore, the proposed approach is designed to improve decision-making about variety management through an interactive visual analytics system that can answer "what" and "why" about fruit-growing activities. Thus, the prototype has the potential to go beyond the traditional ways of organizing data by creating an advanced information system enabled to manage heterogeneous data sources and to provide a framework for more collaborative scientific data analysis. This study unites various interdisciplinary aspects and, in particular: Big Data analytics in the agricultural sector and visual methods; thus, the findings will contribute to the EU priority program in digital transformation in the European agricultural sector.

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 894215.

How to cite: Chuprikova, E., Mejia Aguilar, A., and Monsorno, R.: An Ontology-based Visual Analytics for Apple Variety Testing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15804, https://doi.org/10.5194/egusphere-egu21-15804, 2021.

EGU21-4508 | vPICO presentations | GI2.1

Geophysical characterization of an engineering infrastructure: laboratory tests.

Giacomo Fornasari, Luigi Capozzoli, Gregory De Martino, Valeria Giampaolo, and Enzo Rizzo

The increase of the metropolises stresses the urban areas and intensive planning works is necessary. Therefore, the development of new technologies and methodologies able to explore the subsoil and manage its resources in urban areas becomes an important source in terms of saving time and money. In the last decade, a new subdiscipline in the Applied Geophysics started: Urban Geophysics (Lapenna, 2017). Urban Geophysics analyzes the contribute, in terms of limits and potentialities, that geophysical methodologies can give for providing useful information about the subsoil, environment, buildings and civil infrastructures and supporting the public administrations in planning interventions in urban scenarios.

This work introduces a laboratory test, that was performed at the Hydrogeosite CNR-IMAA laboratory of Marsico Nuovo (Basilicata region, Italy). The test consisted in a multisensor geophysical application on an analogue engineering model. Thanks to the possibility to work in laboratory conditions, a detailed knowledge of the structure was available, providing great advantages for assess the capability of the geophysical methodologies for analyze engineering issues, regarding the characterization of the infrastructural critical zone placed at the interface soil-structure. For this purpose, geoelectrical and electromagnetic methodologies, including Cross hole Electrical Resistivity Tomography and Ground Penetrating Radar, were used to characterize the geometry of the foundation structures and the disposition of the rebar for the reinforced concrete frame. Finally, new geophysical approaches were applied in order to define the corrosion rate of reinforcement.

How to cite: Fornasari, G., Capozzoli, L., De Martino, G., Giampaolo, V., and Rizzo, E.: Geophysical characterization of an engineering infrastructure: laboratory tests., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4508, https://doi.org/10.5194/egusphere-egu21-4508, 2021.

EGU21-13191 | vPICO presentations | GI2.1 | Highlight

Multi-sensing geophysical surveys at the Archaeological Park of Paestum: the discovery of a small Doric temple

Ilaria Catapano, Luigi Capozzoli, Giovanni Ludeno, Gianluca Gennarelli, Gregory De Martino, Enzo Rizzo, Francesco Uliano Scelza, Gabriel Zuchtriegel, and Francesco Soldovieri

Nowadays, non-invasive sensing technologies working at different spatial scales represent a recognized tool to support archaeological researches, because their deployment and cooperative use allow detection and localization of buried ruins before performing excavation. Therefore, they get significant advantages in planning the stratigraphic assays, while reducing costs and times, and support holistic approaches where cultural heritage management, protection and fruition aspects are considered under a unified context.

As a further example among those available in literature, this communication summarizes a successful case study carried out at the Archaeological site of Paestum, sited in the southern Italy [1].

Based on the analysis of aerial imagery and several unexpected archaeological findings, terrestrial measurement campaigns, involving magnetometer (MGA) [2] and ground penetrating radar (GPR) [3] methodologies, were carried out in the northwest quarter of the ancient city near the fortification wall and few meters away from the gate of Porta Marina. As detailed in [4], the MGA was exploited to investigate a large subsurface area in a relatively short time and allowed the identification of the most significant archaeological anomalies, by accounting for the variations of the earth magnetic field due to the different magnetic susceptibilities of construction materials and the magnetic characteristics of the shallow subsoil. The georeferenced MGA image was exploited to select the area requiring a further and more detailed survey, which was performed by means of GPR. Then, GPR data were processed by means of a microwave tomography based approach [4], which allowed a high resolution three dimensional reconstruction of buried targets starting from the electromagnetic field that they backscatter when illuminated by a known incident field. By doing so, detailed information about depth, shape, and orientation of the buried targets were retrieved and an impressive visualization of the the basement of the structure was achieved.

The area is currently under excavation and the initial discovered ruins fully confirm the hypotheses formulated on the basis of the elements found on the surface, the photo interpretations and geophysical investigations. The proposed reconstructive hypothesis of the building as a whole is a stylobate of 10.83 m x 6.80 on which 4 x 7 columns were arranged, with a significantly increased intercolumniation on the short sides (2.02 m) compared to the long sides (1.68 m).

[1] https://www.museopaestum.beniculturali.it/?lang=en

[2] A. Aspinall, C. Gaffney, A. Schmidt, A Magnetometry for archaeologists. Geophysical methods for archaeology, Altamira Press, Lanham, (2008).

[3] D. J. Daniels, Ground penetrating radar, IET, (2004).

[4] Capozzoli, L.; Catapano, I.; De Martino, G.; Gennarelli, G.; Ludeno, G.; Rizzo, E.; Soldovieri, F.; Uliano Scelza, F.; Zuchtriegel, G. The Discovery of a Buried Temple in Paestum: The Advantages of the Geophysical Multi-Sensor Application. Remote Sens. 2020, 12, 2711.

How to cite: Catapano, I., Capozzoli, L., Ludeno, G., Gennarelli, G., De Martino, G., Rizzo, E., Scelza, F. U., Zuchtriegel, G., and Soldovieri, F.: Multi-sensing geophysical surveys at the Archaeological Park of Paestum: the discovery of a small Doric temple, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13191, https://doi.org/10.5194/egusphere-egu21-13191, 2021.

EGU21-16316 | vPICO presentations | GI2.1 | Highlight

Retrieving signs of buried historical roads by GPR: preliminary results from Villa dei Sette Bassi in Rome

Luca Bianchini Ciampoli, Andrea Benedetto, Alessandra Ten, Carla Maria Amici, and Roberta Santarelli

Ground Penetrating Radar has widely proven to be an effective tool for archaeological purposes [1, 2]. Our contribution concerns a geophysical experimental activity carried out in the Complex of Villa dei Sette Bassi, an archaeological site located in Rome, Italy.

In particular, the area was hypothesized to be interested by the track of the ancient via Latina [3, 4], which was the main internal route that connected Rome with the ancient Region of Campania; it ran parallel to the Via Appia, but it was built way before it.

The historical evolution of this landscape has seen great changes since the Middle Ages with a new economy that designed new parcels, new land uses and the stripping of building material from ancient remains: activities that have profoundly altered the territory in its appearance and functioning but also its road network. The uncontrolled building development, has over time hidden the ancient road network, today witnessed only by decontextualized monuments immersed in modern urbanization. Accordingly, great portion of the ancient via Latina remains still buried.

This works reports on the outcomes of the geophysical tests conducted within the area of Villa dei Sette Bassi, with the specific goal of locating the buried track of the via Latina. The survey has been carried out by using multi-frequency ground penetrating radar (GPR) systems with different central frequencies. In detail, a preliminary low frequency analysis was conducted over the entire area that was indicated to be interested by the hidden remains by literary sources, to the intent of detecting the position of the buried road with higher accuracy. Based on the this, a second survey with higher resolution was conducted over a regularly spaced grid.

As a result, GPR tests have returned a coherent reflection pattern that is reasonably representative of a road subgrade/embankment. According to the preliminary archaeological interpretations, these results are most likely related to the historical track of via Latina, even though inspection pits are required in order to verify these assumptions.

In conclusion, GPR demonstrated a great applicability to archaeological purposes, i.e. to detect buried remains and to interpret the function of buried structures, despite the reliability and productivity of the data interpretation are strongly influenced by the expertise of both the geophysicists and the archaeologists involved.

 

References

[1] Bianchini Ciampoli, L., Santarelli, R., Loreti, E.M., Ten, A., Benedetto, A. {2020} “Structural detailing of buried Roman baths through GPR inspection”, Archaeological Prospections, In Press.

[2] Milligan, R., & M., Atkin, {1993}. The use of ground-probing radar within a digital environment on archaeological sites, in Andresen, J., Madsen, T. and Scollar, I., eds., Computing the Past: Computer Application and Quantitative methods in Archaeology: Aarhus, Denmark, Aarhus University Press, pp. 285–291.

[3] Monti, P.G. {1995} “Via Latina”, Istituto Poligrafico e Zecca dello Stato. Libreria dello Stato Roma.

[4] Rea, R., Montella, F., Egidi, R.. Alteri, R., Diamanti, F., Mongetta, M., {2005} “Via Latina”, in Lexicon Topographicum Urbis Romae, III, pp. 133-202, Quasar ed., Roma.

How to cite: Bianchini Ciampoli, L., Benedetto, A., Ten, A., Amici, C. M., and Santarelli, R.: Retrieving signs of buried historical roads by GPR: preliminary results from Villa dei Sette Bassi in Rome, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16316, https://doi.org/10.5194/egusphere-egu21-16316, 2021.

EGU21-16517 | vPICO presentations | GI2.1

A Revised Complex Refractive Index Model for Inferring the Permittivity of Heterogeneous Concrete Models

Hossain Zadhoush, Antonios Giannopoulos, and Iraklis Giannakis

The estimation of the bulk permittivity of heterogeneous mixtures is of great interest for many Ground Penetrating Radar (GPR) and electromagnetic sensing applications [1], [2]. The most used method for estimating the bulk permittivity is the Complex Refractive Index Model (CRIM). The simplicity of this method is one its advantages however, the accuracy of the permittivity estimation has not been tested. Here, the CRIM model’s shape factor is examined and optimised in order to achieve a more accurate concrete bulk permittivity estimation. The concrete components are aggregate particles, cement particles, air-voids and moisture content; and they are randomly distributed with different volume percentages to produce various combinations. These combinations are modelled using the Finite-Difference Time-Domain (FDTD) method as it is an accurate and computationally efficient method [3]. The numerical modelling is then used to predict the bulk permittivity allowing to fine-tune CRIM model’s shape factor. The models are modelled in 3D and a GSSI-like antenna structure is used as the transmitting source [4]. The permittivity estimation uses an accurate time-zero method, which increases the accuracy of the estimated bulk permittivity hence, the shape factor [5], [6]. The results have shown that the optimised CRIM model over-performs the original CRIM model shape factor therefore, a better and more accurate bulk permittivity estimation is achieved for concrete mixtures.

 

References

[1] Daniels, D. J., (2004), Ground Penetrating Radar, 2nd ed. London, U.K., Institution of Engineering and Technology.

[2] Annan, A. P., (2005), Ground Penetrating Radar,  in Investigations in Geophysics, Society of Exploration Geophysicists, pp. 357-438.

[3] Taflove, A., Hagness, S. C., (2005), Computational electromagnetic: The Finite-Difference Time-Domain Method, Artech House, Norwood.

[4] Warren, C., & Giannopoulos, A., (2011), Creating Finite-Difference Time-Domain Models of Commercial Ground Penetrating Radar Antenna Using Taguchi’s Optimization Method, Geophysics, 76(2), G37-G47.

[5] Zadhoush, H., Giannopoulos, A., Giannakis, I., (2020), Optimising GPR time-zero adjustment and two-way travel time wavelet measurement using a realistic 3D numerical model, Near Surface Geophysics, Under review (Minor revisions).

[6] Zadhoush, H., (2020), Numerical Modelling of Ground Penetrating Radar for Optimization of the Time-zero Adjustment and Complex Refractive Index Model, PhD Thesis Submitted at The University of Edinburgh.

How to cite: Zadhoush, H., Giannopoulos, A., and Giannakis, I.: A Revised Complex Refractive Index Model for Inferring the Permittivity of Heterogeneous Concrete Models, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16517, https://doi.org/10.5194/egusphere-egu21-16517, 2021.

EGU21-8845 | vPICO presentations | GI2.1

A GPR based estimation of concrete strength changes under extreme temperatures exposure: An experimental study

Salih Serkan Artagan, Özgür Yurdakul, Vladislav Borecky, and Miroslav Lunak

There are certain situations where concrete structures are required to resist high temperatures. This applies to cases where exposure to high temperature is expected due to the special character of buildings or where the concrete structure is required to resist severe conditions caused by traffic accidents, terrorist attacks, or natural disasters (earthquakes, fires, etc.). Under such applications, the effect of elevated temperature on mechanical and physical properties may determine whether the concrete element or structure will maintain its structural integrity or not. In this context, fire resistance is defined as the ability to withstand exposure to fire without loss of load-bearing function or ability to act as a barrier to spread a fire. In most cases, structural health monitoring of concrete structures is performed as the visual appraisal of the external characteristics of structures or destructive testing (e.g., concrete coring), and little use has been made of the modern non-destructive testing (NDT) techniques including Ground Penetrating Radar (GPR). GPR, emitting short pulses of electromagnetic energy into the material, is primarily used for location of rebar, estimation of rebar size, industrial quality control, defect and decay detection, and measurement of electrical properties, in case of concrete diagnostics.

This paper comprises a series of GPR and core compressive strengths on low-strength concrete samples. The samples were produced and tested by GPR before and after extreme temperature exposure in an electric furnace at the following temperature levels: 300, 400, 500, 600, and 700 ℃. Then, the compressive test results of the cores taken from the specimens are compared with the GPR data for each temperature level. For GPR tests, the IDS Aladdin system was used with a double polarized 2 GHz antenna. For compressive strength tests, a compression test machine with a capacity of 3000 kN was used.

Based on GPR measurement, Relative Dielectric Permittivity (RDP) values were calculated based on known dimensions of samples and two-way travel time (twt) values obtained from A-scans. The change in RDP values of samples before and after exposure to extreme temperature was then calculated. This variation was then correlated with the change of compressive strength values with regard to the applied temperature levels. This experimental study thus gives an insight into the potential use of GPR, as an NDT tool, in estimating the strength loss in concrete structural elements exposed to aggressive fire.

All GPR tests were conducted in Educational and Research Centre in Transport; Faculty of Transport Engineering; University of Pardubice. This work is supported by the University of Pardubice (Project No: CZ.02.2.69/0.0/0.0/18_053/0016969).

How to cite: Artagan, S. S., Yurdakul, Ö., Borecky, V., and Lunak, M.: A GPR based estimation of concrete strength changes under extreme temperatures exposure: An experimental study, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8845, https://doi.org/10.5194/egusphere-egu21-8845, 2021.

Ground Penetrating Radar was used in this study as a non-destructive geophysical method. The main objective of this research is focused on enhancing the local seismic soil site analysis. The study employs GPR images to determine changes in the ground that can be associated with changes on the seismic soil response. To determine the GPR capacity in detecting changes in the ground materials and improve new methodologies of the radar data processing.

Results could be used to improve the selection of areas for more intensive scrutiny, enhancing the analysis of local seismic behaviour studies. Soil site studies are crucial in the analysis of seismic hazard in populated areas. This study and analysis will be carried out in an urban environment at the Sant Pau Hospital in Barcelona city (Spain). Data were acquired in the field along with two different directions: parallel and perpendicular to the coastline of the Mediterranean Sea in Barcelona city.

The procedure is based in integrated data from the laboratory experiments by using 1600 MHz centre frequency and obtaining real GPR field images in the field by using 25 MHz centre frequency antenna in the Sant Pau Hospital. Therefore, radar data will be first processed using the commercial software ReflexW, followed by a more specific processing sequence (both in amplitude and frequency domains) with a specific algorithm developed with MATLAB.

Finally, the mathematical processing of the radargrams in terms of water content compared to the information based on historical maps. Results show that GPR is a promising method and compared to previous studies a good agreement was observed in this specific case study. 

How to cite: Rasol, M., Perez-Gracia, V., and Santos, S.: New methodologies of GPR Assessment for analysing water content in sedimentary deposits; Application to the Hospital Sant Pau Urban Area in Barcelona, Spain, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-363, https://doi.org/10.5194/egusphere-egu21-363, 2021.

Signal polarity is an attribute that can be used as additional key element to reduce ambiguities and pitfalls in the data interpretation step.

A theoretical analysis of the reflection and transmission phenomena for parallel and perpendicular polarization of the electric field was carried out highlighting that polarity changes (180-degree phase shifts) are caused only by reflection phenomena in specific conditions.

Numerical modelling, through the Finite Difference Time Domain (FDTD) method, helped visualize the theoretical findings and was employed to reproduce the GPR response in two simple contexts (high permittivity layer embedded in a lower permittivity material and vice versa). The findings showed the expected theoretical polarity of multiple reflections providing a tool to effectively recognise them along with travel time information and reflection shapes.

The FDTD technique was also used to analyse the polarity response of regular geometrical shaped air-filled cavities (circle, square and arched roof square), in lossless and lossy conditions. The output was then compared with real radargrams concluding that A-scan assessment should be considered when pronounced scattering and attenuation phenomena are experienced (although polarity analysis may not be possible in very complex environments) and that the shape of the target may affect the resulting signal polarity due to interference with other wave fields.

Polarity analysis should be carried out by comparing the direct wavelet with the signal pattern of interest to assess if a phase shift occurred: attention should be paid to the GPR system used as not all the GPR antennas record the direct wavelet.

How to cite: Campo, D.: On GPR signal polarity: a comparison between theoretical findings and real case-studies, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9234, https://doi.org/10.5194/egusphere-egu21-9234, 2021.

EGU21-11199 | vPICO presentations | GI2.1

Intelligent recognition of underground pipeline From GPR image based on Hash algorithm

Bo Li and Yonghui Zhao

Ground penetrating radar (GPR) is a high-resolution geophysical non-destructive detection method, which is widely used in near surface target detection, and has been successfully applied in urban construction and geotechnical engineering. In urban life, underground pipelines undertake important missions such as energy transmission and information transmission. As the basic data of smart city, the acquisition of spatial location information of underground pipelines depends on geophysical detection data such as GPR. The traditional recognition and interpretation of  GPR underground pipeline image mainly depends on and is seriously limited by the professional experience of the staff, which is very disadvantageous to the development of large-scale urban underground pipeline survey. To address this problem, according to the GPR reflection image characteristics of isolated targets such as underground pipelines, this paper proposes an intelligent recognition concept of isolated targets in GPR profile based on CBIR (Content-based image retrieval) According to Hash algorithm and improved vector K-means clustering analysis, the intelligent detection, automatic image sorting and recognition of underground pipeline target in GPR profile are realized. Finally, the pipeline material is judged by extracting the image brightness function of the middle trace in the recognition area. The application results of numerical simulation experiments and measured data show that this algorithm can effectively identify the hyperbolic characteristics of the pipeline in the GPR profile, and the identified area can accurately reflect the spatial location of the underground pipeline.

How to cite: Li, B. and Zhao, Y.: Intelligent recognition of underground pipeline From GPR image based on Hash algorithm, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11199, https://doi.org/10.5194/egusphere-egu21-11199, 2021.

EGU21-12852 | vPICO presentations | GI2.1

Combined Migration of GPR data for layered media

Raffaele Persico and Gianfranco Morelli

In this contribution we will propose the combination of migration results achieved from the same GPR dataset, aimed to mitigate the effects of the nonuniformity of the propagation velocity of the waves throughout the investigated domain. The nonuniformity of the propagation velocity can be appreciated from the diffraction hyperbolas [1] possibly present in the data, or directly from the results of the focusing [2] achieved from different trial values of the propagation velocity. In ref. [3] an algebraic combination of two (but theoretically even more) migration results achieved from different migration parameters applied to the same data has been shown. In that paper, the case of a horizontal variation and the case of a vertical variation of the propagation velocity of the electromagnetic waves in the soil were considered. Here, we will consider the case of a layered medium with non-flat interface between two adjacent layers, which is a case of interest in several practical application, and is a case where we have both a vertical and a horizontal variation of the parameters. Analogously to ref. [3], we will consider both the aspect of the focusing and that of the combined time-depth conversion.

 

References

 

[1] R. Persico G. Leucci, L. Matera, L. De Giorgi, F. Soldovieri, A. Cataldo, G. Cannazza, E. De Benedetto, Effect of the height of the observation line on the diffraction curve in GPR prospecting, Near Surface Geophysics, Vol. 13, n. 3, pp. 243-252, 2015.

[2]G. Gennarelli, I. Catapano, F. Soldovieri, R. Persico, On the Achievable Imaging Performance in Full 3-D Linear Inverse Scattering, IEEE Trans. on Antennas and Propagation,  vol. 63, n. 3, pp. 1150-1155, March 2015.

[3] R. Persico, G. Morelli, Combined Migrations and Time-Depth Conversions in GPR Prospecting: Application to Reinforced Concrete, Remote Sens. 2020, Volume 12, Issue 17, 2778, open access, DOI 10.3390/rs12172778

 


 

How to cite: Persico, R. and Morelli, G.: Combined Migration of GPR data for layered media, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12852, https://doi.org/10.5194/egusphere-egu21-12852, 2021.

EGU21-14803 | vPICO presentations | GI2.1

Joint petrophysical full-waveform inversion of the shallow-seismic and multi-offset GPR data

Tan Qin, Thomas Bohlen, and Yudi Pan

Shallow-seismic surface wave and ground penetrating radar (GPR) are employed in a wide range of engineering and geosciences applications. Full-waveform inversion (FWI) of either seismic or multi-offset GPR data are able to provide high-resolution subsurface characterization and have received particular attention in the past decade. Those two geophysical methods are involved in the increasing requirements of comprehensive site and material investigations. However, it is still challenging to provide an effective integration between seismic data and electromagnetic data. In this paper, we investigated the joint petrophysical inversion (JPI) of shallow-seismic and multi-offset GPR data for more consistent imaging of near surface. As a bridge between the seismic parameters (P-wave velocity, S-wave velocity, and density) and GPR parameters (relative dielectric permittivity and electric conductivity), the petrophysical relationships with the parameters namely porosity and saturation are employed to link two data sets. We first did a sensitivity analysis of the petrophysical parameters to the seismic and GPR parameters and then determined an efficient integration of using shallow-seismic FWI to update porosity and GPR FWI to update saturation, respectively. A comparison of several parameterisation combinations shows that the seismic velocity parameterisation in shallow-seismic FWI and a modified logarithm parameterisation in GPR FWI works well in reconstructing reliable S-wave velocity and relative dielectric permittivity models, respectively. With the help from the petrophysical links, we realized JPI by transforming those well recovered parameters to the petrophysical parameters and then to other seismic and GPR parameters. A synthetic test indicates that, compared with the individual petrophysical inversion and individual FWI, JPI outperforms in simultaneously reconstructing all seismic, GPR, and petrophysical parameters with higher resolution and improved details. It is proved that JPI would be a potential data integration approach for the shallow subsurface investigation.

How to cite: Qin, T., Bohlen, T., and Pan, Y.: Joint petrophysical full-waveform inversion of the shallow-seismic and multi-offset GPR data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14803, https://doi.org/10.5194/egusphere-egu21-14803, 2021.

EGU21-13463 | vPICO presentations | GI2.1 | Highlight

On the Use of Short-Time Fourier Transform for the Analysis of Tree Root Systems using Ground Penetrating Radar

Livia Lantini, Fabio Tosti, Luca Bianchini Ciampoli, and Amir M. Alani

Monitoring and protecting natural assets is increasingly important today, as aggressive pathogens are negatively impacting the trees' survival. In this regard, root systems are affected by fungal infections that cause roots’ rot and eventually lead to trees' death. Such disease can spread rapidly to the adjacent trees and affect larger areas. Since these decays generally do not display visible signs, early identification is the key to tree preservation.

Within this context, non-destructive testing (NDT) methods are becoming popular, being more versatile than destructive methods. Specifically, ground penetrating radar (GPR) is emerging as an accurate geophysical method for tree root mapping. Recent research has focused on implementing automated algorithms for 3D root mapping, improving root detection through advanced GPR signal processing and the estimation of tree roots' mass density [1]. Also, recent studies have proven that GPR is effective in mapping the root system's architecture of street trees [2].

The present research reports the preliminary results of an experimental study, conducted to investigate the feasibility of a novel tree root assessment methodology based on the analysis of GPR data both in time and frequency domain. To this end, data were processed using a short-time Fourier transform (STFT) approach [3], which allows the evaluation of how the frequency spectrum changes across the signal propagation time window. The suggested processing system may be implemented for expeditious analyses or on trees challenging to access, such as in urban environments, where more comprehensive survey methods are not applicable. The objectives of this study, therefore, are to investigate how different features (i.e., roots, layers) affect the time-frequency analysis of GPR data, and to identify recurring patterns in the results to set a coherent data processing methodology.

Results' interpretation has shown the viability of the presented approach in recognising the influence of different features on the analysis of GPR data as it changes over time. This also allowed the detection of recurring patterns in the analysed data, proving that this method is worthy of further investigations.

Acknowledgements
The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organisations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook Trust, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation, and The Wyfold Charitable Trust.


References
[1]     Lantini, L., Tosti, F., Giannakis, I., Zou, L., Benedetto, A. and Alani, A. M., 2020. "An Enhanced Data Processing Framework for Mapping Tree Root Systems Using Ground Penetrating Radar," Remote Sensing 12(20), 3417.
[2]     Lantini, L., Alani, A., Giannakis, I., Benedetto, A. and Tosti, F., 2020. "Application of ground penetrating radar for mapping tree root system architecture and mass density of street trees," Advances in Transportation Studies (3), 51-62.
[3]     Bianchini Ciampoli, L., Calvi, A. and D'Amico, F., 2019. "Railway Ballast Monitoring by GPR: A Test Site Investigation," Remote Sensing 11(20), 238

How to cite: Lantini, L., Tosti, F., Bianchini Ciampoli, L., and Alani, A. M.: On the Use of Short-Time Fourier Transform for the Analysis of Tree Root Systems using Ground Penetrating Radar, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13463, https://doi.org/10.5194/egusphere-egu21-13463, 2021.

EGU21-14834 | vPICO presentations | GI2.1

A rapid total nitrogen determination prototype for wastewater treatment plants online detection

Jingxuan Geng, Chunhua Yang, Lijuan Lan, Jie Han, Fengxue Zhang, and Yonggang Li

The online automatic detection for the concentration of total nitrogen (TN) is a critical problem in wastewater treatment plants (WWTPs). The over-discharge of TN can cause severe environmental problems such as aquatic eutrophication and ecosystem dysfunction, and the TN concentration in each wastewater treatment process can also reflect the processing statement of WWTPs and ensure its stable operation. However, determining the TN concentration timely is always a difficult task. According to the traditional TN detection approach, the concentration of TN is determined after the oxidative digestion process, which is a complex chemical reaction process and usually requires 30 minutes to 1 hour. Considering the actual operation situation, this traditional method can hardly satisfy the real-time requirement of WWTPs, which can only be used as a kind of validation approach. To solve this problem, in this paper, we design a novel automatic detection prototype of TN. Instead of determining the concentration of TN after the process of oxidative digestion, the ultraviolet spectrum is used to non-destructive detect the concentration of nitrate during the whole oxidative digestion process. Based on the principle of competitive response and chemical reaction kinetics, for different water samples with different TN concentrations, their oxidative digestion processes are different even in the early reaction stage. Therefore, we can use the early reaction properties to determine the TN concentration, thereby shortening the necessary detection time. Based on experimental data collected from real water samples, our prototype can not only efficiently shorten the detection time of the TN concentration, but also ensure satisfactory detection accuracy.

How to cite: Geng, J., Yang, C., Lan, L., Han, J., Zhang, F., and Li, Y.: A rapid total nitrogen determination prototype for wastewater treatment plants online detection, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14834, https://doi.org/10.5194/egusphere-egu21-14834, 2021.

EGU21-7437 | vPICO presentations | GI2.1

Classification of moisture damage in layered building floors with GPR and neutron probe

Tim Klewe, Christoph Strangfeld, Tobias Ritzer, and Sabine Kruschwitz

In 2019, 3.1 billion Euro of damage was caused by piped water, accounting for the largest share (53%) of building insurance claims in Germany. In the event of damage, the accurate determination and localization of water ingress is essential to plan for and perform efficient renovations. Neutron probes are already applied successfully on building floors to localize the source of damage and other affected areas. However, additional information about the depth of moisture penetration can only be obtained by the destructive extraction of drilling cores, which is a time- and cost-intensive procedure. With its high sensitivity to water and fast measurement procedure, Ground Penetrating Radar (GPR) can serve as a suitable extension to the neutron probe, enabling more precise characterization of common forms of moisture damage.

In this research project, we study the influence of common types of moisture damage in differing floor constructions using GPR and a neutron probe. A measurement setup with interchangeable layers is used to vary the screed material (cement or anhydrite) and insulation material (Styrofoam, Styrodur, glass wool, perlite), as well as the respective layer thickness. Every configuration is measured for the following main cases: 1) dry state; 2) with a damaged insulation layer and 3) a damaged screed layer.

The evaluation is focused on the extraction of distinctive signal features for GPR, which can be used to classify the underlying case of damage. Furthermore, possible combinations of these features are investigated using multivariate data analysis and machine learning in order to evaluate the influence of different floor constructions.

To validate the developed methods, practical measurements on real damage cases in Germany are carried out and compared to reference data obtained from drilling cores.

How to cite: Klewe, T., Strangfeld, C., Ritzer, T., and Kruschwitz, S.: Classification of moisture damage in layered building floors with GPR and neutron probe, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7437, https://doi.org/10.5194/egusphere-egu21-7437, 2021.

EGU21-13472 | vPICO presentations | GI2.1

Determining Bridge Deck Chloride Quantities Using Ground Penetrating Radar

Anthony Alongi

Chlorides from deicing salts attack the steel reinforcement in bridge decks which can ultimately cause delamination and deterioration of the concrete. For transportation agencies, the repair cost from these defects are estimated to exceed $5B per year in USA and make up between 50% - 85% of bridge maintenance budgets. While, the removal and replacement of chloride contaminated concrete is the most long-lasting and cost-effective remediation, few methods exist to determine chloride content in bridge decks. This research describes an entirely new method for determining chloride quantity in bridge decks using ground penetrating radar (GPR) technology and establishes and quantifies the relationship between chlorides in concrete (which cause corrosion of reinforcing steel and delamination of concrete) and the effect on GPR signal propagation. Specifically, it shows that there is a deterministic relationship between radar signal attenuation and the amount of chloride and moisture in bridge deck concrete, and that when moisture content is known it is possible to estimate chloride quantity based on signal loss or attenuation measurements. Our research also demonstrates the practical application of this concept by utilizing GPR along with limited coring (three or more core samples) and laboratory chloride measurements to produce an accurate and quantitative, spatial mapping of chlorides in bridge decks.

How to cite: Alongi, A.: Determining Bridge Deck Chloride Quantities Using Ground Penetrating Radar, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13472, https://doi.org/10.5194/egusphere-egu21-13472, 2021.

EGU21-14103 | vPICO presentations | GI2.1

Detection of voids behind segments in the shield tunnels by using Ground Penetrating Radar

Hai Liu, JianYing Lin, Xu Meng, and Yanliang Du

Abstract—Metro traffic in subsurface tunnels is under a rapid development in many cities in the recent decades. However, the voids and other concealed defects inside and/or behind the tunnel lining pose critical threat to the safety of the operating metro tunnels. Ground penetrating radar (GPR) is a non-destructive geophysical technique by transmitting electromagnetic (EM) waves and receiving the reflected signals. GPR has proved its capability in the detection of the existence of tunnel structural defects and anomalies. However, the voids are still hard to be recognized in a GPR image due to the strong scattering clutter caused by the dense steel bars reinforced inside the concrete lining [1]. In this paper, we analyze the propagations of EM waves through reinforce concrete segments of shield tunnels by finite difference time domain (FDTD) simulations and model test.  Firstly, a series of simulations results we have done, indicates that the center frequency of GPR ranges from 400 MHz to 600 MHz has a good penetration through the densely reinforced concrete lining. And the distance between the antennas and the surface of shield tunnel segments should be less than 0.2 m to ensure a good coupling of incident electromagnetic energy into the concrete structure. Then, to image the geometric features of the void behind the segment, reverse-time migration method is applied to the simulated GPR B-scan profile, which presents higher resolution results than the results by using the traditional diffraction stack migration (Figure 1) [2]. Finally, the field experiment results prove that a commercial GPR system operating at a center frequency of 600 MHz do detect a void behind the shield tunnel (Figure 2). The reflection from the void, which starts from the back interface of the segments and lasts over 20 ns, are significantly different from the reflections from the rebars (Figure 3). In summary, GPR has potential in the detection of voids behind the shield tunnel segment. More simulations and field experiments will be performed in the future.

Keywords—ground penetrating radar (GPR); shield tunnel; voids; reverse time migration (RTM)

Acknowledgement—this work was supported by Shenzhen Science and Technology program (grant number:KQTD20180412181337494).

Fig. 1 Numerical simulation of two segments of 2D shield tunnel. (a) numerical model, (b) simulated GPR B-scan profile, (c) migrated profile by using diffraction stack migration and (d) migrated profile by using reverse-time migration.

Fig. 2 One photo of the field experiment.

Fig. 3 GPR reflections from a void behind the segment of a subway tunnel

References

[1]     H. Liu, H. Lu, J. Lin, F. Han, C. Liu, J. Cui, B. F. Spencer, “Penetration Properties of Ground Penetrating Radar Waves through Rebar Grids” , IEEE Geoscience and Remote Sensing Letters ( DOI: 10.1109/LGRS.2020.2995670)

[2]          H. Liu, Z. Long, F. Han, G. Fang, Q. H. Liu, “Frequency-Domain Reverse-Time Migration of Ground Penetrating Radar Based on Layered Medium Green's Functions”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 08, pp. 2957-2965, 2018.

 

How to cite: Liu, H., Lin, J., Meng, X., and Du, Y.: Detection of voids behind segments in the shield tunnels by using Ground Penetrating Radar, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14103, https://doi.org/10.5194/egusphere-egu21-14103, 2021.

EGU21-14685 | vPICO presentations | GI2.1

Interlayer Debonding Inspection in Airport Pavements by MIMO GPR System

Lilong Zou, Fabio Tosti, Amir M. Alani, and Motoyuki Sato

The integrity and flatness of airport pavement facilities are important to maintain safe operations of aircrafts. Even a small defect and resulting debris can cause catastrophic accidents and, therefore, anomalies must be accurately detected for the first time before major damage occurs. To this effect, it is necessary to develop a low-cost, efficient, and accurate inspection technology to detect the anomalies in airport concrete pavements. In recent years, non-destructive testing (NDT) methods have been widely used in airport pavement inspection and maintenance due to the provision of reliable and efficient information. Amongst the NDT techniques, GPR can provide optimal resolutions for different applications in civil engineering due to the ultra-wide frequency band configuration [1][2]. However, for the investigation of airport pavement facilities main challenges are how to extract information from the reflections by small anomalies [3][4].

In this research, we used a MIMO GPR system to inspect the interlayer debonding in a large area of an airport pavement. A special set of antenna arrangements of the system can obtain common mid-point (CMP) gathers during a common offset survey simultaneously. The existence of interlayer debonding affects the phase of the reflection signals, and the phase disturbance can be quantified by wavelet transform. Therefore, an advanced approach that uses the average entropy of the wavelet transform parameters in a CMP gathers to detect the interlayer debonding in airport pavements is proposed.

The aim of this research is to provide more significant and accurate information for airport pavement inspections using a MIMO GPR system. To this extent, the wavelet entropy analysis is applied to identify the interlayer debonding existed in the shallow region. The proposed approach was then evaluated by field tests on an airport taxiway. The results were validated by on-site coring and demonstrate that the regions with high entropy correspond to the regions where tiny voids occurred. The proposed method has proven potential to detect the interlayer debonding of the pavement model accurately and efficiently.

 

References

[1] Alani, A. M. et al., 2020. Reverse-Time Migration for Evaluating the Internal Structure of Tree-Trunks Using Ground-Penetrating Radar. NDT&E International, vol.115, pp:102294.

[2] Zou, L. et al., 2020. Mapping and Assessment of Tree Roots using Ground Penetrating Radar with Low-Cost GPS. Remote Sensing, vol.12, no.8, pp:1300.

[3] Zou, L. et al., 2020. On the Use of Lateral Wave for the Interlayer Debonding Detecting in an Asphalt Airport Pavement Using a Multistatic GPR System. IEEE Transaction on Geoscience and Remote Sensing, vol. 58, no. 6, pp. 4215-4224.

[4] Zou, L. et al., 2021. Study on Wavelet Entropy for Airport Pavement Debonded Layer Inspection by using a Multi-Static GPR System. Geophysics, in press.

How to cite: Zou, L., Tosti, F., Alani, A. M., and Sato, M.: Interlayer Debonding Inspection in Airport Pavements by MIMO GPR System, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14685, https://doi.org/10.5194/egusphere-egu21-14685, 2021.

EGU21-15100 | vPICO presentations | GI2.1 | Highlight

ERT and GPR surveys for the detection of incipient collapse areas in urban environment

Luigi Capozzoli, Gregory De Martino, Giacomo Fornasari, Valeria Giampaolo, and Enzo Rizzo

Urban Resilience represents the capability of an urban system to preserve its features (in terms of public and private qualities and services) when shock events occur [1]. This topic is receiving an increasing interest for the climate change emergency which require innovative strategies for preserving the natural and anthropic resources present in the subsoil. In this framework, the Urban Geophysics could give a strong contribution to improving the knowledge of the critical issues affecting urban area [2].

One of the most interesting challenges is represented by the detection of ground collapse phenomena that can hardly reduce the safety and reliability of civil structures and infrastructures, as clearly demonstrated by the ground occurred in the Ospedale del Mare car park (Naples, Italy) [3] during the COVID-19 emergency that has brought the light on the weakness of the planning processes of the public authorities when fast decisions are required. Indeed, decision making in urban planning can be effectively supported by rational and reasoned use of the geophysical technologies able to reduce the risks imputable to the activities and decision required by the emergency planning in urban contexts.

This work focuses its attention on the capability of geophysical methodologies to detect, characterize and monitoring the presence of buried sinkholes, collapses, voids within the subsoil able to cause severe structural stability problems with rapid and non-invasive applications based on the use of Ground Penetrating Radar and Electrical Resistivity Tomographies. The studied cases showed how the cooperative use of the geoelectrical and electromagnetic methods can identify and monitor potential risks of collapses highlighting the pros and cons of the two techniques in terms of resolution and depth of study.

 

REFERENCES

[1] Lapenna V. (2016) Resilient and sustainable cities of tomorrow: the role of applied geophysics. Bollettino di Geofisica Teorica ed Applicata 58(4):237–251. https ://doi.org/10.4430/bgta0204

[2] Capozzoli L., De Martino G., Polemio M. et E. Rizzo, Surveys in Geophysics 2019, Geophysicaltechniquesfor monitoring settlement phenomena occurring in reinforced concrete buildings, Surveys in Geophysics, DOI: 10.1007/s10712-019-09554-8;

[3] Borghese L.,  Mortensen A. and R. Picheta, https://edition.cnn.com/2021/01/08/europe/italy-hospital-sinkhole-scli-intl/index.html (latest access 01/20/2021, January 9, 2021

How to cite: Capozzoli, L., De Martino, G., Fornasari, G., Giampaolo, V., and Rizzo, E.: ERT and GPR surveys for the detection of incipient collapse areas in urban environment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15100, https://doi.org/10.5194/egusphere-egu21-15100, 2021.

EGU21-15385 | vPICO presentations | GI2.1

Multi-length TDR probes: future perspectives

Raffaele Persico, Lourdes Farrugia, Iman Farhat, and Charles Sammut

In this contribution we will propose the use of multi-length TDR probes for measurements of the dielectric and possibly magnetic characteristics of a material under test (MUT) as a function of frequency. The multi-length strategy, consisting in making use of a TDR probe with adjustable length of the conductors, can allow the meaningful increase of information achievable about the MUT at each test frequency. We are still at an early stage about these possibilities, and many questions are still open at this time. However, some of our previous studies [1-3] show that the method is promising and can permit the acquisition of some information not intrinsically available from a traditional TDR probe, especially if the MUT shows a dispersive behaviour and possibly magnetic properties. In this contribution, we will discuss the recent work related in particular to geophysical applications.

Acknowledgements

This work in progress is being carried out within the European Cost Action CA17115 Mywave.

References

[1] R. Persico, M. Pieraccini, Measurement of dielectric and magnetic properties of Materials by means of a TDR probe, Near Surface Geophysics, vol. 16, n.2, pp.1-9, DOI:10.3997/1873-0604.2017046, 2018.

[2] R. Persico, I. Farhat, L. Farrugia, S. d’Amico, C. Sammut, An innovative use of TDR probes: First numerical validations with a coaxial cable, Journal of Environmental & Engineering Geophysics, doi.org/10.2113/JEEG23.4.437, 23 (4): 437-442, 2018.

[3] I. Farhat, L. Farrugia, R. Persico, S. D’Amico, and C. Sammut, Preliminary Experimental Measurements of the Dielectric and Magnetic Properties of a Material with a Coaxial TDR Probe in Reflection Mode, Progress In Electromagnetics Research M, Vol. 91, 111–121, 2020.

How to cite: Persico, R., Farrugia, L., Farhat, I., and Sammut, C.: Multi-length TDR probes: future perspectives, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15385, https://doi.org/10.5194/egusphere-egu21-15385, 2021.

EGU21-7920 | vPICO presentations | GI2.1

Nondestructive data analysis for pavement profile evaluation

Christina Plati, Konstantinos Gkyrtis, and Andreas Loizos

Highway pavements serve the need for safe transportation of human being and freights, so their condition deserves continuous monitoring and assessment. However, pavements are most often monitored in terms of their surface performance evaluation. Either with or without surface distresses, excessive pavement unevenness and/or texture loss may lead to a reduced road users’ satisfaction. Most often, the pavement surface condition is sensed through laser profilers that operate at traffic speeds. Once detected through the stand-alone use of laser profilers, pavement roughness along a pavement surface may be of major concern for the related agencies, since the root causes of roughness issues are in most cases unknown.

Excessive unevenness might sometimes be interrelated with structural issues within one or more pavement layers or even issues within the pavement foundation support. Traditionally, coring and boreholes are considered suitable to detect the condition of pavement surface layers and pavement substructure respectively. However, these processes are destructive and time-consuming. On the contrary, Non-Destructive Testing

(NDT) can be alternatively used to rapidly evaluate potential structural problems at areas with roughness issues and identify areas for further investigation. A popular method to assess the pavement structural integrity is the use of nondestructive deflectometric tests, including the Falling Weight Deflectometer (FWD). This kind of testing outperforms the traditional approach; thus it is both desirable and practical.

On these grounds, related research is pursued towards integrating pavement profile and deflectometric data in order to further evaluate indications of increased pavement roughness. In particular, Long Term Pavement Performance (LTPP) data including deflectometric and pavement profile data is used. Additional sensing data through geophysical inspections with the Ground Penetrating Radar (GRP) is used to assist the overall pavement assessment. The study demonstrates the power of pavement sensing data in order to provide the related agencies with cost-effective and reliable evaluation methods and approaches.

How to cite: Plati, C., Gkyrtis, K., and Loizos, A.: Nondestructive data analysis for pavement profile evaluation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7920, https://doi.org/10.5194/egusphere-egu21-7920, 2021.

As an array antenna ground penetrating radar (GPR) system electronically switches any antenna combinations sequentially in milliseconds, multi-offset gather data, such as common mid-point (CMP) data, can be acquired almost seamlessly. However, due to the inflexibility of changing the antenna offset, only a limited number of scans can be obtained. The array GPR system has been used to collect time-lapse GPR data, including CMP data during the field infiltration experiment (Iwasaki et al., 2016). CMP data obtained by the array GPR are, however, too sparse to obtain reliable velocity using a standard velocity analysis, such as semblance analysis. We attempted to interpolate the sparse CMP data based on projection onto convex sets (POCS) algorithm (Yi et al., 2016) coupled with NMO correction to automatically determine optimum EM wave velocity. Our previous numerical study showed that the proposed method allows us to determine the EM wave velocity during the infiltration experiment.

The main objective of this study was to evaluate the performance of the proposed method to interpolate sparse array antenna GPR CMP data collected during the in-situ infiltration experiment at Tottori sand dunes. The interpolated CMP data were then used in the semblance analysis to determine the EM wave velocity, which was further used to compute the infiltration front depth. The estimated infiltration depths agreed well with independently obtained depths. This study demonstrated the possibility of developing an automatic velocity analysis based on POCS interpolation coupled with NMO correction for sparse CMP collected with array antenna GPR.

How to cite: Oikawa, K., Saito, H., Kuroda, S., and Takahashi, K.: Determining optimum wave velocity from sparse CMP automatically by coupling POCS interpolation and NMO correction: application to array antenna GPR data collected during in-situ infiltration test, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9074, https://doi.org/10.5194/egusphere-egu21-9074, 2021.

EGU21-15147 | vPICO presentations | GI2.1

Bridge monitoring and deformation time-series analysis by high-resolution Multi-Temporal SAR Interferometry (MT-InSAR) 

Valerio Gagliardi, Luca Bianchini Ciampoli, Amir Alani, Fabio Tosti, and Andrea Benedetto

Multi-temporal Interferometric Synthetic Aperture Radar (InSAR) is a space-borne monitoring technique capable of detecting cumulative surface displacements with millimeter accuracy in the Line of Sight (LOS) of the radar sensor [1-3]. Several developments in the processing methods and the increasing availability of SAR datasets from different satellite missions, have proven the viability of this technique in the near-real-time assessment of bridges and the health monitoring of transport infrastructures [2-4].

This research aims to demonstrate the potential of satellite-based remote sensing techniques as an innovative health-monitoring method for structural assessment of bridges and the prevention of damages by structural subsidence, using high-resolution SAR datasets integrated with complementary Ground-Based (GB) Non-Destructive Testing (NDT) techniques. To this purpose, high-resolution COSMO‐SkyMed (CSK) products provided by the Italian Space Agency (ASI) were acquired and processed.

In particular, a multi-temporal InSAR analysis was developed to identify and monitor the structural displacements of the Rochester Bridge, located in Rochester, Kent, UK. To this extent, a clustering operation is realised to collect the identified Persistent Scatterers (PSs) over the structural elements of the bridge (i.e., bridge piers and arcs). Furthermore, several sub-clusters with a comparable deformation trend were identified and located over the bridge elements. This operation paves the way for an automatisation of the process through a Machine Learning (ML) clustering algorithms to assign each PS data-point to specific groups, based on the structural element type and the trend of seasonal deformation time-series.

The outcomes of this study demonstrate how multi-temporal InSAR remote sensing techniques can be synergistically applied to complement non-destructive ground-based analyses, paving the way for future integrated methodologies in the monitoring of infrastructure assets.

Acknowledgments: The authors want to acknowledge the Italian Space Agency (ASI) for providing the COSMO-SkyMed Products® (©ASI, 2017-2019),  in the framework of the ASI-Open Call Project “MoTIB, ID 742” accepted by ASI. In addition, the authors would like to acknowledge the Rochester Bridge Trust for facilitating and supporting this research. This research is supported by the Italian Ministry of Education, University and Research under the National Project “EXTRA TN”, PRIN 2017, Prot. 20179BP4SM.

References

[1] Alani A. M., Tosti F., Bianchini Ciampoli L., Gagliardi V., Benedetto A., Integration of GPR and InSAR methods for the health monitoring of masonry arch bridges. NDT&E International. (2020)

[2] Gagliardi V., Bianchini Ciampoli L., D'Amico F., Alani A. M., Tosti F., Battagliere M. L., Benedetto A., Bridge monitoring and assessment by high-resolution satellite remote sensing technologies, Proc. SPIE 11525, SPIE Future Sensing Technologies. 2020. doi: 10.1117/12.2579700

[3] Selvakumaran, S., Plank, S., Geiß, C., Rossi, C., Middleton, C. (2018). Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques, Int. J. .Appl. Earth Obs. and Geoinf. 73, 463-470.

[4] Qin X, Liao M., Zhang L., & Yang M., Structural Health and Stability Assessment of High-Speed Railways via Thermal Dilation Mapping with Time-Series InSAR Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

How to cite: Gagliardi, V., Bianchini Ciampoli, L., Alani, A., Tosti, F., and Benedetto, A.: Bridge monitoring and deformation time-series analysis by high-resolution Multi-Temporal SAR Interferometry (MT-InSAR) , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15147, https://doi.org/10.5194/egusphere-egu21-15147, 2021.

EGU21-16319 | vPICO presentations | GI2.1

Integrated Health Monitoring of transport assets by ground-based Non-Destructive Technologies (NDTs) and satellite Remote Sensing analysis

Fabrizio D'Amico, Valerio Gagliardi, Chiara Clementini, Daniele Latini, Fabio Del Frate, Luca Bianchini Ciampoli, Alessandro Di Benedetto, Margherita Fiani, and Andrea Benedetto

Bridges and viaducts are exposed to a variety of threats that can affect their operations and structural integrity [1]. Recent unexpected collapses and failures of bridges underline the need for effective structural monitoring, particularly for reinforced concrete structures. In fact, once distress mechanisms are triggered, these can deteriorate faster than the time required for rehabilitation, strengthening, or replacement.

To this extent, it is evident that the monitoring of the actual health conditions of the existing bridges is a priority for asset operators in order to guarantee the structural integrity, the safety of the operations and preventing irreversible damages or even structural collapses.

Within this context, Non-Destructive Testing (NDT) methods such as Ground Penetrating Radar (GPR) and Terrestrial Laser Scanner (TLS) amongst many others have been used for the assessing and monitoring such structures in the past few years[2]. However, topic-related studies [3-4] have demonstrated that stand-alone use of ground-based techniques may not represent a definitive solution to particular major structural issues, such as scour and differential settlements, as these require continuous monitoring and data collection on long-term bases . To that extent, the use of satellite-based remote sensing techniques, such as Synthetic Aperture Radar Interferometry (InSAR), have proven to be effective in detecting displacements with a millimetre accuracy along with transport infrastructures [3-5] and natural terrain considering long periods of observation.

Accordingly, this research aims to present a novel integrated monitoring approach including the use of ground-based technologies (GPR, TLS) and the InSAR techniques over a Maillart arch type bridge: the Viadotto Olivieri in Salerno, (in the South of Italy).

Main objectives of the research  are: (1) to prove the viability of low-frequency and high-frequency GPR systems in providing structural detailing of the bridge-deck at different depths and resolutions; (2) to measure seasonal structural displacements with a millimetre accuracy to detect potential critical issues of the bridge.

The outcomes of this study, under the National Project “EXTRA TN”, PRIN 2017- Prot. 20179BP4SM, demonstrate how multi-temporal InSAR remote sensing techniques can be synergistically applied to complement the traditional ground-based surveys.

 

References

[1] Hosseini Nourzad, S. H. and Pradhan, A. Vulnerability of Infrastructure Systems: Macroscopic Analysis of Critical Disruptions on Road Networks. Journal of Infrastructure Systems, 22(1), 04015014. 2016

[2] D’Aranno, P., Di Benedetto, A., Fiani, M., and Marsella, M.: Remote Sensing Technologies For Linear Infrastructure Monitoring, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W11, 461–468, https://doi.org/10.5194/isprs-archives-XLII-2-W11-461-2019, 2019.

[3] Bianchini Ciampoli, L., Gagliardi, V., Clementini, et al., Transport Infrastructure Monitoring by InSAR and GPR Data Fusion. Surv Geophys 41, 371–394 (2020). https://doi.org/10.1007/s10712-019-09563-7

[4] Gagliardi V., Benedetto A., Bianchini Ciampoli L., D’Amico F., Alani A., Tosti F., 2020. Health monitoring approach for transport infrastructure and bridges by satellite remote sensing Persistent Scatterer Interferometry (PSI). Proc.SPIE 11534. https://doi.org/10.1117/12.2572395

[5] Bianchini Ciampoli L., Gagliardi V., Calvi A., D’Amico F., Tosti F., Automatic network-level bridge monitoring by integration of InSAR and GIS catalogues. Proceedings of SPIE - The International Society for Optical Engineering, 11059, (2019). DOI: 10.1117/12.2527299

How to cite: D'Amico, F., Gagliardi, V., Clementini, C., Latini, D., Del Frate, F., Bianchini Ciampoli, L., Di Benedetto, A., Fiani, M., and Benedetto, A.: Integrated Health Monitoring of transport assets by ground-based Non-Destructive Technologies (NDTs) and satellite Remote Sensing analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16319, https://doi.org/10.5194/egusphere-egu21-16319, 2021.

GI2.2 – 10 years after the Fukushima accident : Geoscience problems related to massive release of radioactive materials by nuclear accidents and other human activities

The radioactive cesium (134Cs and 137Cs), which originated from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, has remained in the soil and on plants as water-insoluble microparticles (termed as CsMPs) to some extent, and maintained relatively high radioactivity levels in the district. However, it has been reported that the radioactive Cs has been absorbed by plants. To interpret this phenomenon, the authors investigated CsMPs to determine if they become soluble during filtration and dialysis experiments. Moreover, other physical properties, such as mechanical properties and thermal stability, were observed during the course of the relevant experiments. These properties can be obtained by using carbonized charcoal litter with CsMPs. And simple and economic decontamination trials of the soil were performed by sieving after drying and roughly crushing.

How to cite: Tanaka, I., Yamaguchi, A., Kikuchi, K., Niimura, N., Saeki, Y., and Sugihara, M.: Dissolution, Mechanical Properties, and Thermal Stability of Microparticles Containing Radioactive Cesium on Plant Litter Derived from the Fukushima Daiichi Nuclear Power Plant Accident,  and Soil Decontamination Trials , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2976, https://doi.org/10.5194/egusphere-egu21-2976, 2021.

EGU21-3320 | vPICO presentations | GI2.2

Localization of actinide-bearing particles in sediment samples from the Fukushima restriction zone

Aurélie Diacre, Pascal Fichet, Paul Sardini, Jérôme Donnard, Anne-Laure Fauré, Olivier Marie, Katsumi Shozugawa, Michael Susset, Mayumi Hori, Fabien Pointurier, and Olivier Evrard

The Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) accident that occurred in March 2011 released significant quantities of radionuclides into the environment. Ten years after the accident, questions still remain, particularly about the processes that led to the partial core meltdown of reactors 1 and 3. So far, some answers have been provided by the investigation of particles containing caesium (Martin et al., 2020) and sometimes uranium (Ochiai et al., 2018). Indeed, the composition of particles, which were produced and spread at the time of the reactor explosion, reflect the conditions that prevailed in the reactor. Accordingly, the objective of the current research is to develop a method for specifically locating actinide-bearing particles in sediment samples collected in the vicinity of FDNPP. To identify and locate such particles, three already existing methods have been upgraded, including 1) the method of fission tracks already used in the field of non-proliferation studies, 2) the autoradiography through the use of imaging plates that are currently employed in the context of the localization of particles containing radio-caesium and the dismantling of nuclear facilities (Haudebourg and Fichet, 2016), and 3) a real time autoradiography method through the use of the BeaQuant® instrument which has been developed for detecting radioactive particles in biology and geosciences.

In this study, a sediment sample collected nearby FDNPP, which may contain particles containing both radio-caesium and actinides, was selected. This sample was dried and sieved to 63 µm before being processed according to the different analysis protocols.  A quality control sample containing only uranium oxide particles was also analysed, as these particles are devoid of gamma-emitters.

The first results of this comparison of autoradiography methods for the detection of actinide-bearing particles in Fukushima samples will be presented. The method of fission tracks was particularly efficient for detecting both natural and anthropogenic uranium.

The next steps of this study will be to implement this method identified as optimal to isolate and characterise a larger number of particles released by FDNPP. The full characterization of these particles (size, morphology, elemental and isotopic compositions) will provide novel insights to determine their origin and to improve our understanding of their formation processes within the reactors and anticipate their fate in the environment.

References:

Haudebourg, R., Fichet, P., 2016. A non-destructive and on-site digital autoradiography-based tool to identify contaminating radionuclide in nuclear wastes and facilities to be dismantled. J. Radioanal. Nucl. Chem. 309, 551–561. https://doi.org/10.1007/s10967-015-4610-7

Martin, P.G., Jones, C.P., Cipiccia, S., Batey, D.J., Hallam, K.R., Satou, Y., Griffiths, I., Rau, C., Richards, D.A., Sueki, K., Ishii, T., Scott, T.B., 2020. Compositional and structural analysis of Fukushima-derived particulates using high-resolution x-ray imaging and synchrotron characterisation techniques. Sci. Rep. 10, 1636. https://doi.org/10.1038/s41598-020-58545-y

Ochiai, A., Imoto, J., Suetake, M., Komiya, T., Furuki, G., Ikehara, R., Yamasaki, S., Law, G.T.W., Ohnuki, T., Grambow, B., Ewing, R.C., Utsunomiya, S., 2018. Uranium Dioxides and Debris Fragments Released to the Environment with Cesium-Rich Microparticles from the Fukushima Daiichi Nuclear Power Plant. Environ. Sci. Technol. 52, 2586–2594. https://doi.org/10.1021/acs.est.7b06309

 

How to cite: Diacre, A., Fichet, P., Sardini, P., Donnard, J., Fauré, A.-L., Marie, O., Shozugawa, K., Susset, M., Hori, M., Pointurier, F., and Evrard, O.: Localization of actinide-bearing particles in sediment samples from the Fukushima restriction zone, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3320, https://doi.org/10.5194/egusphere-egu21-3320, 2021.

EGU21-14377 | vPICO presentations | GI2.2

3rd model intercomparison projects of atmospheric dispersion model for 137Cs emitted from Fukushima Daiichi Nuclear Power Plant, and application of MIPs' results for usage in an emergency

Hiromi Yamazawa, Yousuke Sato, Tsuyoshi Sekiyama, Mizuo Kajino, Sheng Fang, Arnaud Quérel, Denis Quélo, Hiroaki Kondo, Hiroaki Terada, Masanao Kadowaki, Masayuki Takigawa, Yu Morino, Junya Uchida, Daisuke Goto, Masataka Nakamura, and Yusaku Kiriyama

The 3rd model intercomparison project (MIP) of atmospheric dispersion model targeting on 137Cs emitted from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 was conducted (Sato et al. 2020). Nine models participated in the 3rd MIP. All participated models used the identical source term of Katata et al. (2015) and the identical meteorological data (Sekiyama and Kajino, 2020) as in the previous MIP (i.e., 2nd MIP Sato et al. 2018), but finer horizontal grid resolution (1 km) than that of 2nd MIP (3 km) was used for understanding the behavior of atmospheric 137Cs measured in the vicinity of FDNPP. Results of the models elucidated that, as in the 2nd MIP, most of the observed high atmospheric 137Cs concentrations (plumes) were reasonably well simulated by the models, and the good performance of some models cancelled a bad performance of some models when used as an ensemble, which highlights the advantage of the multimodel ensemble. The analyses also indicated that the use of the finer grid resolution (1 km) improved the meteorological field in the vicinity of FNDPP. As a consequence, the atmospheric 137Cs measured near FDNPP was more reasonably reproduced in 3rd MIP than 2nd MIP.

As well as the evaluation of the performance of the model, we examined the usefulness of the results of atmospheric dispersion simulation in an emergency base on the results of 2nd and 3rd MIPs. For the analyses we defined the worst situation as that plume is observed but the model does not simulate it. The analyses reported that the worst situation happened in only 3% of the total calculation period by using the multimodel ensemble, even if the absolute value of the simulated 137Cs in each model was different in the range of factor 3-6. The analyses also indicated that from six to eight models are required for making most of the advantages of the multimodel ensemble.

How to cite: Yamazawa, H., Sato, Y., Sekiyama, T., Kajino, M., Fang, S., Quérel, A., Quélo, D., Kondo, H., Terada, H., Kadowaki, M., Takigawa, M., Morino, Y., Uchida, J., Goto, D., Nakamura, M., and Kiriyama, Y.: 3rd model intercomparison projects of atmospheric dispersion model for 137Cs emitted from Fukushima Daiichi Nuclear Power Plant, and application of MIPs' results for usage in an emergency, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14377, https://doi.org/10.5194/egusphere-egu21-14377, 2021.

EGU21-12433 | vPICO presentations | GI2.2

Bayesian inference and uncertainty quantification for source reconstruction of 137Cs released during the Fukushima accident

Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan

In March 2011, large amount of radionuclides were released into the atmosphere throughout the Fukushima Daiichi nuclear disaster. This massive and very complex release, characterized by several peaks and wide temporal variability, lasted for more than three weeks and is subject to large uncertainties. The assessment of the radiological consequences due to the exposure during the emergency phase is highly dependent on the challenging estimate of the source term.

Inverse modelling techniques have proven to be efficient in assessing the source term of radionuclides. Through Bayesian inverse methods, distributions of the variables describing the release such as the duration and the magnitude as well as the observation error can be drawn in order to get a complete characterization of the source.


For complex situations involving releases from several reactors, the temporal evolution of the release may be as difficult to reconstruct as its magnitude. The source term or function of the release is described in the inverse problem as a vector of release rates. Thus, the temporal evolution of the release appears in the definition of the time steps where the release rate is considered constant. The search for the release variability therefore corresponds to the search for the number and length of these successive time steps.

In this study, we propose to tackle the Bayesian inference problem through sampling Monte Carlo Markov Chains methods (MCMC), and more precisely the Reversible-Jump MCMC algorithm.
The Reversible-Jump MCMC method is a transdimensional algorithm which allows to reconstruct the time evolution of the release and its magnitude in the same procedure.

Furthermore, to better quantify uncertainty linked to the reconstructed source term, different approaches are proposed and applied. First, we discuss how to choose the likelihood and propose several distributions. Then, different approaches to model the likelihood covariance matrix are defined.


These different methods are applied to characterize the
137Cs Fukushima source term. We present a posteriori distributions enable to assess the source term and the temporal evolution of the release, to quantify the uncertainties associated to the observations and the modelling of the problem.

How to cite: Dumont Le Brazidec, J., Bocquet, M., Saunier, O., and Roustan, Y.: Bayesian inference and uncertainty quantification for source reconstruction of 137Cs released during the Fukushima accident, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12433, https://doi.org/10.5194/egusphere-egu21-12433, 2021.

EGU21-5134 | vPICO presentations | GI2.2

Modeling study of the atmospheric transport of radioactivity after wildland fires and a dust storm in the Chernobyl Exclusion Zone in April 2020

Mykola Talerko, Tatiana Lev, Ivan Kovalets, Mark Zheleznyak, Yasunori Igarashi, Serhii Paskevych, Volodymyr Kashpur, and Serhii Kireev

In April 2020, the largest forest fire occurred in the Chernobyl Exclusion Zone (ChEZ) in its history. The results of modeling the atmospheric transport of radioactive aerosols released into the atmosphere as a result of wildland fires in the ChEZ and around it are presented. The atmospheric transport model LEDI, developed at the Institute for Safety Problems of NPPs, and the Atmospheric Dispersion Module of the real -time online decision support system for offsite nuclear emergency RODOS, which development was funded by the EU, were used. The 137Cs activity concentration in the surface air is calculated on a regional scale (in Ukraine) and a local scale (within the ChEZ). The 137Cs activity in the surface air of Kyiv (115 km from the ChEZ borders) is found to have reached 2–4 mBq m−3 during the period April 3–20. The modeling results are generally consistent with measured data pertaining to radioactive contamination in Kyiv, within the ChEZ, and areas around four operating nuclear power plants in Ukraine.

A method for estimating the radionuclide activity emissions during wildland fires in radioactively contaminated areas is proposed. This method is based on satellite data of the fire radiative power (FRP), the radionuclide inventory in the fire area, and an emission factor for radioactive particles. A method was applied for forest fires in the ChEZ in April 2020. Preliminary estimations of an emission factor are made using FRP values obtained from NASA's MODIS and VIIRS active fire products.

On April 16, 2020, a strong dust storm was observed in the ChEZ, which coincided with the period of intense wildland fires. The additional 137Cs activity raised by the dust storm from burned areas in the meadow biocenoses was estimated to be about 162 GBq, i.e. up to 20% of the total activity emitted into the air during the entire period of forest fires on April 3-20, 2020. According to the modeling results, during April 16-17, the input of resuspension of radioactive particles due to a dust storm was up to 80-95% of the total 137Cs activity in the surface air near the Chernobyl NPP. In Kyiv, this value decreased to only about 4%.

The total effective dose to the population of Kyiv during the fire period is estimated to be 5.7 nSv from external exposure and the inhalation of 137Cs and 90Sr, rising to 30 nSv by the end of 2020. This is about 0.003% of the annual permissible level of exposure of the population. A committed effective dose up to 200-500 nSv is estimated for the personnel of the Chernobyl NPP from the radioactive aerosol inhalation during the 2020 forest fires, which is not more than 0.05% of the established control levels of internal exposure for them.

How to cite: Talerko, M., Lev, T., Kovalets, I., Zheleznyak, M., Igarashi, Y., Paskevych, S., Kashpur, V., and Kireev, S.: Modeling study of the atmospheric transport of radioactivity after wildland fires and a dust storm in the Chernobyl Exclusion Zone in April 2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5134, https://doi.org/10.5194/egusphere-egu21-5134, 2021.

The atmospheric release of radionuclides is a crucial potential hazard to public health. Its release rate is vital in assessing the international environmental risk of atmospheric radionuclide leaks and conducting nuclear emergency preparedness. However, according to the radionuclide leaks such as the Fukushima Daiichi accident and the recent iodine-131 and ruthenium-106 releases in 2017, the release rate cannot be directly measured or derived in a forward way, but can only be inversely estimated by comparing the environmental measurements with a model-predicted plume, a technique often referred to as source inversion. However, such inversion is vulnerable to the inevitable plume biases, including the plume range (i.e. the area of positive model predictions) and transport pattern in radionuclide transport modeling, leading to inaccurate source estimates and risk assessment.

This paper describes an automated method that estimates the release rate while comprehensively correcting plume biases. By using the spatial correlation matrix, the predicted plume can spread over a broader area, thus covering the potential range of the true plume. Then, the difficult task of direct plume adjustment is simplified to tuning the predictions inside a correlation-adjusted plume. Based on this, the previous joint method can work efficiently to estimate the release rate while simultaneously refining the predictions inside the adjusted range, correcting both the plume range and the transport pattern. An ensemble-based algorithm is proposed to automatically calculate the spatial correlation in order to execute this method. With this algorithm, SERACT can accomplish realistic and robust source estimation without manual adjustment on any parameters.

The proposed method SERACT is validated with the two wind tunnel experiments based on a real Chinese nuclear power plant site, and the site features highly heterogeneous topography and dense buildings. In this paper, two radionuclide transport models with mild and severe plume biases respectively are used to assess the adjustment efficiency of SERACT, including source estimation and plume distribution. Its performance is compared with that of the standard approach and a recent state-of-the-art method. Its sensitivity to the number and quality of measurements, and the selection of autocorrelation scales is also investigated.

The results demonstrate that SERACT corrects the plume biases with high accuracy (Pearson’s Correlation Coefficient=1.0000, Normalized Mean Square Error≤1.03×10−3) and reduces the estimation error by nearly two orders of magnitude at best. In addition, SERACT exhibited stable performance in all the validation tests and gave the lowest error levels with various numbers and quality of measurements. With fully automated parameterization, its performance is close to that obtained with the optimal autocorrelation scale in all test cases. These results indicate that SERACT is robust in various inversion cases and is able to serve as a general remediation to the long-standing imperfect modeling issue in source inversion.

How to cite: Zhuang, S. and Fang, S.: Simultaneous release rate estimation and modeled plume bias correction for atmospheric radionuclide emissions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-114, https://doi.org/10.5194/egusphere-egu21-114, 2021.

EGU21-8129 | vPICO presentations | GI2.2

Assessing the Influence of Topography and Environmental Factors on Gamma-Ray Air Dose Rates Under Canopies 

Misa Yasumiishi, Taku Nishimura, Jared Aldstadt, and Pedram Masoudi

Researchers have measured aerial gamma-rays using remote measurement devices to estimate the radionuclide concentrations in soils. However, an issue arises when measuring air dose rates in forested areas, where canopies exist between the remote sensing device and the ground. When researchers do the reverse conversion from soil contamination levels to the air dose rates, the conversion formula is derived by assuming a flat ground surface (Jacob et al., 1994; Saito and Jacob, 1998); however, topography in forested areas is often not flat. This study examines the relationships among the air dose rates under the canopies, topography, and the soil contamination levels on forested hillslopes in Fukushima, Japan. Gamma-ray air dose rates were measured using a hand-held scintillator during the summer of 2018 (two days), and in the winter of 2019 using KURAMA, a portable scintillator carried in a backpack (one day). This study employed numerical methods, including semivariogram and R's CAR (Companion to Applied Regression) package, to find aerial gamma-ray activities' spatial structure and the optimal combinations of topographic predictors. The survey routes and soil sampling points did not coincide completely. Thus, spatial and temporal reorganizations and re-definitions of the spatial boundary to incorporate the air (boundaryless mass), topography (three-dimensional structure), and soil samples (point measurements) were needed to overcome data analysis challenges. Some preliminary results show that the median air dose rate on a summer day with stronger winds (wind speed 7.1 m/s) was closer to the one on a winter day than to the median on the other summer day with calm air. Distance dependency (semivariogram range) on the windy summer day and the winter day was 30 to 60 m. Distance dependency on a summer day with calm air was much longer, > 500 m. The aerial gamma-ray levels were not in a linear relationship with the elevation. Meanwhile, the areas under evergreen trees showed higher air dose rates (3-8 %) than the areas under deciduous trees in absolute measurements. However, the differences were not statistically significant. The combination of slope degrees, hillslope aspects, and curvature or upslope distance best described the air dose rates, depending on the survey routes, although their predictabilities (R2) were low, 0.35 at the most. The air dose rates, which were estimated from soil samples' effective relaxation mass depths, did not correlate with the actual air dose measurements, but this result is under further investigation. This study's complete results will provide additional consideration points to the gamma-ray air dose vs. soil contamination assessment in the forested areas.

How to cite: Yasumiishi, M., Nishimura, T., Aldstadt, J., and Masoudi, P.: Assessing the Influence of Topography and Environmental Factors on Gamma-Ray Air Dose Rates Under Canopies , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8129, https://doi.org/10.5194/egusphere-egu21-8129, 2021.

EGU21-97 | vPICO presentations | GI2.2

Influence of non-equilibrium sorption on the vertical migration of 137Cs in forest mineral soils of Fukushima prefecture

Hamza Chaif, Frederic Coppin, Aya Bahi, and Laurent Garcia-Sanchez

Vertical migration of radiocesium is a key issue in soils impacted by Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Among radioactive substances deposited on terrestrial ecosystems, 134Cs (with half-life 2.07 years) and 137Cs (with half-life 30.2 years) were dominant and have by far the most radiological significance.

This work investigates the importance of non-equilibrium sorption on the vertical migration of 137Cs in field conditions. The equilibrium-kinetic (EK) sorption model was selected as a non-equilibrium parameterization embedding the Kd approach. It supposes the existence of two types of sorption sites. The first sites are at equilibrium with solution; whereas for the second sites, kinetics of the sorption and desorption are taken into consideration.

We focused our study on four 137Cs soil contamination plots measured in a young cedar stand situated around 35 km northwest of the FDNPP. Profiles were sampled at four different dates (2013, 2014, 2016, and 2018) by measuring 137Cs activity in both organic (humus + litter layer) and mineral soil layers reaching a maximum depth of 20cm.

To successfully simulate the 137Cs transfer throughout these soil profiles, the input flux at the top of the mineral soil surface was reconstructed from global monitoring data from the forest stand and a first-order compartment model for the organic layer.

Our results showed that the inclusion of non-equilibrium sorption slightly improves the realism of simulated 137Cs profiles compared to the equilibrium hypothesis. While both models were able to reproduce the overall vertical distribution throughout the profiles, the persistent contamination at the surface was closer to the measured value with the EK approach. As a consequence, the Kd model overestimated the contamination into deeper layers and therefore overestimated the migration velocity of 137Cs. Fitted sorption parameters suggested a fast sorption kinetic (1 - 7 hours) and a pseudo-irreversible desorption rate (3.2 - 3.4 x 106 years), whereas equilibrium sorption (4.0 x 10-3 L kg-1 on average) only affected a negligible portion of 137Cs inventory.

To further distinguish the models behaviors, short and long term simulations were conducted. By June 2011, EK parameters fitted on our plots realistically reproduced different profiles measured in the same forest study site. Predictive modeling of 137Cs profiles in soil suggested a strong persistence of the surface 137Cs contamination by 2030, with exponential profiles consistent with those reported after the Chernobyl accident.

These results prove that the choice of the sorption model is critical in post-accidental situations. An equilibrium approach can result in an underestimation of 137Cs residence time in the surface. Whereas a kinetic approach, by distinguishing different sorption and desorption rates, is able to reproduce the slow evolution of 137Cs soil profiles with time that is already observed in the case of Chernobyl contaminated areas 30 years after the accident. Non equilibrium sorption parameters can be partially inferred from in situ measurements. However, further experiments in controlled conditions are required to better estimate the sorption parameters and to identify the processes behind non-equilibrium sorption.

How to cite: Chaif, H., Coppin, F., Bahi, A., and Garcia-Sanchez, L.: Influence of non-equilibrium sorption on the vertical migration of 137Cs in forest mineral soils of Fukushima prefecture, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-97, https://doi.org/10.5194/egusphere-egu21-97, 2021.

A study of 137Cs distribution in two new landscape cross-sections characterizing the ELGS system (top-slope-closing depression) in the “Vyshkov-2” test site located in the Chernobyl abandoned zone, the Bryansk region, Russia, has been performed in 2020. The test site (70×100 m) is located on the Iput’ river terrace in a pine forest characterized by undisturbed soil-plant cover. The soil cover is presented by sod-podzolic sandy illuvial-ferruginous soils. The initial level of 137Cs contamination of the area varied from 1480 kBq/m2 to 1850 kBq/m2. Cs-137 activity was measured in the soil, moss and litter cover along two parallel (the distance was 5 m) cross-sections with 1 m step. Moisture content was also determined in the studied objects to roughly assess the influence of water regime on radiocaesium migration. Surface 137Cs activity was measured in field conditions by adapted gamma-spectrometer Violinist-III. Cs-137 content in the soil and plant samples was determined in laboratory conditions by Canberra gamma-spectrometer with HPGe detector.

Analysis of the obtained data showed that a major part of 137Cs is now fixed in the soil layer 2-10 cm deep while the highest specific activity of radiocaesium is found at a depth of 2-8 cm that can be explained mainly by the burial of the initially contaminated layer under the annual leaf fall.

Along the first cross-section we observed positive correlation between 137Cs surface activity and the content radiocaesium in the top soil layer 0-2 cm (r0.05=0.643, n=15). Cs-137 activity in the moss samples correlated with the radionuclide activity in soil samples 4-6 cm deep (r0.05=0.627; n=15). In the moss samples the highest correlation was observed between the green and rhizoid moss parts (r0.01=0.704, n=60). Correlation between radiocaesium activity of the green part of mosses and the underlain litter samples was lower, but also significant (r0.01=0.612, n=60). Values of 137Cs activity in the rhizoid part of moss and in litter were also positively linked, but to a lower degree (r0.01=0.402, n=60).

Along the second cross-section correlation between 137Cs surface activity and the content radiocaesium in the top soil layer 0-2 cm equaled to r0.05=0.507 (n=7). Radiocaesium content in moss samples (green, rhizoid parts) and litter was higher correlated with 137Cs content in soil layer 2-4 cm (r0.05=0.640; 0.410; 0.460, n=7). Similar to the first cross-section the highest correlation was observed between the green and rhizoid parts of moss (r0.01=0.780, n=39). Relation between 137Cs activity in green part of moss and litter samples appeared smaller than along the first cross-section but still significant (r0.01=0.419, n=39) while that between the rhizoid part of moss and litter was higher (r0.01=0.509, n=39).

Performed study showed that in the studied objects 137Cs secondary migration has a specifically stable character which may be related to spatial peculiarities of radionuclide migration in soil-plant cover controlled by water regime in the ELGS system. In our opinion this may form a characteristic cyclic variation of 137Cs activity observed along cross-sections of ELGS.

 

The reported study was funded by RFBR according to the research project № 19-05-00816.

How to cite: Dolgushin, D. and Korobova, E.: New data on the character of 137Cs lateral and vertical migration in soil-litter-moss cover within undisturbed elementary landscape geochemical systems on the test site in the Chernobyl abandoned zone, Russia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7691, https://doi.org/10.5194/egusphere-egu21-7691, 2021.

EGU21-16193 | vPICO presentations | GI2.2

Natural and artificial radioactivity of soil of the Arctic part of Western Siberia

Kseniya Mezina, Mikhail Melgunov, and Dmitriy Belyanin

To assess the levels of radioactivity, the soils of the Arctic region of Western Siberia were studied. The content of Cs-137 in the soils of the studied region ranges from 2 to 9 Bq/kg, with an average value of 4 Bq/kg.

The average contents of natural radionuclides (U, Th and K-40) in soils are determined by the radioactivity of the parent rocks. The radioanalytical results showed that the average Th content is 2.8 (0.3-6.7) ppm; U – 2.0 (0.5-6.6) ppm, K-40 – 233 (16-473) Bq/kg in the soils.

This work was supported by the Russian Science Foundation grant (project No 18-77-10039). Analytical studies were carried out at the Center for multi-elemental and isotope research SB RAS.

How to cite: Mezina, K., Melgunov, M., and Belyanin, D.: Natural and artificial radioactivity of soil of the Arctic part of Western Siberia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16193, https://doi.org/10.5194/egusphere-egu21-16193, 2021.

EGU21-16233 | vPICO presentations | GI2.2

Comparative study of Cs-137 activity concentration between attic dust and urban soil from Salgotarjan city, Hungary

Davaakhuu Tserendorj, Katalin Zsuzsanna Szabó Szabó, Peter Völgyesi Völgyesi, Gorkhmaz Abbaszade, Do Le Tan Tan, Nelson Salazar, Dora Zacháry, Tam Cong Nguyen, and Csaba Szabó

The 137Cs (t1/2 =30 years) is a principal radioisotope that was artificially introduced into the environment through the atmospheric bomb tests took place from the middle of the 1940s to the 1980s and from the major nuclear accidents (i.e., Chernobyl, 1986 and Fukushima, 2011). From the atmosphere, 137Cs easily adsorbs to particles and it returns to lithosphere (pedosphere) by wet and dry deposition as a radioactive fallout component. Due to the Chernobyl nuclear accident, the released contaminated air mass, containing Cs-137, largely propagated, deposited, and distributed across several European countries in the ambient environment (Balonov et al., 1996). These particles also reached houses (e.g. through open windows, cracks, and vents) in an urban environment and deposited inside resulting in the exposition of the habitants to 137Cs, especially in areas that are not accessible for a regular cleaning like attics. Following the nuclear accidents, primary attention was drawn to agricultural areas and less attention was paid to urban environments. Accordingly, the goal of this study is to compare the 137Cs activity in attic dust as undisturbed samples, and urban soils as disturbed environmental materials to determine the 137Cs distribution in urban environment. 

Attic dust (AD) samples were collected from 14 houses, which were built between 1900 and 1990 14 urban soil (US) samples were collected nearby the houses at a depth of 0-15 cm in Salgótarján, a former industrial city. To obtain a representative local undisturbed soil sample, a forest soil sample was collected from the upwind direction (NW) of the city. To check the 137Cs content of the local industrial waste material, we also collected fly-ash slag sample from a waste dump.   AD and US samples were analyzed by a well-type HPGe and with an n-type coaxial HPGe detector in a low background iron chamber, respectively.

Cs-137 activity in the studied AD ranges from 5.51±0.9 to 165.9±3.6 Bq kg-1, with a mean value of 75.4±2.5 Bq kg-1 (decay corrected in 2016). In contrast, US samples show 137Cs activity ranging between 2.3±0.4 and 13.6±0.6 Bq kg-1.  The brown forest soil sample has elevated 137Cs activity concentration (18.5±0.6 Bq kg-1), compared to the urban soils. The fly-ash slags activity is below the detection limit (0.7±0.5 Bq kg-1).

The average 137Cs activity in AD is ~15 times higher than that of US. This result clearly indicates that attic area provides a protected (hardly or unchanged) environment, therefore physical condition of the dust remains constant in time, and there is a small chance for chemical reaction. Forest soil proves that US were highly disturbed by anthropogenic activity. This is supported by fly-ash slag activity results.  Whereas, 137Cs activity concentration of the AD samples shows significantly higher than that of the studied soils in Hungary. This confirms again US cannot show the historical atmospheric 137Cs pollution such as attic dust. A statistically significant relationship (p=0.003, r2=0.05) were found between the AD and US samples. Therefore, it can be considered that attic dust remained undisturbed for decades and preserve past record of components of atmospheric pollution.

 

 

How to cite: Tserendorj, D., Szabó, K. Z. S., Völgyesi, P. V., Abbaszade, G., Tan, D. L. T., Salazar, N., Zacháry, D., Nguyen, T. C., and Szabó, C.: Comparative study of Cs-137 activity concentration between attic dust and urban soil from Salgotarjan city, Hungary, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16233, https://doi.org/10.5194/egusphere-egu21-16233, 2021.

EGU21-14827 | vPICO presentations | GI2.2

Evaluation of the radiocaesium behaviour in agricultural Japanese soils based on potassium fertilisation, zeolite amendment and clay mineralogy

Francesc Xavier Dengra i Grau, Tetsuya Eguchi, Arsenio Toloza, Erik Smolders, Sandor Tarjan, Takuro Shinano, Martin H. Gerzabek, Hans Christian Bruun Hansen, and Gerd Dercon

High rates of potassium (K) fertilisation are used in arable soils affected by the Fukushima Daichii Nuclear Power Plant accident of 2011, in order to further reduce the uptake of radiocaesium (RCs) by plants. Additionally, zeolite has been applied to decrease soil solution RCs following topsoil removal. However, there is uncertainty on the role of zeolite in the uptake of RCs in Japanese soils. In this study, we compared RCs sorption in three soils with major differences in clay mineralogy: a Cambisol rich in vermiculite with strong retention of monovalent cations; an Andosol with very low 2:1 phyllosilicate content and with low K and Cs affinity; and a clay-rich, lowland smectitic Gleysol with high water holding capacity. We elucidated their solid-liquid distribution of K and 133Cs (as a proxy for RCs) in response to K addition as simulating K fertilisation, and also to zeolite (clinoptilolite) addition. The Radiocaesium Interception Potential (RIP), which is a key parameter that determines the RCs selectivity in soil and its phytoavailability, was analysed by spiking 1 g of soil with 1-2 KBq of 134Cs followed by a determination of solution 134Cs. The data were used to predict the soil-to-plant transfer factor (TF) based on a simplified version of the current RCs TF model. Our results showed that the vermiculitic soils had the lowest increase in exchangeable K (ex-K) at a given K dose, given its strong fixation in the 2:1 phyllosilicate layers, as opposed to the Andosol. Zeolite addition was shown to increase most of the soils RIP and thus proved its ability to adsorb RCs. Besides, zeolite addition also diminished both soil solution Cs (Csss) and K (Kss) concentrations for the allophanic Andosol. The K and Cs selectivity of the soil increased by zeolite addition, thus KSS, crucial for RCs uptake, consequently declined. This decrease observed for KSS would be a reason for the reported ineffectiveness of zeolite application in previous studies. Solid-liquid distribution coefficients for exchangeable Cs (ex-Cs) suggest that the extraction determined by with 1M ammonium acetate does not constitute a reliable proxy for RCs as compared to CsSS. At low KSS range (<0.1 mmol·L—1), our findings for the vermiculitic and smectitic soils showed a rapid increase of CsSS. This sharp increase was not foreseen in the currently defined RCs model of Absalom et al. (1999 and ulterior). It entails, according to our predictions, a clear underestimation of the TF in the model and therefore a higher risk of RCs transfer to crops than expected in the Fukushima Prefecture vicinities -if the ongoing K fertilisation scheme is discontinued. Additionally, our comparisons of the predicted TF based on KSS and ex-K showed that KSS may be used as a more precise parameter to assess zeolite amendments in Japanese soils.

How to cite: Dengra i Grau, F. X., Eguchi, T., Toloza, A., Smolders, E., Tarjan, S., Shinano, T., Gerzabek, M. H., Bruun Hansen, H. C., and Dercon, G.: Evaluation of the radiocaesium behaviour in agricultural Japanese soils based on potassium fertilisation, zeolite amendment and clay mineralogy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14827, https://doi.org/10.5194/egusphere-egu21-14827, 2021.

EGU21-14671 | vPICO presentations | GI2.2

The impact and fate of fallout radionuclides by Fukushima Daiichi Nuclear Power Plant Accident in hydrological systems and post-accident environmental recovery

Yuichi Onda, Keisuke Taniguchi, Kazuya Yoshimura, and Yoshifumi Wakiyama

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released the largest quantity of radiocaesium into the terrestrial environment since the Chernobyl nuclear accident. The surrounding land received 2.7 PBq of radiocaesium to forests, agricultural lands, grasslands, and urban areas, from which the radionuclides migrated through soil and waterways. In this presentation, the deposition and distribution of radionuclides, especially radiocaesium, in the terrestrial environment as a result of the FDNPP accident are discussed based on the past 10 years' intensive dataset. Anthropogenic activities such as rice and vegetable cultivation and residential activities in the upstream area have led to a rapid decline in the activity concertation of 137Cs of suspended sediment (SS) transport in the river network, and these declines directly control the dissolved 137Cs concentration in the river water. We outline the environmental and anthropogenic factors that influenced the subsequent transport and impacts of radionuclides through the environment. The environmental aftermath of the accident at Fukushima is compared to Chernobyl, and the relatively rapid remediation of the Fukushima region relative to the region surrounding Chernobyl will be explained.

How to cite: Onda, Y., Taniguchi, K., Yoshimura, K., and Wakiyama, Y.: The impact and fate of fallout radionuclides by Fukushima Daiichi Nuclear Power Plant Accident in hydrological systems and post-accident environmental recovery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14671, https://doi.org/10.5194/egusphere-egu21-14671, 2021.

EGU21-14420 | vPICO presentations | GI2.2

Behavior of 129I in the Abukuma River water during two high-flow events in 2018

Yoshifumi Wakiyama, Masumi Matsumura, Tetsuya Matsunaka, Shigekazu Hirao, and Kimikazu Sasa

Radioiodine is one of the most important radionuclides released by the accidents of Fukushima Dai-ichi nuclear power plant (FDNPP). Iodine-131 elevated ambient radiation dose rate immediately after the accident, but it is extinguished due to its short half-life. The long-lived 129I can be used as a tracer to retrospectively infer the level of 131I. Understanding of environmental behavior of 129I is important for preparedness against nuclear disaster. This study presents sampling campaigns on the Abukuma River during two high flow events, and discusses riverine 129I behavior based on comparisons with that of 137Cs. The study site was the Kuroiwa site locating at midstream of the Abukuma river. Its catchment area was 2886 km2 and mean 129I inventory in the catchment was 0.041 Bq m-2. Five and seven river water samples were taken during high-flow events in July 2018 (JUL18) and October 2018 (OCT18), respectively. Suspended sediment and filtrate samples were obtained by decantation and subsequent filtration with 0.45 μm-mash membrane filter, respectively. The suspended sediment and filtrate samples were measured for 137Cs activity concentrations with HPGe detector and then measured for 129I/127I ratio with accelerator mass spectrometer and for 127I concentration with ICP-QQQ-MS. Mean 129I activity concentration in suspended sediment during JUL18 and OCT18 were 1.0 and 0.43 mBq kg-1, respectively. In terms of temporal trends, 129I activity concentration in suspended sediment lowered in the peak water discharge phase, contrastive to those of 137Cs which were the highest at peak water discharge phase. Mean dissolved 129I activity concentrations during JUL18 and OCT18 were 0.18 and 0.067 μBq L-1, respectively. Both 129I and 137Cs activity concentrations in dissolved form tended to decrease with time during two high-flow events. Mean apparent distribution coefficient (Kd) during JUL18 and OCT18 were 4.3 ×104 and 6.1 ×103 L kg-1, respectively. The Kd values of 129I were lower than those of 137Cs and it reveal relatively-high solubility of 129I. Total exportation of 129I from the catchment during JUL18 and OCT18 were estimated as 1.0 × 104 and 2.3 × 104 Bq, respectively. Exported 129I in dissolved form accounted for 80 and 27% of total exportations, respectively. By contrast, more than 95% of 137Cs was exported in particulate form in the events. These results indicated an importance of dissolved form for understanding environmental behavior of radioiodine.

How to cite: Wakiyama, Y., Matsumura, M., Matsunaka, T., Hirao, S., and Sasa, K.: Behavior of 129I in the Abukuma River water during two high-flow events in 2018, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14420, https://doi.org/10.5194/egusphere-egu21-14420, 2021.

EGU21-14063 | vPICO presentations | GI2.2

Mid-long term change of particulate/dissolved 137Cs concentration in river water and the impact of Typhoon Hagibis in 2019

Hideki Tsuji, Hirokazu Ozaki, and Seiji Hayashi

In Fukushima Prefecture, radiocesium as the particulate and dissolved form has been discharging from the mountains and forests since the Fukushima Dai-ichi nuclear power plant (FDNPP) accident in 2011. In particular, in October 2019, the watershed around the FDNPP was subjected to extensive flooding due to Typhoon Hagibis, resulting in significant changes in the hydrological environment. In this study, we investigated the characteristics of changes in particulate/dissolved 137Cs concentrations in the main 3 rivers in the north region of FDNPP 3–9 years after the nuclear accident and the impact of the typhoon on 137Cs dynamics in river water.

Monthly observations of river waters in baseflow conditions showed a decrease in dissolved 137Cs concentration with an environmental half-life of 2–10 years, and seasonal fluctuation such as increasing in summer and decreasing in winter. The annual amplitude of the dissolved 137Cs concentration in water released from dams was smaller and the peak of the concentration was observed later than that in river sites where the influence of dams is small. The 137Cs concentrations in the suspended solids did not show any significant seasonal variation, and the environmental half-life of 1–8 years was relatively faster than the dissolved forms observed at the same site. Immediately after Typhoon Hagibis in 2019, the dissolved 137Cs concentration decreased significantly compared to the previous years, especially at two dam lake discharge sites. At the two sites, the dissolved 137Cs concentration did not recover to the level predicted by the pre-typhoon data even one year after the typhoon event, but no significant decrease in 137Cs concentration in suspended solids was observed. These differences in the environmental behavior of 137Cs in different forms suggest that there are limitations in predicting particulate and dissolved 137Cs concentrations with a fixed parameter such as partition coefficient.

How to cite: Tsuji, H., Ozaki, H., and Hayashi, S.: Mid-long term change of particulate/dissolved 137Cs concentration in river water and the impact of Typhoon Hagibis in 2019, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14063, https://doi.org/10.5194/egusphere-egu21-14063, 2021.

EGU21-8553 | vPICO presentations | GI2.2

Impacts of freeze-thaw processes and subsequent runoff on 137Cs washoff from bareland in Fukushima

Yasunori Igarashi, Yuichi Onda, Yoshifumi Wakiyama, Kazuya Yoshimura, Hiroaki Kato, Shohei Kozuka, and Ryo Manome

The impact of freeze-thaw processes and subsequent runoff affecting the 137Cs flux and concentration in sediment discharge were revealed in bareland erosion plot following the Fukushima nuclear power plant accident by detailed monitoring and laser scanner measurement on the soil surface. We found that surface topographic changes due to the frost-heaving during the winter-spring period, and rill formation during the summer. We also found the evident seasonal changes in 137Cs concentration; high during the early spring and gradually decreased thereafter, then surface runoff from the plot frequently occurred during spring and autumn when rainfall was high and reached a maximum in summer. From these results, the higher 137Cs concentration in spring was caused by a mixture of unstable surface sediment following freeze-thaw processes and then transported in the early spring, but erosion amount is not significant because of the less rainfall event. The sediment with a lower 137Cs concentration, which was supplied from the rill erosion and its expansion, was wash-offed during the summer, contributing most of the flux from erosion in bareland in Fukushima region. In case,  heavy rainfall occurs in the early spring, caution is required because high concentrations of cesium may flow down into the river.

How to cite: Igarashi, Y., Onda, Y., Wakiyama, Y., Yoshimura, K., Kato, H., Kozuka, S., and Manome, R.: Impacts of freeze-thaw processes and subsequent runoff on 137Cs washoff from bareland in Fukushima, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8553, https://doi.org/10.5194/egusphere-egu21-8553, 2021.

EGU21-15221 | vPICO presentations | GI2.2

Recent developments of the radiography method for characterisation of Fuel particles in Surface water bodies of Chornobyl Exclusion zone 

Valentyn Protsak, Gennady Laptev, Grygorii Derkach, Kyryllo Korychenskyi, Nadiia Prokopchuk, Kenji Nanba, Yasunori Igarashi, Alexei Konoplev, Serhii Kireev, and Jim Smith

The Chornobyl accident in 1986 led to radioactive contamination of surface water bodies (SWB) in the Chornobyl Exclusion Zone (ChEZ), including lakes (Azbuchyn, Glyboke, Yanov crawl etc) and the Cooling Pond (CP). An abundance in fallout the dispersed fuel particles (FPs) was a specific feature of the accident, comprising the debris of irradiated nuclear fuel in different states of uranium oxidation mixed with construction materials.

Contamination of SWB by 90Sr and transuranic isotopes was mainly because of FPs. Experimental studies on the behaviour of FPs in soils and aquatic systems have shown that main factors controlling release of radionuclides outside FPs are: composition of the matrix, state of initial oxidation and oxidation properties of the environment.  

FPs behavior in SWB has not been sufficiently studied, though limited data suggest contrasting differences to terrestrial environments. Mainly is because of the different oxidation properties of soil and bottom sediment, creating better conservation conditions for FPs in sediment. In case when in SWB bed become dry and exposed, as is the case in the CP after decommissioning, an intensive processes of primary soil formation begin on exposed areas. This later forced dissolution of FPs, and hence radionuclides transition into more mobile forms followed by release to groundwater and surface runoff. 

We have developed convenient method for identifying Chornobyl FPs based on radiography, which comprises the exposure of X-ray film by spreading over a thin-layered dry solid sample. Processing X-ray films and image analysis makes it possible to estimate the size of FPs, as well as dispersion and distribution of radionuclide activity within the FPs of different size fractions. This also facilitates picking up single FPs to carry out extended individual analysis by EDXRF, SEMs etc. The radiography method was used to estimate the chemical resistance of FPs after sequential leaching to predict the behaviour of radionuclides in natural field conditions.

Overall, more than 120 samples were collected from bottom sediments cores taken from different SWB in ChEZ and analyzed by radiography. The results obtained show that from 70 to 90% of activity of radionuclides in sediments are associated with FPs. One gram of sediment contains several 10s to several 100s of individual FPs, while there is significant spatial heterogeneity of FPs density over the territory of ChEZ. The majority of FPs are less than 3 microns and their contribution to total activity was estimated as minor.

The main contribution to activity (>70%) comes from particles with a diameter of more than 10 microns and, accordingly, mobility of radionuclides will be determined by processes of destruction and leaching of radionuclides from particles of these size. Chemically resistant FPs are of 3-5 microns, and the highest concentration of fuel particles is typical for SWB located in close proximity to the ChNPP.

Up to 7% of the activity remains associated with FPs after being treated with strong 8M nitric acid indicating that 90Sr, transuranic and, partly, 137Cs are confined in chemically very stable particles and may not be mobilized under natural conditions for many decades. 



How to cite: Protsak, V., Laptev, G., Derkach, G., Korychenskyi, K., Prokopchuk, N., Nanba, K., Igarashi, Y., Konoplev, A., Kireev, S., and Smith, J.: Recent developments of the radiography method for characterisation of Fuel particles in Surface water bodies of Chornobyl Exclusion zone , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15221, https://doi.org/10.5194/egusphere-egu21-15221, 2021.

EGU21-10934 | vPICO presentations | GI2.2

Temporal changes of mobile forms of 90Sr on Pripyat River floodplain in vicinity of Chornobyl NPP: measurements and risk assessments for river water contamination

Gennady Laptev, Oleg Voitsekhovych, Valentyn Protsak, Mark Zheleznyak, Kenji Nanba, Alexei Konoplev, Yasunori Igarashi, Yoshifumi Wakiyama, Roman Bezhenar, Serhii Kivva, Olexander Pylypenko, Maxim Sorokin, Serhii Kireev, and Dmytro Veremenko

Since the 1986 Chornobyl accident transport of radionuclides by Pripyat River shares more than 90% of the annual total flux of radioactivity coming out the Chornobyl Exclusion Zone (ChEZ).  90Sr was the main contributor to this flux. In course of time destruction of the accidentally dispersed "fuel particles" leads to increase of mobile, e.g. water-soluble, forms of 90Sr  on territories affected by, while fixation of 137Cs in soil is reflected by significant reduction in 137Cs aquatic transport outside the ChEZ.

Heavily contaminated floodplain of the Pripyat River, located in vicinity of ChNPP upstream of Yaniv Bridge up to Ukrainian - Belorussian border, was considered as a “hotspot” with highest risks to the Pripyat and Dnipro water contamination due to recurrent flooding of these territories. This was evidently elucidated after the 1991 ice jam event when drastic increase of 90Sr in water was observed. The dikes splitting leftbank floodplain from the Pripyat river channel were constructed in 1992-1993. Yet, it is still important to quantify the amount of 90Sr that can be washed off the floodplain due to potential dike breakage caused by the extreme floods. 

Key parameters used to describe status of radionuclide in reaching equilibrium in soil-water system are the distribution coefficient (Kd) and kinetic rate that is reciprocal of typical time scale of desorption processes. These parameters subsequently were estimated in 1991 on the basis of batch experiment carried out with the soil monoliths sampled from the Pripyat floodplain ( Laptev and Voistekhovich, 1991). Results were used in the 2D model COASTOX for justification the construction of protecting dikes (Zheleznyak at al., 1992).

To analyze current ability of 90Sr to be washed off the floodplain, soils monoliths were collected in 2020. The experimental studies of the soil cores collected from same location as the monoliths allowed to estimate mobile speciation of 90S and calibrate mass-exchange parameters. Amount of the readily exchangeable forms of 90Sr in soils significantly increased from 10-30% in the first years after the accident up to 65-75% as to 2020. Results of field and laboratory  studies were used for simulation the scenarios of 90Sr washing off the floodplain during the dikes breaks on the basis of contemporary version of COASTOX model, that includes the parallel algorithms for numerical solution of the model equations on the unstructured computational grids for multi CPU and GPU systems. Approaches for the modelling of the secondary release of 90Sr due the rapid destruction of “fuel particles” are considered. Taking into account two concurrent processes - decrease of amount of 90Sr in uppermost soil layer due to decay and downward vertical migration (1), amid increased amount of exchangeable forms of 90Sr (2), one could project subsequent increasing of 90Sr  in Pripyat and Dnipro river waters downstream the source in case of the dike breakage scenarios. On the other hand, computer simulation suggests that the maximal values of the 90Sr concentrations expected to be not higher than the measured ones during the high floods events after the accident.

 

How to cite: Laptev, G., Voitsekhovych, O., Protsak, V., Zheleznyak, M., Nanba, K., Konoplev, A., Igarashi, Y., Wakiyama, Y., Bezhenar, R., Kivva, S., Pylypenko, O., Sorokin, M., Kireev, S., and Veremenko, D.: Temporal changes of mobile forms of 90Sr on Pripyat River floodplain in vicinity of Chornobyl NPP: measurements and risk assessments for river water contamination, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10934, https://doi.org/10.5194/egusphere-egu21-10934, 2021.

EGU21-12329 | vPICO presentations | GI2.2

Model & data based assessment of the impacts of drawdown of the Chornobyl NPP Cooling Pond on the Cs-137 concentrations in water, sediments and biota

Roman Bezhenar, Mark Zheleznyak, Dmitri Gudkov, Volodymyr Kanivets, Gennady Laptev, Valentyn Protsak, Aya Sakaguchi, Kenji Nanba, Toshihiro Wada, Tsutomu Kanasashi, Sergey Kireev, Dmytro Veremenko, Oleg Nasvit, and Shinichiro Uematsu

Cooling Pond (CP) of the Chornobyl Nuclear Power Plant (ChNPP) is one of the most radioactively contaminated large water bodies over the globe. During the active phase of the ChNPP accident, radionuclides got into the CP in result of atmospheric deposition, release of highly contaminated water from system of accidental cooling, and water used to extinguish the fire. In the years after the accident, the contamination was distributed in the CP due to currents. For this period, three types of hydrological conditions dominated in the CP. Initially, the currents were forced by the cooling system of the ChNPP, which caused a circular movement of water. After the decommissioning of the ChNPP, the natural circulation took place in the CP. Starting from the end of 2014, when pumps that continuously fed the CP with water from the Prypiat River were shutdown, a gradual decrease of water level began. Now the water level has dropped by about 6 m leading to the transformation of the whole reservoir into several small lakes and redistribution of radionuclides in them. The objectives of the study were to calibrate models, which were customized for the CP, using data for the whole post-accident period including data collected during the drawdown period by the joint efforts of Ukrainian and Japanese researchers, and then to provide model based predictions of the future radionuclide concentrations in new water bodies.

During field studies that were carried out in November 2020, the current state of radioactive contamination of the CP was investigated. Samples of water, suspended and bottom sediments and biota were taken in 9 closed or semi-closed water bodies formed after partial drying of the CP. Concentrations of Cs-137 and its distribution in dissolved and particulated forms were measured in the laboratory. For simulations, the modeling system that consists of the 3D model of thermohydrodynamics and radionuclide transfer THREETOX and the box model POSEIDON-R was created. The THREETOX model was used for the obtaining currents in the CP for each type of hydrological conditions. The POSEIDON-R model was applied for the long-term simulations of the changes of activity concentration in the water, bottom sediments and biota starting from the 1986. The system of boxes in the POSEIDON-R model includes shallow and deep-water boxes. It was built in such a way that after the water level in the CP fell, the calculations were performed only in deep-water boxes. Fluxes of water between boxes were calculated based on currents from the THREETOX model. Seasonal changes in distribution coefficient Kd describing the partition of Cs-137 concentration between water and sediments were also taken into account. Calculated concentrations of Cs-137 in water and bottom sediments agree well with measurements for all boxes and for entire modeling period. It has been shown that POSEIDON-R model is able to reproduce changes in the concentrations of Cs-137 in freshwater fish occupying different levels the food chain. Scenarios for the potential changes of Cs-137 concentrations were considered by the variation of basic parameters.

How to cite: Bezhenar, R., Zheleznyak, M., Gudkov, D., Kanivets, V., Laptev, G., Protsak, V., Sakaguchi, A., Nanba, K., Wada, T., Kanasashi, T., Kireev, S., Veremenko, D., Nasvit, O., and Uematsu, S.: Model & data based assessment of the impacts of drawdown of the Chornobyl NPP Cooling Pond on the Cs-137 concentrations in water, sediments and biota, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12329, https://doi.org/10.5194/egusphere-egu21-12329, 2021.

EGU21-14511 | vPICO presentations | GI2.2

Transfer of the Fukushima accident-derived radiocesium by hydrological processes in Japanese forests

Hiroaki Kato, Tomoki Shinozuka, Satoru Akaiwa, Hikaru Iida, Zul Hilmi Saidin, and Yuichi Onda

In Japan's forests, field data on the distribution and migration of radiocesium deposited by the Fukushima Daiichi Nuclear Power Plant accident, from the initial dynamics to the distribution in the forest over ten years, have been vigorously collected. The results have been published in an IAEA technical report (IAEA- TECDOC-1927, 2020) as a database of migration parameters to be compiled by an international project (MODARIA II: Modelling and Data for Radiological Impact Assessments) promoted by the International Atomic Energy Agency (IAEA). Radiocesium's transfer mechanisms in the forest by hydrological processes and the runoff through the water system were summarized based on investigations in experimental forests and watersheds in Fukushima Prefecture. Besides, we outlined the missing links that need to be clarified by re-analysis of existing data and additional experiments based on previous studies on Fukushima and Chernobyl. Finally, we discussed the direction of future monitoring surveys.

How to cite: Kato, H., Shinozuka, T., Akaiwa, S., Iida, H., Saidin, Z. H., and Onda, Y.: Transfer of the Fukushima accident-derived radiocesium by hydrological processes in Japanese forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14511, https://doi.org/10.5194/egusphere-egu21-14511, 2021.

EGU21-10529 | vPICO presentations | GI2.2

Absorbed dose rate assessment for the Japanese cedar stand affected after the Fukushima NPP accident.

Rena Mikailova, Yuichi Onda, Sergey Fesenko, and Hiroaki Kato

The nuclear disaster from the FNPP accident resulted in the major contamination of forest ecosystem of Eastern Japan. Forests are the most susceptible to ionizing radiation exposure, especially conifers due to their high radiosensitivity and pollutant interception abilities. A high concentration of radionuclides in forest ecosystems caused an increase in the dose rate. Japanese cedar belongs to Japan's endemic species; therefore, the current study was aimed at the absorbed dose rate assessment of the C. japonica forest stand in the Yamakiya district. To estimate the absorbed dose rates to the Japanese cedar trees, we used the 134,137Cs concentrations in different forest ecosystems’ compartments. The calculations include data from 2011 to 2017. The dose rate assessments were performed at different heights of the forest ecosystem (canopy, trunk, understory). The average dose rates decreased from 40 µGy/day in 2011 to 13 µGy/day in 2017. The assessment results comply with the ambient dose rate measured from 2011 to 2015. The assessment showed that the water content in the litter and topsoil layers significantly influence the formation of the dose rate. Via the model, we simulated the dose rates for 20% and 80% of the litter water content. The results showed that the average measured dose rates lie within the estimated results. Due to the lack of data on litter and soil moisture during sampling, now we are trying to calculate the ground layers’ water content using the available information on precipitation rate.

How to cite: Mikailova, R., Onda, Y., Fesenko, S., and Kato, H.: Absorbed dose rate assessment for the Japanese cedar stand affected after the Fukushima NPP accident., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10529, https://doi.org/10.5194/egusphere-egu21-10529, 2021.

EGU21-5616 | vPICO presentations | GI2.2

The burned area extracting in Chernobyl Exclusion Zone using Random Forest

Jun Hu, Shunji Kotsuki, Yasunori Igarashi, Mykola Talerko, and Kazuhito Ichii

The Chernobyl Nuclear Power Plant (CNPP) accident that happened in 1986 is the largest source of anthropogenic radionuclides released into the environment in history. In recent 20 years, the climate and land-use changes have increased the frequency of large forest fires in and around the Chernobyl Exclusion Zone. It is critical to extract the burned areas accurately because they are the basis to estimate the biomass burning emission and then analyze the second diffusion of radioactive residue released from the CNPP accident. In this study, we established a burned area extracting method based on the random forest (RF) algorithm using the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09GA / MYD09GA and LANDSAT -7 ETM+ /-8 OLI images. The field observation in 2015 and MODIS MOD14A1 (thermal anomaly data) product were adopted to generate sampling points for RF. The reflectance difference spectroscopy of near-infrared band and difference in vegetation indices (NDVI, NBR, NDWI) between pre- and post-fire imagery were used as input data for the RF classifier. Subsequently, the historical burned area in 2015 and 2020 were detected using the trained RF classifier. The preliminary results of the identified burned area show good consistency with the MODIS MCD64A1.006 product of NASA and FireCCI51product of ESA. It should be noted that our RF algorithm can even detect the relatively small fire scars compared to the two existing products due to the usage of high-resolution LANDSAT image.

 

How to cite: Hu, J., Kotsuki, S., Igarashi, Y., Talerko, M., and Ichii, K.: The burned area extracting in Chernobyl Exclusion Zone using Random Forest, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5616, https://doi.org/10.5194/egusphere-egu21-5616, 2021.

EGU21-3885 | vPICO presentations | GI2.2

Final mass balance of Fukushima released radiocaesium in our environment

Michio Aoyama, Yayoi Inomata, Daisuke Tsumune, and Takaki Tsubono

One of the greatest results obtained by analyzing seawater samples from the North Pacific Ocean was the estimation of the total amount of 137Cs in the North Pacific to be 15-18 PBq (Aoyama et al., 2016). This estimation has been validated by two methods described by Tsubono et al. (2016) and Inomata et al. (2016). Coastal modeling results gave the amount of 137Cs direct discharge from the FDNPP to coastal waters to be (3.5 ± 0.7) PBq (Tsumune et al., 2012) which was the first and the most accurate result. Since the amount of direct discharge was accurately determined, the amount of 137Cs released into the atmosphere was also properly determined by the mass balance consideration as discussed in Aoyama et al. (2016a). 

For the calculation of the final mass balance, we did not include several results as they did not cover the whole region, or they included the amount of atmospheric fallout as part of the direct discharge. The total amount of radiocesium released to the atmosphere was estimated to be from 8.1 PBq (Yumimoto et al., 2016) to 36 PBq (Stohl et al., 2O12). Based on mass balance consideration we conclude that (15.2-20.4) PBq of the FDNPP-derived 137Cs might be a reasonable value for the total atmospheric release (supported by Aoyama et al., 2016a; Katata et al., 2015; Mathieu et al., 2012; Saunier et al., 2013; Winiarek et al., 2014). The estimated land deposition is (3.4–6.2) PBq (Aoyama et al., 2016). The estimated 137Cs inventories in the North Pacific are in the range (15.2–18.3) PBq, as obtained by Tsubono et al. (2016) and  Inomata et al. (2016), while only (3–6) PBq was the contribution from the direct discharge (consensus value, Aoyama et al., 2016), although our previous estimate was more precise, (3.5 ± 0.7) PBq. For atmospheric deposition to the North Pacific, the estimated values are in the range (11.7–14.8) PBq (Aoyama et al., 2016; Inomata et al., 2016; Tsubono et al., 2016).

The radiocesium inventories in the interior domains of the North Pacific Ocean have been estimated. The radiocesium inventory in the STMW (Subtropical Mode Water) is (4.2 ± 1.1) PBq (Kaeriyama et al., 2016), and (7.9 ± 1.4) PBq in the surface layer (Inomata et al., 2018b). In the CMW (Central Mode Water), the radiocesium inventory is (2.5 ± 0.9) PBq (Inomata et al., 2018b). The radiocesium sediment inventory is (0.20 ± 0.06) PBq (Otosaka, 2017). The inventory in marine biota might be less than 200 GBq (Aoyama et al., 2019).

How to cite: Aoyama, M., Inomata, Y., Tsumune, D., and Tsubono, T.: Final mass balance of Fukushima released radiocaesium in our environment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3885, https://doi.org/10.5194/egusphere-egu21-3885, 2021.

EGU21-14285 | vPICO presentations | GI2.2

Evaluation of distributions on radioactive materials around the port of Fukushima Daiichi Nuclear Power Plant through both monitoring and numerical simulations on seawater flow

Susumu Yamada and Masahiko Machida

The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in 2011 led to the uncontrolled release of a significant amount of radioactive materials into the marine environment. To prevent the further release of highly contaminated water, which was used for cooling the overheated nuclear reactor cores, and groundwater, which was continuously pumped out the reactor buildings, a large number of tanks was installed in the area around NPP to collect all this water. However, at the moment the capacity of tanks is almost exhausted. The contaminated water was processed to decrease the activity stored in the tanks, but any decontamination system cannot remove all radionuclides from the water. According to TEPCO (2020) data, about 1.2 million m3 of contaminated water were stored in tanks in March 2020 containing radionuclides with long and moderate half-life, among which 10 radioisotopes (H-3, C-14, Co-60, Sr-90, Tc-99, Ru-106, Sb-125, I-129, Cs-134, Cs-137) are dominant (Buesseler, 2020). Therefore, it is important to estimate the impact on human health of potential release of contaminated water from tanks to the ocean. This impact significantly depends on the ability of radionuclides to concentrate in the marine organisms, which are in the human diet, and the values of dose coefficient. The compartment model POSEIDON-R was applied for calculation the concentration of activity in the water, bottom sediments and biota at different distances from the FDNPP. The area of interest was covered by the system of compartments with specification around FDNPP. The exchanges of activity between compartments were governed by average currents in the region. The maximal concentrations and doses were conservatively estimated for coastal box 4x4 km around the FDNPP. Accumulation of activity in the organisms was calculated by dynamical model taking into account chemical properties of the element, its role in metabolic processes and the positions of organisms in the pelagic and benthic food webs. The potential individual doses of radiation were estimated using average consumption rates of marine products in Japan based only on domestic production. The conservative scenario, when a whole volume of contaminated water will be released into the marine environment at a constant rate during 10 years, was chosen. According to results of modelling for 50 years, the obtained dose even in the coastal box turned out to be significantly lower than the maximum annual effective dose commitment for the public equal to 1 mSv (IAEA, 2011). The main contribution into the dose is expected from I-129 and C-14. Although the activity of tritium (H-3) far exceeds activities of other radionuclides in tanks, its contribution to the total dose is only third due to low ability to concentrate in organisms and low dose coefficient. The dose factors and activity factors for 10 radionuclides at different distances from the FDNPP were obtained to be used for estimation of doses to human and concentration of activities in marine organisms for any long-lasting release scenario.

How to cite: Maderich, V. and Bezhenar, R.: Modelling study of the potential release of contaminated water from storage tanks at the Fukushima Dai-ichi NPP into marine environment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10690, https://doi.org/10.5194/egusphere-egu21-10690, 2021.

EGU21-10397 | vPICO presentations | GI2.2

A 2011-2018 Fukushima Perspective on North Pacific Mode Water Pathways

Alison Macdonald, Sachiko Yoshida, and Irina Rypina

This investigation uses the tracer information provided by the 2011 direct ocean release of radio-isotopes, (137Cs, ~30-year half-life and 134Cs, ~2-year half-life) from the Fukushima Dai-ichi nuclear power plant (FDNPP) together with hydrographic profiles to better understand the origins and pathways of mode waters in the North Pacific Ocean. While using information provided by radionuclide observations taken from across the basin, the main focus is on the eastern basin and results from analyses of two data sets 2015 (GO-SHIP) and 2018 (GEOTRACES) along the 152°W meridian. The study looks at how mode waters formed in the spring of 2011 have spread and mixed, and how they have not. Our radiocesium isotope samples tell a story of a surprisingly confined pathway for these waters and suggest that circulation to the north into the subpolar gyre occurs more quickly than circulation to the south into the subtropical gyre. They indicate that in spite of crossing 6000 km in their journey across the Pacific, the densest 2011 mode waters stayed together spreading by only a few hundred kilometers in the north/south direction, remained subsurface (below ~200 m) for most of the trip, and only saw the atmosphere again as they followed shoaling density surfaces into the boundary of the Alaska Gyre. The more recent data are sparse and do not allow direct measurement of the FDNPP specific 134Cs, however they do provide some information on mode water evolution in the eastern North Pacific seven years after the accident. 

How to cite: Macdonald, A., Yoshida, S., and Rypina, I.: A 2011-2018 Fukushima Perspective on North Pacific Mode Water Pathways, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10397, https://doi.org/10.5194/egusphere-egu21-10397, 2021.

EGU21-14045 | vPICO presentations | GI2.2

Long term variation of 137Cs inventory in the global ocean from 1957 to 2018

Yayoi Inomata and Michio Aoyama

The spatial and temporal variations in 137Cs concentrations in the surface seawater in the global ocean from 1957 to 2018 were analyzed by using the ''HAM database - global 2018'' and “IAEA-MARIS database” in order to understand the behaviors of 137Cs originated atmospheric weapons tests, nuclear fuel reprocessing plants, and nuclear power plant accidents at Chernobyl and Fukushima. The global ocean was divided into 37 boxes. The 0.5yr average value of 137Cs, apparent half residence times (Tap), and 137Cs inventory in each box was estimated. The 0.5yr average value of 137Cs in each oceanic region (box) indicate that 137Cs decreased exponentially from 1970 to 2010 in the Pacific Ocean (PO), Indian Ocean (IO), and Atlantic Ocean (AO), except for the Arctic Ocean, North Atlantic Ocean and its marginal sea due to the discharge of 137Cs from the nuclear fuel reprocessing plants. The geographical difference of 137Cs activity concentrations in the global ocean become to be small in the year of 2010. The temporal variation of 137Cs column inventory suggests that 137Cs derived from the large scale atmospheric weapon tests exist largely in the subtropical NPO, equatorial PO, and subtropical SPO (25°N-25°S). 137Cs transport from the PO to the IO occurs in the region from 0°-15°S via Indonesian through flow. The signature of 137Cs transport from the IO to the AO is also detected. The 137Cs inventory in the surface seawater in the year 2010 is estimated to be 57±17 PBq. Considering that the radioactive decay 137Cs are estimated to be 347 PBq, the 137Cs existed into the ocean interior is estimated to 173±52 PBq. These indicate that about 30% of 137Cs released into the surface seawater have been transported into the ocean interior in 2010. The 137Cs inventory in 2011 in the surface seawater in the global ocean were 69±15 PBq. The 137Cs released by the Fukushima Nuclear Power Plant 1 accident increased to 16.5±4.8 PBq and this value is in good agreement with previous studies.

How to cite: Inomata, Y. and Aoyama, M.: Long term variation of 137Cs inventory in the global ocean from 1957 to 2018, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14045, https://doi.org/10.5194/egusphere-egu21-14045, 2021.

EGU21-14483 | vPICO presentations | GI2.2

Estimation of 137Cs inventories by a global ocean general circulation model for the global database interpolation

Daisuke Tsumune, Frank Bryan, Keith Lindsay, kazuhiro Misumi, Takaki Tsubono, Yutaka Tateda, Yayoi Inomata, and Michio Aoyama

Artificial radionuclide 137Cs has been supplied into the ocean by global fallout due to atmospheric nuclear weapons tests since 1945, releases from reprocessing plants since 1952, and most recently by fallout and discharge due to the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) accident since 2011.137Cs activities measured for scientific purposes as well as environmental health and safety monitoring have been summarized in a historical database by IAEA. The spatio-temporal density of the observations varies widely, therefore simulation by an ocean general circulation model (OGCM) can be helpful in the interpretation of these observations. We used the Parallel Ocean Program version 2 (POP2) of the Community Earth System Model version 2 (CESM2). The horizontal resolution is 1.125 degrees in longitude and 0.28 to 0.54 degrees in latitude. The simulation period was from 1945 to 2030, and the atmospheric conditions were forced to cycle through repeating normal years. The purposes of this study are to investigate the effect of the release from the reprocessing plants on the distribution of 137Cs activity by global fallout in the Atlantic Ocean, and the effect of the release derived from the 1F NPP accident on the one by global fallout in the Pacific Ocean.

The simulated 137Cs activities were in good agreement with the observed data in the database in the Atlantic Ocean and the Pacific Ocean. The simulated 137Cs activity immediately after each release event in the North Pacific were inconsistent with the observed one because of the inadequate reproduction of the Kuroshio Current in this quasi-resolution ocean model. However, the influence of the dilution effect is expected to become smaller as the time after the release increases. The influence of the 137Cs activity by release from the reprocessing plant on the one by global fallout in the Atlantic Ocean is limited to the northeast coast of the European continent and the Marginal Seas. It was also suggested that 137Cs activity by global fallout has made detection difficult since the 1990s.The influence of the 137Cs activity by the 1F NPP on the one by global fallout was found to be broadened by the Kuroshio extension area and extended to the California coast. This distribution was similar to that of the one by global fallout. However, there are few observed data off the California coast after 2011. It was also suggested that 137Cs activity by global fallout has made detection difficult since the 2020 in the Pacific Ocean.

Even after 2020, it is still possible to detect 137Cs activity by global fallout in the global ocean. The difference in the vertical distribution between the Pacific and Atlantic oceans reflects the ocean circulation, which is useful for the validation of ocean general circulation models. There is still room for improvement in setting the input conditions to the ocean for each event.

How to cite: Tsumune, D., Bryan, F., Lindsay, K., Misumi, K., Tsubono, T., Tateda, Y., Inomata, Y., and Aoyama, M.: Estimation of 137Cs inventories by a global ocean general circulation model for the global database interpolation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14483, https://doi.org/10.5194/egusphere-egu21-14483, 2021.

EGU21-8664 | vPICO presentations | GI2.2

Scavenging of radionuclides in multicomponent medium with first-order reaction kinetics: Lagrangian and Eulerian modeling

Igor Brovchenko, Vladimir Maderich, Sergiy Kivva, Kyeong Ok Kim, Hanna Kim, and Kateryna Kovalets

A process of the removal of dissolved elements in the ocean by adsorption onto sinking particulate matters (scavenging) is studied analytically and using Lagrangian and Eulerian numerical methods. The generalized model of scavenging in a multicomponent reactive medium with first-order kinetics consisting of water and multi-fraction suspended particular matter has developed. Two novel numerical schemes were used to solve advection-diffusion-reaction equations for advection-dominated flows. The particle tracking algorithm based on the method of moments was developed. It is free on time step limitation necessary for an application of a standard method to the equations with reaction kinetics. The modified flux-corrected transport method for the Eulerian equations is a flux-limiter method based on a convex combination of low-order and high-order schemes. The similarity solutions of the model equations for an idealized case of instantaneous release of reactive radionuclide on the ocean surface were obtained. It was found that the dispersion of reactive contamination caused by reversible phase transition can be much greater than caused by diffusion. The solutions using both numerical methods are consistent with the analytical similarity solution even at zero diffusivity. The scavenging of the 239,240Pu that was introduced to the ocean surface due to the fallout from past nuclear weapon testing was simulated. The results of the simulation agreed with observation data in the north-western Pacific Ocean. The importance of the scavenging by both the large fast-sinking particles and small particles slowly sinking and dissolving with depth due to the biochemical processes was shown.

How to cite: Brovchenko, I., Maderich, V., Kivva, S., Kim, K. O., Kim, H., and Kovalets, K.: Scavenging of radionuclides in multicomponent medium with first-order reaction kinetics: Lagrangian and Eulerian modeling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8664, https://doi.org/10.5194/egusphere-egu21-8664, 2021.

EGU21-9336 | vPICO presentations | GI2.2 | Highlight

Differentiating Fukushima and Nagasaki sourced plutonium from global fallout: Pu vs Cs in soils and biota

Mathew Johansen, Donovan Anderson, David Child, Michael Hotchkis, Hirofumi Tsukada, Kei Okuda, and Thomas Hinton

The release of plutonium (Pu) from the 2011 Fukushima accident has raised questions on how prevalent it is in the environment and how its cycling into the biosphere compares with that from the previous Nagasaki and global-fallout sources.  Here, we report on systematic sampling and analysis of soils, earthworms, and wild boar as markers of Pu in the deposition areas near the Fukushima Daiichi Nuclear Power Station (FDNPS) and Nagasaki. Highly-sensitive Accelerator Mass Spectrometry (AMS) methods were used to distinguish the Pu sourced from the FDNPS accident, and Nagasaki-detonation, from worldwide fallout Pu. We primarily used 241Pu/239Pu atom ratios, as the other typically-used Pu measures (240Pu/239Pu atom ratios, activity concentrations) were less sensitive and did not distinguish the FDNPS Pu from background in most study samples.

 

Near the FDNPS, results indicate that five years after the accident, 0.4% – 2% of the Pu in the local soils (0-5cm) had originated from the FDNPS releases, the remainder being from global fallout.  The trace amounts of FDNPS Pu (e.g., 0.02-0.04 Bq kg-1239Pu estimated in local ~3km deposition) contrasted sharply with the 134+137Cs content which was about 106 times greater than background in the same samples. The accident also contributed new Pu of ~0.3% – 3% in earthworms and ~1% – 10% in wild boar near the FDNPS. The soil and wild boar data from across the study sites consistently indicate only low levels of new accident-Pu and do not support the concept of a substantial undiscovered deposit of Pu near the FDNPS. Unlike sparsely-taken individual soil samples that might miss a Pu hotspot, the wild boar samples represent the integration of uptake throughout their entire foraging areas.

 

Near Nagasaki, our measurements in 2016 show a lasting legacy of Pu sourced from the 1945 detonation (~93% soils, ~88% earthworm, ~96% boar in samples <5km from the Nagasaki hypocentre; the remainder from global fallout). Even with these high percentages arising from the 1945 detonation,  the Pu amounts at all study sites in Japan are comparable  to background fallout levels elsewhere and are orders of magnitude lower than what remains near Chernobyl. At the study areas, the dose rates from Pu to organisms, as well as to potential human consumers of wild boar meat, have been only slightly elevated above background and are orders of magnitude lower than the dose potentials from the 134,137Cs in samples from near the FDNPS.  

 

The results demonstrate progress in increasing the sensitivity of AMS methods, including the use of 241Pu/239Pu atom ratios, to compare recent and past nuclear contamination events and suggest that the Nagasaki-detonation Pu will be distinguishable in the environment long after the FDNPP-accident Pu is not.

How to cite: Johansen, M., Anderson, D., Child, D., Hotchkis, M., Tsukada, H., Okuda, K., and Hinton, T.: Differentiating Fukushima and Nagasaki sourced plutonium from global fallout: Pu vs Cs in soils and biota, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9336, https://doi.org/10.5194/egusphere-egu21-9336, 2021.

EGU21-6868 | vPICO presentations | GI2.2

Radiocesium contamination in wild mouse in Fukushima, Japan

Hiroko Ishiniwa, Masanori Tamaoki, Daiji Endoh, and Manabu Onuma
The large Japanese field mouse (Apodemus speciosus) which endemic wild mice living in Japanese forest, was monitored after the Fukushima nuclear power plant released a large amount of radioactive materials due to accident. We will introduce current status of radiocesium contamination, estimated radiation dose, and effect in the field mouse. According to calculation of radiation dose using Monte Carlo electron-photon transport code EGS5, it was clarified that dose rate level of the field mouse fall under derived consideration reference level determined by ICRP. Analysis of the oxidative stress in male mice testis revealed the damage in testicular cells of mice collected in 2012, when monitoring began.

How to cite: Ishiniwa, H., Tamaoki, M., Endoh, D., and Onuma, M.: Radiocesium contamination in wild mouse in Fukushima, Japan, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6868, https://doi.org/10.5194/egusphere-egu21-6868, 2021.

EGU21-13886 | vPICO presentations | GI2.2

Radiocesium-bearing microparticles cause a large variation in 137Cs concentration in the aquatic insect, Stenopsyche marmorata, in the Ota River, Fukushima, Japan

Yumiko Ishii, Hikaru Miura, Jaeick Jo, Hideki Tsuji, Rie Saito, Kazuma Koarai, and Seiji Hayashi

Radiocesium-bearing microparticles (CsMPs), which are insoluble, Cs-bearing, silicate glass particles, have been found in terrestrial and freshwater environments after the TEPCO's Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan. Few studies have investigated the distribution of CsMPs in freshwater ecosystems and their uptake by aquatic organisms. In this study, we determined the uptake of CsMPs by aquatic insects in the Ota River in Fukushima. Although aquatic insects are usually measured for radioactivity in bulk samples of several tens of insects, we investigated the variability of 137Cs concentration in individual aquatic insects, and the influence of CsMPs on them. Measurement of 137Cs concentrations in detritivorous caddisfly (Stenopsyche marmorata) larvae and carnivorous dragonfly larvae showed that 3 of 47 caddisfly larvae had considerably higher radioactivity, whereas no such outliers were observed in dragonfly larvae. These caddisfly larvae were confirmed to contain the CsMPs emitted from Unit 2 of the FDNPP, using a scanning electron microscope and radioactivity measurements after isolation of the CsMPs. CsMPs were also found in potential food sources of caddisfly larvae, such as periphyton and drifting particulate organic matter, indicating that larvae may ingest CsMPs along with food particles of similar size. Our study demonstrated that CsMPs could be taken up by aquatic insects and possibly by the fish consuming them. The existence of CsMPs can result in sporadic, extremely high 137Cs concentrations, and large variations in samples, and consequently obscure the actual transfer and temporal trends of 137Cs in freshwater ecosystems.

How to cite: Ishii, Y., Miura, H., Jo, J., Tsuji, H., Saito, R., Koarai, K., and Hayashi, S.: Radiocesium-bearing microparticles cause a large variation in 137Cs concentration in the aquatic insect, Stenopsyche marmorata, in the Ota River, Fukushima, Japan, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13886, https://doi.org/10.5194/egusphere-egu21-13886, 2021.

EGU21-9631 | vPICO presentations | GI2.2

Novel application of mosses transplanted in bags as biointerceptors of airborne radioactive dusts after the Fukushima Dai-ichi Nuclear Power Station accident

Anna Di Palma, Paola Adamo, Terumi Dohi, Fujiwara Kenso, Hagiwara Hiroki, and Kazuki Iijima

Nine years after the Fukushima Dai-ichi Nuclear Power Plant accident, in line with the strong efforts to devise ever more effective methods to monitor airborne radioactive dusts, in the present study we proposed for the first time the use of mosses transplanted in bags as biointerceptors of 134Cs and 137Cs in the evacuated zone of the Fukushima territory and according to a standardised protocol. The work aimed to investigate the ability of the moss transplants to accumulate radiocaesium and therefore to act as radiocaesium biointerceptors. To this purpose, the activity concentrations of radiocaesium were measured in moss bags filled with 3 widely studied moss species (Sphagnum palustre, Hypnum cupressiforme, Hypnum plumaeforme) and exposed for 3, 6 and 9 weeks at 5 residential sites within Fukushima area. The levels of radiocaesium found in moss bags were evaluated as function of different parameters (e.g. exposure time, site conditions, moss species). The moss bags were able to accumulate 137Cs in all exposure sites and periods, with Sphagnum palustre acting as the most performant moss species. The 137Cs activity concentrations (from 28 to 4700 Bq kg-1), could be explained by the Cs deposition levels and decontamination status of each exposure site, highlighting the sensitivity of the moss bags to discriminate among exposure sites according to their contamination level. Autoradiography and electron microscopy analysis of the distribution and the chemical composition of the particles entrapped by moss surfaces revealed a prevalence soil-derived radiocaesium. The linear dependency of Cs accumulation with the exposure time allowed a radiocaesium quantitative assessment by using location-specific (LF) and species-specific (SF) factors, with the latter susceptible to an “universal” applicability in future biomonitoring studies with the same experimental design.

How to cite: Di Palma, A., Adamo, P., Dohi, T., Kenso, F., Hiroki, H., and Iijima, K.: Novel application of mosses transplanted in bags as biointerceptors of airborne radioactive dusts after the Fukushima Dai-ichi Nuclear Power Station accident, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9631, https://doi.org/10.5194/egusphere-egu21-9631, 2021.

EGU21-15011 | vPICO presentations | GI2.2

Study of cellulose-destroying activity of soil microflora on the radionuclide contaminated territories of Ukraine

Alla Klepko, Volodymyr Illienko, Mykola Lazarev, and Nataliya Bilyera

Elimination of the powerful radiation accidents consequences (i.e. Chernobyl and Fukushima accidents) has undoubtedly provided mankind with great experience in implementing both practical and fundamental knowledge about the radiation safety of society and the environment. In general, the practical application of scientific knowledge accumulated in the pre-accident period has led to significant positive successes of post emergency measures. The advantage of practical needs in scientific studies has narrowed the scope of fundamental work to the impact of radiation on biological objects in the affected area at the Chernobyl NPP, so the progress in this direction is modest so far.

To date, there is no unambiguous answer to the problem of the small radiation doses impact on biota, namely under such conditions people live today in areas contaminated with artificial radionuclides after Chernobyl and Fukushima accidents. Despite the accumulated experience in the elimination of radiation accidents, it is premature to consider the problem of environmental radionuclide pollution solved. This calls us to expand basic research question at identifying patterns in the state of cellulose-destroying soil microflora on contaminated areas in Ukrainian Polissya and assess their soil-forming activity.  

The study of the microbiota state on territories contaminated with radionuclides (including high level of contamination) is at an early stage, despite the intensive development of such studies after the radiation accident in Fukushima, Japan by a team of researchers from the University of Tokyo led by Professor T. Takahashi.

The aim of our work was to study the cellulose-destroying activity of the soil microflora of Ukrainian Polissya under conditions of elevated radionuclides contamination. We selected two locations - one outside the exclusion zone and the second in the exclusion zone. Both locations were characterized by a significant gradient of radionuclide contamination. At the first location, three points with soil 137Cs activity of 0.6±0.045, 2.9±0.08, 4.6±0.11 kBq×kg-1 soil and 90Sr activity of 0.033±0.004, 0.18±0.015, 0.27±0.012 kBq×kg-1 soil were selected. At the location in the exclusion zone, the 137Cs activity at the sampling points 25±2, 170±1.5, 490±1 kBq×kg-1 soil were selected. Since the experimental sites are located in a relatively small area, the physico-chemical soil properties between the points at each location do not have a significant difference.

To determine the rate of organic matter decomposition by soil microorganisms at all micro-sites, the standardized Tea Bag Index (TBI) method was applied. We used two types of tea bags TM Lipton - green tea (EAN8722700055525 or EAN8714100770542) and rooibos (EAN8722700188438) as a standardized plant material. Therefore, the obtained results can be compared between the microsites with different contamination level, as well as with similar data obtained by researchers for all ecosystems and many soil types from more than 2000 places around the world.

We acknowledge the National Research Foundation of Ukraine for the financial support of this research (Project №2020.01/0489).

How to cite: Klepko, A., Illienko, V., Lazarev, M., and Bilyera, N.: Study of cellulose-destroying activity of soil microflora on the radionuclide contaminated territories of Ukraine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15011, https://doi.org/10.5194/egusphere-egu21-15011, 2021.

EGU21-12410 | vPICO presentations | GI2.2

Phosphate biogeochemical barrier for uranium in situ immobilization in an aquifer nearby sludge repository

Grigory Artemiev, Alexey Safonov, and Nadezhda Popova

Uranium migration in the oxidized environment of near-surface groundwater is a typical problem of many radiochemical, ore mining and ore processing enterprises that have sludge storage facilities on their territory. Uranium migration, as a rule, occurs against a high salt background due to the composition of the sludge: primarily, nitrate and sulfate anions and calcium cations. One of the ways to prevent the uranium pollution is geochemical or engineering barriers. For uranium immobilization, it is necessary to create conditions for its reduction to a slightly soluble form of uraninite and further mineralization, for example, in the phosphate form. An important factor contributing to the rapid reduction of uranium is a in the redox potential decreasing and the removal of nitrate ions, which can be achieved through the activation of microflora. It should be added that phosphate itself is one of the essential elements for the development of microflora. This work was carried out in relation to the upper aquifer (7-12 m) near the sludge storage facilities of ChMZ, which is engaged in uranium processing and enrichment. One of the problems of this aquifer, in addition to the high concentration of nitrate ions (up to 15 g / l), is the high velocity of formation waters.
In laboratory conditions, the compositions of injection solutions were selected containing sources of organic matter to stimulate the microbiota development and phosphates for uranium mineralization. When developing the injection composition, special attention was paid to assessing the formation of calcite deposits in aquifer conditions to partially reduce the filtration parameters of the horizon and reduce the rate of movement of formation waters. This must be achieved to ensure the possibility of long-term deposition of uranium and removal of nitrate. The composition of the optimal solution was selected and in a series of model experiments the mineral phases containing the lowest hydrated form of the uranium-containing phosphate mineral meta-otenite were obtained.
In situ mineral phosphate barrier Formation field tests were carried out in water horizon conditions in a volume of 100m3 by injection of an organic and phosphates mixture. As a result, at the first stage of field work, a significant decreasing nitrate ion concentration, and reducing conditions formation coupled with the dissolved uranium concentration of decreasing were noted.

How to cite: Artemiev, G., Safonov, A., and Popova, N.: Phosphate biogeochemical barrier for uranium in situ immobilization in an aquifer nearby sludge repository, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12410, https://doi.org/10.5194/egusphere-egu21-12410, 2021.

EGU21-13193 | vPICO presentations | GI2.2

Uranium immobilization at microbial biofilms on upper water horizons loams nearby sludge repository

Nadezhda Popova, Safonov Alexey, Artemyev Grigoriy, and Boguslavsky Anatoly

Sludge and slurry uranium repositories of ore processing wastes built in the middle of the 20th century lost their waterproofing properties over time, which leads to the upper aquifers pollution with uranium, heavy metals, sludge macrocomponents: anions of nitrates, sulfates, carbonates, calcium and iron. It is known that the uranium behavior in the environment depends on its oxidation-reduction potential, which determines its oxidation state and solubility. High nitrate content in aquatic systems leads to the uranium migration in the highly oxidized form and minimizes its sorption on the rocks minerals. 

Biogenic elements solution in waters can lead to the microbiota activity stimulation and biogeochemical uranium immobilization. Nitrate consumption leads to the redox potential decreasing and uranium reduction to insoluble forms. It is known that the most stable form of microorganisms in the environment is microbial biofilms. Their development on rock surface changes its physicochemical characteristics and sorption properties. This paper focused on changing the physicochemical and mineralogical parameters of rocks after microbial growth and its effect on the uranium immobilization. It should be noted that in situ bioremediation is one of the promising and inexpensive methods of groundwater remediation. Therefore, an assessment of the role of microbial biofilms in the immobilization of uranium will provide important information for predicting the effectiveness of the bioremediation.  

Angarsk Electrochemical Combine AECC (Irkutsk Region, Russia) is engaged in the processing of uranium ores and concentrates; has sludge storage facilities on the territory, which for a long time have contaminated the upper aquifers with nitrate ions, ammonium, uranium and other components. The main minerals of upper aquatic horizons weathered sandstone are: quartz, plagioclase, K-feldspar, kaolinite, smectite, specular stone, illite-smectite, vermiculite, chlorite, amphibole and apatite in trace amounts. The clay component is more than 20% with a kaolinite predomination. 

In laboratory experiments, the modeling of the growth of microbial biofilms on rocks from contaminated and uncontaminated areas of the formation was carried out by adding organic substrates. Samples were dominated by representatives of the family Pseudomonadaceae, known for their ability to form biofilms and wide range of metabolic capabilities. An uneven distribution of biofilm on the sand was established, presumably in areas containing an increase in the amount of biogenic elements - Ca, Fe, etc., as well as organic carbon. On average, after 15 days, the coverage area of the polysaccharide matrix was 20-30%. The appearance of a polysaccharide matrix can lead to a change in the sorption capacity of rocks and to formation of local zones of uranium accumulation in organic matter. 

As a result of microbial action, the dissolution of carbonate minerals and a number of changes in the composition of clay sandstones is noted. The microbial effect on rocks leads to a multidirectional change in their sorption capacity in relation to uranium. The formation of an exopolysaccharide matrix increases the sorption capacity of rocks due to the appearance of new functional groups. Moreover, with strong microbial fouling, it can lead to a decrease in uranium sorption.

This work was supported by a grant from RFBR 20-05-00602 A.

How to cite: Popova, N., Alexey, S., Grigoriy, A., and Anatoly, B.: Uranium immobilization at microbial biofilms on upper water horizons loams nearby sludge repository, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13193, https://doi.org/10.5194/egusphere-egu21-13193, 2021.

GI3.2 – Open session on planetary and space instrumentation

EGU21-13939 | vPICO presentations | GI3.2 | Highlight

Mineral and Trace Element Identification in Jezero Crater, Mars, with SuperCam’s Time-Resolved Raman (TRR) and Luminescence (TRL) Techniques

Ann Ollila, Olivier Beyssac, Gorka Arana, Stanley Mike Angel, Karim Benzerara, Sylvain Bernard, Pernelle Bernardi, Bruno Bousquet, Kepa Castro, Elise Clave, Sam Clegg, Shiv Sharma, Agnes Cousin, Olivier Forni, Olivier Gasnault, Peter Willis, Guillermo Lopez-Reyes, Juan Manuel Madariaga, Jose Manrique, and Jesus Martinez-Frias and the SuperCam Raman Working Group

In February 2021, NASA’s Perseverance rover will begin its exploration of Jezero crater near a putative ancient delta. Orbital mineralogy indicates the presence of carbonates and clay minerals in the landing site, which will be key targets for study. The SuperCam instrument provides an important tool for remotely surveying for these and other minerals using multiple techniques: Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR) and Luminescence (TRL) spectroscopies, Visible-Near Infrared (VisIR) spectroscopy, micro-imaging, and acoustics. TRR and TRL use a pulsed 532 nm laser with an adjustable gate width, from 100 ns to several ms. The time at which the gate opens is also adjustable, from coincident with the laser pulse to obtain Raman and fast luminescence out to 10 ms or more to capture the lifetimes of luminescence signals. These techniques will operate at distances up to 7 m from the rover mast and will be most effective if LIBS first removes dust from the targets and chemistry is subsequently obtained at the same location. Early lab results show that TRR is effective for detecting certain carbonates (magnesite, hydromagnesite, siderite, ankerite, calcite, and dolomite), sulfates (gypsum, anhydrite, barite, epsomite, and coquimbite), phosphates (apatite), and silicates (e.g., quartz, feldspar, forsteritic olivine, topaz, and diopside). Many of these minerals are high-priority targets for astrobiology studies because they represent habitable environments and have high biosignature preservation potential in terrestrial rocks. Raman signal strength is significantly decreased in fine-grained materials, however, and clay minerals will be a challenge to detect, as will opaque minerals such as Fe-oxides. TRL will be useful for identifying rare earth elements in phosphates and zircon, Fe3+ in silicates such as feldspar, Mn2+ in carbonates, and Cr3+ in Al-oxides and some silicates. TRL may also be able to identify fast (<100 ns) fluorescence that may indicate the presence of organic materials, which could then be analyzed more closely with the rover’s other instruments. Early results from the Jezero crater will be presented, if available.   

How to cite: Ollila, A., Beyssac, O., Arana, G., Angel, S. M., Benzerara, K., Bernard, S., Bernardi, P., Bousquet, B., Castro, K., Clave, E., Clegg, S., Sharma, S., Cousin, A., Forni, O., Gasnault, O., Willis, P., Lopez-Reyes, G., Madariaga, J. M., Manrique, J., and Martinez-Frias, J. and the SuperCam Raman Working Group: Mineral and Trace Element Identification in Jezero Crater, Mars, with SuperCam’s Time-Resolved Raman (TRR) and Luminescence (TRL) Techniques, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13939, https://doi.org/10.5194/egusphere-egu21-13939, 2021.

EGU21-12130 | vPICO presentations | GI3.2

Calibration and first results of relative humidity sensor MEDA HS on board M2020 rover

Maria Hieta, Maria Genzer, Jouni Polkko, Iina Jaakonaho, Andreas Lorek, Stephen Garland, Jean-Pierre de Vera, German Martinez, Erik Fischer, José Antonio Rodríguez Manfredi, Leslie Tamppari, and Manuel de la Torre Juarez

MEDA HS is the relative humidity sensor on the Mars 2020 Perseverance rover provided by the Finnish Meteorological Institute (FMI). The sensor is a part of Mars Environmental Dynamic Analyzer (MEDA), a suite of environmental sensors provided by Centro de Astrobiología in Madrid, Spain. MEDA HS, along with METEO-H in ExoMars 2022 surface platform, is a successor of REMS-H on board Curiosity.

Calibration of relative humidity (RH) instruments for Mars missions is challenging due to the range of RH (from 0 to close to 100%) and temperature conditions (from about -90 ºC to + 22 ºC) that need to be simulated in the lab. Thermal gradients in different parts of the system need to be well known and controlled to ensure reliable reference RH readings. For MEDA HS the calibration tests have been performed for different models of MEDA HS in three Martian humidity simulator laboratories: FMI laboratory, Michigan Mars Environmental Chamber (MMEC) and DLR PASLAB (Planetary Analog Simulation Laboratory).

MEDA HS flight model was tested at FMI together with flight spare and ground reference models in low pressure dry CO2 gas from +22ºC to -70ºC and in saturation conditions from -40ºC down to -70ºC. Further, the MEDA HS flight model final calibration is complemented by calibration data transferred from an identical ground reference model which has gone through rigorous testing also after the flight model delivery. During the test campaign at DLR PASLAB that started in Autumn 2020, MEDA HS has been calibrated over the full relative humidity scale between -70 to -40ºC in CO2 in the pressure ranges from 5.5 to 9.5 hPa, representative of Martian surface atmospheric pressure. The results can be extrapolated to higher and lower temperatures.

In this presentation the final flight calibration and performance of the MEDA HS will be presented together with first results expected from the surface of Mars by the Perseverance rover.

How to cite: Hieta, M., Genzer, M., Polkko, J., Jaakonaho, I., Lorek, A., Garland, S., de Vera, J.-P., Martinez, G., Fischer, E., Rodríguez Manfredi, J. A., Tamppari, L., and de la Torre Juarez, M.: Calibration and first results of relative humidity sensor MEDA HS on board M2020 rover, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12130, https://doi.org/10.5194/egusphere-egu21-12130, 2021.

EGU21-1451 | vPICO presentations | GI3.2

A Novel Radar Processing Tool for Estimating the Permittivity Profile of the Shallow Lunar Ejecta: A Case Study at the Von Kármán Crater

Iraklis Giannakis, Feng Zhou, Craig Warren, and Antonios Giannopoulos

On 3rd of January 2019, the Lunar probe Chang’E-4 landed at Von Kármán (VK) crater at South-Pole Aitken (SPA) crater. The transient cavity of SPA has been estimated at 840-1400 km, which implies that the SPA basin excavated through the Lunar’s crust and into the mantle. Due to that, the geology of the area has attracted a lot of interest, since mantle materials can provide useful insights on the mineralogical composition of the upper mantle and the formation of the Moon.

Lunar Penetrating Radar (LPR) has been applied for both satellite and in situ measurement configurations resulting to fruitful insights regarding the dielectric structure of the Moon. The Yutu-2 rover from the Chang’E-4 mission is equipped with a low-frequency (60 MHz) and two high-frequency (500 MHz) antennas. Previous research [1] using the high-frequency data from the Yutu-2 rover, concluded that a homogenous ~12 m weathered layered overlays the ejecta from the near-by Finsen crater. This model is based on typical hyperbola-fitting and the lack of layers on the measured radagram for the first ~150 ns [1].   

Typical hyperbola-fitting is not suitable for complex media with varying permittivity with depth. To mitigate that, we propose a novel interpretation tool that fits multiple hyperbolas simultaneously by estimating the optimum one-dimensional permittivity profile. The suggested scheme is successfully validated via a series of numerical experiments and subsequently applied to the data acquired by the Yutu-2 rover during the first two Lunar days of the mission. Four distinct layers were identified in the first ~12 m that were previously non-visible due to their smooth dielectric boundaries. This differs from previous results [1] where the first ~12 m are assumed homogeneous, part of the weathered fine-grained regolith of the Finsen crater. Based on these results, we suggest a new stratigraphic model in which the ejecta of VK L' (~ 5.5 m) were deposited on top of the Finsen ejecta. Space weathering degraded the first ~1.5 m of the ejecta decreasing its density and electric permittivity. The ejecta from VK L were subsequently deposited on top of the weathered layer creating a top layer with ~6 m width. The long weathering process, from early Eratosthenian till now, gave rise to a ~3 m of loose Lunar soil with low electric permittivity. The suggested model is consisted with the LROC NAC images [2], the expected Lunar weathering rates [3] and the mineralogical content of the area [2].

References

[1] Zhang, L., Li, J., Zeng, Z., Xu, Y., Liu, C., & Chen, S, (2020), Stratigraphy of the Von Kármán crater based on Chang’E-4 lunar penetrating radar data. Geophysical Research Letters, 47.

[2] Huang, J., Xiao, Z., Flahaut, J., Martinot, M., Head, J., Xiao, X., & et al. (2018), Geological characteristics of Von Kármán crater, northwestern South Pole-Aitken basin: Chang’E-4 landing site region, Journal of Geophysical Research: Planets, 123, 1684-1700.

[3] Gou, S., Yue, Z., Di, K., Cai, Z., Liu, Z., & Niu, S. (2021), Absolute model age of Lunar Finsen crater and geologic implications, Icarus, 354, 114046.

How to cite: Giannakis, I., Zhou, F., Warren, C., and Giannopoulos, A.: A Novel Radar Processing Tool for Estimating the Permittivity Profile of the Shallow Lunar Ejecta: A Case Study at the Von Kármán Crater, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1451, https://doi.org/10.5194/egusphere-egu21-1451, 2021.

One of the unique candidates to explore the evolution of physical surface processes on the Moon is Tycho, a dark haloed impact crater representing well-preserved bright ray pattern and intact crater morphology. Sampling of the central peak in such complex crater formation proves significant in terms of unraveling intriguing science of the lunar interior. With the current state-of-the-art radar technology, it is possible to evaluate the response of the geologic features constrained in the near surface and subsurface regolith environments. This can be achieved by modelling the dielectric constant of media, which is a physical parameter crucial for furthering our knowledge about the distribution of materials within different stratigraphic layers at multiple depths. Here, we used the applicability of Mini-RF S-band data augmented with a deep learning based inversion model to retrieve the dielectric variations over the central peak of the Tycho crater. A striking observation is made in certain regions of the central peak, wherein we observe anomalously high dielectric constant, not at all differentiated in the hyperspectral image and first Stokes parameter image, which usually is a representation of retrieved backscatter of the target. The results are also supported by comparing the variations in the scattering mechanisms. We found those particular regions to be associated with high degree of depolarization, thereby attributing to the presence of cm- to m- scale scatterers buried within a low dielectric layer that are not big enough to produce even-bounce geometry for the radar wave. Moreover, we also observe high rock concentration in the central peak slopes from DIVINER data and NAC images, indicating the exposure of clasts ranging in size from 10 meter to 100s of meter. Furthermore, from surface temperature data, these distinctive outcrops sense warmer temperature at night than the surrounding, which suggests the existence of thermal skin depth in such vicinities. Interestingly, we are able to quantify the pessimistic dielectric constant limit of the large boulder in the middle of the central peak, observable at the Mini-RF radar wavelength, as 4.54 + j0.077. Compared to the expected dielectric constant of rocks, this value is lowered significantly. One probable reason could be the emergence of small radar shadows due to the rugged surface of the boulder on the radar illuminated portion. From our analysis, we showcase the anomalous dielectric variability of Tycho central peak, thereby providing new insights into the evolution of the impact cratering process that could be important for both science and necessary for framing human or robotic exploration strategies.  

How to cite: Shukla, S. and Patterson, G. W.: Anomalous Dielectric Variability in the central peak of Tycho crater on the Moon: New insights from Mini-RF S-band Observations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16552, https://doi.org/10.5194/egusphere-egu21-16552, 2021.

EGU21-11190 | vPICO presentations | GI3.2 | Highlight

ROBOTS for MOON EXPLORATION

Maxim Litvak, Igor Mitrofanov, Lev Zelenyi, Vladislav Tretyakov, Tatiana Kozlova, Maxim Mokrousov, Alexander Kozyrev, Artem Nosov, and Vladislav Yakovlev

Russian lunar program includes several landing missions of Luna-25, Luna-27, Luna-28 which should be implemented step by step to explore mineralogical, chemical, and isotopic compositions of the lunar polar regolith, search for volatile compounds, deliver soil samples to the Earth and prepare future manned expeditions to Moon.

The successful implementation of these missions requires employing of excavation and drilling of lunar regolith to the different depths with extraction of soil samples for the farther analysis (in situ or sample return).The first mission in row Luna-25 will be launched in October 2021 and landed at the area located north of Boguslawsky crater. This lander is equipped with the Lunar Manipulation Complex (LMC) – the robotic arm that should excavate lunar regolith (down to 5 – 25 cm) and deliver sample of lunar soil to the analytical instrumentation for the elemental and isotopic analysis. The robotic arm is already passed through the validation, functional and calibration tests in lunar-like conditions (low pressures and low temperatures) to imitate interaction with lunar soil simulant enriched with different content of water.

The Luna – 27 and Luna – 28 will be landed at southern polar regions (landing site selection is in progress). They will be equipped with Deep Drill Systems (DDS) to take samples of polar regolith enriched with water ice and other volatiles from 1-2 m depths. The DDS for Luna-27 , as part of the PROSPECT suit, shall be contributed by ESA. The DDS for Luna – 28 (the sample polar return mission) is being developed by Space Research Institute.In this presentation we report the results of ground tests with LMC units and DDS prototype.In addition to DDS, it is expected that Luna – 28 will carry a small sized lunokhod (~100 kg) to support sample collection and proceed with geological survey program (up to 30 km around the landing site per one year). The lunokhod will study elemental/isotopic/mineral composition of lunar regolith along rover traverse to estimate accessibility of lunar resources (first of all, water ice as a source of hydrogen and oxygen) applicable for potential industry utilization and support of manned expeditions. 

The Russian lunar program assumes synergy of robotic and manned missions. Beyond Luna -25,27,28, it is expected that the next lunar missions will deliver to Moon surface heavy lunokhod, which will prepare the landing of the manned mission.  Finally, as part of testing program for manned lander (without cosmonauts), it is proposed to deliver multifunctional robotic equipment to support  the following arrival of cosmonauts. 

How to cite: Litvak, M., Mitrofanov, I., Zelenyi, L., Tretyakov, V., Kozlova, T., Mokrousov, M., Kozyrev, A., Nosov, A., and Yakovlev, V.: ROBOTS for MOON EXPLORATION, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11190, https://doi.org/10.5194/egusphere-egu21-11190, 2021.

EGU21-14240 | vPICO presentations | GI3.2

Development of a Triple-Reflection Compact Time-Of-Flight Mass Spectrometer for Lunar Polar Exploration

Yoshifumi Saito, Naoki Yamamoto, Shoichiro Yokota, and Satoshi Kasahara

In order to investigate the presence (and amount) of the water (ice) molecules in the regolith 1 to 1.5 m below the lunar surface, a compact neutral particle mass spectrometer is under development. This neutral particle mass spectrometer is designed to install on a Moon rover, and it will perform mass analysis of neutral gas generated in the heating chamber. This mass spectrometer not only aims to measure the amount of water molecules included in the lunar regolith but also identify the atoms, molecules and their isotopes up to mass number 200 with mass resolution as high as 100.

The mass spectrometer under development is a reflectron that is a Time-Of-Flight mass spectrometer. A standard reflectron consists of an ion source, ion acceleration part, free flight part, ion reflection part and an ion detector. Ionized neutral particles are accelerated in the two-stage ion acceleration part by a pulsed high voltage whose pulse timing is used as a start signal. The accelerated ions enter into the free flight part and reflected in the single-stage ion reflection part. Reflected ions again fly through the free flight part and detected by a detector. Ion mass is determined by the time difference between the start signal and the particle detection.

In order to increase the mass resolution as much as possible within the allocated volume, we have decided to modify the standard reflectron by adding a second reflector that enables triple reflections and doubles the flight length. This newly designed triple-reflection TOF mass spectrometer can be operated also as a standard reflectron by changing the electric field configuration. Since the triple-reflection reduces the detection efficiency while increasing the mass resolution, the single reflection mode is used as a complementary mode where the detection efficiency is higher while the mass resolution is lower.

  

How to cite: Saito, Y., Yamamoto, N., Yokota, S., and Kasahara, S.: Development of a Triple-Reflection Compact Time-Of-Flight Mass Spectrometer for Lunar Polar Exploration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14240, https://doi.org/10.5194/egusphere-egu21-14240, 2021.

EGU21-3821 | vPICO presentations | GI3.2

Initial Calibration Results of the NIM Flight Spare Mass spectrometer for Exploration of Jupiter’s Icy Moons Exospheres

Martina Föhn, Marek Tulej, André Galli, Audrey Helena Vorburger, Davide Lasi, Andreas Riedo, Peter Wurz, Pontus Brandt, and Stas Barabash

The search for life is one of the key topics in modern space science. The JUICE mission of the European Space Agency ESA will investigate Jupiter and its icy moons Ganymede, Callisto and Europa, with Europa being an example of a potentially habitable world around a giant gas planet. The Particle and Environment Package, PEP, on board of the JUICE spacecraft will investigate Jupiter’s icy moons and their environment. The Neutral gas and Ion Mass spectrometer NIM will investigate the icy moon’s exospheres to investigate their formation and the interaction processes of the exospheres with the moons’ surface and Jupiter’s strong magnetic field. It will enhance our understanding of the processes involved in the interactions of ion bombardment on the icy moons' surfaces. From these measurements, we will derive the moons’ surface composition and their formation processes.

NIM is a time-of-flight mass spectrometer with two particle entrances: an open-source entrance to measure neutral particles and ions directly and a close source entrance where neutral particles get thermalized before entering the sensor’s ionization region. This allows detecting of particles with high speeds. NIM has a specially designed ion storage source and an ion-mirror to double the flight distance of the produced ions by keeping the sensor at a minimal size.

In this contribution, we show calibration results of the NIM flight spare instrument on one hand operated with laboratory and on the other operated with flight electronics. We demonstrate the performance of NIMs ion-source, verify the performance of the closed-source antechamber. NIM has a demonstrated mass resolution of m/Δm 800.

How to cite: Föhn, M., Tulej, M., Galli, A., Vorburger, A. H., Lasi, D., Riedo, A., Wurz, P., Brandt, P., and Barabash, S.: Initial Calibration Results of the NIM Flight Spare Mass spectrometer for Exploration of Jupiter’s Icy Moons Exospheres, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3821, https://doi.org/10.5194/egusphere-egu21-3821, 2021.

EGU21-9959 | vPICO presentations | GI3.2

Recoverability of Callisto gravity field influenced by orbiter mission characteristics

William Desprats, Daniel Arnold, Michel Blanc, Adrian Jäggi, Mingtao Li, Lei Li, and Olivier Witasse

The exploration of Callisto is part of the extensive interest in the icy moons characterization. Indeed, Callisto is the Galilean moon with the best-preserved records of the Jovian system formation. Led by the National Space Science Center (NSSC), Chinese Academy of Science (CAS), the planned Gan De mission aims to send an orbiter around Callisto in order to characterize its surface and interior. Potential orbit configurations are currently under study for the Gan De mission proposal.

As part of a global characterization of Callisto, its gravity field can be inferred using radio tracking data from an orbiter. Mission characteristics such as orbit type, Earth beta angle and solar elongation will have a direct influence on the recoverability of its gravity field parameters. In this study, we will analyse this influence from closed-loop simulations using the planetary extension of the Bernese GNSS Softwareai.

A number of reference orbits with different orbital characteristics will be selected for the Gan De mission and, using an extended force model, will be propagated from different starting dates and different initial Earth beta angles. Realistic Doppler tracking data (2-way X-band Doppler range rate) will be simulated as measurements from ground stations, with a dedicated noise model. These observations will then be used to reconstruct the orbit along with dynamical parameters. The focus of this presentation will be on the quality of the retrieved gravity field parameters and tidal Love number k2.

How to cite: Desprats, W., Arnold, D., Blanc, M., Jäggi, A., Li, M., Li, L., and Witasse, O.: Recoverability of Callisto gravity field influenced by orbiter mission characteristics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9959, https://doi.org/10.5194/egusphere-egu21-9959, 2021.

EGU21-9508 | vPICO presentations | GI3.2

A charging model for the Rosetta spacecraft

Fredrik Leffe Johansson, Anders Eriksson, Nicolas Gilet, Pierre Henri, Gaëtan Wattieaux, Matt Taylor, Christian Imhof, and Fabrice Cipriani

Context. The electrostatic potential of a spacecraft, VS, is important for the capabilities of in situ plasma measurements. Rosetta has been found to be negatively charged during most of the comet mission and even more so in denser plasmas.
Aims. Our goal is to investigate how the negative VS correlates with electron density and temperature and to understand the physics of the observed correlation.

Methods. We applied full mission comparative statistics of VS, electron temperature, and electron density to establish VS dependence on cold and warm plasma density and electron temperature. We also used Spacecraft-Plasma Interaction System (SPIS) simulations and an analytical vacuum model to investigate if positively biased elements covering a fraction of the solar array surface can explain the observed correlations.

Results. Here, the VS was found to depend more on electron density, particularly with regard to the cold part of the electrons, and less on electron temperature than was expected for the high flux of thermal (cometary) ionospheric electrons. This behaviour was reproduced by an analytical model which is consistent with numerical simulations.
Conclusions. Rosetta is negatively driven mainly by positively biased elements on the borders of the front side of the solar panels as these can efficiently collect cold plasma electrons. Biased elements distributed elsewhere on the front side of the panels are less efficient at collecting electrons apart from locally produced electrons (photoelectrons). To avoid significant charging, future spacecraft may minimise the area of exposed bias conductors or use a positive ground power system.

How to cite: Johansson, F. L., Eriksson, A., Gilet, N., Henri, P., Wattieaux, G., Taylor, M., Imhof, C., and Cipriani, F.: A charging model for the Rosetta spacecraft, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9508, https://doi.org/10.5194/egusphere-egu21-9508, 2021.

EGU21-7197 | vPICO presentations | GI3.2

A combined Langmuir Probe – fluxgate magnetometer sensor design for Comet Interceptor

Johan De Keyser, Sylvain Ranvier, Jeroen Maes, Jordan Pawlak, Eddy Neefs, Frederik Dhooghe, Uli Auster, Bernd Chares, Niklas Edberg, Jesper Fredriksson, Anders Eriksson, Pierre Henri, Olivier Le Duff, and Joakim Peterson

The in situ characterization of space plasmas requires an instrument suite for the measurement of the magnetic and electric fields and waves and of the plasma populations, with the field instruments typically being mounted on booms. This can be a tall order, especially for small planetary science missions, so that one has to seek simplifications. In the context of the Comet Interceptor mission, we have designed a combined sensor that consists of a hollow spherical Langmuir probe that harbors a fluxgate magnetometer at its center. Special precautions have been taken to minimize the possible interference between both, while at the same time being very lightweight. An engineering model has been built and is tested and characterized in detail. Such a combined sensor, together with a companion Langmuir probe, provides data regarding magnetic and electric fields and waves, total ion and electron densities and electron temperature, as well as the ambient nanodust population. It can form the core of an in situ plasma characterization package and offers reference data for the other sensors, such as magnetic field direction, spacecraft potential and total plasma density at high cadence.

How to cite: De Keyser, J., Ranvier, S., Maes, J., Pawlak, J., Neefs, E., Dhooghe, F., Auster, U., Chares, B., Edberg, N., Fredriksson, J., Eriksson, A., Henri, P., Le Duff, O., and Peterson, J.: A combined Langmuir Probe – fluxgate magnetometer sensor design for Comet Interceptor, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7197, https://doi.org/10.5194/egusphere-egu21-7197, 2021.

EGU21-956 | vPICO presentations | GI3.2

Calibration of a neutral particle beam source with the novel Absolute Beam Monitor

Jonathan Gasser, André Galli, and Peter Wurz

The energetic neutral atom detection instrument IMAP-Lo is part of the scientific payload of the upcoming Interstellar Mapping and Acceleration Probe (IMAP) mission by NASA and is designed to analyse interstellar neutral and heliospheric Energetic Neutral Atom fluxes and their composition for energies from 1000 eV down to 10 eV. IMAP is dedicated to extend our knowledge of the local interstellar medium (LISM) and its interaction with the solar magnetic field and the heliosphere. Most importantly, H, He, O and Ne ENAs will be analysed.

Calibration and testing of IMAP-Lo is planned in MEFISTO, a unique laboratory test facility for ion and neutral particle instruments at the University of Bern, which can provide the required neutral atom beams. In MEFISTO we have a microwave-induced plasma ion source for beam energies up to 100 keV/q. The ion beam can be converted to a neutral beam in the energy range 10 eV – 3 keV with a removable ion beam neutralizer with decelerating the ion beam first and subsequent neutralisation via surface reflection. It comes with an estimated beam energy reduction of 15 % and energy-dependent transmission. The neutral beam flux into the test chamber therefore depends on the ion beam energy, intensity and species. To improve the calibration process for ENA space instruments such as IMAP-Lo, it is important to measure the neutral beam flux and energy in the test facility.

The Absolute Beam Monitor (ABM) is a novel laboratory device developed for absolute neutral particle flux measurements and energy determination of neutral atom beams. The ABM takes advantage of secondary electron emission during surface scattering of incident neutral atoms off a highly polished tungsten plate. The effective rate of neutrals is inferred from detecting secondary electrons and reflected atoms in two electron multipliers as well as its coincidence signal rate. Time difference of the two signals yields the neutrals energy. To date, the ABM is the only device to measure absolute fluxes of neutral atoms in this energy range.

Measurements of the neutral beam source in MEFISTO have been performed for several species using the ABM to determine the relation between the effective neutral atom flux and the primary ion beam current at the charge conversion surface, as well as the neutral beam energy, for ion energies from 1000 eV down to 10 eV.

How to cite: Gasser, J., Galli, A., and Wurz, P.: Calibration of a neutral particle beam source with the novel Absolute Beam Monitor, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-956, https://doi.org/10.5194/egusphere-egu21-956, 2021.

EGU21-9915 | vPICO presentations | GI3.2 | Highlight

First results from the Sweeping Langmuir Probe (SLP) instrument on board PICASSO

Sylvain Ranvier, Johan De Keyser, and Jean-Pierre Lebreton

The Sweeping Langmuir Probe (SLP) instrument on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO) has been developed at the Royal Belgian Institute for Space Aeronomy.  PICASSO, an ESA in-orbit demonstrator launched in September 2020, is a triple unit CubeSat orbiting at about 540 km altitude with 97 degrees inclination. The SLP instrument includes four independent cylindrical probes that are used to measure the plasma density and electron temperature as well as the floating potential of the spacecraft. Along the orbit of PICASSO the plasma density is expected to fluctuate over a wide range, from about 1e8/m3 at high latitude up to more than 1e12/m3 at low/mid latitude. SLP can measure plasma density from 1e8/m3 to 1e13/m3. The electron temperature is expected to lie between approximately 1000 K and 10.000 K. Given the high inclination of the orbit, SLP will allow a global monitoring of the ionosphere. Using the traditional sweeping mode, the maximum spatial resolution is of the order of a few hundred meters for the plasma density, electron temperature and spacecraft potential. With the fixed-bias mode, the electron density can be measured with a spatial resolution of about 1.5 m. The main goals are to study the ionosphere-plasmasphere coupling, the subauroral ionosphere and corresponding magnetospheric features together with auroral structures and polar caps, by combining SLP data with other complementary data sources (space- or ground-based instruments). The first results from SLP will be presented.

How to cite: Ranvier, S., De Keyser, J., and Lebreton, J.-P.: First results from the Sweeping Langmuir Probe (SLP) instrument on board PICASSO, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9915, https://doi.org/10.5194/egusphere-egu21-9915, 2021.

EGU21-15954 | vPICO presentations | GI3.2

Inflight performance of the state-of-the-art BepiColombo MORE radio-tracking system 

Paolo Cappuccio, Luciano Iess, Daniele Durante, Ivan di Stefano, Paolo Racioppa, and Sami Asmar

The ESA/JAXA mission BepiColombo, launched on 20 October 2018 is in cruise towards Mercury and will arrive at Mercury in 2025 to investigate its surface, interior structure and magnetosphere. The Mercury Orbiter Radio-science Experiment (MORE) onboard the Mercury Planetary Orbiter (MPO) aims at determining the gravity field, the rotational state and librations of the planet, using precise tracking of the spacecraft during its orbital phase around Mercury. Range and range-rate measurements collected during the cruise phase will be used to test the theory of general relativity starting in March 2021. The MORE experiment exploits two-way multifrequency microwave links from ESA and NASA: two downlinks in X- and Ka-band coherent with the X-band uplink and one Ka-band downlink coherent with the Ka-band uplink. The range-rate and range measurements accurately BepiColombo’s line-of-sight velocity and the round-trip light-time of the signal, respectively. The calibration of the dispersive plasma noise component through the combination of the X/X, X/Ka and Ka/Ka links and the use of water vapor radiometers to correct for the path delay due to Earth’s troposphere will result in an accuracy of ~3 µm/sec (at 1000-s integration time) on the Doppler and centimeter-level range accuracies. We report on the analysis of dedicated tests executed on range and Doppler data collected by ESA and NASA stations at X and Ka-band. The comparison of the observed noise with the predictions shows results exceeding the expectations. In particular, the 24 Mcps pseudo-noise modulation of the Ka-band carrier, enabled by MORE’s KaT transponder built by Thales Alenia Space Italia, provided two-way range measurements accurate to ~3 cm with just 4 s integration time, at a distance of 0.7 AU, September 2021, and 1.3 AU, November 2021. Under favorable weather conditions, the range rate has shown an accuracy of 25 µm/s at 10 s integration time, in line with the expected end-to-end performance. Under unfavorable weather conditions the performance was slightly over the requirements. We must remark that calibrations from water vapor radiometers were not available during these tests and only GNSS calibration were applied.

How to cite: Cappuccio, P., Iess, L., Durante, D., di Stefano, I., Racioppa, P., and Asmar, S.: Inflight performance of the state-of-the-art BepiColombo MORE radio-tracking system , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15954, https://doi.org/10.5194/egusphere-egu21-15954, 2021.

EGU21-8163 | vPICO presentations | GI3.2

Capon’s method for planetary magnetic field analysis 

Simon Töpfer, Yasuhito Narita, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann

Minimum variance distortionless projection, the so-called Capon method, serves as a powerful and robust data analysis tool when working on various kinds of ill-posed inverse problems. The method has not only successfully been applied to multipoint wave and turbulence studies in the context of seismics and space plasma physics, but it is also currently being considered as a technique to perform the multipole expansion of planetary magnetic fields from a limited data set, such as Mercury’s magnetic field analysis. The mathematical foundations and the practical application of the Capon method are discussed in a rigorous fashion by extending its linear algebraic derivation in view of planetary magnetic field studies. Furthermore, the optimization of Capon’s method by making use of diagonal loading is considered.

How to cite: Töpfer, S., Narita, Y., Heyner, D., Kolhey, P., and Motschmann, U.: Capon’s method for planetary magnetic field analysis , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8163, https://doi.org/10.5194/egusphere-egu21-8163, 2021.

GI4.1 – Cosmic rays across scales and disciplines: the new frontier in environmental research

EGU21-11158 | vPICO presentations | GI4.1 | Highlight

Galactic Cosmic Ray Modulation at Mars and beyond measured with EDACs on Mars Express and Rosetta

Elise Wright Knusten, Olivier Witasse, Beatriz Sanchez-Cano, Mark Lester, Robert Wimmer-Schweingruber, Michel Denis, James Godfrey, and Andrew Johnstone

Galactic Cosmic Rays (GCRs) are an intrinsic part of the heliospheric radiation environment, and an inevitable challenge to long-term space exploration. Here we show solar cycle induced GCR modulation at Mars in the period 2005-2020, along with GCR radial gradients, by utilising Mars Express and Rosetta engineering parameters compared to sunspot number time series. The engineering parameter used is called EDAC (Error Detection And Correction), a cumulative counter which is triggered by charged energetic particle causing memory errors in on-board computers. EDAC data provides a new way of gaining insight into the field of particle transport in the heliosphere, allowing us to circumvent the need for dedicated instrumentation as EDAC software is present on all spacecraft.

This data set can be used to capture variations of GCRs in both space and time, yielding the same qualitative information as ground-based neutron monitors. Our analysis of the Mars Express EDAC parameter reveals a strong solar cycle GCR modulation, yielding an anticorrelation coefficient of -0.5 at a time lag of ~5.5 months. By combining Mars Express with Rosetta data, we calculate a 5.3% increase in EDAC count rates per astronomical unit, attributed to a radial gradient in GCR fluxes in accordance with established literature.

The potential of engineering data for scientific purposes remains mostly unexplored. The results obtained from this work demonstrates, for the first time for heliophysics purposes, the usefulness of the EDAC engineering parameter, data mining and the utility of keeping missions operational for many years, providing complimentary data to nominal science instruments.

How to cite: Knusten, E. W., Witasse, O., Sanchez-Cano, B., Lester, M., Wimmer-Schweingruber, R., Denis, M., Godfrey, J., and Johnstone, A.: Galactic Cosmic Ray Modulation at Mars and beyond measured with EDACs on Mars Express and Rosetta, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11158, https://doi.org/10.5194/egusphere-egu21-11158, 2021.

EGU21-16032 | vPICO presentations | GI4.1

Towards parameter-free nanodosimetric quantities in the impact of highly ionizing radiation  

Fabiana Da Pieve, Bin Gu, Natalia Koval, Daniel Muñoz Santiburcio, Jos Teunissen, Emilio Artacho, Fabrizio Cleri, and Jorge Kohanoff

Cosmic Rays, in particular the high charge and high energy (HZE) particles and eventual secondary low energy protons, are high Linear Energy Transfer (LET) radiation, i.e. they transfer a high amount of energy to the target per unit path length travelled in the target itself, leaving behind a dense track of ionization and atomic excitations. Understanding the radiation physics and the biology induced by the impact of high LET radiation is of importance for different fields of research, such as radiation therapy with charged particles, space radiation protection of astronauts and of human explorers on Mars and eventually also survival of any bacterial, plant cell on other planetary/small bodies. While data for low LET radiation  such as X-ray have been studied in the survivors of the atomic-bombs, medical patients and nuclear reactor workers, for high LET radiation there is no relevant collection of human data for risk estimates, and experiments with nuclei created at accelerators are necessary.

At present we still do not have an understanding of how the  radiation  interaction  with a  single nanometric  target (units of DNA), the so-called track  structure [1],  should  decide  the  fate  of  the  irradiated cell. Monte Carlo (MC) track structure codes essentially work only with the physics given by impact cross sections on the sole water, there is no real consideration of the electronic/chemical characteristics of the hosted biomolecule [2]. Limitations given by such an approach have been highlighted [3], but on the positive side a massive effort is being done to follow the different steps of radiation effects up to biological damage [4].

In this contribution we would like to highlight how a chain of models from different communities could be of help to study the radiation effects on biomolecules. In particular, we will present how ab-initio (parameter-free) approaches from the chemical-physics community can be used to derive in detail the energy loss of the impacting ions/secondary electrons on water and small biological units [5,6], either following in real time the ion or based on perturbative theories for low energy electrons, and how the derived quantity can be given  as input to Monte Carlo track structure codes, extending their capabilities to different relevant targets. Given the physical limitations and high costs of irradiation experiments, such calculations offer an efficient approach that can boost the understanding of radiation physics and consolidate existing MC track structure codes.

This work is initiated in the context of the EU H2020 project ESC2RAD, Grant 776410.

[1] H. Nikjoo, S. Uehara, W.E. Wilson, et al, International Journal of Radiation Biology 73, 355 (1998)

[2] H. Palmans, H Rabus, A L Belchior, et al, Br. J. Radiol. 88, 20140392 (2015)

[3] H. Rabus and H. Nettelback, Radiation Measurements 46, 1522 (2011)

[4] M. Karamitros, S. Luan, M.A. Bernal, et al,  Journal of Computational Physics 274,  841 (2014)

[5] B. Gu, B. Cunningham D. Munoz-Santiburcio, F. Da Pieve, E. Artacho and J. Kohanoff, J. Chem. Phys. 153, 034113 (2020)

[6] N. Koval, J. Kohanoff, E. Artacho et al, in preparation

How to cite: Da Pieve, F., Gu, B., Koval, N., Muñoz Santiburcio, D., Teunissen, J., Artacho, E., Cleri, F., and Kohanoff, J.: Towards parameter-free nanodosimetric quantities in the impact of highly ionizing radiation  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16032, https://doi.org/10.5194/egusphere-egu21-16032, 2021.

EGU21-544 | vPICO presentations | GI4.1

Cause-and-effect relations between cosmic rays, electric field, aerosols and clouds

Stavros Stathopoulos, Stergios Misios, and Konstantinos Kourtidis

Here we examine the cause-and-effect relations between galactic cosmic rays, electric field, aerosols and clouds over a region of Atlantic Ocean, during a Forbush Decrease (FD) event on 07/12/2015, using Convergent Cross Mapping (CCM) method. For this purpose, we used FD data from the Neuron Monitor Database (NMDB), Potential Gradient data (PG) from Global Coordination of Atmospheric Electricity Measurements (GLOCAEM) and remote sensing data from MODIS/Aqua, namely Aerosol Optical Depth at 550nm (AOD), Cloud Fraction (CF), Cloud Optical Thickness (COT), Cloud Top Pressure (CTP), Cirrus Reflectance (CR) and Cloud Effective Radius-Liquid (CERL). A cause-and-effect relation was found between FD and AOD, CERL, CF and PG, over the region. On the other hand, no causal effect was found between FD and COT, CTP and CR. This research is funded in the context of the project "Cosmic and electric effects on aerosols and clouds” (MIS: 5049552) under the call for proposals “Support for researchers with emphasis on young researchers - Cycle B” (EDULL 103). The project is co-financed by Greece and the European Union (European Social Fund - ESF) by the Operational Programme Human Resources Development, Education and Lifelong Learning 2014-2020.

How to cite: Stathopoulos, S., Misios, S., and Kourtidis, K.: Cause-and-effect relations between cosmic rays, electric field, aerosols and clouds, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-544, https://doi.org/10.5194/egusphere-egu21-544, 2021.

EGU21-2287 | vPICO presentations | GI4.1

Atmospheric production and transport of 7Be activity by cosmic rays: Modelling with the chemistry-climate model SOCOLv3.0 and comparison with direct measurements

Kseniia Golubenko, Eugene Rozanov, Genady Kovaltsov, Ari-Pekka Leppänen, and Ilya Usoskin

We present the first results of modelling of the short-living cosmogenic isotope 7Be production, deposition, and transport using the chemistry-climate model SOCOLv3.0 aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme,  based on gas tracers with and without nudging to the known meteorological fields. Production of 7Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of 7Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope 7Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002–2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past. 

How to cite: Golubenko, K., Rozanov, E., Kovaltsov, G., Leppänen, A.-P., and Usoskin, I.: Atmospheric production and transport of 7Be activity by cosmic rays: Modelling with the chemistry-climate model SOCOLv3.0 and comparison with direct measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2287, https://doi.org/10.5194/egusphere-egu21-2287, 2021.

EGU21-10602 | vPICO presentations | GI4.1

A reevaluation of the atmospheric pressure dependence of secondary cosmic-ray neutrons in the context of Cosmic-Ray Neutron Sensing

Jannis Weimar, Paul Schattan, Martin Schrön, Markus Köhli, Rebecca Gugerli, Luca Stevanato, Stefan Achleitner, and Ulrich Schmidt

Secondary cosmic-ray neutrons may be effectively used as a proxy for environmental hydrogen content at the hectare scale. These neutrons are generated mostly in the upper layers of the atmosphere within particle showers induced by galactic cosmic rays and other secondary particles. Below 15 km altitude their intensity declines as primary cosmic rays become less abundant and the generated neutrons are attenuated by the atmospheric air. At the earth surface, the intensity of secondary cosmic-ray neutrons heavily depends on their attenuation within the atmosphere, i.e. the amount of air the neutrons and their precursors pass through. Local atmospheric pressure measurements present an effective means to account for the varying neutron attenuation potential of the atmospheric air column above the neutron sensor. Pressure variations possess the second largest impact on the above-ground epithermal neutron intensity. Thus, using epithermal neutrons to infer environmental hydrogen content requires precise knowledge on how to correct for atmospheric pressure changes.

We conducted several short-term field experiments in saturated environments and at different altitudes, i.e. different pressure states to observe the neutron intensity pressure relation over a wide range of pressure values. Moreover, we used long-term measurements above glaciers in order to monitor the local dependence of neutron intensities and pressure in a pressure range typically found in Cosmic-Ray Neutron Sensing. The results are presented along with a broad Monte Carlo simulation campaign using MCNP 6. In these simulations, primary cosmic rays are released above the earth atmosphere at different cut-off rigidities capturing the whole evolution of cosmic-ray neutrons from generation to attenuation and annihilation. The simulated and experimentally derived pressure relation of cosmic-ray neutrons is compared to those of similar studies and assessed in the light of an appropriate atmospheric pressure correction for Cosmic-Ray Neutron Sensing.

How to cite: Weimar, J., Schattan, P., Schrön, M., Köhli, M., Gugerli, R., Stevanato, L., Achleitner, S., and Schmidt, U.: A reevaluation of the atmospheric pressure dependence of secondary cosmic-ray neutrons in the context of Cosmic-Ray Neutron Sensing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10602, https://doi.org/10.5194/egusphere-egu21-10602, 2021.

EGU21-9215 | vPICO presentations | GI4.1

Moisture and humidity dependence of the above-ground cosmic-ray neutron intensity revised

Markus Köhli, Jannis Weimar, Benjamin Fersch, Roland Baatz, Martin Schrön, and Ulrich Schmidt

The novel method of Cosmic-ray neutron sensing (CRNS) allows non-invasive soil moisture measurements at a hectometer scaled footprint. Up to now, the conversion of soil moisture to a detectable neutron count rate relies mainly on the equation presented by Desilets et al. (2010). While in general a hyperbolic expression can be derived from theoretical considerations, their empiric parameterisation needs to be revised for two reasons. Firstly, a rigorous mathematical treatment reveals that the values of the four parameters are ambiguous because their values are not independent. We find a 3-parameter equation with unambiguous values of the parameters which is equivalent in any other respect to the 4-parameter equation. Secondly, high-resolution Monte-Carlo simulations revealed a systematic deviation of the count rate to soil moisture relation especially for extremely dry conditions as well as very humid conditions. That is a hint, that a smaller contribution to the intensity was forgotten or not adequately treated by the conventional approach. Investigating the above-ground neutron flux by a broadly based Monte-Carlo simulation campaign revealed a more detailed understanding of different contributions to this signal, especially targeting air humidity corrections. The packages MCNP and URANOS were used to derive a function able to describe the respective dependencies including the effect of different hydrogen pools and the detector-specific response function. The new relationship has been tested at three exemplary measurement sites and its remarkable performance allows for a promising prospect of more comprehensive data quality in the future.

How to cite: Köhli, M., Weimar, J., Fersch, B., Baatz, R., Schrön, M., and Schmidt, U.: Moisture and humidity dependence of the above-ground cosmic-ray neutron intensity revised, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9215, https://doi.org/10.5194/egusphere-egu21-9215, 2021.

EGU21-15240 | vPICO presentations | GI4.1

Penetration depth of Cosmic-ray neutron sensing for soil moisture under extreme vertical soil moisture gradients in measurements and modelling

Lena M. Scheiffele, Jannis Weimar, Daniel Rasche, Benjamin Fersch, and Sascha E. Oswald

Cosmic-Ray Neutron Sensing (CRNS) delivers an integral value of soil moisture over a radial footprint of 150 to 240 m and a penetration depth of 15 to 83 cm. The support volume, especially in the vertical extent, decreases with increasing soil moisture. As the sensor is most sensitive to upper soil layers and the signal contribution decreases with increasing depth, the vertical distribution of moisture influences the signal received by the neutron detector. Additional soil moisture measurements are required to estimate the penetration depth of the CRNS measurement. These may be provided by profile measurements of a soil moisture monitoring network equipped with buried electromagnetic sensors. Different horizontal and vertical weighting schemes exist to compare the integrated CRNS value to an integrated (weighted) average value from a sensor network by adjusting reference measurements to the spatial sensitivity of the sensor. The vertical weighting was developed based on hydrodynamic modelling of a soil column and a neutron transport model (MCNPx). Since then the development of the Ultra Rapid Adaptable Neutron-Only Simulation (URANOS) opened up the possibilities for more complex neutron simulations to understand and interpret the CRNS signal. Simulations confirmed the large influence of soil moisture on the penetration depth of the sensor for homogeneous vertical soil moisture distributions, rarely occurring in natural environments. While in recent years the influence of horizontal heterogeneities on the signal generation was the focus of several studies, the influence of vertical gradients achieved less attention.

Against this background, we evaluate data from a field site in southern Germany with clayey soils and influence of shallow groundwater, where a CRNS is operated in parallel to a soil moisture monitoring network. We observe a good match between the time series of CRNS derived soil moisture and the weighted soil moisture from the sensor network during infiltration events. Several times during summer, however, topsoil dries and a strong vertical gradient develops (0.20 m³ m-³ in 5 cm to 0.50 m³ m-³ in 20 cm depth). During these periods the weighted sensor network underestimates CRNS derived soil moisture by up to 0.25 m³ m-³. We hypothesize, that the estimation of the penetration depth does not hold for these extreme soil moisture gradients and that neutrons penetrate deeper into the soil and probe the wetter layers. The combination of observed neutron intensities as well as dedicated neutron transport simulations using the URANOS and MNCP6 model code will help to understand the site-specific signal behavior, explain differences observed in the data and lastly, gain information on the behavior of neutron intensities under vertically varying soil moisture contents.

How to cite: Scheiffele, L. M., Weimar, J., Rasche, D., Fersch, B., and Oswald, S. E.: Penetration depth of Cosmic-ray neutron sensing for soil moisture under extreme vertical soil moisture gradients in measurements and modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15240, https://doi.org/10.5194/egusphere-egu21-15240, 2021.

EGU21-12880 | vPICO presentations | GI4.1

Towards disentangling heterogeneous soil moisture patterns in Cosmic-Ray Neutron Sensor footprints

Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner

Cosmic-Ray Neutron Sensing (CRNS) has constantly advanced during the last decade as a modern technique for non-invasive soil moisture estimation at the field scale. Latest studies led to an improved understanding of the CRNS integration volume, weighting functions for reference soil moisture measurements and correction procedures of raw neutron counts.

It is common knowledge that soil moisture is highly variable in space. Nevertheless, the CRNS processing techniques currently assume that there is little structure to this variability within the 10 ha measurement footprint, i.e. no distinct difference in average moisture content between near and far field. In particular, with a single CRNS probe and the current knowledge it is not possible to separate different soil moisture conditions within the footprint.

Against this background, we investigated the effect of soil moisture patterns on the size of the measurement footprint and on the response of thermal and epithermal neutron intensities at a CRNS observation site in north-eastern Germany. The site exhibits pronounced differences in soil water content (and dynamics) in the near (0-60 m) and far field (> 60 m) of the neutron detector as the near field is dominated by mineral and the far field by organic peatland soils.

Neutron transport simulations with URANOS revealed that thermal neutrons have a smaller measurement footprint compared to epithermal neutrons. We show that thermal neutrons mainly originated from the mineral soils in the near field, while the larger epithermal footprint area also includes the peatland soils. However, the simulated thermal neutrons still seem to be influenced by peatland soil water variations.

With the support of the computer simulations, we were able to better interpret and identify patterns in the observed neutron count rates that represent different features of the heterogeneous field site. The study presents a new application for thermal detectors in concert with the standard epithermal detectors, and revealed opportunities for improving the calibration against soil moisture reference measurements in the near field. We illustrate the potential of CRNS for estimating soil moisture time series at heterogeneous study sites and for disentangling different soil moisture conditions within the measurement footprint.

How to cite: Rasche, D., Köhli, M., Schrön, M., Blume, T., and Güntner, A.: Towards disentangling heterogeneous soil moisture patterns in Cosmic-Ray Neutron Sensor footprints, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12880, https://doi.org/10.5194/egusphere-egu21-12880, 2021.

EGU21-15539 | vPICO presentations | GI4.1

Establishment of a network of soil moisture and cosmic ray neutron sensors for data assimilation and optimization of high-resolution, real-time predictions

Patrizia Ney, Alexandre Belleflamme, Maksim Iakunin, Niklas Wagner, Sebastian Bathiany, Susanne Pfeifer, Juliane El Zohbi, Diana Rechid, Klaus Görgen, and Heye Bogena

Climate change and its impacts at local scales, such as the more frequent occurrence of extreme weather events like droughts or floods, pose an increasing problem for agriculture. Our aim is to support farmers with soil condition and weather forecasting products that provide the basis for optimal adaptation to short-term weather variability and extremes as well as to long-term, regional climate change.

For this purpose, a prototypical monitoring and real-time forecasting system was established. The monitoring networks consist of a novel cosmic ray neutron sensor (Styx Neutronica), soil moisture and temperature sensors in four depths between 5 and 60 cm (SoilNet) and an all-in-one weather station (ATMOS-41, METER Environment) to measure the atmospheric conditions including air temperature, humidity, pressure, solar irradiance, wind speed and precipitation at 2 meter height above ground. The observation data are transmitted in real time to a cloud server via the cellular solution NBIoT (Narrow Band Internet of Things). After data post-processing the meteorological and hydrological parameters measured on site are directly assimilated into the fully coupled multi-physical numerical model system TSMP (Terrestrial Systems Modeling Platform, www.terrsysmp.org) at Forschungszentrum Jülich. ParFlow hydrologic model (www.parflow.org) is used in combination with the Community Land Model (CLM) to predict hourly, high-resolution (near plot level) information on soil moisture or other soil and meteorological parameters for the next 10 days. A special feature here is the prediction on the temporal development of plant-available water between 0-60cm depth for the sites of our monitoring network partners.

Observation data as well as the forecasting products are published in near real time on the digital product platform www.adapter-projekt.de. Users thus have direct access to relevant information that support them in planning agricultural management, e.g. irrigation and fertilization requirements, trafficability or workability.

How to cite: Ney, P., Belleflamme, A., Iakunin, M., Wagner, N., Bathiany, S., Pfeifer, S., El Zohbi, J., Rechid, D., Görgen, K., and Bogena, H.: Establishment of a network of soil moisture and cosmic ray neutron sensors for data assimilation and optimization of high-resolution, real-time predictions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15539, https://doi.org/10.5194/egusphere-egu21-15539, 2021.

GI4.2 – Lidar remote sensing of the atmosphere

Cirrus clouds have a wide global coverage providing considerable radiative forcing on the Earth’s climate system. Due to their inadequate representation in the global models, cirrus clouds can lead to large uncertainties in the climate prediction. To date, experimental and theoretical efforts have been widely carried out to study the anthropogenic effects such as aviation that may change the formation and microphysic and optical properties of cirrus clouds. Unfortunately, however, solid observational studies are still rare for us to draw any robust conclusion on anthropogenic influence on cirrus. During the COVID-19 pandemic the civil air traffic over Europe was significantly reduced. This unique situation provides a good opportunity to study the effect of air traffic on cirrus. In this work, based on the analysis of the CALIPSO measurements we present the changes of cirrus cloud properties and occurrence over Europe in March and April 2020 compared with the reference results in the previous years under normal conditions. The comparison shows that the cirrus cloud occurrence was reduced by about 30% with smaller cloud thicknesses found in April 2020. The average thickness of cirrus clouds was reduced to 1.18 km in April 2020 compared to a value of 1.40 km under normal conditions. In addition, the cirrus clouds measured in April 2020 possess smaller mean values of the particle linear depolarization ratio (PLDR) than the previous years at a high significance level, especially at colder temperatures (T<-50oC). The same exercises are extended to the observations over China and the United States. Besides the regional discrimination of cirrus clouds, we reach the final summary that cirrus clouds show significant changes in both March and April over Europe, no changes in both months over China, and significant changes only in April over the United States.

How to cite: Li, Q. and Groß, S.: Study of cirrus cloud properties and occurrence over Europe during the COVID-19 based on the lidar measurements of CALIPSO, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5533, https://doi.org/10.5194/egusphere-egu21-5533, 2021.

EGU21-11495 | vPICO presentations | GI4.2 | Highlight

Observations of California forest fire aerosol in Potenza (Italy) by the multi-wavelength Raman lidar MUSA

Benedetto De Rosa, Lucia Mona, Aldo Amodeo, and Donato Summa

Smoke aerosols play an important role in the atmospheric chemistry in terms of direct and indirect radiative forcing. Despite this, their properties in free troposphere and stratosphere are still insufficiently studied. When the smoke reaches these altitudes can be transported over transcontinental distances. During the transport of particles important transforming processes, such as coagulation, condensation, and gas-to-particle conversion occur, thus affecting environment and climate. The optical properties of smoke plumes have been usually analyzed by ground-based radiometers and satellite. However, these techniques cannot characterize accurately the high variability of the vertical structure of smoke aerosol. Raman lidar systems  are characterized by high temporal and vertical resolutions and have demonstrated a strong capability to study long-range transport, optical properties and vertical structure of forest fire smoke. 

In the 2020 California’s fire season was exceptionally catastrophic. 23rd October, the immense Sonoma fire, in few days scorched 31000 hectares. The deep convection lifted the smoke from these fires to great heights. After reaching the free troposphere and stratosphere, the forest fire smoke was transported over great distances and reached the south of Italy, as evinced by the map of biomass burning aerosol optical depth at 550 nm, provided by the Copernicus Atmosphere Monitoring Service (CAMS).

This work reports measurements carried out in the frame of the project CAMS21b by the Raman lidar system MUSA deployed at CNR-IMAA Atmospheric Observatory (CIAO) in Potenza. CAMS21b aims to design, test and set up the provisioning to CAMS of ACTRIS/EARLINET products in real time and near real time. 

In the case study of 26 October 2020, from to 10:13 to 13:45 UTC, measurements of particle backscattering coefficient at 355, 532 nm and 1064 and of the particle extinction coefficient at 355 nm and 532nm, show the presence of two distinct aerosol layers. A lower one extending from 6 km to 8 km and an upper one extending from 10 km to 12 km. The back-trajectory analysis reveals that the air masses originated over California, overpassed the Atlantic sea before reaching the measurement site.

The values of the particle depolarization ratio are similar to those found in literature for smoke aerosols. In the first layer, values lower than 0.05 are indicative for small and spherical smoke particles. The moderately increased depolarization ratios in the second layer indicate the possible presence of partly coated smoke particles.

More results from this measurement effort will be reported and discussed at the Conference.

How to cite: De Rosa, B., Mona, L., Amodeo, A., and Summa, D.: Observations of California forest fire aerosol in Potenza (Italy) by the multi-wavelength Raman lidar MUSA, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11495, https://doi.org/10.5194/egusphere-egu21-11495, 2021.

This abstract is dedicated to dual-wavelength polarization lidars (2β+2δ) and related particles backscattering Ångström exponents BAEp, as nowadays remotely evaluated by atmospheric multi-wavelength lidar instruments (Veselovskii et al., ACP, 2016). We here present two new lidar remote sensing developments applicable to every multi-wavelengths polarization lidars, as published in Miffre et al. (Rem. Sens. 2019, Opt. Lett. 2020).

As a first development, we investigate the size, shape and complex refractive index dependence of measured backscattering Ångström exponents (Miffre et al., Opt. Lett., 2020). If BAEp is generally considered as a particles size indicator, it actually depends on the particles size, shape (Mehri et al., Atm. Res., 2018) and complex refractive index as βp does. From a precise analysis of the polarization state of the backscattered radiation and of its wavelength dependence, in two components particle mixtures (p) = {s, ns} involving spherical (s) and nonspherical (ns)-particles, we could establish the relationship between BAEp, BAEs and BAEns. Then, by numerically simulating the two latter, we could discuss on the range of involved particle sizes and complex refractive indices.

The second development is related to the remote sensing observation of a new particle formation event with a dual-wavelength polarization lidar (Miffre et al. Rem. Sens. 2019). Where previous thoughts were that it is not feasible due to the small size of involved particles, we identified the requirements ensuring a (UV, VIS) polarization lidar to be sensitive to the subsequent particles growth following nucleation events promoted by nonspherical mineral dust particles. The presentation will explicit these optical requirements in terms of polarization and spectroscopy, as recently published in (Miffre et al., Rem. Sens., 2019).

The oral presentation will first present our dual-wavelength polarization lidar remote sensing instrument (2β+2δ), based on an unique laboratory Pi-polarimeter (Miffre et al., JQSRT, 2016). Special focus will be made on the (UV, VIS) calibration of the polarization lidar, as a decisive point for precise observations and interpretations. As an application case study, the oral presentation will then consider the lidar remote sensing observation of a nucleation event promoted by mineral dust. There, the involved particles sizes of freshly nucleated sulfuric acid particles and mineral dust will be retrieved by considering the above backscattering Ångström exponents analysis. As expected, the retrieved involved particles sizes reveal the underlying physical-chemistry of the nucleation process promoted by mineral dust (Dupart et al., PNAS, 2012). We believe this work may then interest a wide community of scientists.

Veselovskii, I., P. Goloub, D. N. Whiteman, A. Diallo, T. Ndiaye, A. Kolgotin, and O. Dubovik, ACP, 16(11), (2016).
Dupart, Y., A. Wiedensohler, H. Hermann, A. Miffre, P. Rairoux, B. D’Anna and C. George, PNAS, 109, 51, (2012).
Miffre, A., T. Mehri, M. Francis and P. Rairoux, JQSRT, 169, 79-90, (2016).
Mehri, T., P. Rairoux, T. Nousiainen, A. Miffre, Atm. Res. 203, 44-61 (2018).
Miffre A, D Cholleton, T. Mehri and P Rairoux, Rem. Sens., 11(15), 1761, (2019).
Miffre, A., D. Cholleton, P. Rairoux, Opt. Lett. 45, 5, 1084-1087, (2020).

How to cite: Miffre, A., Cholleton, D., and Rairoux, P.: Lidar remote sensing of atmospheric aerosols: investigation of involved particles sizes using Backscattering Ångström Exponents and application to the remote observation of new particle formation events , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12672, https://doi.org/10.5194/egusphere-egu21-12672, 2021.

EGU21-16279 | vPICO presentations | GI4.2

The ERATOSTHENES CoE in the PollyNET:First observations of the PollyXT-CYP at Limassol, Cyprus

Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Ronny Engelman, Johannes Bühl, Patric Seifert, Holger Baars, Zhenping Yin, Diofantos Hadjimitsis, and Albert Ansmann

A new generation PollyXT lidar system start on 27th of October 2020, continuous operation, at Limassol, Cyprus.

The lidar system will become a key component within the EXCELSIOR H2020 EU Teaming project coordinated by the Cyprus University of Technology. The mission of the EXCELSIOR project is to upgrade the Remote Sensing & Geo-Environment Lab, established within the Faculty of Engineering & Technology of the Cyprus University of Technology, into a sustainable, viable and autonomous Centre of Excellence, called the ERATOSTHENES Center of Excellence (ECoE).

The PollyXT-CYP will be hosted by the ERATOSTHENES CoE for its permanent operation aiming to link the Centre to ACTRIS and PollyNet. Its task will be to document the complex mixture of the different aerosol species and clouds over the Eastern Mediterranean.

The system is continuously running and since the first observations in Limassol, PollyXT-CYP demostrates the complex aerosol conditions over Cyprus. For eaxample, between the 27th of October to the 1st of November 2020, the lidar observed smoke plumes from the extreme wildfires on the west coast of the U.S. The smoke travelled over the Atlantic Ocean and triggered the heterogenous ice formation at the height of 10km. Saharan dust was also detected between 2-5km and liquid clouds were formed on the top of the dust layer.

In this study we will present selected cases of unique atmospheric structures from the first months of continuous operation over Cyprus as well as optical and geometrical properties of the aerosol layers.

The PollyXT-CYP will be a key research infrastructure of the Cyprus Atmospheric Remote Sensing Observatory (CARO). CARO will consist of two high-tech containers housing the PollyXT-CYP lidar and state-of-the art doppler lidar, cloud radar and radiometric equipment which will be used to measure the air quality, the dust transport, and the cloud properties over Cyprus. The CARO is planned to become National Facility of the Republic of Cyprus for Aerosol and Cloud Remote Sensing Observations.

Acknowledgements

The authors acknowledge the EXCELSIOR project that received funding from the European Union [H2020-WIDESPREAD-04-2017:Teaming Phase2] project under grant agreement no. 857510, and from the Republic of Cyprus. CUT team acknowledge the Research and Innovation Foundation of Cyprus for the financial support through the SIROCCO (EXCELLENCE/1216/0217) and AQ-SERVE (INTERGRATED/0916/0016) projects. The PollyXT-CYP was funded by the German Federal Ministry of Education and Research (BMBF) via the PoLiCyTa project.

How to cite: Mamouri, R.-E., Nisantzi, A., Engelman, R., Bühl, J., Seifert, P., Baars, H., Yin, Z., Hadjimitsis, D., and Ansmann, A.: The ERATOSTHENES CoE in the PollyNET:First observations of the PollyXT-CYP at Limassol, Cyprus, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16279, https://doi.org/10.5194/egusphere-egu21-16279, 2021.

EGU21-15153 | vPICO presentations | GI4.2

Dual pure-rotational Raman channel design and implementation in a multiwavelength lidar system for the monitoring of aerosol optical properties.

José-Alex Zenteno-Hernández, Adolfo Comerón-Tejero, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Daniel-Camilo Fortunato-dos-Santos-Oliveira, and Michaël Sicard

Pure-rotational Raman (PRR) scattering has proven to be an efficient technique for the determination of atmospheric aerosol optical properties for lidar applications. We present the implementation of a UV-PRR and the design of a VIS-PRR in the EARLINET/UPC multi-wavelength lidar system (Barcelona, Spain). State-of-the-art computations of N2 and O2 differential backscatter cross-sections weighted by the optical losses inside the optical separation unit of the system allow for the theoretical estimation of the expected signal-to-noise ratios (SNR) in both UV and VIS channels. By means of customized optical interference filters UV-PRR signals from atmospheric N2 and O2 were detected and compared to the classical vibro-rotational Raman signals. UV-PRR detected signals have shown to possess high SNR and relative uncertainty levels lower than a tolerable 15% for daytime and nighttime measurements. The theoretical analysis of the VIS-PRR channel augurs improvements similar to those observed with the UV-PRR channel.

How to cite: Zenteno-Hernández, J.-A., Comerón-Tejero, A., Rodríguez-Gómez, A., Muñoz-Porcar, C., Fortunato-dos-Santos-Oliveira, D.-C., and Sicard, M.: Dual pure-rotational Raman channel design and implementation in a multiwavelength lidar system for the monitoring of aerosol optical properties., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15153, https://doi.org/10.5194/egusphere-egu21-15153, 2021.

EGU21-11379 | vPICO presentations | GI4.2

Aerosol classification using sun photometer and lidar data within a machine learning algorithm-a possible nowcasting application

Joelle Buxmann, Martin Osborne, Mike Protts, and Debbie O'Sullivan

The Met Office operates a ground based operational network of nine polarisation Raman lidars (aerosol profiling instruments) and sun photometers (column integrated information). An aerosol classification scheme using supervised machine learning has been developed. The concept of Mahalanobis (~normalized) distance to identify the aerosol type  from individual Aerosol Robotic Network (AERONET) measurements including Extinction Angstrom Exponent, Absorption Angstrom Exponent, Single Scattering Albedo and Index of refraction is used for a subset of AERONET stations around the globe of known main aerosol types (training set). The aerosol types  include maritime, urban industrial, biomass burning and dust. We build a predictive model from this training set using K nearest neighbour machine learning algorithms. The relation of particle polarisation ratio and lidar ratio from the Raman lidar is used as a sanity check.  We apply the model to 3- 4 years of AERONET and profiling data across the UK, with instruments evenly distributed across the country, from Camborne in Cornwall to Lerwick in the Shetland Islands. We are showing more detailed data of a dust event in May 2016, dust/biomass burning aerosol mix from October 2017 (hurricane Ophelia) and more recent aerosol transported from the Canadian wild fires in September 2020. AERONET Level 2.0  data is compared to level 1.5 in order to determine the implications for the aerosol classification. Level 1.5 data are cloud-screened, but not quality assured and may not have the final calibration applied. Level 2.0  data have pre- and post-field calibration applied, are cloud-screened, and quality-assured data. As level 2.0 data is usually only available after 1-2 years (after a new calibration has been performed), it is important to understand the  usefulness of more readily available level 1.5 (cloud screened) data.

The aim is to build a real time aerosol classification application that can be used in Nowcasting.

How to cite: Buxmann, J., Osborne, M., Protts, M., and O'Sullivan, D.: Aerosol classification using sun photometer and lidar data within a machine learning algorithm-a possible nowcasting application, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11379, https://doi.org/10.5194/egusphere-egu21-11379, 2021.

EGU21-5123 | vPICO presentations | GI4.2

The use of ground-based Doppler lidar in Iceland: turbulence measurement, dust detection, and the application of machine learning

Shu Yang, Guðrún Nína Petersen, Sibylle von Löwis, and David C. Finger

Lidar systems have been used widely to measure wind profiles and atmospheric aerosols. The scanning Doppler lidars operated by the Icelandic Meteorological Office (IMO) can provide continuous measurements of the wind velocity and direction based on the Doppler effect from the emitted signals, as well as the backscatter coefficient and depolarization ratio for retrieving aerosol properties. In this project, we investigate the use of Doppler lidar in Iceland, especially for enhancing aviation safety. By analyzing the data three main tasks have been tackled: i) atmospheric turbulence measurements; ii) airborne aerosol detection; iii) real-time lidar signal classification with machine learning algorithms. An algorithm has been developed based on Kolmogorov theory to retrieve eddy dissipation ratio, as an indicator of turbulence intensity, from lidar wind measurements, and the method has been tested on two cases in 2017. With a combination of ceilometer, sun-photometer and other instruments, the Doppler lidar shows the ability to detect aerosols, including dust and volcanic ash in Iceland. With both supervised and unsupervised machine learning algorithms, two models have been developed to identify the noise signal and classify the lidar measurements, which could provide a real-time lidar signal classification for the end-users. The results indicate that the Doppler lidar may significantly improve aviation safety and complement meteorological measurements by detecting atmospheric turbulence or volcanic ash clouds in Iceland.

How to cite: Yang, S., Petersen, G. N., von Löwis, S., and Finger, D. C.: The use of ground-based Doppler lidar in Iceland: turbulence measurement, dust detection, and the application of machine learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5123, https://doi.org/10.5194/egusphere-egu21-5123, 2021.

EGU21-9297 | vPICO presentations | GI4.2 | Highlight

Combined use of Raman Lidar and DIAL measurements and MESO-NH model simulations for the characterization of complex water vapour field structures, their genesis and their role in the activation of Mesoscale Convective Systems

Paolo Di Girolamo, Marie-Noelle Bouin, Cyrille Flamant, Donato Summa, Benedetto De Rosa, and Noemi Franco

As part of the Cevennes-Vivarais site, the University of Basilicata Raman lidar system BASIL (Di Girolamo et al., 2009, 2012, 2916) was deployed in Candillargues (Cévennes-Vivarais Southern France Lat: 43°37′ N; Long: 04°04′ E; Elev: 1 m) and operated throughout the duration of HyMeX-SOP 1 (September-November 2012), providing high-resolution and accurate measurements, both in daytime and night-time, of atmospheric temperature, water vapour mixing ratio and particle backscattering and extinction coefficient at three wavelengths.

Measurements carried out by BASIL on 28 September 2012 reveal a water vapour field characterized by a quite complex vertical structure. Reported measurements were run in the time interval between two consecutive heavy precipitation events, from 15:30 UTC on 28 September to 03:30 UTC on 29 September 2012. Throughout most of this observation period, lidar measurements reveal the presence of four distinct humidity layers.

The present research effort aims at assessing the origin and transport path of the different humidity filaments observed by BASIL on this day. The analysis approach relies on the comparison between Raman lidar measurements and MESO-NH and NOAA-HYSPLIT model simulations. Back-trajectory analyses from MESO-NH reveal that air masses ending in Candillargues at different altitudes levels are coming and are originated from different geographical regions.

The four distinct humidity layers observed by BASIL are also identified in the water vapour mixing ratio profiles collected by the air-borne DIAL LEANDRE 2 on-board of the French research aircraft ATR42. The exact correspondence, in terms of back-trajectories computation and water budget, between the humidity layers observed by BASIL and those identified in LEANDRE2 measurements has been verified based on a dedicated simulation effort.

In this research work we also try to identify the presence of dry layers and cold pools and assess their role in the genesis of the mesoscale convective systems and the heavy precipitation events observed on 29 September 2012 based on the combined use of water vapour mixing ratio and temperature profile measurements from BASIL and water vapour mixing ratio profile measurements from LEANDRE 2, again supported by MESO-NH simulations.

How to cite: Di Girolamo, P., Bouin, M.-N., Flamant, C., Summa, D., De Rosa, B., and Franco, N.: Combined use of Raman Lidar and DIAL measurements and MESO-NH model simulations for the characterization of complex water vapour field structures, their genesis and their role in the activation of Mesoscale Convective Systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9297, https://doi.org/10.5194/egusphere-egu21-9297, 2021.

EGU21-10701 | vPICO presentations | GI4.2

Characterization of the time evolution of the PBL structure and dry-layers based on the us of Raman Lidar measurements collected during HYMEX-SOP1

Donato Summa, Paolo Di Girolamo, Noemi Franco, Benedetto De Rosa, Fabio Madonna, and Fabrizio Marra

The exchange processes between the Earth and the atmosphere play a crucial role in the development of the Planetary Boundary Layer (PBL). Different remote sensing techniques can provide PBL measurement with different spatial and temporal resolutions. Vertical profiles of atmospheric thermodynamic variables, i.e.  temperature and humidity, or wind speed, clouds and aerosols can be used as proxy to retrieve PBL height from active and passive remote sensing instruments. The University of BASILicata ground-based Raman Lidar system (BASIL) was deployed in the North-Western Mediterranean basin in the Cévennes-Vivarais site (Candillargues, Southern France, Lat: 43°37' N, Long: 4° 4' E, Elev: 1 m) and operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 days and 19 intensive observation periods (IOPs). BASIL is capable to provide high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. This measurement capability makes BASIL a key instrument for the characterization of the water vapour concentration. BASIL makes use of a Nd:YAG laser source capable of emitting pulses at 355, 532 and 1064 nm, with a single pulse energy at 355nm of 500 mJ [1] .In the presented research effort, water vapour concentration was  computed and used to determine the PBL height. [2]. A dynamic index  included in the European Centre for Medium-range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (CAPE, Friction velocity, etc.) is also considered and compared with BASIL resutls. ERA5 provides hourly data on regular latitude-longitude grids at 0.25° x 0.25° resolution at 37 pressure levels [3]. ERA5 is publicly available through the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu).  In order to properly carry out the comparison, the nearest ERA5 grid point to the lidar site has been considered assuming the representativeness uncertainty due to the use of the nearest grid-point comparable with other methods (e.g. kriging, bilinear interpolation, etc.). More results from this  measurement  effort will  be reported and discussed at the Conference.

Reference

[1] Di Girolamo, Paolo, De Rosa, Benedetto, Flamant, Cyrille, Summa, Donato, Bousquet, Olivier, Chazette, Patrick, Totems, Julien, Cacciani, Marco. Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. BULLETIN OF ATMOSPHERIC SCIENCE AND TECHNOLOGY, ISSN: 2662-1495, doi: 10.1007/s42865-020-00008-3

[2] D. Summa, P. Di Girolamo, D. Stelitano, and M. Cacciani. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches  Atmos. Meas. Tech., 6, 3515–3525, 2013 www.atmos-meas-tech.net/6/3515/2013/doi:10.5194/amt-6-3515-2013

[3] Hersbach et al. The ERA5 global reanalysis Hans  https://doi.org/10.1002/qj.3803[3]

How to cite: Summa, D., Di Girolamo, P., Franco, N., De Rosa, B., Madonna, F., and Marra, F.: Characterization of the time evolution of the PBL structure and dry-layers based on the us of Raman Lidar measurements collected during HYMEX-SOP1, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10701, https://doi.org/10.5194/egusphere-egu21-10701, 2021.

EGU21-12925 | vPICO presentations | GI4.2 | Highlight

Scanning 10-W Water Vapor DIAL for the Investigation of Atmospheric Turbulence and Land-Atmosphere Feedback

Andreas Behrendt, Florian Spaeth, and Volker Wulfmeyer

We will present recent measurements made with the water vapor differential absorption lidar (DIAL) of University of Hohenheim (UHOH). This scanning system has been developed in recent years for the investigation of atmospheric turbulence and land-atmosphere feedback processes.

The lidar is housed in a mobile trailer and participated in recent years in a number of national and international field campaigns. We will present examples of vertical pointing and scanning measurements, especially close to the canopy. The water vapor gradients in the surface layer are related to the latent heat flux. Thus, with such low-elevation scans, the latent heat flux distribution over different surface characteristics can be monitored, which is important to verify and improve both numerical weather forecast models and climate models.

The transmitter of the UHOH DIAL consists of a diode-pumped Nd:YAG laser which pumps a Ti:sapphire laser. The output power of this laser is up to 10 W. Two injection seeders are used to switch pulse-to-pulse between the online and offline signals. These signals are then either directly sent into the atmosphere or coupled into a fiber and guided to a transmitting telescope which is attached to the scanner unit. The receiving telescope has a primary mirror with a dimeter of 80 cm. The backscatter signals are recorded shot to shot and are typically averaged over 0.1 to 1 s.

How to cite: Behrendt, A., Spaeth, F., and Wulfmeyer, V.: Scanning 10-W Water Vapor DIAL for the Investigation of Atmospheric Turbulence and Land-Atmosphere Feedback, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12925, https://doi.org/10.5194/egusphere-egu21-12925, 2021.

EGU21-8792 | vPICO presentations | GI4.2

Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability

Jonas Hamperl, Myriam Raybaut, Jean-Baptiste Dherbecourt, Patrick Chazette, Julien Totems, and Cyrille Flamant

Improved understanding of the variability underlying the distribution of stable water isotopologues in the troposphere, using both observations and modelling, has proven to be invaluable to study processes related to the hydrological cycle on a local as well as global scale. To date though, existing observation means (CRDS from ground-based or airborne platforms, passive remote sensing from space) only provide a partial picture of the complexity of the process at play due to their limited spatial or temporal coverage. On the other hand, laser active remote sensing, and in particular differential absorption lidars (DIAL) can deliver reliable, continuous, highly resolved (150 m, 10 min) profiles of H216O and HD16O in the lower troposphere, thereby providing observational insights into small scale processes such as evapotranspiration above continental surfaces and mixing in the planetary boundary layer.

Such a lidar system is currently in development (WaVIL project funded by ANR) that will operate at 1.98 µm where water isotopologues exhibit close but distinct absorption features, sensitive photodetectors are commercially available, and where pulsed laser emission over 10 mJ can be achieved using for instance parametric conversion.

In order to assess the expected instrument performances and to evaluate the potential of a ground-based system for simultaneous measurement of H216O and HD16O, we performed an error budget based on an end-to-end simulator. Lidar backscatter signals were simulated for different instrument-specific and atmospheric parameters. On the instrument side, calculations were performed for a commercial InGaAs PIN photodiode and for a state of the art low-noise HgCdTe avalanche photodiode. The sensitivity to environmental factors was investigated exemplarily for mid-latitude, arctic, and tropical environments where both vertical water vapor and aerosol variability were accounted for. Vertical profiles of aerosol extinction and backscatter coefficients were derived from the AERONET database (https://aeronet.gsfc.nasa.gov/) and extrapolated to the 2 µm spectral region, taking statistical seasonality into account. Performance simulations have been also conducted using vertical profiles derived from a field campaign where water vapor isotopologue concentrations and aerosol extinction were measured. We will outline the majority biases for such a lidar system and how statistical errors can be mitigated in a view of a forthcoming airborne DIAL instrument.

How to cite: Hamperl, J., Raybaut, M., Dherbecourt, J.-B., Chazette, P., Totems, J., and Flamant, C.: Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8792, https://doi.org/10.5194/egusphere-egu21-8792, 2021.

EGU21-12283 | vPICO presentations | GI4.2

Compact Operational Tropospheric Water Vapor and Temperature Raman Lidar  with Turbulence Resolution

Diego Lange, Andreas Behrendt, and Volker Wulfmeyer

We present the Atmospheric Raman Temperature and Humidity Sounder (ARTHUS), a new tool for observations in the atmospheric boundary layer and lower free troposphere during daytime and nighttime with very high resolution up to the turbulence scale, high accuracy and precision, and very short latency and illustrate its performance with new measurements examples. ARTHUS measurements resolve the strength of the inversion layer at the planetary boundary layer top, elevated lids in the free troposphere, and turbulent fluctuations in water vapor and temperature, simultaneously (Lange et al., 2019). In addition to thermodynamic variables, ARTHUS provides also independent profiles of the particle backscatter coefficient and the particle extinction coefficient from the rotational Raman signals at 355 nm with much better resolution than a conventional vibrational Raman lidar.

The observation of atmospheric moisture and temperature profiles is essential for the understanding and prediction of earth system processes. These are fundamental components of the global and regional energy and water cycles, they determine the radiative transfer through the atmosphere, and are critical for the cloud formation and precipitation (Wulfmeyer, 2015). Also, as confirmed by case studies, the assimilation of high-quality, lower tropospheric WV and T profiles results in a considerable improvement of the skill of weather forecast models particularly with respect to extreme events.

Very stable and reliable performance was demonstrated during more than 3000 hours of operation experiencing a huge variety of weather conditions, including seaborne operation during the EUREC4A campaign (Bony et al., 2017, Stevens et al., 2020). ARTHUS provides temperature profiles with resolutions of 10-60 s and 7.5-100 m vertically in the lower free troposphere. During daytime, the statistical uncertainty of the WV mixing ratio is <2 % in the lower troposphere for resolutions of 5 minutes and 100 m. Temperature statistical uncertainty is <0.5 K even up to the middle troposphere. Consequently, ARTHUS fulfills the stringent WMO breakthrough requirements on nowcasting and very short-range forecasting (see www. wmo‐sat.info/oscar/observingrequirements).

This performance serves very well the next generation of very fast rapid-update-cycle data assimilation systems. Ground-based stations and networks can be set up or extended for climate monitoring, verification of weather, climate and earth system models, data assimilation for improving weather forecasts.

References:

Bony et al., 2017, https://doi.org/10.1007/s10712-017-9428-0

Lange et al., 2019, https://doi.org/10.1029/2019GL085774

Stevens et al. 2020, submitted to ESSD

Wulfmeyer et al., 2015, doi:10.1002/2014RG000476

How to cite: Lange, D., Behrendt, A., and Wulfmeyer, V.: Compact Operational Tropospheric Water Vapor and Temperature Raman Lidar  with Turbulence Resolution, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12283, https://doi.org/10.5194/egusphere-egu21-12283, 2021.

EGU21-8242 | vPICO presentations | GI4.2 | Highlight

Significant sources of bias in temperature measurements by rotational Raman lidar, and mitigation in the French mobile system WALI

Julien Totems, Patrick Chazette, and Alexandre Baron

Lidars using rotational Raman backscattering to monitor the temperature profile in the low troposphere offer enticing perspectives for applications in weather prediction, as well as studies of aerosol and water vapor interactions, when deriving simultaneously relative humidity and aerosol optical properties. We describe the technical choices made during the design and calibration of the new temperature Raman channels for the mobile Weather and Aerosol Lidar (WALI), going over the sources of bias and uncertainty stemming from the different optical elements of the instrument. The impacts of interference filters and non-common-path differences between Raman channels, and their mitigation, are particularly investigated; without countermeasures, we find the theoretical magnitude of the highlighted biases can be much larger than the targeted absolute accuracy of 1°C defined by the World Meteorological Organization (WMO). Effective measurement errors are quantified using numerical end-to-end simulations and numerous radiosoundings launched close to the lidar location. Our aim is to fully discuss design choices and sources of bias which have been little reported in the literature. An application of the WALI measurements during heat wave conditions in the summer of 2020 will also be presented, and compared to ERA5 weather model reanalyses.

How to cite: Totems, J., Chazette, P., and Baron, A.: Significant sources of bias in temperature measurements by rotational Raman lidar, and mitigation in the French mobile system WALI, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8242, https://doi.org/10.5194/egusphere-egu21-8242, 2021.

EGU21-9467 | vPICO presentations | GI4.2 | Highlight

Investigation of the impact of thermodynamic profiles of ground based lidar systems on short-range forecast skill by means of ETKF-hybrid 3DVAR data assimilation

Rohith Thundathil, Thomas Schwitalla, Andreas Behrendt, Diego Lange, Florian Späth, Volker Wulfmeyer, Daniel Leuenberger, Alexander Haefele, Marco Arpagaus, and Martucci Giovanni

Ground based active remote-sensing instruments have proved its potential through its high quality observations of thermodynamic profiles. In this study, thermodynamic profiles obtained from the temperature Raman lidar (TRL) and the water-vapour differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) are assimilated into the Weather Research and Forecasting model data assimilation (WRFDA) system through a new forward operator for absolute humidity and mixing ratio developed in-house.
Thermodynamic DA was performed either with the deterministic 3-dimensional variational (3DVAR) DA system or with the hybrid 3DVAR-Ensemble Transform Kalman Filter (ETKF) approach. We used data of the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2 project Observation Prototype Experiment (HOPE). The WRF model was configured for a central European domain at a convection permitting resolution of 2.5 km spatial grid increment and 100 levels in the vertical with fine resolution in the planetary boundary layer (PBL). The assimilation experiments were conducted in a rapid update cycle (RUC) mode with an hourly update frequency. The hybrid 3DVAR-ETKF DA system was incorporated with an adaptive inflation scheme using a set of 10 ensemble members each with the same configuration as the previous experiments for the 3DVAR.  We will present the results of three DA experiments. In the first experiment (CONV_DA), or the control run, only assimilation of the conventional observations was carried out with 3DVAR DA. The second experiment (QT_DA) was a 3DVAR DA assimilating WVMR and temperature together in addition to the conventional dataset. The third experiment (QT_HYB_DA) assimilated WVMR and temperature together in addition to the conventional dataset with Hybrid DA.
The WVMR RMSE with respect to the WVDIAL reduced by 41 % in 3DVAR and still reduced to 51 % in QT_HYB_DA compared to CONV_DA. Although temperature RMSE with respect to TRL increased by 5 % in QT_DA, RMSE significantly reduced to 47 % in QT_HYB_DA compared to CONV_DA. The correlation between the temperature and WVMR variables in the background error covariance matrix of the 3DVAR, which is static and not flow-dependent, limited the improvement in temperature. Flow-dependency in Hybrid DA improved the error correlations.
We also present results of a collaborative effort with the Raman lidar for meteorological observation (RALMO) from the MeteoSwiss and the Atmospheric Raman Temperature and Humidity Sounder (ARTHUS) using even finer model resolution. The initial results of the new study will also be presented here.

How to cite: Thundathil, R., Schwitalla, T., Behrendt, A., Lange, D., Späth, F., Wulfmeyer, V., Leuenberger, D., Haefele, A., Arpagaus, M., and Giovanni, M.: Investigation of the impact of thermodynamic profiles of ground based lidar systems on short-range forecast skill by means of ETKF-hybrid 3DVAR data assimilation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9467, https://doi.org/10.5194/egusphere-egu21-9467, 2021.

EGU21-8944 | vPICO presentations | GI4.2

A semi-automated procedure for the alignment and the overlap function estimation of stepper motor controlled lidars

Marco Di Paolantonio, Gian Luigi Liberti, and Davide Dionisi

Lidar observations are fundamental to quantitatively study the vertical distribution of atmospheric aerosols. In particular, some applications (e.g. air quality monitoring) need the description of the particulate from the ground up to the top of the atmospheric boundary layer. To correctly interpret the received lidar signal in the lowermost range, where the overlap between the telescope field of view and the laser beam is incomplete, an optimized alignment and the knowledge of the overlap function are required.

The multi-wavelength multi-telescope RMR “9-eyes” system in Rome Tor Vergata [1] has the capability to move, through electronically controlled stepper motors, the orientation of the laser beams and the 3D position of the diaphragm of the receiving optical system around the focal point of the telescopes. Taking advantage of these instrumental characteristics, a set of semi-automated tools (the mapping procedure) was developed for the optimization of the telescope/beam alignment and the estimation of the overlap function.

In this study the results of the mapping applied to a single combination of telescope-laser beam are reported. To demonstrate the effectiveness of the procedure the results were verified by comparing the whole profile of the signal and the outcome of the telecover test [2] before and after the alignment. The overlap function was estimated and the height of full overlap compared against the one obtained from a geometric model.

The proposed method gives the possibility to characterize the signal profile as a function of the position of the receiving optical system in the 3D space around the focal point. This characterization improved the accuracy of the system alignment protocol. The mapping applied to the laser beam can be used to align systems with fixed receiving geometry and, as presented, to estimate the overlap function.

 

[1] F. Congeduti, F. Marenco, P. Baldetti, and E. Vincenti, ‘The multiple-mirror lidar “9-eyes”’, J. Opt. Pure Appl. Opt., vol. 1, no. 2, pp. 185–191, Jan. 1999, doi: 10.1088/1464-4258/1/2/012.

[2] V. Freudenthaler, H. Linné, A. Chaikovski, D. Rabus, and S. Groß, ‘EARLINET lidar quality assurance tools’, Atmospheric Meas. Tech. Discuss., pp. 1–35, Jan. 2018, doi: https://doi.org/10.5194/amt-2017-395.

How to cite: Di Paolantonio, M., Liberti, G. L., and Dionisi, D.: A semi-automated procedure for the alignment and the overlap function estimation of stepper motor controlled lidars, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8944, https://doi.org/10.5194/egusphere-egu21-8944, 2021.

EGU21-14151 | vPICO presentations | GI4.2

Femtosecond Laser Pulses Propagation in the inhomogeneous Gas Media

Katsiaryna Cidorkina, Natalia Dorozhko, Alexander Svetashev, and Leonid Turishev

The present study is devoted to the numerical simulation and analysis of the high-intensity femtosecond LIDAR pulses propagation in the air with a special emphasis on the stimulated Raman scattering (SRS) and the stimulated Raman self-mode (SRSM) processes in optically inhomogeneous gas media.

Numerical models have been developed on the basis of a semi-classical energetic and wave theory, including a set of wave and material equations which allow simulating the gas mixtures, regular or stochastic density inhomogeneity and aerosol particles impact on the femtosecond laser pulse shape and spectrum.

The propagation of laser pulses (λ = 400, 800 nm; τ = 1 ÷ 30 fs) with positive or negative chirp was numerically investigated in pure gases: H2, N2, O2 and their typical atmospherically mixtures.   

The media density or composition (aerosol) inhomogeneity was simulated depending on the ratio between the path length (D), the size of the inhomogeneity (l) and the mean wavelength of pulse spectrum (λ). For D >> l the inhomogeneity impact was considered as a stochastic, while in the case of D < l the inhomogeneity was simulated having a constant gradient along the pulse track.      

For vertical sounding tracks the real atmospheric air density profiles were used.

Aerosol density and size fluctuations were estimated as 5÷30% to the mean value.

In model testing regime the SRS and SRMS modes of the femtosecond laser pulse propagation for tracks of up to 100 m have been calculated for investigating the dynamics of the pulse shape, spectrum and energy change under different initial conditions.

The SRMS mode for 10, 14 and 20 fs laser pulses with energy areas of 3π, 2π, π, π/100 was numerically investigated in different gas and aerosol compositions for tracks of βz = 0.5 ÷ 20, where z is the space coordinate and β – the inverse value of Raman self-scattering defined by the media. 

The results obtained show that the dynamics of pulse propagation in SRMS mode is nonlinear in the pulse shape and spectrum. Moreover, the SRMS mode having a resonance character for 2π-pulses may be misaligned as well as modulated by the inhomogeneity of the medium.

How to cite: Cidorkina, K., Dorozhko, N., Svetashev, A., and Turishev, L.: Femtosecond Laser Pulses Propagation in the inhomogeneous Gas Media, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14151, https://doi.org/10.5194/egusphere-egu21-14151, 2021.

EGU21-7500 | vPICO presentations | GI4.2

Multichannel FMCW lidar for imaging velocimetry and range finding

Iskander Gazizov, Sergei Zenevich, Oleg Benderov, and Alexander Rodin

We present a concept of near-infrared FMCW lidar for real-time low-resolution imaging velocimetry and range finding of moving objects. One of the problems this instrument to challenge is the detection of unmanned aerial vehicles in an urban environment. The use of a lidar-based system is either in the detection of the object itself or of the wingtip vortices generated by rotating blades. A significant drawback of typical wind lidar is the long measurement time associated with the need to scan the area of ​​interest, therefore we propose an 8x2 matrix of receivers to reduce the total scan time. The main feature of the instrument is the use of commercially available components, including DFB lasers and single-mode fiber for the optical circuit, which can significantly reduce the cost of the device, as well as development time. Data processing and laser control are handled by the FPGA. The characteristics of the multichannel lidar are estimated based on ongoing testing of the single-channel prototype.

Acknowledgements

This work has been supported by the Russian Foundation for Basic Research grants #19-29-06104

How to cite: Gazizov, I., Zenevich, S., Benderov, O., and Rodin, A.: Multichannel FMCW lidar for imaging velocimetry and range finding, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7500, https://doi.org/10.5194/egusphere-egu21-7500, 2021.

EGU21-10789 | vPICO presentations | GI4.2

End-to-end Simulator of a space-borne Raman Lidar for the thermodynamic profiling of the atmosphere

Noemi Franco, Paolo Di Girolamo, Donato Summa, Benedetto De Rosa, Andreas Behrendt, and Adolfo Comerón

An end-to-end model has been developed in order to simulate the expected performance of a space-borne Raman Lidar, with a specific focus on the Atmospheric Thermodynamics LidAr in Space – ATLAS proposed as a “mission concept” to the ESA in the frame of the “Earth Explorer-11 Mission Ideas” Call. The numerical model includes a forward module, which simulates the lidar signals with their statistical uncertainty, and a retrieval module able to provide vertical profiles of atmospheric water vapour mixing ratio and temperature based on the analyses of the simulated signals. Specifically, the forward module simulates the interaction mechanisms of laser radiation with the atmospheric constituents and the behavior of all the devices present in the experimental system(telescope, optical reflecting and transmitting components, avalanche photodiodes, ACCDs). An analytical expression of the lidar equation for the water vapour and molecular nitrogen roto-vibrational Raman signals and the pure rotational Raman signals from molecular oxygen and nitrogen is used. The analytically computed signals are perturbed by simulating their shot-noise through Poisson statistics. Perturbed signals thus take into account the fluctuations in the number of photons reaching the detector over a certain time interval. The simulator also provides an estimation of the background due to the solar contribution. Daylight background includes three distinct terms: a cloud-free atmospheric contribution, a surface contribution and a cloud contribution[1]. Background is calculated as a function of the solar zenith angle. In order to better estimatethe background contribution, an integration on slant path is performed instead of a classical parallel-planes approximation. The proposed numerical model allows to better simulate solar background for high solar zenith angles, even higher than 90 degrees. Signals simulated through the forward model are then fed into the retrieval module. A background subtraction scheme is used to remove the solar contribution and a vertical averaging is performed to smooth the signals. Based on the application of the roto-vibrational Raman lidar technique, the vertical profile of atmospheric water vapour mixing ratio is obtained from the power ratio of the water vapour to a reference signal, such as molecular nitrogen roto-vibrational Raman signal or an alternative temperature-independent reference signal. A vertical profile of temperature is then obtained through the ratio of high-to-low quantum number rotational Raman signals by the application of the pure rotational Raman lidar technique. Both atmospheric water vapour mixing ratio and temperature measurements require the determination of calibration constants, which can be obtained from the comparison with simultaneous and co-located measurements from a different sensor [2]. The simulator finally provides statistical (RMS) and systematic (bias) uncertainties. Estimates are provided in terms of percentage and absolute (g/kg) uncertainty for water vapour mixing ratio measurements and in terms of absolute uncertainty (K) for temperature measurements.

 References

1 - P.Di Girolamo et al., "Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations"Appl.Opt. 45, 2474-2494(2006)

2 - P.Di Girolamo et al., "Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: performance simulations,"Opt.Express 26, 8125-8161(2018)

How to cite: Franco, N., Di Girolamo, P., Summa, D., De Rosa, B., Behrendt, A., and Comerón, A.: End-to-end Simulator of a space-borne Raman Lidar for the thermodynamic profiling of the atmosphere, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10789, https://doi.org/10.5194/egusphere-egu21-10789, 2021.

GI5.1 – Underground research

EGU21-7730 | vPICO presentations | GI5.1 | Highlight

European Underground Laboratories Association EUL – An International Partner for Underground Research Opportunities

Helmut Mischo, Krzysztof Fuławka, and Jari Joutsenvaara

Underground experimental sites and laboratories are rare and offer unique opportunities for research, development, innovation, education and training, among other usages due to their special boundary conditions. Each underground facility is highly unique in its geological and geophysical characteristics. These sites can be either dedicated infrastructures built for specific usage or mines and parts of mines freed from underground extraction. Since they are usually isolated from environmental influences and, conversely, shield experiments as far as possible from the environment, they offer unique research conditions and possibilities compared to surface laboratories.

However, the sustainable operation of such underground experimental sites is not an easy task. Hence, to foster and accommodate the use, scientific collaboration and interdisciplinary scientific research among European underground research facilities, a specialized association has been set up by a number of European partners under the name European Underground Laboratories Association EUL.

This association defines its purpose by forming a network between the underground laboratories and client organizations from business, science and administration sectors. The goal is to bundle and develop existing competencies, and thus providing a common platform for members and prospective researchers and costumers on order to share and exchange information and experience, and in turn to contribute to the development and implementation of new research projects. As an Europe-wide and internationally active association comprising EU members and non-members, EUL also supports and promotes European integration and international cooperation.

This paper provides an overview over the structure and the organisation of EUL, its member institutions and associated underground research laboratories as well as the possibilities the association may offer for its members and interested partners in the fields of:

  • providing a comprehensive overview of the research possibilities and conditions at the different underground sites to clients and the public
  • infrastructure development at the research locations and improvement of research conditions in each underground facility
  • execution of joint research proposals and respective project planning
  • setting up and extending the spread of advertising materials and publications
  • education and training of students, researchers and professionals,
  • enabling the exchange of researchers, professionals and/or students among partnering facilities

How to cite: Mischo, H., Fuławka, K., and Joutsenvaara, J.: European Underground Laboratories Association EUL – An International Partner for Underground Research Opportunities, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7730, https://doi.org/10.5194/egusphere-egu21-7730, 2021.

EGU21-5121 | vPICO presentations | GI5.1 | Highlight

The MINETRAIN project: Lifelong Learning opportunities for mining industry related professionals in real-life underground mining conditions; Dealing with the aftermath of two innovative pilot courses

George Barakos, Kirsi Luolavirta, Jari Joutsenvaara, Saija Luukkanen, Hannah Julia Puputti, and Helmut Mischo

Being at the phase of entering the new digital era, the mining industry is constantly facing challenges utilizing the introduction of data-oriented and multi-criteria decision-making concepts, demand for real-time solutions and need for experienced staff. Hence, lifelong updating of knowledge and skills of mining experts has become increasingly important and recognized worldwide as a challenge for developing a sustainable mining sector. It is also well acknowledged that an interdisciplinary understanding of mining professionals over the integrated mine value chain is expected to optimize the efficiency of operations and in turn, enhance the feasibility of mining projects.  Given also the nature of the vast majority of mining activities, practical know-how is of great importance. There are, however, very few opportunities around the world for hands-on training in real mining conditions, and even less so at actual mine sites.

Hence, the idea of transforming abandoned or closing mines into training facilities is becoming more and more attractive among mining industry professionals, academics and researchers. Nevertheless, the theory is far from practice, and such an endeavour is by no means easy. In this concept, the Pyhäsalmi Cu-Zn Mine, in northern Finland is shortly to cease its operations. New activities are being investigated for the post-usage of the mine site. This in mind, Callio has been established as an umbrella organization to offer opportunities for business, development and research projects in the existing unique mine environment. Accordingly, the MINETRAIN project was launched in 2018 to investigate the possibility of utilization of the Pyhäsalmi Mine site for the education of mining experts and students. As a training and educational facility, the Pyhäsalmi mine will provide a globally unique environment, with training possibilities covering topics over the entire Mine Life Cycle; from exploration to mine closure.

To test the feasibility of Pyhäsalmi mine as an educational and training site, two pilot training courses have been developed during the last two years in the context of MINETRAIN, namely Mine Life Cycle and Digital Life of a Mine. The participation was tremendous, and the feedback received from the trainees has been highly positive; the obtained worldwide attraction strongly implies a great interest among mining professionals in practical education. Hence, in this paper, the challenges faced and the lessons learnt from the organization of these pilot courses are discussed with respect to the viable transition of Pyhäsalmi mine to an educational and training underground facility.

How to cite: Barakos, G., Luolavirta, K., Joutsenvaara, J., Luukkanen, S., Puputti, H. J., and Mischo, H.: The MINETRAIN project: Lifelong Learning opportunities for mining industry related professionals in real-life underground mining conditions; Dealing with the aftermath of two innovative pilot courses, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5121, https://doi.org/10.5194/egusphere-egu21-5121, 2021.

EGU21-11540 | vPICO presentations | GI5.1 | Highlight

Abandoned mine after-use as a museum and research site

Vesta Kaljuste, Erik Väli, and Andrus Paat

Abstract. Abandoned mines are unique underground facilities due to their unique conditions. Mined-out mine can be used as a museum or scientific and technical research site. Depending on specific mine conditions the after-use purposes can vary. The former Kohtla oil-shale mine, located in the eastern part of Estonia, was closed 10 years before the idea to re-open it as a mining museum. Now old Kohtla mine is used as an underground museum to present for local people and tourists how mining works were carried out in the past (Estonia has 100-year-old experience in oil shale mining) and which methods are still in use. Besides mining, it also shows ventilation and water barrier solutions in the mine. 

 

We present an overview of abandoned mine new challenges to be a safe environment for tourists and as a future research center. The project team had a challenge do design: 

  • Renovate underground railway, walker’s platform’s, design and establish new roof supports 
  • New railway platform, stations for tourists, water barriers (3)
  • Ventilation duct and walls (8), new ventilator;
  • Closing the workings which are not needed.

Designing was challenging but not the most difficult part of the project. More complicated was to find a competent builder for the underground museum. Renovated and re-ventilated mine was opened in 2012 and today museum is one of the most visited places by the tourists in the eastern part of Estonia, because of its uniqueness. 

 

Besides as a museum, it can be used as a testing site for researchers, because its former infrastructure and facilities have remained. For example, 4 years ago Tallinn University of Technology used the museum area for the backfilling testing because the temperature and other underground conditions were suitable for room-and-pillar mining method backfilling tests. By using backfilling technology, environmental problems such as ground collapses can be avoided and production residues can be reused. As a result of the research, it became clear which ashes of Estonian power plants and the oil industry are suitable for the backfilling technology in terms of physical-mechanical and chemical properties.

 

In addition, we will highlight the best design practices and experiences that have implemented in order to improve old mine everyday working conditions as a museum. These best practices are usually more than the national laws and regulations have requested and they are deeply connected with practical experiences. It meant a lot of collaboration in bringing the best know-how together by different stakeholders. 

How to cite: Kaljuste, V., Väli, E., and Paat, A.: Abandoned mine after-use as a museum and research site, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11540, https://doi.org/10.5194/egusphere-egu21-11540, 2021.

One of the most important parameters characterizing underground laboratories is natural background radiation. In underground locations, natural radiation mainly comes from the surrounding bedrock and used building materials. When selecting an underground site for research and projects, great importance is attached to the conditions prevailing there, which translates into the success of the activities carried out. Accurate measurements of natural radiation are therefore essential to guarantee the success of the project. As a part of the BSUIN (Baltic Sea Underground Innovation Network) project, such measurements were carried out in several underground laboratories. Although the BSUIN project ended last year, this research continues under the ongoing EUL (Empowering Underground Laboratories Network Usage) project.

Results of the in-situ measurements of gamma radiation and radon concentration will be presented. Additionally, laboratory measurements of radioisotope concentrations in rock and water samples from the studied sites were performed. The concentration of radioisotopes in water samples was obtained by using a liquid scintillation α / β counter and α spectrometry, while the concentration of radioisotopes in rock samples was measured with laboratory gamma-ray and α spectrometry.

A comparison of the obtained results of natural background radiation with other underground locations will also be presented.

How to cite: Szkliniarz, K.: Characteristics of natural background radiation in selected underground laboratories BSUIN and EUL projects., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3030, https://doi.org/10.5194/egusphere-egu21-3030, 2021.

EGU21-15218 | vPICO presentations | GI5.1

Minimal setup for neutron background measurements - summary of the BSUIN project

Karol Jedrzejczak, jacek Szabelski, Marcin Kasztelan, Marika Przybylak, Przemysław Tokarski, Jerzy Orzechowski, and Włodzimierz Marszał

The BSUIN project conducted pilot measurements to test methods for characterizing underground laboratories for natural background radioactivity (NRB). One of the components of NRB that requires specific measurement methods is the neutron background.
The goal of our team was to developing a reference setup for neutron background measurements.

Our idea was to build a setup for measuring neutrons as simple as possible, but not simpler. The price and
universality of the measurement setup are important parameters, but the reliability of the result is also very
important. It is because the neutron flux in underground laboratories is usually very low and it is easy to
make a mistake in interpreting of the results.

The basics of our method will be presented, as well as the assessment of possible measurement errors and the transactional experience gained during measurements at six different locations in four mines.

How to cite: Jedrzejczak, K., Szabelski, J., Kasztelan, M., Przybylak, M., Tokarski, P., Orzechowski, J., and Marszał, W.: Minimal setup for neutron background measurements - summary of the BSUIN project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15218, https://doi.org/10.5194/egusphere-egu21-15218, 2021.

EGU21-340 | vPICO presentations | GI5.1

Uncertainties Analysis of Electrical Resistivity Tomography

Yonatan Garkebo Doyoro, Chang Ping-Yu, and Jordi Mahardika Puntu

We examined the uncertainty of the resistivity method in cavity studies using a synthetic cavity model set at six-different depths. Conceptual models were simulated to generate synthetic resistivity data for dipole-dipole, pole-dipole, Wenner-Schlumberger, and pole-pole arrays. The 2D geoelectric models were recovered from the inversion of the synthetically measured resistivity data. The highest anomaly effect (1.46) and variance (24400) in resistivity data were recovered by dipole-dipole array, while the pole-pole array obtained the lowest anomaly effect (0.60) and variance (2401) for the target cavity T1. The anomaly effect and variance were linearly associated with the quality of the inverted models. The steeper anomaly gradient of resistivity indicated more distinct cavity boundaries, while the gentler gradient prevents the inference of the cavity boundaries. The recovered model zone above the depth of investigation index of 0.1 has shown relatively higher sensitivity. Modeling for dipole-dipole array provided the highest model resolution and anomaly gradient that shows a relatively distinct geometry of the cavity anomalies. On the contrary, the pole-dipole and Wenner-Schlumberger arrays recovered good model resolutions and moderate anomaly gradient but determining the anomaly geometries is relatively challenging. Whereas, the pole-pole array depicted the lowest model resolution and anomaly gradient with less clear geometry of the cavity anomalies. At deeper depths, the inverted models showed a reduction in model resolutions, overestimation in anomaly sizes, and deviation in anomaly positions, which can create ambiguity in resistivity model interpretations. Despite these uncertainties, our modeling specified that the 2D resistivity imaging is a potential technique to study subsurface cavities.

How to cite: Doyoro, Y. G., Ping-Yu, C., and Puntu, J. M.: Uncertainties Analysis of Electrical Resistivity Tomography, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-340, https://doi.org/10.5194/egusphere-egu21-340, 2021.

EGU21-14399 | vPICO presentations | GI5.1

Petrophysical study of different rock types from the mining area of Freiberg, Germany

Leonie Graffmann, Martin Sonntag, and Jana Börner

The ore mining area of Freiberg is located in the federal state of Saxony in the east part of Germany and is characterized by hydrothermal ore mineralization.

The present petrophysical study concentrates on three different rock types from the research mine “Reiche Zeche”. The set of samples contains rocks from the metamorphic host rock - Freiberger Gneiss (FG), from a hydrothermal alternated gneiss (hG) and from a pyrit-galenit rich ore vein (ore). The investigations include the determination of density and porosity as well as laboratory measurements of the Spectral Induced Polarization (SIP) in the frequency range from 10-3 to 104 Hz. Furthermore, measurements of the magnetic susceptibility and P-wave velocity were performed.

For the determination of P-wave velocity by ultrasonic measurements, the rock samples were cut into cubes (5 cm x 5 cm) under preservation of their spatial orientation. The sample set contains 17 cubes (FG - 8 cubes, hG -3 cubes and ore – 6 cubes).

The determination of the complex resistivity was performed in a SIP – measuring cell on cylindric plugs with a length of 3 cm and a diameter of 2 cm. For the SIP-measurements 19 plugs (FG – 11 plugs, hG – 2 plugs and ore – 6 plugs) were available.

Density and magnetic susceptibility measurements were performed on 10 samples of crushed material for each rock type.

The data sets of complex resistivity and P-wave velocity measurements from rock samples of the metamorphic host rock and the ore vein were analysed with focus on possible anisotropic behaviour.

How to cite: Graffmann, L., Sonntag, M., and Börner, J.: Petrophysical study of different rock types from the mining area of Freiberg, Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14399, https://doi.org/10.5194/egusphere-egu21-14399, 2021.

EGU21-15326 | vPICO presentations | GI5.1

Towards optimised seismic monitoring of hydraulic stimulations, the STIMTEC and STIMTEC-X experiments at Reiche Zeche Mine, Germany

Carolin Boese, Grzegorz Kwiatek, Georg Dresen, Joerg Renner, and Thomas Fischer

The STIMTEC and STIMTEC-X hydraulic stimulation experiments are designed to investigate hydro-mechanical processes controlling the enhancement of hydraulic properties in deep geothermal projects. We combine periodic pumping tests, high-resolution seismic monitoring, structural analysis and mine-back drilling into stimulated volumes in an effort to improve near-real-time monitoring, phenomenological models of the hydrofrac/hydroshear process, and prognosis strategies. The ongoing experiments are located at the Reiche Zeche underground laboratory in Freiberg, Saxony/Germany, at a depth of about 130 m below surface in strongly foliated metamorphic gneisses.

The most recent field campaign and initial phase of STIMTEC-X in October 2020 involved eleven local stress measurements in three existing boreholes, previously used for monitoring purposes, with varying orientations and lengths. We hydraulically tested nine previously stimulated intervals and performed eight dilatometer tests in previously stimulated and new intervals to determine deformation characteristics of induced hydrofracs and pre-existing fractures. We monitored these operations in real-time using an adaptive, high-resolution seismic monitoring network comprising six acoustic emission (AE)-type hydrophones, six regular AE sensors and four accelerometers. Hydrophones were never installed before in combination with hydraulic gauges or the double packer probe used for localized injection as during STIMTEC-X. Hydrophones were optimally placed for each measurement configuration anew with at least one deployed in the direct vicinity (~3-4 m) of the injection interval to make best use of the existing infrastructure. This led to an improvement in detection and localisation of induced AE events. A series of active seismic measurements allowed us to establish the polarization, amplitude sensitivity, detection ranges, resonance frequencies and suitability to detect S-waves of the hydrophones. Good signal to noise ratios were recorded for distances up to 17 m. The range of incidence angles, including incidence angles from the opposite direction, in which the sensor is facing, was obtained that can be used for magnitude determination.

A circulation experiment between the injection borehole and two newly drilled boreholes of 23 m and 30 m depth as part of STIMTEC-X is anticipated for March 2021. Here, we present lessons learned from seismic monitoring the STIMTEC and STIMTEC-X hydraulic stimulation campaigns and highlight the advantages of using adaptive and flexible networks. We present an overview of the STIMTEC-X experiment and first results addressing the heterogeneity in stress and deformational behaviour seen throughout the anisotropic reservoir.

How to cite: Boese, C., Kwiatek, G., Dresen, G., Renner, J., and Fischer, T.: Towards optimised seismic monitoring of hydraulic stimulations, the STIMTEC and STIMTEC-X experiments at Reiche Zeche Mine, Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15326, https://doi.org/10.5194/egusphere-egu21-15326, 2021.

The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.

How to cite: Hellwig, O. and Buske, S.: Simulation of a seismic survey with combined surface and in-mine data acquisition for imaging steeply dipping ore veins, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15350, https://doi.org/10.5194/egusphere-egu21-15350, 2021.

GI5.4 – Underground laboratories, test-sites and their networks

EGU21-9398 | vPICO presentations | GI5.4 | Highlight

Global networks of underground research – Geoinformatics in exploring the interaction between laboratories and research units by geocoded publication metadata

Ossi Kotavaara, Jari Joutsenvaara, Julia Puputti, Eija-Riitta Niinikoski, Ursula Heinikoski, and Pertti Martinmäki

Globally there are more than 75 identified scientific underground facilities or laboratories. Underground laboratories or underground research mines are related to 400.000 scientific publications in the Web of Science since 1975. Underground laboratories are commonly located in operational or closed mines, tunnel systems, or built for this specific purpose. It is clear that a wide variety of disciplines and research units apply these facilities. However, it is unclear what is the thematic distribution in research by laboratories at a global scale, or what is the geographic distribution of the scientific communities applying the facilities? In practice, do, e.g. political borders or distance play a role in this?

Understanding prevailing and potential market areas of underground laboratories and research mines for research communities applying these facilities are key elements in developing the use and utilisation of such facilities. Again, it is important to get a better knowledge of the structures, networks, and thematic emphasise of these research communities to understand their requirements and expectations for the underground research infrastructures. This study aims to deepen the knowledge in this field by geocoding teams and units published research, which applied underground facilities. Geographic information systems (GIS) and geocoding functions are applied to build a network between underground laboratories and research teams using all recognised underground research from the web of knowledge. Preliminary analysis indicates that underground laboratories may have a large global scientific user network, but the relatively active network of a few key partner institutes.

The research is supported by the Interreg Baltic Sea programme funded  Empowering Underground Laboratories network usage – EUL and the Baltic Sea Underground Innovation Network (BSUIN) projects.

How to cite: Kotavaara, O., Joutsenvaara, J., Puputti, J., Niinikoski, E.-R., Heinikoski, U., and Martinmäki, P.: Global networks of underground research – Geoinformatics in exploring the interaction between laboratories and research units by geocoded publication metadata, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9398, https://doi.org/10.5194/egusphere-egu21-9398, 2021.

EGU21-14791 | vPICO presentations | GI5.4

Empowering Underground Laboratories Network Usage in the Baltic Sea Region

Eija-Riitta Niinikoski and the team

In the Baltic Sea region, there are world leading science organisations and industrial companies specialised in geophysics, geology and underground construction. There are also several highly interesting underground laboratories (ULs), research mines and test-sites,  that are not utilised to their full potential.

Six of these facilities cooperate within the Interreg Baltic Sea Region program funded project, Empowering Underground Laboratories Network Usage (EUL) [1]. Underground facilities have been established into existing or historical mines, research tunnel networks or as a dedicated underground laboratory for a specific purpose. The EUL project continues in 2021 the work of the Interreg funded Baltic Sea Underground Innovation Network (BSUIN) [2], that ended in December 2020. While the BSUIN project concentrated on characterising the underground facilities and operational settings, the EUL project works on testing, validation, and enhancing previously created practices, tools, and approaches. During the EUL project, the emphasis is put on identifying the global user segments of underground facilities, the effectiveness of marketing of ULs and created network, now known as European Underground Laboratories Association, and customer relations management from the first contact to the realisation of the project.

The underground laboratories participating in BSUIN and EUL projects are Callio Lab (Pyhäjärvi Finland), ÄSPÖ Hard Rock Laboratory (Oskarshamn, Sweden), Ruskela Mining Park (Ruskeala, Russia), Educational and research mine Reiche Zeche (Freiberg, Germany), Underground Low Background Laboratory of the Khlopin Radium Institute (St.Petersburg, Russia) and the Conceptual Lab development co-ordinated by KGHM Cuprum R&D centre (Poland).

One of the main objectives of EUL project is to test the developed business and service concepts for the established network of underground laboratories and for the individual laboratories. Testing ensures the functionality of laboratory service concepts and customer relationship management processes for commercial and non-commercial users.

Another main objective is to test and develop the web-based tool (WBT). Users from partner and associative organisations and underground laboratories (Uls) will test it from their perspectives. The feedback helps to steer the tool into the more user-friendly and more purposeful direction for the potential customers and the underground laboratory managers to use.

To reach new customers and understand different possible customer segments, a big data analysis of users of ULs world-wide will be conducted. Also marketing the network and underground laboratories will be tested and best marketing strategies identified.

Main target groups are the ULs, their users and potential customers (companies and researchers). Another target group is regional development agencies that will be informed about the business possibilities in ULs so that they can provide information to potential customers looking for business opportunities.

In this paper, the EUL project's first outcomes will be discussed reflected to the BSUIN project. The BSUIN and EUL projects are funded by the Interreg Baltic Sea Region Progamme.

[1] Empowering Underground Laboratories Network Usage, www.bsuin.eu, 18 Jan 2021

[2] Baltic Sea Underground Innovation Network, www.bsuin.eu, 18 Jan 2021

How to cite: Niinikoski, E.-R. and the team: Empowering Underground Laboratories Network Usage in the Baltic Sea Region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14791, https://doi.org/10.5194/egusphere-egu21-14791, 2021.

EGU21-14229 | vPICO presentations | GI5.4 | Highlight

From Earth and beyond – Callio Lab underground centre for Science and R&D

Julia Puputti, Jari Joutsenvaara, Ossi Kotavaara, and Eija-Riitta Niinikoski

Callio Lab is a unique research infrastructure operating at the Pyhäsalmi Mine in Finland [1]. It is coordinated by the University of Oulu Kerttu Saalasti Institute (KSI) [2]. Callio Lab is a key component of the larger CALLIO -Mine for Business concept aiming at repurposing the mine area into an economically feasible multidisciplinary operating environment [3]. Underground mining ends in autumn 2021 after which CALLIO continues to host activities at the mine-site until at least 2025.  

Callio Lab has provided unique environments for fields of research ranging from physics and geosciences to underground food production and construction. As of spring 2021, Callio Lab has served as the host site for numerous international projects such as MINETRAIN, Goldeneye, and BSUIN. The  MINETRAIN project developed intensive training courses for mining professionals through a holistic approach to the mine lifecycle [4]. Goldeneye is creating an artificial intelligence platform to improve safety, efficiency and profitability of mine sites in Europe [5]. BSUIN was headed by KSI and it piloted a method of thorough geophysical, structural, organizational and natural background radiation (NBR) characterization, making underground laboratories (UL’s) more accessible for new and current users [6]. Opportunities in the fields of plant-based mineral exploration, geopolymers, circular economy, muography research as well as fire and blasting test sites are also being explored. Launched in 2018, the Callio SPACELAB initiative is dedicated to studies in space and planetary sciences. [1] 

We have detailed knowledge of the overall geological structures, rock mechanics, and characteristics of the Callio Lab underground environments. This is due to the characterization activities performed during the BSUIN project, collected data materials from previous research, and the extensive microseismic network. Understanding the characteristics of the UL’s is key in understanding the possibilities for R&D and science. [1,6]

Callio Lab currently houses seven underground laboratories at different depths ranging from a shallow 75 meters underground all the way to the Main level and bottom of the mine at 1440 meters. There are two routes of access via the incline tunnel or the elevator shaft. The operating environment has good existing infrastructure and facilities, including electrical workshops, maintenance halls, a restaurant, offices, secure high-speed internet access, a logistically ideal single location, as well as the ability to provide innovation support and managing processes. In-depth understanding of underground risk management and the conditions of the working environment make Callio Lab a safe operating environment with vast opportunities and potential to grow into an internationally recognized research institute. [1]

[1] Callio Lab – Underground Center for Science and R & D, www.calliolab.com, 8 Jan 2021

[2] Kerttu Saalasti Institute, www.oulu.fi/ksi-eng, 8 Jan 2021

[3] Mine for Business – Callio – Pyhäjärvi, Finland , www.callio.info, 8 Jan 2021

[4] MINETRAIN, www.minetrain.eu, 8 Jan 2021

[5] GoldenEye EU H2020 funded project, www.goldeneye-project.eu, 8 Jan 2021

[6] Baltic Sea Underground Innovation Network, www.bsuin.eu, 8 Jan 2021




How to cite: Puputti, J., Joutsenvaara, J., Kotavaara, O., and Niinikoski, E.-R.: From Earth and beyond – Callio Lab underground centre for Science and R&D, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14229, https://doi.org/10.5194/egusphere-egu21-14229, 2021.

EGU21-14230 | vPICO presentations | GI5.4

Advancing Scientific Research and Education at the FLB Reiche Zeche underground mine in Freiberg - Germany

Jose Garcia-del-Real, Toni Müller, Helmut Mischo, Vera Lay, and Stefan Buske

The shaft at Reiche Zeche mine provides direct access to the research and training underground mine of the reputed TU Bergakademie Freiberg, where advanced scientific research and practical education is executed for more than 100 years now.

Since 1919, the former ore mine is used for educating and training of miners, engineers and mine surveyors by the TU Bergakademie Freiberg. Drifts and tunnels of the mine stretch over several kilometres at depths down to 230 m. Today, the Reiche Zeche mine plays a major role in mining research and related activities including various research institutes and industrial partners. Several underground test facilities and laboratories are in use and play a key role in university education. A variety of local (15 institutes of TU Bergakademie Freiberg) and external partners (30 from 26 countries) are actively shaping research and education in the mine.

Real-world applications and cutting-edge technologies are tested in a stimulating environment underground, helping to improve competitiveness, leadership, creativity and critical thinking of researchers, companies and stakeholders.

Most recent research projects provide innovative solutions in way different fields. Robotics, smart mining, geophysical monitoring, a blasting chamber used for material science research, and also new mining technologies such as biohydrometallurgical mining for the winning of metals from ores, tailings and recycling material are only a small sample of the Reiche Zeche´s advanced innovation areas.

At Reiche Zeche mine, an efficient research and innovation environment is provided. It includes high quality underground spaces, cutting-edge methodology, state-of-the art labs, high-quality staff, resources and services to industries, talented individuals, leading researchers and teams from six continents, who truly want to make a real positive difference in the Society, contributing therefore, to sustainable optimisation for the raw materials value chain.

We are actively contributing to the European Underground Laboratories (EUL) network, forming an efficient platform for future, innovative research and business activities in underground laboratories. We are always open for collaboration with interested researchers and related stakeholders.

How to cite: Garcia-del-Real, J., Müller, T., Mischo, H., Lay, V., and Buske, S.: Advancing Scientific Research and Education at the FLB Reiche Zeche underground mine in Freiberg - Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14230, https://doi.org/10.5194/egusphere-egu21-14230, 2021.

EGU21-14977 | vPICO presentations | GI5.4

Geological & information model of underground space as a museum object: the Rogoselga mine case (Russian Federation, Karelia)

Vitali Shekov, Kirill Shekov, and Svetlana Krylova

In addition to mining, underground space is widely used for various purposes - tunnels, underground storage facilities, etc. Very often, such structures are built specifically taking into account their use, less often they use the developed space. At the same time, the museum space is perceived "as is."

The main difference between the museum mining space and other uses of mining is the conflict between the maximum preservation of the interiors of these workings (it should be authentic, that is, to contain previously used in this space technological, historical, cultural content) and safe, i.e., the geotechnical state should correspond to the safe stay of visitors. That is why the study of the sustainability of mining is becoming the number one task in such studies. The problem is compounded for abandoned mining operations, the operation of which was discontinued many years ago.

Some solutions were proposed during the study of the abandoned Rogoselga mine, located near a high-traffic highway 135 km from the city of Petrozavodsk, 4 km from the village of Kolatselga, Republic of Karelia, Russian Federation.

Underground production appeared in the process of hematite extraction, as the main raw material for the local ironworks in 1898. Mining was stopped in 1903 and, after several attempts to restore, was closed. This complex of workings is a valuable monument to the whole era of iron ore production in the southeastern part of the Fenno-Scandinavian Shield, in terms of historical and cultural points of view.

The underground space includes the remnants of preparatory rollbacks, as well as the remnants of the wasting chambers, the ore of which went by itself in the rollbacks and then on the gallery was delivered to the surface. The total length of the workings does not exceed 300 meters, with a diameter of 2 meters, and the thickness of the ore body in the chambers up to 3 meters.

Over more than a century, the underground area has been slightly transformed by the collapses of individual parts but has retained but some areas are in good condition. To evaluate the workings, some methods for assessing the underground space were proposed, including modern approaches to documenting the workings, assessing the sustainability of the vault, and individual preparatory works. The result is the development of a geological and information model of the underground space, allowing to study stability by modern methods, including the finite elements method (FEM).

The small size of the work predetermined the methods used. The methodology used in photogrammetry has been adopted as a general technology of 3D modeling.

The work has led to the development of several solutions for small-diameter imaging and lighting technology, as well as to identify "weaknesses" in production and the possibility of using geotechnical techniques to assess the stability of the array.

 

How to cite: Shekov, V., Shekov, K., and Krylova, S.: Geological & information model of underground space as a museum object: the Rogoselga mine case (Russian Federation, Karelia), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14977, https://doi.org/10.5194/egusphere-egu21-14977, 2021.

EGU21-16523 | vPICO presentations | GI5.4

Underground heritage valorization of camerano's cave in center italy a case of transition towards projects integrating the local community and landscape 

Roberto Pierdicca, Eva Savina Malinverni, Francesco di Stefano, Giuseppe Pace, Ilaria Fioretti, Andrea Galli, Ernesto Marcheggiani, and Francesco Paci

Underground4Value is a COST Action (CA18110) aiming at providing adequate cultural, scientific and technical knowledge of the UBH concerning different aspects (i.e. archaeology, geotechnics, history, urban planning, architecture, cultural anthropology, economics, tourism, sustainable development), in a multi-disciplinary context. So far there are 30 participant countries, moreover Tunisia and Mexico.

The overarching idea is supporting Underground Built Heritage (UBH) conservation, valorization, management, and fostering decision-making through community-led development. The main challenge is how to stimulate social innovations in local communities through heritage management approaches.

One of the living lab stemmed by the activities of the Cost Action is in center Italy, where are many other hypogea with different function: water reservoir, military-strategic, food storage, cultural or religious function, mines or quarries. Among them the city of Camerano represents a local heritage and a landmark for its network of connected built underground spaces. The local community's self-initiative and the determination and far-sightedness of the local authority allowed to differentiate the local tourism offer leading to success in terms of tourism attractiveness, with more than 25'000 visitors per year. First reliable records date 1327 AC.

Special attention is given to the digital dimension of Cultural Heritage. An asset for the next decade, in particular after the COVID-19 pandemic. Surveys of the interior environment of the caves were carried out using two laser instruments in different acquisition modes. The use of the static laser scanner requires a longer time for both the acquisition and the subsequent processing phases. The use of a mobile laser scanner, on the other hand, makes it possible to scan and record the underground environment in real time in just a few hours, thus providing a fast and agile solution. This means that it is possible to go more often for constant and rapid monitoring. The integration of spherical photos taken along the route of the caves themselves offers the possibility of creating a virtual reality (VR) tour that can be integrated with a 3D model of the entire underground environment. This allows the caves to be visited from a virtual point of view when they are closed for restoration work or in cases of emergencies, such as pandemic one. 

How to cite: Pierdicca, R., Malinverni, E. S., di Stefano, F., Pace, G., Fioretti, I., Galli, A., Marcheggiani, E., and Paci, F.: Underground heritage valorization of camerano's cave in center italy a case of transition towards projects integrating the local community and landscape , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16523, https://doi.org/10.5194/egusphere-egu21-16523, 2021.

EGU21-7000 | vPICO presentations | GI5.4 | Highlight

A geoscientific site descriptive model for the Äspö Hard Rock Laboratory, SE Sweden

Jesper Petersson, Peter Hultgren, Mansueto Morosini, and Frédéric Mathurin

The development of an updated geoscientific site descriptive model (SDM) is currently in progress for the Äspö Hard Rock Laboratory (Äspö HRL), the key underground research facility of the Swedish Nuclear Fuel and Waste Management Company (SKB). Äspö HRL is located in south-eastern Sweden, within a suite of 1.81–1.76 Ga granitoids, and consists of a tunnel system down to 460 m depth with a total length of about 5 km. Tectonically, the area is part of a contractional shear belt, primarily manifested by a NE-SW trending regional deformation zone, which partly transect the underground facility. The shear zone system has evolved gradually over a prolonged period, with an initial low-grade ductile development, followed by multiple events of brittle reactivation. The structural framework is characterised by a significant heterogeneity in the hydraulic flow properties, where the most transmissive structures belong to a set of less extensive, conjugate zones and fractures.

More than 30 years of studies, starting with the pre-investigations and construction of the facility, have generated a wealth of geoscientific data in 3-D space, and hence a sound basis for an update of existing models. The SDM under current development aims to present an integrated geoscientific understanding of the Äspö site, with special focus on geology, hydrogeology and hydrogeochemistry. The general working procedure includes basically an initial stage of data capture, followed by an intermediate interpretative stage, and finally the construction of 3-D models with associated concepts and parameters. An explicit goal throughout the work has been to encourage interaction between the different geo-disciplines, especially during the interpretative stage, as a forerunner to the final stage of deterministic/conceptual modelling. During the interpretative stage, geological and geophysical information were combined into two basic building blocks along individual boreholes, tunnels, and outcrops: rock units and possible deformation zones, which were assigned hydraulic parameters such as primarily K-values. The subsequent geological 3-D modelling comprises two components: rock domains and deformation zones with a surface trace length of ≥ 300 m. Hydrogeological feedback was provided in terms of K-anisotropies and depth trends.

The fundamental outcome of the modelling is a more profound conceptual understanding, along with geometries and properties for each domain or zone. Additional outcomes are data on and understanding of the effects of 25 years of artificial tunnel drainage on groundwater pressures, flow and chemistry. The natural groundwater system, originally formed by paleoclimatic and geological factors over a vast period, has be profoundly influenced by important monitored phenomena. Upflow of deep-lying saline water and extensive intrusion of current seawater disclose the apparent hydro-properties and interconnection between deformation zones.

Currently, geological 3-D model includes geometries for ten rock domains and 24 deformation zones, the latter with seamless transitions to zones of the regional scale Laxemar model, as developed by the SKB with the objective of siting a geological repository for spent nuclear fuel in the proximity to the Äspö HRL. As completed, the models will serve as framework for more detailed-scaled facility models.

How to cite: Petersson, J., Hultgren, P., Morosini, M., and Mathurin, F.: A geoscientific site descriptive model for the Äspö Hard Rock Laboratory, SE Sweden, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7000, https://doi.org/10.5194/egusphere-egu21-7000, 2021.

EGU21-7682 | vPICO presentations | GI5.4

Finite Element Method-based geomechanical risk assessment of underground laboratory located in the deep copper mine

Krzysztof Fulawka, Witold Pytel, Piotr Mertuszka, and Marcin Szumny

Underground laboratories provide a unique environment for various industries and are a suitable place for developing new technologies for mining, geophysical surveys, radiation detection, as well as many other studies and measurements. Unfortunately, any operation in underground excavations is associated with exposure to many hazards not necessarily encountered in surface laboratories. One of the most dangerous events observed in underground conditions is the dynamic manifestation of rock mass pressure in form of rockburst, roof falls and mining tremors. Therefore, proper evaluation of geomechanical risk is a key element ensuring the safety of work in underground conditions. Finite Element Method-based numerical analysis is one of the tools which allow conducting a detailed geomechanical hazard assessment already at the object design stage. The results of such calculations may be the basis for the implementation of preventive measures before running up the underground facility.

Within this paper, the three-dimensional FEM-based numerical analysis of large-scale underground laboratory located in deep Polish copper mine was presented. The calculations were made with GTS NX software, which allowed determining the changes in the safety factor in surrounding of the analyzed area. Finally, the possibility of underground laboratory establishment, with respect to predicted stress and strain conditions, were determined.

How to cite: Fulawka, K., Pytel, W., Mertuszka, P., and Szumny, M.: Finite Element Method-based geomechanical risk assessment of underground laboratory located in the deep copper mine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7682, https://doi.org/10.5194/egusphere-egu21-7682, 2021.

The Mont Terri rock laboratory began in 1996 with 8 niches, followed by a research tunnel in 1998. Since then the laboratory has been expanded every 10 years, mainly in the shaly facies of the Opalinus Clay. In March 2018, south of the existing laboratory, the Mont Terri Project Partners initiated another extension «Gallery 18» of the Mont Terri rock laboratory mainly located in sandy facies of the Opalinus Clay. In October 2019 the extension was finished, resulting in more than 500 m of additional galleries and niches for new experiments. In the frame of this extension, for the first time a heterogeneous mine-by test, comprising a sheet of sandy facies and carbonate-rich sandy facies sandwiched between shaly facies was conducted in the rock laboratory. This so-called MB-A experiment (hydro-mechanical characterization of the sandy facies before and during excavation) consists of two lateral niches for instrumentation and monitoring and a test gallery of 30 m length oriented perpendicular to the latter. The instrumentation based on 26 boreholes with lengths up to 40 m consists of pore pressure transducers, extensometers, inclinometers and stress monitoring stations. It was finished several months before excavation of the test section was started in order to assure equilibration close to the initial conditions. Excavation of the test gallery running parallel to bedding strike was carried out in May 2019 in 20 days.

Elastic predictive modeling is performed in 3D to estimate the hydro-mechanical behavior of the rock mass during a sequential excavation according to effective daily advances and as-is sensor locations. The modeling results are compared with monitoring data. The calculation predicts a rotation of the early time near-field pore pressure reduction from perpendicular to parallel to bedding for late times. In general, monitored peak pore water pressures were higher than predicted, with a remarkable phase shift depending on distance and spatial position with respect to the drift. Monitored deformations were clearly underestimated with the elastic calculation. The overall behavior of the excavation in the sandy facies was unexpectedly not so different from former excavations in shaly facies.

A parametric study was performed to assess key parameters of potential effects of excavation on the hydromechanical responses of the excavation. It is concluded that adapted constitutive laws are needed in order to properly predict the hydromechanical response in stiffer claystone, such as for instance the sandy and carbonate-rich sandy facies of the Opalinus Clay.

How to cite: Li, C., Jaeggi, D., Nussbaum, C., and Bossart, P.: 3D Predictive HM-modeling in the heterogeneous Opalinus Clay of the Mont Terri rock laboratory and validation with monitoring data from a mine-by test, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-700, https://doi.org/10.5194/egusphere-egu21-700, 2021.

EGU21-898 | vPICO presentations | GI5.4

Hydrogen gas bubble nucleation from corrosion of steel in compacted bentonite

Alexandros Papafotiou, Chao Li, Nikitas Diomidis, and Olivier Leupin

The reference concept for the deep geological disposal of spent fuel and high-level radioactive waste in Switzerland foresees carbon steel disposal canisters surrounded by compacted bentonite buffer material. In support of performance assessments, long-term in-situ corrosion experiments were conducted in Opalinus Clay at the Mont Terri Underground Research Laboratory (URL) in Switzerland, wherein carbon steel coupons were embedded in MX-80 bentonite. The preparation of the steel specimens and bentonite, the exposure in a sealed borehole in the URL, and the retrieval, dismantling and imaging of specimens were conducted under strictly anoxic conditions. Samples were removed for analysis after exposure durations of 372, 628, 1024, and 2008 days. A key finding was the development of visible reddish-brown corrosion fronts around the metal surfaces and along shrinkage cracks that extend up to approximately 0.5 cm into the bentonite. Iron that originated from the corroded surface was transported along the cracks and precipitated as Fe-hydroxides due to oxygen sorbed on bentonite.

The formation of shrinkage cracks is thought to result from a local desaturation of the bentonite near the steel surface. To test this hypothesis i.e., to test the likelihood of a separate gas phase forming in addition to hydrogen mass dissolved in liquid water, it is necessary to evaluate the fate of hydrogen in the bentonite adjacent to the steel surface. For this, a flow and transport numerical model of the steel coupon surface and surrounding bentonite was implemented for the simulation of hydrogen release with the simultaneous consumption of water at the steel surface. The effect of single- and (potentially) two-phase flow with the diffusive and advective transport of the hydrogen and water components in the gas and liquid phases were modelled in a fully coupled manner. The numerical simulations were performed probabilistically in a Monte Carlo framework to account for parametric uncertainty, comprising 1’000 perturbations of all flow and transport parameters used in the model for the bentonite.

Overall, the simulation results are consistent with the hypothesis of a link between cracks observed in the bentonite and a temporary formation of a gas phase that results in preferential pathways for the transport of iron corrosion products.  The probability of gas formation in the model lies between 89% and 94% at the steel-bentonite interface and decreases significantly at distance of 1 cm from the steel coupon. Peak gas saturation at the steel-bentonite interface ranges up to approximately 1% with a mean value of approximately 0.18%. In all simulations, any gas phase forming in the bentonite dissolves back into the liquid phase within 300 days.

How to cite: Papafotiou, A., Li, C., Diomidis, N., and Leupin, O.: Hydrogen gas bubble nucleation from corrosion of steel in compacted bentonite, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-898, https://doi.org/10.5194/egusphere-egu21-898, 2021.

EGU21-2024 | vPICO presentations | GI5.4

Natural Gamma-Ray Background Characterization in Pyhasalmi Mine

Vladimir Gostilo, Serhii Pohuliai, Alexander Sokolov, Jari Joutsenvaara, and Julia Puputti

We present the results of measuring the gamma-ray background performance of Pyhasalmi mine, the deepest one in Europe. Two underground facilities in Lab 2 (1440 m) and Lab 5 (1410 m) were investigated. Based on measurements made in Lab 2 with a low-background HPGe spectrometer, we determined the integral gamma-ray background count rate in the energy range of 40 keV to 2.7 MeV to be 0.095 s–1 kg–1. The minimum detectable activities of some natural and artificial nuclides were less than 0.071 Bq/kg (226Ra), 0.77 Bq/kg (40K) and 0.012 Bq/kg (137Cs). The specific activities of natural nuclides in the shotcrete covering the walls of the Lab 2 were higher than those in the rock: 100.3 Bq/kg (232Th), 161.7 Bq/kg (226Ra) and 1171 Bq/kg (40K) in the shotcrete covering and 47.6 Bq/kg (232Th), 83.1 Bq/kg (226Ra) and 1513 Bq/kg (40K) in the rock. The measurements showed that the gamma-ray background level in Lab 5 is significantly lower than that in Lab 2. The integrated gamma-ray background count rate for the energy range of 40 keV to 2.7 MeV was 0.028 s–1 kg–1 for Lab 5. Purging the measuring chamber of the gamma spectrometer with nitrogen gas at a rate of 0.15 L/h allowed to further improve this parameter to 0.021 s–1 kg–1. In general, the results of this study confirm that the level and energy spectrum of background gamma radiation in the underground facility within the studied energy range is defined mainly by the composition of the walls of the Labs.

 

How to cite: Gostilo, V., Pohuliai, S., Sokolov, A., Joutsenvaara, J., and Puputti, J.: Natural Gamma-Ray Background Characterization in Pyhasalmi Mine, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2024, https://doi.org/10.5194/egusphere-egu21-2024, 2021.

GI5.5 – Uncrewed aerial vehicle (UAV) as a new, emerging instrument in Geosciences

EGU21-755 | vPICO presentations | GI5.5 | Highlight

The archaeological site of chellah, new technologies for investigation, modeling, and mapping.

Iman el guertet, Abdellatif aarab, Abdelkader larabi, Mohammed Jemmal, and Sabah benchekroun

archaeological sites have been always a subject of curiosity and search, the archaeologists and scientists from different specialties have been wondering about the origins of the man civilization, about the way our forefathers lived, how they nourished, dressed, and housed themselves, what techniques were used for the transport, the fishing, and the business, about the culture and the spiritual practices. in fact, the modern technologies, practices, and innovations are only a continuation of what was once; this is why the human being believes it is imperative to revive and understand the heritage and to discover its secrets. in the present work which pours in the same direction, we decided to revive and explore a wealthy site located in rabat, the Moroccan capital, this site is named chellah, which represents the summing up of historical eras from the antiquity to the Islamic period and which is marked by the presence of antique and Islamic constructions which reflect this continuity. our research aims to build a model for the detection of areas that are not yet excavated but are already mentioned by archaeologists, geographers, and historians to validate their hypothesis and to find out where exactly these areas are located. our methodology is based on the processing of unmanned aerial vehicle (uav) images to generate high-resolution photogrammetric products with low cost, those datasets will be analyzed with a technique that has been in use since the '80s and which is using crop, soil, and shadow marks visualized on images taken by aerial photography. this analysis gave us the vision to select the zones on which a geophysical investigation by electrical tomography was carried out to approve the presence of the archeological components that require future excavation. our study focused on the importance of non-invasive methodologies for the study, preservation, and valorization of archaeological sites.

How to cite: el guertet, I., aarab, A., larabi, A., Jemmal, M., and benchekroun, S.: The archaeological site of chellah, new technologies for investigation, modeling, and mapping., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-755, https://doi.org/10.5194/egusphere-egu21-755, 2021.

3D landscape reconstruction derived from imagery acquired by unmanned aerial systems (UAS) is an increasingly applied method within the field of geosciences. Low-cost UAS and subsequent Structure from Motion (SfM) and multi-view stereo (MVS) processing provides the opportunity to study landforms and processes in high detail; for instance mapping of river terraces (Li et al. 2019) or landslide monitoring (Devoto et al. 2020).

Due to an almost complete drainage of the Urft Lake reservoir in the northern Eifel mountains (W-Germany) in the autumn of 2020, the lake’s entire ground could be surveyed using a low-cost UAS.

The lake stretches for 12 km and has a maximum impoundment volume of approximately 45 million m³. Its shape is characterized by multiple fluvial bends and steep slopes, which required an elaborated flight layout. A DJI Phantom 4 Pro V2.0 was used. Each flight was carried out in two parallel heights (90 and 120 m), 80° camera inclination, and in double-grid pattern. Five full days of surveying yielded over 6,000 aerial images. Despite the difficulty to access the drained reservoir, 154 evenly distributed ground control points were taken using a Leica RTK dGPS instrument (accuracy <5 cm). SfM-MVS photogrammetric processing was conducted with Agisoft Metashape Professional 1.6, using an optimized workflow based on USGS (2017) and James et al. (2020).

The resulting 3D model features high accuracy and precision making it suitable for further detailed stationary as well as multi-temporal geomorphologic analyses. The derived DEM features a spatial resolution of <6 cm and will be used to calculate geometric changes of the reservoir body since its construction in 1905; in particular, due to sedimentation and mass movements along the hillslopes. Moreover, the products can be used to study the anthropogenic influences of the water reservoir on the fluvial morphology of the Urft.

 

References:

Devoto, S., Macovaz, V., Mantovani, M., Soldati, S., Furlani, S., 2020. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides.  Remote Sensing 2020, 12, 3566. https://doi.org/10.3390/rs12213566  

James, M.R., Antoniazza, G., Robson, S., Lane, S.N., 2020. Mitigating systematic error in topographic models for geomorphic change detection: accuracy, precision and considerations beyond off-nadir imagery. Earth Surface Processes and Landforms 45, 2251–2271. https://doi.org/10.1002/esp.4878

Li, H., Lin, C., Wang, Z., Yu, Z., 2019. Mapping of River Terraces with Low-Cost UAS Based Structure-from-Motion Photogrammetry in a Complex Terrain Setting. Remote Sensing 2019, 11, 464. https://doi.org/10.3390/rs11040464

United States Geological Survey (USGS), 2017. Unmanned Aircraft Systems Data Post Processing: Structure-from-Motion Photogrammtery. Section 2 – MicaSense 5-band MultiSpectral Imagery. USGS National UAS Project Office. https://uas.usgs.gov/nupo/pdf/PhotoScanProcessingMicaSenseMar2017.pdf (Retrieved: 24 July 2020).

How to cite: Dörwald, L., Esch, A., Stauch, G., and Walk, J.: Meso- to macro-scale landscape modelling with SfM-MVS photogrammetry: a case study from the Urft Lake water reservoir (Eifel Mountains, western Germany), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3248, https://doi.org/10.5194/egusphere-egu21-3248, 2021.

EGU21-3820 | vPICO presentations | GI5.5

Building Australia’s Scalable Drone Cloud

Jens Klump, Tim Brown, Rohan Clarke, Robert Glasgow, Steve Micklethwaite, Siddeswara Guru, Beryl Morris, Steve Quenette, Tim Rawling, Nathan Reid, and Susie Robinson and the ASDC Project Team

Remotely Piloted Aircraft (RPA), commonly known as drones, provide sensing capabilities that address the critical scale-gap between ground- and satellite-based observations. Their versatility allows researchers to deliver near-real-time information for society.

Key to delivering RPA information is the capacity to enable researchers to systematically collect, process, manage and share RPA-borne sensor data. Importantly, this should allow vertical integration across scales and horizontal integration across different RPA deployments. However, as an emerging technology, the best practice and standards are still developing and the large data volumes collected during RPA missions can be challenging.

Australia’s Scalable Drone Cloud (ASDC) aims to coordinate and standardise how scientists from across earth, environmental and agricultural research manage, process and analyse data collected by RPA-borne sensors, by establishing best practices in managing 3D-geospatial data and aligned with the FAIR data principles.

The ASDC is building a cloud-native platform for research drone data management and analytics, driven by exemplar data management practices, data-processing pipelines, and search and discovery of drone data. The aim of the platform is to integrate sensing capabilities with easy-to-use storage, processing, visualisation and data analysis tools (including computer vision / deep learning techniques) to establish a national ecosystem for drone data management.

The ASDC is a partnership of the Monash Drone Discovery Platform, CSIRO and key National Collaborative Research Infrastructure (NCRIS) capabilities including the Australian Research Data Commons (ARDC), Australian Plant Phenomics Facility (APPF), Terrestrial Ecosystem Research Network (TERN), and AuScope.

This presentation outlines the roadmap and first proof-of-concept implementation of the ASDC.

How to cite: Klump, J., Brown, T., Clarke, R., Glasgow, R., Micklethwaite, S., Guru, S., Morris, B., Quenette, S., Rawling, T., Reid, N., and Robinson, S. and the ASDC Project Team: Building Australia’s Scalable Drone Cloud, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3820, https://doi.org/10.5194/egusphere-egu21-3820, 2021.

EGU21-4219 | vPICO presentations | GI5.5

UAV-based aeromagnetic gradient measurements and inversion

Christian Kulüke, Christopher Virgil, Johannes Stoll, and Andreas Hördt

Rotary wing UAV’s are used in aeromagnetic measurements for UXO detection. That way, contaminated areas can be mapped fast and with high resolution. Until today, only the total magnetic intensity (TMI) is evaluated, even when a three axis fluxgate magnetometer is flown. In this project, we use two three component fluxgate sensors, an inertial measurement unit (IMU) and a GPS antenna. The IMU allows for a projection of the magnetic data into the geographic coordinate system as well as the calculation of the sensor positions relative to the GPS antenna. With this system, it is possible for the first time to evaluate the component gradients between the magnetometers.

The sensors are attached to the UAV via a versatile, T-shaped boom hanging below the UAV with the sensors positioned in a horizontal distance of 50 cm. The total mass of the flight system is about 5 kg with an air time of 15 minutes.

For the inversion, we use a dipole model which calculates the magnetic data for all sensor positions. Because the sources of the magnetic anomalies are unknown as a general rule, there is no distinction between induced and remanent magnetisation. Instead, the three components of the magnetic moment are fitted alongside the positions of the anomaly sources. The number of dipoles to be fitted and their initial parameters are arbitrary. For the inversion, the TMI and component gradients between the sensors are considered.

In order to analyse the accuracy of the complete system, we conducted surveys over a test field of 100 x 20 m, separated into four sections with varying anomaly configurations. As anomaly sources, we used neodymium magnets which we characterised in laboratory measurements. For optimal coverage and to compare flight directions, the test field was surveyed both lengthways and crossways with a sensor height of 1.5 m above ground. Inversion results show that when component gradients are used, overlapping anomalies can be separated and parameterised. The mean errors of the derived anomaly positions are 5 cm, the total magnetic moment can be determined with an accuracy of 0.35 Am2, whereby the errors in direction (declination and inclination) are 4 ° and 2 °, respectively.

How to cite: Kulüke, C., Virgil, C., Stoll, J., and Hördt, A.: UAV-based aeromagnetic gradient measurements and inversion, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4219, https://doi.org/10.5194/egusphere-egu21-4219, 2021.

EGU21-7290 | vPICO presentations | GI5.5

Ultra-lightweight integrated unmanned aerial systems for a wide range of geophysical magnetic exploration: a single system for high-precision archaeological surveys to rugged topography geological acquisitions

Jeanne Mercier de Lépinay, Tristan Fréville, Baptiste Kiemes, Luis Miguel Sanabria, Bruno Gavazzi, Hugo Reiller, and Marc Munschy

Magnetic mapping is commonly used in the academic and industrial sectors for a wide variety of objectives. To comply with a broad range of survey designs, the use of unmanned aerial vehicles (UAVs) has become frequent over the recent years. The majority of existing systems involves a magnetic acquisition equipment and its carrier (an UAV in this context) with no -or very few- connections between the two systems. Terremys is conceiving and optimizing UAVs specifically adapted for geophysical magnetic acquisitions together with the appropriate processing tools, and performs magnetic surveying in challenging environments. Terremys’ “Q6” system weights 2.5 kg in air, including UAV & instrumentation, and allows 30 min swarm or individual flights.

Rotary-wing UAVs are found to be the most adaptive systems for a wide range of contexts and constraints (extensive range of flights heights even with steep slopes). They offer more flight flexibility than fixed-wing aircrafts. One of the major problems in the use of rotary-wings UAVs for magnetic mapping is the magnetic field generated by the aircraft itself on the measurements. Towing the magnetic sensor 2 to 5 m under the aircraft reduces data positioning accuracy and decreases the performances of the UAV, which can be critical for high-resolution surveys. To overcome these problems, a deployable 1 m long boom is rigidly attached to the UAV. The UAV magnetic signal can be divided between 1-the magnetic field of the whole equipment and 2-a low to high frequency magnetic field mostly originating from the motors. The magnetization of the system is the principal source of magnetic noise. It is modelled and corrected by calibration-compensation processes permitted by the use of three-component fluxgate magnetometers. The time-varying noise depends on the motors rotational speed and is minimized by optimizing the UAV components and characteristics along with the boom’s length.

The final set-up is able to acquire magnetic data with a precision of 1 to 5 nT at any height from 1 to 150 m above ground level. The high-precision magnetic measurements are coupled with a centimetric RTK navigation system to allow for high-resolution surveying. The quality of the obtained data is similar to that obtained with ground or aerial surveys with conventional carriers and matches industrial standards. Moreover, Terremys’ systems merge in real-time data from all the aircraft instruments in order to integrate magnetic measurements, positioning information and all the UAV’s flight data (full telemetry) into a unique synchronized data file. This opens up many possibilities in terms of QA/QC, data processing and facilitates on-field workflows.

Case studies with diverse designs, flight altitudes and targets are presented to investigate the acquisition performances for different applications, as distinct as network positioning, archaeological prospecting or geological mapping.

The full integration of the magnetic sensor to the drone opens the possibility for implementation additional sensors to the system. The adjoining of other magnetic sensors would allow multi-sensors surveying and increases daily productivity. Diverse geophysical sensors can also be added, such as thermal/infrared cameras, spectrometers, radar/SAR.

How to cite: Mercier de Lépinay, J., Fréville, T., Kiemes, B., Sanabria, L. M., Gavazzi, B., Reiller, H., and Munschy, M.: Ultra-lightweight integrated unmanned aerial systems for a wide range of geophysical magnetic exploration: a single system for high-precision archaeological surveys to rugged topography geological acquisitions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7290, https://doi.org/10.5194/egusphere-egu21-7290, 2021.

EGU21-10250 | vPICO presentations | GI5.5

Multiple Airdrones Response System in forest firefighting

Elena Ausonio, Patrizia Bagnerini, and Marco Ghio

M.A.R.S., Multiple Airdrones Response System, is an innovative platform for environmental monitoring. Monitoring is a prerequisite to design a land management plan to maintain its biodiversity and health, in order to optimally avoid the risk of hydrogeological instability and disaster, e.g., floods, volcanic eruptions, earthquakes, wildfires. The innovative potential of the M.A.R.S. project lies mainly in the ability to manage the logistics of drone swarms and in the modularity of the platform infrastructure, which is easy to move and equipped with an integrated system for automatically replacing payloads carried by drones, such as batteries, instruments, sensors, and disposable materials.
The platform is composed of several subsystems: one or more landing pads, a controller for the platform operation management, a cartridge case and a hive for the storage of payloads and drones respectively. In summary, M.A.R.S. drones are served, supplied, and housed, similar to a multi-copter drone carrier.

This type of technology would launch new possible applications in contexts where the use of Unmanned Aerial Vehicles has not yet been hypothesized, overcoming the current limits thanks to the use of individual drones in swarm configuration and to the possibility of extending the flight time by changing the batteries.
Therefore, we propose and demonstrate the applicability of M.A.R.S. in forest firefighting, as fires constitute the most critical and widespread threat to Mediterranean forests. After computing the critical water flow rate according to the main time-varying factors involved in the evolution of a fire, we obtain the number of linear meters of active fire front that can be extinguished depending on the amount of fluid carried by the available drones. Finally, by means of a cellular automata model, the development and evolution of a Mediterranean scrub fire are simulated and the change of the fire area over time is estimated both without any extinguishing effort and in case of M.A.R.S. drones intervention.

Parallel to the work of scientific research, computation, and simulation, we started to build the platform and test the technologies to be implemented for the concrete development of the system. Since precision landing is of fundamental importance to the project, flight and landing tests were performed. The purpose of this in-depth study was to verify the landing error range using two hexacopter drones (DJI F550 and S900) on which two Pixhawk Flight Controllers and two different GNSS RTK modules were mounted, also comparing the results with those obtained using GPS only.

M.A.R.S. is based on an industrial patent (2016) owned by Inspire S.r.l., start-up and spin-off of the University of Genoa. The project is by its nature highly interdisciplinary, as is the professional knowledge that characterizes the members who make up the working group.
Forest fire research received support from Regione Liguria in the context of the European Social Fund 2014-2020 (POR-FSE). Further studies and experiments will be carried out.

How to cite: Ausonio, E., Bagnerini, P., and Ghio, M.: Multiple Airdrones Response System in forest firefighting, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10250, https://doi.org/10.5194/egusphere-egu21-10250, 2021.

Traditionally, the inversion of magnetic data assumes the magnetization of the local geology to run parallel to the Earth’s internal magnetic field that is usually modelled using International Geomagnetic Reference Field (IGRF). Assuming the magnetization parallel to the main field, only the total (scalar) magnetic data are the sufficient input for the inversion of source susceptibility.

Local magnetization may alter from the main field direction in areas of remanent magnetization. Recently, magnetization vector inversion (MVI) using the total field has become an important tool trying to distinguish magnetic data affected by remanenence. Total field as a scalar field exclude all information of the direction of the internal magnetization and more information is required to reveal any remanent magnetization from the main field direction.  Compared to total field using the 3-component XYZ vector magnetic measurements provide more information of the source.  More measurements increase the unambiguous nature of data and may reveal the areas of possible remanence. 

To measure XYZ vector magnetic field we use fluxgate 3-component magnetometer with rigid installation on a fixed-wing UAV. With the help of accurate inertial measurement units the measured magnetic field can be determined in the direction of fixed coordinate system. The components of the measured magnetic field rotated into the geographical coordinate represent the magnetic field at survey area.

UAV survey provided the data as the input for the inversions. We made the inversion separately for both susceptibility and magnetization vector. Susceptibility inversion means inversion of induced magnetization, i.e., a single component of magnetization parallel to the main field direction. Magnetization vector inversion, however, resolves all three components of magnetization, which may or may not include remanent magnetization in addition to induced one.

The benefits from utilizing XYZ components of the magnetic field with magnetization inversion seem promising in finding remanenence magnetization.

 

 

How to cite: Karinen, A.: Magnetic vector inversion using  XYZ measured by fluxgate magnetometer in UAV , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13006, https://doi.org/10.5194/egusphere-egu21-13006, 2021.

EGU21-13638 | vPICO presentations | GI5.5

Monitoring the Evolution of a Tidal Salt Marsh Restoration Site with an RTK-enabled UAV

Samantha Lewis, Greg Baker, Tony Bowron, Jennie Graham, and Danika van Proosdij

Since 1900 AD, 64-71% of the world’s natural wetlands have been lost due to anthropogenic influences. Wetland restoration projects, such as managed realignment and tidal salt marsh restoration, act to combat these losses, but are also being used as a form of nature-based adaptation to the effects of climate change, including sea level rise. New advances in Unmanned Aerial Vehicle (UAV) technology offer a unique opportunity to quantify the restoring landscape at resolutions and accuracies previously unachievable. This presentation will focus on the use of hyperspatial datasets collected with a Real-Time Kinematic (RTK) GNSS enabled UAV at a managed realignment site in the Bay of Fundy, Canada, to monitor and quantify the geomorphic evolution of the site, including the development of a semi-automated method for mapping embryonic creek networks. Analyzed datasets were collected seasonally over the course of 1 year following the reintroduction of tidal flow, and range in resolution from 2.0 - 3.5 cm. Preliminary results show significant spatial variation in channel evolution patterns, related to the presence and absence of antecedent landscape features. A greater understanding of restoration site evolution, and the effects of the antecedent landscape on that evolution, will allow for a more informed design and implementation of future restoration projects to encourage site resilience and sustainability in terms of climate change adaptation.

How to cite: Lewis, S., Baker, G., Bowron, T., Graham, J., and van Proosdij, D.: Monitoring the Evolution of a Tidal Salt Marsh Restoration Site with an RTK-enabled UAV, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13638, https://doi.org/10.5194/egusphere-egu21-13638, 2021.

GI5.6 – Instrumentation & measurements for water systems

EGU21-652 | vPICO presentations | GI5.6 | Highlight

Drone image processing for water quality in the cloud

Els Knaeps, Robrecht Moelans, and Liesbeth De Keukelaere

The use of drones to monitor water quality is relatively new. Although drones and lightweight cameras are readily available, deriving water quality parameters is not so straightforward.  It requires knowledge of the water optical properties, the atmospheric contribution and special approaches for georeferencing of the drone images.  We present a cloud-based environment, MAPEO-water, to deal with the complexity of water surfaces and retrieve quantitative information on the water turbidity, the chlorophyll content and the presence of marine litter/marine plastics. 

MAPEO-water supports already a number of camera types and allows the drone operator to upload the images in the cloud. MAPEO-water also offers a protocol to perform the drone flights and allow efficient processing of the images. Processing of the drone images includes direct georeferencing, radiometric calibration and removal of the atmospheric contribution. Final water quality parameters can be downloaded through the same cloud platform. Water turbidity and chlorophyll retrieval are based on spectral approaches utilizing information in the visible and Near Infrared wavelength ranges. Marine litter detection combines spectral approaches and Artificial Intelligence. Visible, Near Infrared and Short Wave Infrared wavelengths are used to detect marine litter but also discriminate marine litter from turbid water plumes and surface features such as glint and white caps. First tests have also been performed to apply a Convolutional Neural Network (CNN) for the automatic recognition of the marine plastic litter.

How to cite: Knaeps, E., Moelans, R., and De Keukelaere, L.: Drone image processing for water quality in the cloud, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-652, https://doi.org/10.5194/egusphere-egu21-652, 2021.

EGU21-1122 | vPICO presentations | GI5.6

CIANOMOD Project. A data gathering and analysis structure for the remote monitoring of algae blooms in inland waters based on Internet of Things

Juan Antonio Pascual-Aguilar, Jesús Morón-López, Cristina Rodríguez-Sánchez, Francisco Carreño, Joaquín Vaquero, Ángel G. Pompa-Pernía, and Myriam Mateos-Fernández

Harmful Algae Blooms (HAB) are now a topic of increasing interest due to the consequences they trigger on the quality of aquatic ecosystems and human health. Cyanobacterial (blue-green algae) proliferation, recurrence and distribution in water bodies around the world is caused by the sum of different climatic and anthropic factors. Manual sampling techniques are not sufficient to satisfy an adequate monitoring; hence, new strategies are needed to its continuous monitoring and possible prediction in affected areas. Real-time sampling techniques provide continuous recording and immediate data reception, which facilitates HABs monitoring with a very fine spatial-temporal resolution. However, these emerging tools are in their very early development stage and some relevant issues still constrain their applicability by many water management agencies. The objective of this work is to implement the same Remote Monitoring System (RMS) architecture in two different water bodies in Iberian Peninsula and to test its suitability for HABs monitoring. To this end, we deployed two plug-and-play nodes based on YSI technologies, two customised nodes based-on Libelium Waspmote and one Libelium weather station in the freshwater As Conchas reservoir, in NW Spain, and the shallow L'Albufera brackish water lagoon in Eastern Mediterranean shoreline.  After that, we evaluate the representativeness of the collected data by performing a Pearson correlation test between the deployed nodes and satellite images. The results show that the more heterogeneous the environment is, the more nodes must be deployed in different areas for a longer time to obtain a realistic view of the water body status. Therefore, this study provides critical and empirical data to implement a profitable and effective real-time monitoring system in other HAB-affected areas.

Acknowledgements: This work was supported by the Spanish Fundación Biodiversidad, Ministry for Ecological Transition and the Demographic Challenge (CianoMOD Project, CA_CC_2018).

How to cite: Pascual-Aguilar, J. A., Morón-López, J., Rodríguez-Sánchez, C., Carreño, F., Vaquero, J., Pompa-Pernía, Á. G., and Mateos-Fernández, M.: CIANOMOD Project. A data gathering and analysis structure for the remote monitoring of algae blooms in inland waters based on Internet of Things, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1122, https://doi.org/10.5194/egusphere-egu21-1122, 2021.

EGU21-2802 | vPICO presentations | GI5.6

Tidal monitoring on sandy beaches using perpendicular time-lapse photography

Mark McDonnell, Jesús Fernández Águila, Gerard Hamill, Raymond Flynn, Georgios Etsias, Thomas Rowan, and Eric Benner

Long term time-lapse photography has proven to be a key tool in monitoring changes in coastal environments, particularly in terms of morphology. The present study adapts and simplifies the approach of some precedents, such as the Argus and CoastSnap systems, to remotely monitor tidal inundation on a sandy beach at Magilligan on the north coast of Northern Ireland. Such a system could prove essential in the study of the effect of waves and tides on groundwater flow and saline intrusion in coastal aquifers, its consequences for sensitive subsurface infrastructure (such as water supply wells), and in the reconciliation of continuous data from same. Photographic data in this study have been gathered using a remote, solar powered time-lapse camera over a six-month period, capturing full neap and spring tidal cycles. Images are captured at hourly intervals and automatically uploaded to the cloud for remote access. The camera is located just 25 metres from the high water mark, overlooking the beach and perpendicular to the sea. This setup contrasts with previous studies where there is a need to find an elevated location at greater distance from the area of investigation. The extent to which a tide inundates up a sandy beach is governed primarily by astronomical effects, which are considered in this study, but also beach slope and atmospheric conditions. It is known that the beach at Magilligan has both a shallow grade (0.02 m) and a high tidal variation (> 150 m between spring and neap tides). Profiles of beach slope are gathered using a differential GPS, while a solar weather station on site, which also uploads data to the cloud, is used to gather atmospheric data. For tidal reference, a traditional tide gauge measuring tide levels at a pier 15 km east of the site is used. Captured images are post-processed using image analysis techniques based around characterising the tidal front against the visual contrast between pixels of sand and pixels of seawater using a routine in MATLAB®. From this analysis, a numerical value for tidal inundation is extracted. Analysis of these data indicates that the tide times (timing of high and low tides) correspond well with those measured at the nearby tide gauge, however important differences exist in terms of magnitude. In comparing these differences with atmospheric data from the site, it is possible to align larger and smaller inundation events with shifts in wind direction and speed. The calibration process involved in digitising the captured images is time-consuming, however, it may be possible to predict tidal inundation from a site using only a remote weather station — knowing how a change in wind speed or direction will affect inundation on the beach. It has already been shown that such instrumentation can be used to detect changes in beach morphology (as a key element in tidal inundation), this research therefore represents an important development in the low-cost remote monitoring of tidal inundation, particularly in locations where regular ground surveying is challenging.

How to cite: McDonnell, M., Fernández Águila, J., Hamill, G., Flynn, R., Etsias, G., Rowan, T., and Benner, E.: Tidal monitoring on sandy beaches using perpendicular time-lapse photography, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2802, https://doi.org/10.5194/egusphere-egu21-2802, 2021.

EGU21-10930 | vPICO presentations | GI5.6 | Highlight

A methodology based on the coupling of marine radar and numerical modeling for beach-inundation prediction.

Giovanni Ludeno and Matteo Postacchini

Coastal flooding is a sudden and abrupt inundation of a coastal environment caused by a short-term increase in sea level due to a storm surge and extreme tides. Although the coastal flooding is generally a natural process and constitutes an important part of the natural coastal dynamics, in areas with human activities it can constitute a major challenge and lead to loss of infrastructures and lives. For these reasons, an Integrated Coastal Zone Management (ICZM) approach, which spans over the main aspects of the coastal region (from prediction to protection, from engineering to ecosystems, from tourism to sustainability) seems essential to mitigate the mentioned negative impacts. At this aim, during the conference a methodology will illustrate based on the combination of X-band Marine radar with a numerical solver (NSWE), which allows predicting the beach inundation [1]. Specifically, the elaboration of the X-band raw data sequence by means of a dedicated data processing based on the solution of an inverse problem, allows us to reconstruct of the local sea state parameters in terms of peak wave direction, peak wavelength, peak wave period and significant wave height as well as the seabed depth [2]. Such reconstructed data are then exploited for the generation of both initial and boundary conditions, to be used to feed the NSWE model. The initial condition consists of the reconstructed bathymetry (e.g., referring to seabed depths within 5m and 9m) which is extended up to the coast using either an existing survey or an equilibrium-profile-based bathymetry. The reconstructed wave characteristics are used to generate, following [3]’s method, the random time series of free-surface elevation, which characterizes the boundary condition of the flood simulations.

Two different wave spectra, which mimic the actual storm conditions occurring along the coast of Senigallia (Adriatic Sea, central Italy), have been simulated. The beach inundations obtained from baseline and flood tests related to both storm conditions are compared. The results confirm that good predictions can be obtained using the combined of X-Band Radar and NSWE simulations [2]. Such findings demonstrate that, for practical purposes, this methodology provides suitable beach-inundation predictions and may represent a useful tool for public authorities dealing with the coastal environment, e.g. for hazard mapping or warning purpose.

References

  • [1] Postacchini, M.; Ludeno, G. Combining Numerical Simulations and Normalized Scalar Product Strategy: A New Tool for Predicting Beach Inundation. J. Mar. Sci. Eng. 2019, 7, 325
  • [2] Ludeno, M. Postacchini, A. Natale, M. Brocchini, C. Lugni, F. Soldovieri, F. Serafino; Normalized Scalar Product Approach for Nearshore Bathymetric Estimation from X-band Radar Images: an Assessment Based on Simulated and Measured Data, IEEE Journal of Oceanic Engineering, doi: 10.1109/JOE.2017.2758118
  • [3] Liu, Z.; Frigaard, P. Generation and analysis of random waves. Technical report, Aalborg Universitet, 1999.

How to cite: Ludeno, G. and Postacchini, M.: A methodology based on the coupling of marine radar and numerical modeling for beach-inundation prediction., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10930, https://doi.org/10.5194/egusphere-egu21-10930, 2021.

EGU21-11958 | vPICO presentations | GI5.6 | Highlight

Feasibility of Using Sentinel-3 in Estimating Lake Nasser Water Depths

Marwa Khairy, Hickmat Hossen, Mohamed Elsahabi, Shenouda Ghaly, Andrea Scozzari, and Abdelazim Negm

Abstract  After the construction of the Grand Ethiopian Renaissance Dam (GERD), Nasser Lake (NL)became one of the most challenging hot spots at both local and global level. It is one of the biggest manmade reservoirs in the world and the most important in Egypt. It is created  in the southern part of the Nile River in Upper Egypt after the construction of Aswan High Dam (AHD). The water level in NL might fluctuate between 160 to 182 m above the mean sea level. Monitoring NL  water depth is an expensive and time-consuming activity. This work investigates the possibility to use information from the Sentinel missions to estimate the depth of NL as an inland water body, in the frame of estimating storage variations from satellite measurements. In this preliminary study, we investigated the relationship between the radiance /reflectance of optical imagery from two instruments SLSTR and OLCI instruments hosted by the Sentinel-3A platform and in situ water depth data using the Lyzenga equation. The results  indictaed  that there was a reasonable correlation between Sentinel-3 optical data and in situ water depth data. Also, Heron's formula was used to estimate water storage variations of NL with limited in situ data. In addition, equations governing the relationship between water level and both surface area and water volume were worked out. This study is in the framework of a bilateral project between ASRT of Egypt and CNR of Italy which is still running.

 

Keywords: Sentinel, SLSTR, OLCI, Inland water body, Nasser Lake, Egypt, Water Depth, GERD, AHD, Egypt

How to cite: Khairy, M., Hossen, H., Elsahabi, M., Ghaly, S., Scozzari, A., and Negm, A.: Feasibility of Using Sentinel-3 in Estimating Lake Nasser Water Depths, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11958, https://doi.org/10.5194/egusphere-egu21-11958, 2021.

EGU21-13628 | vPICO presentations | GI5.6

Estimation of sediment capacity of Aswan High Dam Lake utilizing remotely sensed bathymetric data: Case Study Active Sedimentation portion of Lake Nubia

Abdelazim Negm, Hickmat Hossen, Mohamed Elsahabi, Omar Makboul, and Andrea Scozzari

This study deals with the quantitative estimation of the accumulated sediment capacity within the period from the initiation of the storage process of Lake Nubia in 1964 until 2012, by using field measurements and remote sensing data.. The bed levels of the study area related to year 1964 were extracted from a tri-dimensional model of the lake derived from a topographic map, based on observations anterior to lake filling. This map was compared with the bed levels estimated for the year 2012, which were extracted from remote sensing data, with the aim to estimate the sediment capacity. The utilized technique for estimating the bathymetric data (depths) from satellite images relies on establishing a Multiple Linear Regression (MLR) model between in situ measurements and reflectance data from multi-spectral optical satellite observations. The Multiple Linear Regression (MLR) model showed good results in the correlation between field measurements and remote sensing data. The current approach provides flexibility as well as effective time and cost management in calculating depths from remote sensing data when compared to the traditional method applied by Aswan High Dam Authority (AHDA). This study is in the framework of a bilateral project between ASRT of Egypt and CNR of Italy, which is still running.

 

How to cite: Negm, A., Hossen, H., Elsahabi, M., Makboul, O., and Scozzari, A.: Estimation of sediment capacity of Aswan High Dam Lake utilizing remotely sensed bathymetric data: Case Study Active Sedimentation portion of Lake Nubia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13628, https://doi.org/10.5194/egusphere-egu21-13628, 2021.

EGU21-8639 | vPICO presentations | GI5.6

Observatory of Transfers in the Vadose Zone “O-ZNS” (in Orléans, France): Instrumentation strategy and installation of fiber optic sensors (DTS, DAS and DSS)

Bouamama Abbar, Arnaud Isch, Céline Mallet, Clara Jodry, Laurent Gautier, Mohamad Abbas, and Mohamed Azaroual

The geological and petrophysical properties of the Vadose Zone (VZ) play a major role in the reactive transport of contaminants and fluid dynamics in fractured media and karstic hydrosystems. The mass and heat transfers through the VZ are governed by numerous complex and coupled processes, which control the fate of pollutants and influence the quality of groundwater resources. The current scientific research aimed at deciphering these hydrological and biogeochemical processes thanks to multi-scale laboratory experimentations and field observations. In order to acquire observation data over a wide range of spatial (nm- to km-) and temporal (minutes to decades) scales, an Observatory of transfers in the Vadose Zone (O-ZNS) is being developed at Villamblain (Orléans, France) in an agricultural field. The O-ZNS project consists of an access well with a diameter of 4 m and a depth of 20 m surrounded by several boreholes which will provide access to the entire VZ of the Beauce aquifer. The main target of the O-ZNS project is to acquire high resolution data on the reactive transfers of mass and heat in the VZ, in order to follow in situ and in real time the highly coupled physical, chemical, and biological processes taking place over the long term and at different various scales.

To meet the scientific objectives of the project, several sensors and environmental monitoring techniques are being considered as part of the instrumentation of the O-ZNS site. The preliminary geological, geochemical, and hydrogeological investigations conducted at the laboratory scale and coupled with a multi-methods geophysical sounding undertaken at the field scale generated valuable information on the lithological and hydraulic properties of the highly heterogeneous VZ facies. Based on these results, a first estimation of the mean water travel time of 29 years for an inert solute to reach the water table level (15 m deep) was given.

In this context, three distributed optical fiber sensors (temperature “DTS”, deformation “DSS”, and acoustic “DAS”) were installed in July 2020 along three boreholes surrounding the main observatory well and were connected to a data center. These sensors will allow the monitoring of fluid circulation, the rock fractures characterization, and the micro-movements detection in the VZ of the Beauce aquifer. Many innovative hydrogeological solutions are also being considered for the monitoring of fluids and solutes transport in VZ. These sensors include: water content probes for deep VZ materials, multi-level water sampler systems, and new generation of lysimeters allowing the study of contaminants transfer at an intermediate scale between laboratory and field. A latest-generation multiparameter probe will also be installed in February 2021 in the O-ZNS piezometer to monitor the variations of the water level and the quality of the groundwater. To complete these sensors, geophysical imagery will be deployed at different scale to link all parameters together in a 3D model.

This whole set of devices will provide a better understanding of the mass and heat transfer processes within the whole VZ column of the Beauce aquifer and some of the key compartments of the critical zone.

How to cite: Abbar, B., Isch, A., Mallet, C., Jodry, C., Gautier, L., Abbas, M., and Azaroual, M.: Observatory of Transfers in the Vadose Zone “O-ZNS” (in Orléans, France): Instrumentation strategy and installation of fiber optic sensors (DTS, DAS and DSS), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8639, https://doi.org/10.5194/egusphere-egu21-8639, 2021.

In this presentation we provide a brief overview on the strategic selection of representative groundwater wells and lessons learned.

The inter-disciplinary project “Integrative Groundwater Assessment”, looks into the effects of extreme hydro-meteorological events on the quantity and the chemical and biological quality of groundwater. Focus is on the Austrian Mur catchment, an area reaching from its alpine spring (~2000 m asl) down to the Slovenian border (~200 m asl). More than 500 state operated groundwater observation wells are available over the 400 km of the river’s course, taking private wells not into account. For state operated wells, time series for water levels are publicly available which allows for simply using all the data i.e. using big data approaches [1, 2, 3] – albeit with some issues [4].

However, for water quality, such time series rarely exist and if so, they often do not cover all specific parameters one needs, asking for targeted sampling campaigns. The availability of hundreds of wells seems like a benefit. However, the identification of wells that are representative and suitable for sampling regarding both chemical and biological parameters is a challenging task

In consequence, we went through a multi-step process of planning a sampling campaign that should fulfill the following requirements:

  • Coverage of the entire stream section from alpine to lowland regions

  • Coverage of different land uses in the river valley

  • Realization of well transects from the river through the complete local aquifer

  • Wells allow sampling of groundwater for the analysis of physical-chemical and biological parameters

  • Historical data of groundwater quantity and quality aspects are available

Assessing the available metadata and taking into account the very helpful advice of stakeholders, already reduced the number of representative wells considerably. In order to obtain a consistent data set, another set of wells had to be dismissed, to allow for the same sampling and monitoring procedures at every location. Finally, out in the field, wells that were found damaged or out of order, led to a further reduction. Thus we ended up with only 45 wells suitable for our specific purposes, <10% of what seemed available at the beginning.

However, using specific strategies for data analysis as outlined in [3] and [4] and application of a novel groundwater ecological assessment scheme (D-A-C Index [5]) showed that even the substantially reduced number of wells provides a very good coverage of the various regions in the Mur catchment. In a further step, the results from two sampling campaigns and subsequent data analysis will be used to select an even smaller subset of wells where novel multi-parameter spectral dataloggers are going to be installed, enabling us to monitor various quality data in an very high temporal resolution.

References:

[1] https://doi.org/10.5194/egusphere-egu2020-8148

[2] https://doi.org/10.1016/j.ejrh.2019.100597

[3] https://doi.org/10.1007/s12665-018-7469-4

[4] Haas et al (2020)

Tiny steps towards Big Data - Freud und Leid der Arbeit mit großen Grundwasserdatensätzen.

Tagungsband 2020. Grundwasser und Flusseinzugsgebiete - Prozesse, Daten und Modelle.

[5] https://doi.org/10.1016/j.watres.2019.114902

 

How to cite: Haas, J. C., Retter, A., Birk, S., and Griebler, C.: Selection of representative groundwater monitoring wells – A compromise between site characteristics, data history, stakeholder interests and technological limitations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12895, https://doi.org/10.5194/egusphere-egu21-12895, 2021.

EGU21-1969 | vPICO presentations | GI5.6

Beyond high frequency monitoring: an optimised automatic sampling

Jérémy Mougin

Beyond high frequency monitoring : an optimised automatic sampling

Mougin Jérémy, Superville Pierre-Jean, Cornard Jean-Paul, Billon Gabriel

 

In order to improve the representativity of samples when monitoring a water body, efforts have been made these last years to develop new methodologies to replace grab samples. Passive samplers have allowed to have measurement averaged over several days and represented a first step. High frequency monitoring (usually one measure per hour), either in situ or on-line, led to the observations of daily cycles or transitory phenomena that were not suspected beforehand.

However, such method is usually difficult to implement for some trace analytes (e.g. trace metals or pesticides) or for some specific analysis (e.g. size exclusion chromatography on natural organic matter). Automatic sampling and analysis in the lab can be a solution, but it becomes very labor intensive as soon as the sampling frequency is high. Luck is also needed as a long sampling period can sometimes lead to very few variations if the water system is stable. In order to optimise the automatic sampling, a new methodology has been developped in this project.

A multiparameter probe measuring general parameters (temperature, pH, turbidity, ORP, conductivity, dissolved oxygen and two fluorometers for organic matter) was coupled with an automatic filtering sampler. The data from the probe are processed on-line and an algorithm decides if the geochemical situation in the water body seems new enough to trigger the sampling, based on previously sampled waters. The aim of this device is to collect the right number of samples with the best representativeness of phenomena taking place in the environment.

This method will be tested over a year in 2021 in order to monitor the dissolved organic matter in a small stream with both rural and urban contamination. These high-frequency measurements and samplings could make it possible to better define the sources and dynamics of the organic matter that has a strong impact on the quality of watercourses.

How to cite: Mougin, J.: Beyond high frequency monitoring: an optimised automatic sampling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1969, https://doi.org/10.5194/egusphere-egu21-1969, 2021.

EGU21-2611 | vPICO presentations | GI5.6

(Waste) Water quality sensor requirement and (too) high standards

Peter Rübig

Today in the water sector there are many methods for generating values in big databases. Everything should be connected in the cloud and everyone should access everything anytime. The data is changing very fast in every level and layer and should be controlled anytime. For better quality more methods in measuring data should be applied in parallel and so improve the quality, but this point is very complicated. You can not always compare different data measured by different methods, there are a lot of other enrivonmental factors  in most cases. Many systems in different countries exists with a lot of methods and values (eg. ph,chlorine,nitrate,germs,pathogens,viruses,micro/nano materials(plastic,metall,glass,wood,...),minerals(salt connections,...).

How to cite: Rübig, P.: (Waste) Water quality sensor requirement and (too) high standards, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2611, https://doi.org/10.5194/egusphere-egu21-2611, 2021.

EGU21-9800 | vPICO presentations | GI5.6 | Highlight

Low-cost biosensors for continuous performance assessment of natural-based wastewater treatment systems

Marta Fernandez-Gatell, Xavier Sanchez-Vila, and Jaume Puigagut

Bioelectrochemical systems (BES) are devices that transform the chemical energy of organic and inorganic substrates into an electric current. BES represents a particularly interesting biosensor technology for monitoring the performance of  remote/isolated wastewater treatment facilities (such as constructed wetlands). The work presented here aimed to assess the potential use of the electric signal produced by low-cost, membrane-less BES systems as an indicator of the operational conditions and treatment performance of natural-based wastewater treatment systems. For this purpose, several BES configurations and operation modes working under real domestic wastewater conditions were monitored.

Results showed that the electric current produced by the BES significantly correlates with key parameters in biological-based wastewater treatment systems such as microbial activity and biomass, water COD or solids accumulation. Therefore, our work demonstrates the feasibility of applying bioelectrochemical-based low-cost biosensors for the improvement and control of natural-based wastewater treatment systems.

 

 

Keywords: bioelectrochemical systems, wastewater, microbial activity, organic matter, low-cost, biosensor

How to cite: Fernandez-Gatell, M., Sanchez-Vila, X., and Puigagut, J.: Low-cost biosensors for continuous performance assessment of natural-based wastewater treatment systems, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9800, https://doi.org/10.5194/egusphere-egu21-9800, 2021.

EGU21-7908 | vPICO presentations | GI5.6

Buried pipes monitoring via tomographic imaging in a multifrequency distorted Born approximation framework

Roberta Palmeri, Ilaria Catapano, Francesco Soldovieri, and Lorenzo Crocco

The continuous monitoring of water services is an important task for the reduction of cost associated with the maintenance of buried utility infrastructure and to prevent environmental and security risks for the territory. To this aim, ICT based solutions seem to be good candidates for the development of innovative and effective technologies for sensing and monitoring. Although several aspects are involved in a complete and accurate monitoring of water services (e.g., planning, optimization and modelling of the distribution system), we focus on the detection of possible failures in terms of pipes and sewers leaks through Ground Penetrating Radar (GPR) [1] and microwave imaging (MWI) techniques [2].

Over the past decades, GPR has become one of the most popular non-invasive subsurface imaging techniques, but the complex nature of the environment in which utility infrastructure detection surveys are carried out makes the interpretation of GPR radargrams difficult to accomplish. Accordingly, the idea is to exploit MWI and, in particular, a frequency domain microwave tomography to obtain accurate images of the investigated scenario by solving an inverse scattering problem (ISP) [2].

The ISP is a non-linear and ill-posed problem, so effective solution strategies and regularization techniques are needed to achieve meaningful solutions. In this respect, we exploit a reconstruction approach based on a linearized model of the electromagnetic scattering, that is the Born approximation (BA), in a multifrequency framework. More in detail, we consider the presence of pipes or sewers in our model and look for possible leaks, thus resulting in a distorted BA inversion approach [3]. A truncated Singular Value Decomposition is finally used for the inversion of the relevant linear operator.

Note that even though being an approximated model, the adoption of a linearized model offers practical advantages in terms of computational burden still achieving useful information on the location/size of anomalies. More in detail, once the data have been collected, few seconds are required for the signal-processing step, thus making this kind of approach very appealing for real-time monitoring. Moreover, ‘false solutions’ affecting non-linear techniques are avoided.

Numerical examples concerning different investigated scenarios and failures will be shown at the Conference.

 

[1] D. J. Daniels, Ground penetrating radar. John Wiley & Sons, Hoboken, NJ, 2005.

[2] M. Pastorino, Microwave Imaging, John Wiley & Sons, Hoboken, NJ, 2010

[3] Crocco L., et al, “Early-stage leaking pipes GPR monitoring via microwave tomographic inversion", Journal of Applied Geophysics, 67.4 (2009): 270-277.

 

Acknowledgment: The authors would like to thank the SMART WATERTECH project “Smart Community per lo Sviluppo e l’Applicazione di Tecnologie di Monitoraggio e Sistemi di Controllo Innovativi per il Servizio Idrico Integrato” by which the present work has been financed.

How to cite: Palmeri, R., Catapano, I., Soldovieri, F., and Crocco, L.: Buried pipes monitoring via tomographic imaging in a multifrequency distorted Born approximation framework, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7908, https://doi.org/10.5194/egusphere-egu21-7908, 2021.

EGU21-8380 | vPICO presentations | GI5.6

Velocity field and discharge measurements at the turbine inlet of Iron Gate 2 hydropower plant

Damjan Ivetic, Dusan Prodanovic, and Predrag Vojt

To define the performance characteristics of turbines in Hydropower Plants (HPP) accurate hydraulic, mechanical and electrical quantities are needed. The discharge is the most difficult quantity to measure and assess its uncertainty (Adamkowski, 2012). Traditionally, during field acceptance tests the discharge is measured using velocity-area method. Often, no direct flow measurements are possible and only index methods are used, with flow coefficients obtained during physical model testing. In the non-standard situations, with adverse flow conditions this may lead to unpredicted flow uncertainty.

             The system used at the Iron Gate 2 HPP for control flow measurement at the inlet of bulb turbine is presented in this paper. The HPP is situated on a Danube river, between Serbia and Romania and is operational from 1985. The HPP is equipped with 20 horizontal Kaplan low head bulb turbines. The physical model experiments (JČInstitute, 2006) have concluded that due to the upstream flow conditions, the incident water flow direction is not parallel to the turbines (depending on operating conditions and can be up to 40o) as was assumed during the turbine’s model tests, raising the question of used Winter-Kennedy’s method accuracy.

             To perform a control flow measurement, a modular velocity-area system was designed. The system can be installed at the intake of any turbine, upstream of the trash rack. It consists of the 14.5x3.1 m steel frame, shaped to minimize flow disturbances, which can be traversed vertically through the flow cross section (28 m). Due to the high incident angles and large vortices in the front of the trash rack, propeller current meters were not suitable. The novel spherical 3D electromagnetic velocity meter (EMVM) was developed (Svet Instrumenata), enabling fast and continuous measurements of all the velocity vector components, with low flow disturbance. The 15 EMVMs were mounted on the frame and connected into the measurement network. Redundant velocity measurement was done using 2 Nortek “Vector” ADVs (Nortek). The measurement network also comprises of 2 water level pressure transducers and 2 steel frame position transducers (UniMeasure). All measurements were synchronized with HPP’s SCADA, so turbine’s operational parameters were downloaded off-line and merged.

             During the 2020, measurement system was used on the two turbines. The velocity profile was measured using two strategies: incrementally, the steel frame was raised from the bottom (average depth of 26 m) in increments of ~1.0 m and kept for at least 10 min in fixed position, and continuous where the steel frame was traversed through the flow cross-section with a constant speed of 0.05 m/s. Uncertainty assessment procedure, specifically tailored for this application, yielded discharge measurement uncertainties between 1.02 % and 2.00 %  for incremental, and between 1.65 % to 2.79 % for continuous regime.

References

Adamkowski, A. (2012). Discharge measurement techniques in hydropower systems with emphasis on the pressure-time method. Hydropower-practice and application.

Jaroslav Černi Institute (2006). Scale model investigation of turbine runner inflow at an unfavorable angle at HPP „Đerdap II“, SDHI (in Serbian)

NORTEK: https://www.nortekgroup.com/products/vector-300-m

Svet Instrumenata: http://www.si.co.rs/index-e.html

UniMeasure: https://unimeasure.com/wp-content/uploads/2019/12/HX-EP-SERIES-CATALOG-PAGES-1.pdf

How to cite: Ivetic, D., Prodanovic, D., and Vojt, P.: Velocity field and discharge measurements at the turbine inlet of Iron Gate 2 hydropower plant, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8380, https://doi.org/10.5194/egusphere-egu21-8380, 2021.

EGU21-13476 | vPICO presentations | GI5.6

Software-in-the-loop and hardware-in-the-loop paradigms and their use for research and development of autonomous underwater vehicles

Zorana Milosevic, Ramon A. Suarez Fernandez, Sergio Dominguez, Claudio Rossi, Richard Zoltan Papp, and Hilco van Moerkerk

The development and field testing of autonomous robots are complex tasks for a number of reasons. The involved logistics are often quite complicated, and the risk of damaging the equipment under evaluation is very high; this could, on occasion, represent a considerable time and monetary overload. Such difficulties are greatly magnified in the development and testing of the underwater platforms designed to operate in hazardous environments, such as underground flooded mines, the main focus of the UNEXUP project, funded under EIT Raw Materials, and its predecessor, the horizon 2020 UNEXMIN project. These unique field working conditions involve a high risk of permanent loss of the platform in case of failure or error and a high risk of casualties in rescue attempts entailing direct human actions. 

In contrast, software-in-the-loop (SIL) and hardware-in-the-loop (HIL) testing paradigms are powerful tools for preliminary system validation and algorithm benchmarking where troubleshooting is simplified through the use of a controlled environment. They provide a time- and cost-effective solution for testing, thus having a crucial role in the development of advanced autonomous robotic platforms. These two paradigms are possible thanks to the evolution of simulation models, which have achieved astonishing completeness and can realistically simulate not only system dynamics but also all the operational components of a robotic platform, such as their sensor readings, even corrupted with realistic noise. SIL experiments involve software uniquely, and are thus performed without the real robot platform but its simulation model, making them an ideal tool for testing specific algorithms or software modules. On the other hand, HIL experiments involve the real robot’s hardware, either the complete robotic platform or only parts of it, thus providing a more realistic testing environment. 

In this work, we illustrate the vast range of aspects during the development of a robotic platform that can dramatically benefit from the use of the combination of SIL and HIL testing, especially in those technical applications where field trials show severe operational difficulties. We show how these testing paradigms provide a solid basis for evaluating parts or modules of a system, which, besides being convenient for the development of advanced robotic platforms by multiple teams, also bridges the gap between algorithm design and the testing of a complete platform. Then, we show how SIL and HIL can substitute parts of real environments, and enrich aspects of real data to focus on specific testing situations not easily controllable, or even dangerous, in field tests. We demonstrate how we can create augmented environments by introducing virtual obstacles and even complete virtual maps into the available experimental setup, such as a real submersible inside a water tank, thus testing complex maneuvers and simulating possible real scenarios with minimum risk of compromising the equipment. We show how these environments are beneficial not only when developing autonomous submersibles but also when training human operators of non-autonomous ones in a so-called human-in-the-loop configuration. 

How to cite: Milosevic, Z., Suarez Fernandez, R. A., Dominguez, S., Rossi, C., Zoltan Papp, R., and van Moerkerk, H.: Software-in-the-loop and hardware-in-the-loop paradigms and their use for research and development of autonomous underwater vehicles, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13476, https://doi.org/10.5194/egusphere-egu21-13476, 2021.

EGU21-13460 | vPICO presentations | GI5.6

Development of a water monitoring network based on open architecture and Internet-of-Things technologies

Elias Dimitriou, Georgios Poulis, and Anastasios Papadopoulos

Good water quality status in rivers and lakes is vital for both human well-being and biodiversity conservation and requires efficient monitoring and restoration strategies. This is reflected in an increasing number of International and National legislations which enforce water resources management and monitoring at a basin scale.

For this purpose, state-of-the-art monitoring schemes have been developed by using low-cost, technologically advanced sensors and Internet of Things (IoT) infrastructure. Remote sensing offers also a good water monitoring alternative but is more appropriate for medium to large water bodies with less dynamic character in comparison to small scale, temporary rivers.

Recent technological advances in sensors technology, energy supply, telecommunication protocols and data handling, facilitate the use of automated monitoring stations, but still, deployment of extended networks with readily available data remains far from common practice. Installation and operational costs for the development of such monitoring networks are among the most commonly faced challenges.

The main aim of this effort is to present the development of a network of automatic monitoring stations that measure in near real time water level and physicochemical parameters in several Greek rivers. This infrastructure has been developed under the project “Open ELIoT” (Open Internet of Things infrastructure for online environmental services - https://www.openeliot.com/en/), which was funded by the Greek National Structural Funds. It includes a low cost and easy to produce hardware node, coupled with commercial sensors of industrial specifications, as well as an IoT data platform, elaborating and presenting data, based on open technologies.

During its initial operation phase, the system has been deployed in sites with different hydrological regimes and various pressures to water quality, including (a) an urban Mediterranean stream (Pikrodafni stream), and (b) the urban part of a continental river running through an agricultural area (Lithaios stream).

Preliminary data on the continuous monitoring of sites (a) and (b) are presented here, reflecting the differences in pressures to the respective water bodies. Pikrodafni stream which is located close to the center of Athens – Greece and receives a lot of pressure from urban waste, illustrates Dissolved Oxygen (DO) concentration with a heavily skewed distribution towards low values (mean value: 2.15 mg/l and median: 0.93 mg/l). On the contrary, in Lithaios stream, which is more affected by agricultural runoff, dissolved oxygen data approach a normal distribution (mean value: 6.93 mg/l and median: 7.03 mg/l). The 25th and 75th percentiles in Pikrodafni stream are: 0.1 mg/l and 3.47 mg/l respectively while in Lithaios stream are: 5.6 mg/l and 8.45 mg/l. The average water temperature is similar to both streams (18.8 oC in Pikrodafni and 16.2 oC in Lithaios). Therefore, the significant differences in DO concentrations between the two streams indicate the need for continuous monitoring of data that facilitates the identification of pressures and enables stakeholders to respond to pollution events in time.

How to cite: Dimitriou, E., Poulis, G., and Papadopoulos, A.: Development of a water monitoring network based on open architecture and Internet-of-Things technologies, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13460, https://doi.org/10.5194/egusphere-egu21-13460, 2021.

EGU21-4583 | vPICO presentations | GI5.6

Influence on antenna design on range of LoraWAN devices – a practical test

Harald Roclawski, Thomas Krätzig, and Laura Sterle

In the research project Iot.H2O, which is funded under the Water JPI Joint Call 2017 IC4WATER, the potential of the Internet of Things concept is investigated for monitoring and controlling water distribution systems. Smart sensors are used which send data among others via LoraWAN to gateways which are connected to the Internet. The aim of the project is to use low-cost sensors and open-source software.

In the presentation, results of a range test with the developed LoraWAN devices are reported. One important factor is the antenna design. Results of tests with 6 different antennas will be presented among them are two antennas which are printed on a PCB and 4 commercially available antennas.

The TTN mapper App is used for recording the signals of the IoT devices in an urban and an rural environment.

How to cite: Roclawski, H., Krätzig, T., and Sterle, L.: Influence on antenna design on range of LoraWAN devices – a practical test, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4583, https://doi.org/10.5194/egusphere-egu21-4583, 2021.

EGU21-13092 | vPICO presentations | GI5.6 | Highlight

Machine learning-based tools for water digitalisation

Asma Slaimi, Susan Hegarty, Fiona Regan, Michael Scriney, and Noel O’Connor

Advanced technologies have proven to deliver significant outcomes in the water management sector. New technologies provide the capability to collect and correlate the information from remote devices, introducing smart tools that can leverage augmented intelligence for interpreting structured and unstructured, text-based or sensory data. However, most of the single feature or non-sequential prediction machine learning methods for understanding water quality achieve poor results due to the fact that water quality information exists in the form of multivariate time-series datasets.

At the catchment scale, there are many layers where relevant data needs to be measured and captured. For that, data warehouses play an essential role in decision support systems as they provide adequate information. 

In this paper, we started by extracting, transforming, cleaning and consolidating data from several data sources into a data warehouse. Then, the data in the warehouse was used to develop a computer tool to predict river water level using Artificial Neural Networks (ANNs), in particular, Long Short-Term Memory networks (LSTM). As the prediction performance is significantly affected by the model inputs, the feature selection step, which considers the multivariate correlation of water quality information in terms of similarity and proximity, is particularly important. The features obtained from the previous steps are the inputs to the prediction model based on LSTM, which naturally takes the time sequence of water quality information into account.

The proposed method is applied to two different catchments in the island of Ireland. Experimental results indicate that our model provides accurate predictions for water levels and is a useful supportive tool for water quality management. 

Ultimately, digitised representations of water environments will guarantee situational awareness of water flow and quality monitoring. The digitalisation of water is no longer optional but a necessity to solve many of the challenges faced by the water industry.


Keywords: Water digitalisation, water quality, data warehouse, machine learning, predictive model, LSTM.



How to cite: Slaimi, A., Hegarty, S., Regan, F., Scriney, M., and O’Connor, N.: Machine learning-based tools for water digitalisation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13092, https://doi.org/10.5194/egusphere-egu21-13092, 2021.

EGU21-14956 | vPICO presentations | GI5.6

HYDRO-NET: Hydro-telemetric Network for surface waters – Innovations and Prospects

Katerina Mazi, Antonis D. Koussis, Spyridon Lykoudis, Georgios Vitantzakis, Panayiotis Dimitriadis, Nikolaos Kappos, Basil Psiloglou, Dimitrios Katsanos, Ioannis Koletsis, Evangelos Rozos, and Theodora Kopania

The Hydro-telemetric Network, HYDRO-NET, is a pilot streamflow monitoring network established and operated by the Institute for Environmental Research and Sustainable Development of the National Observatory of Athens (NOA) within the HYDRO-NET Project (2018-2021): Hydro-Telemetric Network of Surface Waters: Gauging instruments, smart technologies, installation and operation. An aim of the project is that HYDRO-NETs’ principles of design, installation and operation will guide establishing of hydrometric networks in the Hellenic territory. HYDRO-NET provides a comprehensive framework for collection, transmission, handling and free use of data that combines technological innovations and advanced scientific methods with efficient use of resources. It particularly responds to the need of estimating the discharge at cross-sections of streams where no prior data exist by inexpensive means.

Technological innovations concern the design and construction of a prototype hydro-telemetry system that combines custom built firmware and intelligent measuring technologies with telecommunication at low cost, ~50% the price of a commercial station. This prototype is equipped with an ultrasonic sensor for measuring stage, a thermometer, a GPRS modem, a camera and a data logger (it can also receive input from a rain gauge), and is powered by a solar panel; data and photos are transmitted to NOA’s server via mobile internet. The systems’ additional advantages are flexibility in programming, low maintenance costs, and the possibility of extending its monitoring capabilities with additional sensors (e.g. for monitoring water quality, video camera).

Progress in streamflow estimation is achieved through the development of a maximum-entropy based method that calculates the discharge, at a cross-section of known bathymetry, using measurements of water stage and surface velocity by SVR (Surface Velocity Radar) and/or video cameras. Rating curves at monitoring stations can be thus constructed by inexpensive field campaigns, and safely under flooding.  

HYDRO-NET currently operates 16 hydro-telemetric stations, six of which are of NOA’s design, in the Peloponnese and in Attica, Greece. Measured data are transmitted to NOAs’ Server, where they are automatically processed (Quality Controlled) and stored in a Data Base; the data are freely available to users through the OpenHi.net platform (openhi.net), or upon request (hydronet@noa.gr). A prime service prospect of the HYDRO-NET system, with its real-time observations, is Flood Warning.

 

Acknowledgment: The Hellenic General Secretariat for Research & Technology has provided financial support, under the National Strategic Reference Framework (2014-2020), for the project HYDRO-NET: Hydro-Telemetric Networks of Surface Waters: Gauging instruments, smart technologies, installation and operation, as a part of the Hellenic Integrated Marine and Inland Water Observing, Forecasting and Offshore Technology System, HIMIOFoTS (MIS5002739) (https://www.himiofots.gr/).

How to cite: Mazi, K., Koussis, A. D., Lykoudis, S., Vitantzakis, G., Dimitriadis, P., Kappos, N., Psiloglou, B., Katsanos, D., Koletsis, I., Rozos, E., and Kopania, T.: HYDRO-NET: Hydro-telemetric Network for surface waters – Innovations and Prospects, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14956, https://doi.org/10.5194/egusphere-egu21-14956, 2021.

EGU21-3085 | vPICO presentations | GI5.6 | Highlight

Plants, vital players in the terrestrial water cycle

Marie-Claire ten Veldhuis, Tom van den Berg, Martine van der Ploeg, Elias Kaiser, Satadal Dutta, Arnold Moene, Sylvere Vialet-Chabrand, and Tim van Emmerik

Plant transpiration accounts for about half of all terrestrial evaporation (Jasechko et al., 2013). Plants need water for many vital functions including nutrient uptake, growth, maintenance of cell turgor pressure and leaf cooling. Due to the regulation of water transport by stomata in the leaves, plants lose 97% of the water they take via their roots, to the atmosphere. They can be viewed as transpiration-powered pumps on the interface between the soil and atmosphere.

Measuring plant-water dynamics is essential to gain better insight into their role in the terrestrial water cycle and plant productivity. It can be measured at different levels of integration, from the single cell micro-scale to the ecosystem macro-scale, on time scales from minutes to months. In this contribution, we give an overview of state-of-the-art techniques for transpiration measurement and highlight several promising innovations for monitoring plant-water relations. Some of the techniques we will cover include stomata imaging by microscopy, gas exchange for stomatal conductance and transpiration monitoring, thermometry for water stress detection, sap flow monitoring, hyperspectral imaging, ultrasound spectroscopy, accelerometry, scintillometry and satellite-remote sensing.

Outlook: To fully assess water transport within the soil-plant-atmosphere continuum, a variety of techniques is required to monitor environmental variables in combination with biological responses at different scales. Yet this is not sufficient: to truly solve for spatial heterogeneity as well as temporal variability, dense network sampling is needed.

In PLANTENNA (https://www.4tu.nl/plantenna/en/) a team of electronics, precision and microsystems engineers together with plant and environmental scientists develop and implement innovative (3D-)sensor networks that measure plant and environmental parameters at high resolution and low cost. Our main challenge for in-situ sensor autonomy (“plug and forget”) is energy: we want the sensor nodes to be hyper-efficient and rely fully on (miniaturised) energy-harvesting.

REFERENCES:

Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496(7445), 347-350.
Plantenna: "Internet of Plants". (n.d.). https://www.4tu.nl/plantenna/en/

 

How to cite: ten Veldhuis, M.-C., van den Berg, T., van der Ploeg, M., Kaiser, E., Dutta, S., Moene, A., Vialet-Chabrand, S., and van Emmerik, T.: Plants, vital players in the terrestrial water cycle, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3085, https://doi.org/10.5194/egusphere-egu21-3085, 2021.

GI6.1 – Remote sensing for environmental monitoring

In the last decade, a range of new remote-sensing techniques has led to a dramatic increase in terrain information, providing new opportunities to understand better Earth surface processes based on geomorphic signatures. Light detection and ranging (LiDAR) technology and, more recently, Structure from Motion (SfM) photogrammetry have the capability to produce sub-meter resolution digital elevation models (DEM) over large areas. LiDAR high-resolution topographic surveying is traditionally associated with high capital and logistical costs. Remotely Piloted Aircraft Systems (RPAS) on the other hand, offer a remote sensing tool capable of acquiring high-resolution spatial data at an unprecedented spatial and temporal resolution at an affordable cost, thus making multi-temporal surveys more flexible and easy to conduct. The scientific community is now providing a significantly increased amount of analyses on the Earth’s surface using RPAS in different environmental contexts and purpose. The goal of this talk is to provide a few useful examples of surveys through airborne LiDAR and RPAS monitoring of anthropogenic landscapes with a specific focus on mining (e.g., open-pit) and agriculture (e.g., terraces). In details, multi-temporal surveys and geomorphometric indexes (including novel landscape metrics) have been carried out and tested in key study areas in order to (i) map the extension of the investigated features, (ii) track any anthropogenic change through time, (iii) analyze the effects of the change related to changes in erosion. The proposed analysis can provide a basis for a large-scale and low-cost topographic survey for sustainable environmental planning and, for example, for the mitigation of anthropogenic environmental impacts.

References

  • Chen J, Li K, Chang K-J, Sofia G, Tarolli P (2015). Open-pit mining geomorphic feature characterization. International Journal of Applied Earth Observation and Geoinformation, 42, 76-86, doi:10.1016/j.jag.2015.05.001.
  • Cucchiaro S, Fallu DJ, Zhang H, Walsh K, Van Oost K, Brown AG, Tarolli P (2020). Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. Remote Sensing, 12, 1946, doi:10.3390/rs12121946.

How to cite: Tarolli, P.: Advanced remote sensing techniques for monitoring anthropogenic landscapes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3574, https://doi.org/10.5194/egusphere-egu21-3574, 2021.

Soil is one of the world’s most important natural resources for human livelihood as it provides food and clean water. Therefore, its preservation is of huge importance. For this purpose, a proficient regional database on soil properties is needed. The project “ReCharBo” (Regional Characterisation of Soil Properties) has the objective to combine remote sensing, geophysical and pedological methods to determine soil characteristics on a regional scale. Its aim is to characterise soils non-invasive, time and cost efficient and with a minimal number of soil samples to calibrate the measurements. Konen et al. (2021) give detailed information on the research concept and first field results in a presentation in the session “SSS10.3 Digital Soil Mapping and Assessment”. Hyperspectral remote sensing is a powerful and well known technique to characterise near surface soil properties. Depending on the sensor technology and the data quality, a wide variety of soil properties can be derived with remotely sensed data (Chabrillat et al. 2019, Stenberg et al. 2010). The project aims to investigate the effects of up and downscaling, namely which detail of information is preserved on a regional scale and how a change in scales affects the analysis algorithms and the possibility to retrieve valid soil parameter information. Thus, e.g. laboratory and field spectroscopy are applied to gain information of samples and fieldspots, respectively. Various UAV-based sensors, e.g. thermal & hyperspectral sensors, are applied to study soil properties of arable land in different study areas at field scale. Finally, airborne (helicopter) hyperspectral data will cover the regional scale. Additionally forthcoming spaceborne hyperspectral satellite data (e.g. Prisma, EnMAP, Sentinel-CHIME) are a promising outlook to gain detailed regional soil information. In this context it will be discussed how the multisensor data acquisition is best managed to optimise soil parameter retrieval. Sensor specific properties regarding time and date of acquisition as well as weather/atmospheric conditions are outlined. The presentation addresses and discusses the impact of a multisensor and multiscale remote sensing data collection regarding the results on soil parameter retrieval.

 

References

Chabrillat, S., Ben-Dor, E. Cierniewski, J., Gomez, C., Schmid, T. & van Wesemael, B. (2019): Imaging Spectroscopy for Soil Mapping and Monitoring. Surveys in Geophysics 40:361–399. https://doi.org/10.1007/s10712-019-09524-0

Stenberg, B., Viscarra Rossel, R. A., Mounem Mouazen, A. & Wetterlind, J. (2010): Visible and Near Infrared Spectroscopy in Soil Science. In: Donald L. Sparks (editor): Advances in Agronomy. Vol. 107. Academic Press:163-215. http://dx.doi.org/10.1016/S0065-2113(10)07005-7

How to cite: Mommertz, R., Konen, L., and Schodlok, M.: Regional characterisation of soil properties by combining soil science and hyperspectral and thermal remote sensing: A technical overview of lab and field remote sensing methods, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4818, https://doi.org/10.5194/egusphere-egu21-4818, 2021.

EGU21-7116 | vPICO presentations | GI6.1

Measuring soil erosion resistance on coastal dikes linking hyperspectral UAV-data, plant traits and soil information

Jan-Michael Schönebeck, Maike Paul, Oliver Lojek, Boris Schröder, Jan Visscher, and Torsten Schlurmann

The integrity of a sea dike, especially its surface soil and biological revetment, is indispensable for coastal protection, as a dike breach would result in damages and economic losses. Estimates of the condition of a sea dike are typically established by on-site inspections and expert judgement at regular intervals. These status assessments of the protection level of the sea dike evaluate grass coverage and animal burrows, since structural inconsistencies deter the overall safety levels on coastal protection. In laboratory settings, erosion resistance of a sea dike is often determined by means of assessing critical shear stress induced by wave-run up and overtopping. Whereby the grain size distribution and soil aggregate formation on the one hand and the root penetration of the sample on the other are significant factors influencing critical shear stress and therefore erosion resistance. 
Drone-/UAV-based remote sensing can be used to easily determine the degree of coverage of the dike revetment via green value detection. Thermal spectroscopy is also already used in agriculture to detect the state of health of plants at an early stage, for example due to a shortage of water. In addition, plants can be classified using hyperspectral imaging data. 
We aim to derive transfer functions correlating ground truthing data, drawn from coastal real world- and a full scale laboratory dike, with plant species, its characteristic taxonomic traits and assessed top soil parameters. This approach bears the advantage of yielding an erosion-resistance estimate of the dike cover based on the plant classification using UAV-derived hyperspectral information. Furthermore, taxonomic species are sought to be paired with their respective, site specific, root architecture. Soil parameters such as nutrient availability and humidity will be observed and integrated into the approach, as they bear an impact on subterranean vegetation growth in that plants with lower nutrient availability develop a higher root network (high root length density [cm/cm³]). Finally, grazing livestock on the dike impacts the root system and soil structure as well and both aspects will be investigated comparing mowed against grazed areas as preliminary results show a dike cover void of grazing livestock exhibits a higher root shoot ratio than one with grazing. We hypothesize that classifying plants based on optical, hyperspectral UAV-derived data and the knowledge about the composition of the subsoil, the correlation of plant-specific root architecture and root growth with nutrient availability and agricultural maintenance could provide valuable information about erosion resistance of the dike cover to support dike inspection on an objective basis.

How to cite: Schönebeck, J.-M., Paul, M., Lojek, O., Schröder, B., Visscher, J., and Schlurmann, T.: Measuring soil erosion resistance on coastal dikes linking hyperspectral UAV-data, plant traits and soil information, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7116, https://doi.org/10.5194/egusphere-egu21-7116, 2021.

EGU21-593 | vPICO presentations | GI6.1

PRISMA Hyperspectral – First insights in the performance in urban surface cover and coastal seascape analysis

Dimitris Poursanidis and Nektarios Chrysoulakis

The characterization of the Earth’s surface cover based on predefined classes is among the fundamental activities in the domain of satellite image analysis image since the early 70s. It was the joint NASA/ U.S. Geological Survey Landsat series of Earth Observation satellites that start to continuously acquired images of the Earth's land surface, providing uninterrupted data to help land managers and policymakers make informed decisions about natural resources and the environment. However, in 2020, the collected data even if are of continuous flow in terms volume of terrabytes per day from various optical and radar systems, are limited in terms of spectral resolution since almost all sensors are limited to a maximum of 25 spectral channels in the visible, near-and-shortwave-and-thermal infrared spectrum. The need of denser spectral information has been highlighted in early 80s and the first satellite-based hyperspectral sensor, AVIRIS, start to provide data allowing the extraction information on material composition and precise surface cover information. Since then few attempt appear but more are undergoing for launching. In 2019, the Italian Space Agency launch the PRISMA hyperspectral satellite which collect spectral data in the 400-2500nm spectrum; in total 250 spectral channels with a spectral width of ~ 12nm, at 30m pixel size. Here we present first results of the use of Level 2D PRISMA hyperspectral data in mapping the surface characteristics of the urban and periurban area of Heraklion city along with the coastal zone of the urban front aiming at the simultaneous creation of a land-and-coastal cover map along with the extraction of coastal bathymetry information using artificial intelligence approaches within open access platforms. The use of hyperspectral information allow the separation of urban surfaces based on material signatures, while the availability of dense spectral information in the blue-green spectrum allow the more accurate retrieval of coastal seascape characteristics. It is envisaged that hyperspectral missions soon to be the normal in Earth Observation, allowing the accurate creation of geospatial information for further use in several applications.

How to cite: Poursanidis, D. and Chrysoulakis, N.: PRISMA Hyperspectral – First insights in the performance in urban surface cover and coastal seascape analysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-593, https://doi.org/10.5194/egusphere-egu21-593, 2021.

EGU21-3551 | vPICO presentations | GI6.1

Feature Extraction Techniques for Airborne Hyperspectral Images – Implication for Mineral Exploration

Rupsa Chakraborty, Gabor Kereszturi, Reddy Pullanagari, Patricia Durance, Salman Ashraf, and Dave Craw

Geochemical mineral prospecting approaches are mostly point-based surveys which then rely on statistical spatial extrapolation methods to cover larger areas of interest. This leads to a trade-off between increasing sampling density and associated attributes (e.g., elemental distribution). Airborne hyperspectral data is typically high-resolution data, whilst being spatially continuous, and spectrally contiguous, providing a versatile baseline to complement ground-based prospecting approaches and monitoring. In this study, we benchmark various shallow and deep feature extraction algorithms, on airborne hyperspectral data at three different spatial resolutions, 0.8 m, 2 m and 3 m. Spatial resolution is a key factor to detailed scale-dependent mineral prospecting and geological mapping. Airborne hyperspectral data has potential to advance our understanding for delineating new mineral deposits. This approach can be further extended to large areas using forthcoming spaceborne hyperspectral platforms, where procuring finer spatial resolution data is highly challenging. The study area is located along the Rise and Shine Shear Zone (RSSZ) within the Otago schist, in the South Island (New Zealand). The RSSZ contains gold and associated hydrothermal sulphides and carbonate minerals that are disseminated through sheared upper green schist facies rocks on the 10-metre scale, as well as localized (metre-scale) quartz-rich zones. Soil and rock samples from 63 locations were collected, scattered around known mineralised and unmineralized zones, providing ground truth data for benchmarking. The separability between the mineralized and the non-mineralised samples through laboratory based spectral datasets was analysed by applying Partial least squares discriminant analysis (PLS-DA) on the XRF spectra and laboratory based hyperspectral data separately. The preliminary results indicate that even in partially vegetated zones mineralised regions can be mapped out relatively accurately from airborne hyperspectral images using orthogonal total variation component analysis (OTVCA). This focuses on feature extraction by optimising a cost function that best fits the hyperspectral data in a lower dimensional feature space while monitoring the spatial smoothness of the features by applying total variation regularization.

How to cite: Chakraborty, R., Kereszturi, G., Pullanagari, R., Durance, P., Ashraf, S., and Craw, D.: Feature Extraction Techniques for Airborne Hyperspectral Images – Implication for Mineral Exploration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3551, https://doi.org/10.5194/egusphere-egu21-3551, 2021.

EGU21-10346 | vPICO presentations | GI6.1

Airborne Hyperspectral Imaging for Monitoring Geothermal Activity Through Vegetation

Cecilia Rodriguez-Gomez, Gabor Kereszturi, Robert Reeves, Andrew Rae, Reddy Pullanagari, Paramsothy Jeyakumar, and Jonathan Procter

Remote sensing techniques are used to explore geothermal areas. They can offer spatial, temporal and spectral information to map lithological boundaries and hydrothermal alteration in a fast and cheap manner. However, some geothermal areas are densely covered by vegetation, which can hamper remote sensing monitor efforts for geothermal areas.

Vegetation cover in geothermal areas can reflect the subsurface activity, reacting to interactions between soil’s chemical conditions, heat and gas emissions. An example of such is kanuka (i.e. kunzea ericoides), an endemic shrub of geothermal areas in the Taupo Volcanic Zone (TVZ), New Zealand, which has been used as an indicator species for ground-based geothermal studies. This study assesses the use of airborne hyperspectral and thermal data over the Waiotapu Geothermal Field, TVZ, New Zealand, analysing kanuka shrub surface cover and its spectral response to geothermal activity. To explore the capability in hyperspectral remote sensing for geothermal site mapping and exploration, a series of vegetation indices, including; Anthocyanin Reflectance Index, Atmospherically Resistant Vegetation Index, Moisture Stress Index, Normalised Difference Vegetation Index, Simple Ratio Index, Vogelmann Index and Water Band Index were calculated from narrow bandwidth high-resolution hyperspectral.

The spectral response of vegetation was then analysed to explore the effects of geothermal heat, offering surrogate information on vegetation health. Vegetation indices results were compared against the thermal infrared data by visual interpretation and quantitative analyses, which shows strong spatial correlation among the vegetation cover type and heat distribution. Furthermore, exponential trendlines produced the best fit between vegetation indices and thermal infrared data. This correlation indicates soil temperatures affect the vegetation health (e.g. chlorophyll concentrations, newly forming leaves, water content). This relationship can highlight that there is valuable information in airborne hyperspectral data to complement exploration efforts, such as heat flux mapping. We conclude kanuka shrub has the potential to be employed as a proxy in exploration and monitoring of geothermal areas in New Zealand from remote sensing platforms.

How to cite: Rodriguez-Gomez, C., Kereszturi, G., Reeves, R., Rae, A., Pullanagari, R., Jeyakumar, P., and Procter, J.: Airborne Hyperspectral Imaging for Monitoring Geothermal Activity Through Vegetation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10346, https://doi.org/10.5194/egusphere-egu21-10346, 2021.

Mining generates a number of significant environmental impacts, such as increased acidity of the soil/water environment, called mineral Acid Mine Drainage (AMD) being produced when sulphide-bearing material is exposed to oxygen and water.  Similar problem represent acid sulphate soils which are naturally occurring soils containing iron sulphide minerals (predominantly pyrite) or their oxidation products. Once these soils are drained, excavated or exposed to air by a lowering of the water table, the sulphides react with oxygen to form sulfuric acid. For both AMD and acid sulphate soils, there is a lack of historical and update records and, consequently, there is a need for new monitoring techniques allowing systematic analysis. A systematic study on how to map mineral patterns that characterize these acid environments using proximal remote sensing and imaging spectroscopy is presented. Furthermore, the upscaling to the spectral and spatial resolution of the satellite data such as WorldView2/3 and Sentinel-2 is discussed as well as an issue of transferability of the developed methods between the test sites which are characterized by different geographical conditions and environments.

How to cite: Kopackova-Strnadova, V.: Acid Mine Drainage (AMD) and Acid Sulphate Soil monitoring using mineral and image spectroscopy: hyperspectral and multispectral approaches, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11864, https://doi.org/10.5194/egusphere-egu21-11864, 2021.

EGU21-11479 | vPICO presentations | GI6.1

Remediation-related monitoring of heavy metal concentration of contaminated Technosol using hyperspectral measurements

Friederike Kaestner, Magdalena Sut-Lohmann, Thomas Raab, Hannes Feilhauer, and Sabine Chabrillat

Across Europe there are 2.5 million potentially contaminated sites, approximately one third have already been identified and around 15% have been sanitized. Phytoremediation is a well-established technique to tackle this problem and to rehabilitate soil. However, remediation methods, such as biological treatments with microorganisms or phytoremediation with trees, are still relatively time consuming. A fast monitoring of changes in heavy metal content over time in contaminated soils with hyperspectral spectroscopy is one of the first key factors to improve and control existing bioremediation methods.

At former sewage farms near Ragow (Brandenburg, Germany), 110 soil samples with different contamination levels were taken at a depth between 15-20 cm. These samples were prepared for hyperspectral measurements using the HySpex system under laboratory conditions, combing a VNIR (400-1000 nm) and a SWIR (1000-2500 nm) line-scan detector. Different spectral pre-processing methods, including continuum removal, first and second derivatives, standard normal variate, normalisation and multiplicative scatter correction, with two established estimation models such as Partial Least Squares Regression (PLSR) and Random Forest Regression (RFR), were applied to predict the heavy metal concentration (Ba, Ni, Cr, Cu) of this specific Technosol. The coefficient of determination (R2) shows for Ba and Ni values between 0.50 (RMSE: 9%) and 0.61 (RMSE: 6%) for the PLSR and between 0.84 (RMSE: 0.03%) and 0.91 (RMSE: 0.02%) for the RFR model. The results for Cu and Cr show values between 0.57 (RMSE: 17.9%) and 0.69 (RMSE: 15%) for the PLSR and 0.86 (0.12%) and 0.93 (0.01%) for the RFR model. The pre-processing method, which improve the robustness and performance of both models best, is multiplicative scatter correction followed by the standard normal variate for the first and second derivatives. Random Forest in a first approach seems to deliver better modeling performances. Still, the pronounced differences between PLSR and RFR fits indicate a strong dependence of the results on the respective modelling technique. This effect is subject to further investigation and will be addressed in the upcoming analysis steps.

How to cite: Kaestner, F., Sut-Lohmann, M., Raab, T., Feilhauer, H., and Chabrillat, S.: Remediation-related monitoring of heavy metal concentration of contaminated Technosol using hyperspectral measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11479, https://doi.org/10.5194/egusphere-egu21-11479, 2021.

EGU21-12612 | vPICO presentations | GI6.1

Advantages using combined VNIR-SWIR and LWIR hyperspectral remote sensing for estimation of soil properties in the Amyntaio agricultural region, Northern Greece

Robert Milewski, Sabine Chabrillat, Christopher Loy, Maximilian Brell, Nikos Tziolas, Theodora Angelopoulou, George Zalidis, and Eyal Ben Dor

A deeper understanding of the agricultural sector is needed to provide the informed and transparent framework required to meet increasing resource demands and pressures, without compromising sustainability. In this regard, an integrated management of the ecosystems is critical to address the priorities laid out by global policies and, achieve land degradation neutrality and resource efficient regions. Soils are an essential component of the ecosystem, they function as an important carbon storage, and provide the basis of agricultural activity. For the sustainable management of soil resources, and to prevent land degradation the regular assessments of spatially referenced soil conditions is essential. Critical soil properties, such as texture and organic and inorganic carbon content, provides farmers with the information to detect soil vulnerable to soil erosion and land degradation in its early stages in order to locally intervene and to assess soil fertility. Hyperspectral remote sensing been proven to be an effective method for the quantitative prediction of topsoil properties. However, remote sensing observations of the traditionally used visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelength regions (0.4-2.5 µm) can be limited for the estimation of coarse texture soils due to the lack of distinct spectral characteristics of these properties in the VNIR-SWIR (e.g., sand content, quartz and feldspar mineralogy). Spectral information from the longwave infrared region (LWIR, 8-12 μm) has the potential to improve the determination of these properties, due to the presence of fundamental vibration modes of silicate and carbonate minerals, as well carbon-hydrogen bonds in this spectral range.

The main objective of this study is to evaluate the increased analytical potential of combined VNIR-SWIR and LWIR hyperspectral remote sensing for the estimation of soil properties with the focus on soil organic matter, texture and mineralogical composition. In the frame of EnMAP GFZ/FU airborne campaign in Northern Greece in September 2019, an airborne survey with the HySpex VNIR-SWIR and Hyper-Cam LWIR cameras mounted on a Cessna airplane. A simultaneous ground sampling campaign took place at the agricultural landscape of the Amyntaio region including fields spectroscopy for calibration and validation porpoise, as well as soil sampling of bare soil fields. Fields in the study area have highly variable topsoil composition ranging from silicate to carbonate rich mineralogy, loamy to clay texture and to organic carbon rich fields around a lignite mine in the south-east of the area. Different statistical and machine learning methods such as Partial Least Squares (PLS) and Random Forest (RF) regression are applied to derive soil properties and the variable importance of the spectral dataset is discussed. A further goal of this study is the simulation and validation of the soil products with recent relevant satellite sensors (e.g., EnMAP, PRISMA, ECOSTRESS), as well as upcoming next generation of hyperspectral optical and thermal multispectral satellite missions (ESA CHIME and LSTM, NASA/JPL SBG) to evaluate their potential for quantitative soil properties mapping.

How to cite: Milewski, R., Chabrillat, S., Loy, C., Brell, M., Tziolas, N., Angelopoulou, T., Zalidis, G., and Ben Dor, E.: Advantages using combined VNIR-SWIR and LWIR hyperspectral remote sensing for estimation of soil properties in the Amyntaio agricultural region, Northern Greece, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12612, https://doi.org/10.5194/egusphere-egu21-12612, 2021.

EGU21-14359 | vPICO presentations | GI6.1

Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements

Niklas Bohn, David Thompson, Nimrod Carmon, Jouni Susiluoto, Michael Turmon, Mark Helmlinger, Robert Green, Joseph Cook, and Luis Guanter

Snow and ice melt processes are key variables in Earth energy-balance and hydrological modeling. Their quantification facilitates predictions of meltwater runoff and distribution and availability of fresh water. Furthermore, they are indicators of climate change and control the balance of the Earth's ice sheets. These processes decrease the surface reflectance with unique spectral patterns due to the accumulation of liquid water and light absorbing particles (LAP), making imaging spectroscopy a powerful tool to measure and map this phenomenon. Here we present a new method to retrieve snow grain size, liquid water fraction, and LAP mass mixing ratio from airborne and space borne imaging spectroscopy acquisitions. This methodology is based on a simultaneous retrieval of atmospheric and surface parameters using optimal estimation (OE), a retrieval technique which leverages prior knowledge and measurement noise in the inversion and also produces uncertainty estimates. We exploit statistical relationships between surface reflectance spectra and snow and ice properties to estimate their most probable quantities given the reflectance. To test this new algorithm we conducted a sensitivity analysis based on simulated top-of-atmosphere radiance spectra using the upcoming EnMAP orbital imaging spectroscopy mission, demonstrating an accurate estimation performance of snow and ice surface properties. An additional validation experiment using in-situ measurements of glacier algae mass mixing ratio and surface reflectance from the Greenland Ice Sheet yields promising results. Finally, we evaluated the retrieval capacity for all snow and ice properties with an AVIRIS-NG acquisition from the Greenland Ice Sheet demonstrating this approach’s potential and suitability for upcoming orbital imaging spectroscopy missions.

How to cite: Bohn, N., Thompson, D., Carmon, N., Susiluoto, J., Turmon, M., Helmlinger, M., Green, R., Cook, J., and Guanter, L.: Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14359, https://doi.org/10.5194/egusphere-egu21-14359, 2021.

EGU21-9022 | vPICO presentations | GI6.1

Mapping of the environmental impact linked to clandestine sites for the final disposal of solid waste using remote sensors

Sergio García Cruzado, Daniela Delgado Ayala, and Nelly Lucero Ramirez Serrato

Throughout Mexico, there is an alarming situation due to the contamination generated by solid waste, because many of the final disposal sites do not have adequate measures to avoid contamination, and that waste when decomposing or burning releases a large number of toxins that severely affect soil and air pollution. Also, not all the waste that is generated ends up in the final disposal sites. In Puebla city, 300 of the 1,700 tons of municipal solid waste generated per day are deposited daily in streets, vacant lots, rivers, and ravines, severely affecting the environment and the health of the nearest population. The study area is part of the metropolitan area of ​​the Puebla city, southeast of Mexico City, capital of the Mexican Republic. At an altitude of 2,137 meters above sea level, where most of the year it has a temperate subhumid climate and with rains from June to October. Around 2,322,686 people live within the study area, which represents 37.6% of the total population of Puebla state. In the study area, cases have been observed where solid waste, such as plastic, cardboard, etc. accumulates near kilns for the manufacture of bricks, which means the use of this waste as fuel for the kilns. Besides, a large number of old quarries have been found where construction material was extracted, which have become clandestine landfills, which accumulate a great diversity of waste, especially waste from construction. These cases were mostly found in the northern part of the city, where the main industrial zones are located. Therefore, the inadequate disposal of solid waste enhances the environmental impact, increases the vulnerability to present greater environmental pollution of the air and soil. Map the environmental impact factors and the location of misplaced waste and evaluated the correlation between them. This mapping will also serve to make zoning of places of priority attention towards management policies of the sites. For this, some environmental factors affected by the presence of solid waste in Puebla city were evaluated. Using remote sensing and geographic information systems, the water stress of the vegetation, change in land use, air pollution, soil temperature was evaluated, and the results were correlated with the location of the residues through an analysis of principal components. The result is a zoning map of priority attention areas. Where the highest areas correspond to a severe environmental impact, containing poorly located solid waste and coinciding with socioeconomic factors of high vulnerability.

How to cite: García Cruzado, S., Delgado Ayala, D., and Ramirez Serrato, N. L.: Mapping of the environmental impact linked to clandestine sites for the final disposal of solid waste using remote sensors, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9022, https://doi.org/10.5194/egusphere-egu21-9022, 2021.

EGU21-12495 | vPICO presentations | GI6.1

Characterizing waste disposal sites by using multi-spectral satellite imagery

Gaetana Ganci, Annalisa Cappello, Giuseppe Bilotta, Giuseppe Pollicino, and Luigi Lodato

The application of remote sensing for monitoring, detecting and analysing the spatial and extents and temporal changes of waste dumping sites and landfills could become a cost-effective and powerful solution. Multi-spectral satellite images, especially in the thermal infrared, can be exploited to characterize the state of activity of a landfill.  Indeed, waste disposal sites, during the period of activity, can show differences in surface temperature (LST, Land Surface Temperature), state of vegetation (estimated through NDVI, Normalized Difference Vegetation Index) or soil moisture (estimated through NDWI, Normalized Difference Water Index) compared to neighboring areas. Landfills with organic waste typically show higher temperatures than surrounding areas due to exothermic decomposition activities. In fact, the biogas, in the absence or in case of inefficiency of the conveying plants, rises through the layers of organic matter and earth (landfill body) until it reaches the surface at a temperature of over 40 ° C. Moreover, in some cases, leachate contamination of the aquifers can be identified by analyzing the soil moisture, through the estimate of the NDWI, and the state of suffering of the vegetation surrounding the site, through the estimate of the NDVI. This latter can also be an indicator of soil contamination due to the presence of toxic and potentially dangerous waste when buried or present nearby. To take into account these facts, we combine the LST, NDVI and NDWI indices of the dump site and surrounding areas in order to characterize waste disposal sites. Preliminary results show how this approach can bring out the area and level of activity of known landfill sites. This could prove particularly useful for the definition of intervention priorities in landfill remediation works.

How to cite: Ganci, G., Cappello, A., Bilotta, G., Pollicino, G., and Lodato, L.: Characterizing waste disposal sites by using multi-spectral satellite imagery, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12495, https://doi.org/10.5194/egusphere-egu21-12495, 2021.

EGU21-12400 | vPICO presentations | GI6.1 | Highlight

Application of Remote Sensing Technologies in environmental monitoring: legal framework, limitations and potential in the European Union

Maria Maniadaki, Athanasios Papathanasopoulos, Lilian Mitrou, and Efpraxia-Aithra Maria

    Remote sensing technologies, such as satellite and drone imagery, have been proven over the years- due to their constant development- to be extremely useful for environmental monitoring. They may collect and provide data pertaining to natural disasters, state of oceans, atmosphere, land, vegetation, food, public health etc, which are further essential for the effective decision making of public authorities. At the same time such data may facilitate the right for access to environmental information to the public. They also consist valuable tools for environmental law enforcement by allowing to detect for example planning breaches, illegal dumping of waste, illegal logging or illegal oil spills, on which inspections could then focus.

    The article briefly presents the legal framework regarding the application of Remote Sensing Technologies in environmental monitoring in the European Union. It also outlines certain limitations of such technologies, such as the need for data verification and the need for data procession according to privacy and personal data law requirements. Important ECtHR and CJEU case law on the issue is approached, while it is examined under what legal circumstances a wider application of Remote Sensing Technologies in environmental monitoring could be envisaged. Finally, Greek legislation on the subject is as a “case study” analyzed.

   This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project “Legal issues derived from the use of monitoring and earth observation technologies to ensure environmental compliance in the Hellenic legal order- HELLASNOMOSAT” (MIS  5047355).

 

How to cite: Maniadaki, M., Papathanasopoulos, A., Mitrou, L., and Maria, E.-A.: Application of Remote Sensing Technologies in environmental monitoring: legal framework, limitations and potential in the European Union, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12400, https://doi.org/10.5194/egusphere-egu21-12400, 2021.

EGU21-6708 | vPICO presentations | GI6.1

Analysis of change in vegetation cover linked to public policies, case study: Tenosique, Tabasco, Mexico.

Jacob Nieto, Gabriela Vidal García, Mariana Patricia Jácome Paz, Tania Ximena Ruiz Santos, Juan Manuel Nuñez, and Nelly Lucero Ramírez Serrato

Currently, natural areas are being devastated by anthropogenic activity. Activities such as agriculture, illegal logging, non-organic farms, and livestock exploitation, disrupt an ecosystem that has been in balance for many years. Therefore, regulations implemented by governments are required for their preservation. However, these regulations are not always the most used in terms of conservation. Such is the case of the town "Tenosique", in this area is one of the most important rivers in Mesoamerica, the Usumacinta River, which is a great regulator of ecological processes and is connected to Mexico with Guatemala. This site has been under the influence of regulations applied to the economic impulse of the area, whether for agricultural and livestock activities, which has affected the apparent vegetation cover, unlike Guatemala that has opted for regulations with a forest conservation approach. These policies sought to boost the agricultural sector, but many deforested areas to carry out this activity turned out not to be suitable due to the type of soil. With the change of regime, financing ends and with it economic activity decreases, leaving the area quite affected and the communities with financial problems. Recently, conservation and protection actions were implemented in the area together with support for these communities. The proximity between Mexico and Guatemala visually shows the results of the application of different public policies. The objective of this study is to quantify the loss and gain of vegetation over time from satellite images of the area, in order to compare this statistic with the different government programs of each era. For this, at least 10 multispectral satellite images of free access will be used, from the Landsat 7 satellite, which has 30 meters of resolution but visually adjustable to 15 meters with the union of its panchromatic channel, and that cover a time range from 1999 to 2020. On these, two processes will be carried out: 1) a normalized vegetation index calculation and 2) a supervised classification. With which it is intended to measure the area and the greenness of a mask of the vegetation cover. The results will serve to update the projects carried out on the site and detect areas of priority interest resolution for larger projects, as well as the future estimation of the critical state of the site regarding the loss of vegetation cover and quantify the conservation efforts that have been carried out. carried out from 2008 to the present.

How to cite: Nieto, J., Vidal García, G., Jácome Paz, M. P., Ruiz Santos, T. X., Nuñez, J. M., and Ramírez Serrato, N. L.: Analysis of change in vegetation cover linked to public policies, case study: Tenosique, Tabasco, Mexico., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6708, https://doi.org/10.5194/egusphere-egu21-6708, 2021.

EGU21-8125 | vPICO presentations | GI6.1

Mapping of tank silt application using Sentinel-2 images over the Berambadi catchment (India).

Cécile Gomez, Dharumarajan Subramanian, Philippe Lagacherie, Jean Riotte, Sylvain Ferrant, Muddu Sekhar, and Laurent Ruiz

Mapping soil properties is becoming more and more challenging due to the increase in anthropogenic modification of the landscape, calling for new methods to identify these changes. A striking example of anthropogenic modifications of soil properties is the widespread practice in South India of applying large quantities of silt from dry river dams (or “tanks”) to agricultural fields. Whereas several studies have demonstrated the interest of tank silt for soil fertility, no assessment of the actual extent of this age-old traditional practice exists. Over pedological contexts characterized by Vertisol, Ferralsols and Chromic Luvisols in sub-humid and semi-arid Tropical climate, this practice is characterized by an application of black-colored tank silt providing from Vertisol, to red-colored soils such as Ferralsols. The objective of this work was to evaluate the usefulness of Sentinel-2 images for mapping tank silt applications, hypothesizing that observed changes in soil surface color can be a proxy for tank silt application.

We used data collected in a cultivated watershed (Berambadi, Karnataka state, South India) including 217 soil surface samples characterized in terms of Munsell color. We used two Sentinel-2 images acquired on February 2017 and April 2017. The surface soil color over each Sentinel-2 image was classified into two-class (“Black” and “Red” soils). A change of soil color from “Red” in February 2017 to “Black” in April 2017 was attributed to tank silt application. Soil color changes were analyzed accounting for possible surface soil moisture changes. The proposed methodology was based on a well-balanced Calibration data created from the initial imbalanced Calibration dataset thanks to the Synthetic Minority Over-sampling Technique (SMOTE) methodology, coupled to the Cost-Sensitive Classification And Regression Trees (Cost-Sensitive CART) algorithm. To estimate the uncertainties of i) the two-class classification at each date and ii) the change of soil color from “Red” to “Black”, a bootstrap procedure was used providing fifty two-class classifications for each Sentinel-2 image.

The results showed that 1) the CART method allowed to classify the “Red” and “Black” soil with overall accuracy around 0.81 and 0.76 from the Sentinel-2 image acquired on February and April 2017, respectively, 2) a tank silt application was identified over 97 fields with high confidence and over 107 fields with medium confidence, based on the bootstrap results and 3) the identified soil color changes are not related to a surface soil moisture change between both dates. With the actual availability of the Sentinel-2 and the past availability of the LANDSAT satellite imageries, this study may open a way toward a simple and accurate method for delivering tank silt application mapping and so to study and possibly quantify retroactively this farmer practice.

How to cite: Gomez, C., Subramanian, D., Lagacherie, P., Riotte, J., Ferrant, S., Sekhar, M., and Ruiz, L.: Mapping of tank silt application using Sentinel-2 images over the Berambadi catchment (India)., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8125, https://doi.org/10.5194/egusphere-egu21-8125, 2021.

EGU21-9688 | vPICO presentations | GI6.1

High-resolution soil moisture mapping through the use of Cosmic-Ray Neutron Sensor and Sentinel-1 data for temperate and semi-arid environments

Hami Said, Modou Mbaye, Lee Kheng Heng, Emil Fulajtar, Georg Weltin, Trenton Franz, Gerd Dercon, Peter Strauss, Gerhard Rab, Habiba Saud Al-Menaia, and Mapathe Ndiaye

Global climate change has a major impact on the availability of water in agriculture. Sustainable agricultural productivity to ensure food security requires good agricultural water management.

Soil moisture is one of the important variables in irrigation management, and there are many different techniques for estimating it at different scales, from point to landscape scales.

Cosmic-Ray Neutron Sensor (CRNS) technology has the capability to estimate field-scale soil moisture (SM) in large areas of up to 20 to 30 ha and has demonstrated its ability to support agricultural water management and hydrology studies. However, measurement of soil moisture on a global or regional scale can only be achieved from satellite remote sensing.

Recently, active microwave remote sensing Synthetic Aperture Radar (SAR) imaging from Sentinel-1 shows great potential for high spatial resolution soil moisture monitoring and can be the basis for producing soil moisture maps. However, these maps can be only used after calibration. Such calibration can be done through traditional, point soil moisture sampling or measurement, which is time-consuming and costly. CRNS technology can be used for calibration and validation remote sensing imagery predictions at field and area-wide level.

In this study a conversion model to retrieve soil moisture from Sentinel-1 (SAR) was developed using the VV (vertical-vertical) polarization, which is highly sensitive to soil moisture, and then calibrated and validated using CRNS data from temperate (Austria) and semi-arid (Kuwait) Environments. This study is a major step in the monitoring of soil moisture at high spatial and temporal resolution by combining remote sensing and the CRNS based nuclear technology. The preliminary results show the great potential of using nuclear technology such as CRNS for remote sensing calibration of Sentinel-1 (SAR).

How to cite: Said, H., Mbaye, M., Heng, L. K., Fulajtar, E., Weltin, G., Franz, T., Dercon, G., Strauss, P., Rab, G., Saud Al-Menaia, H., and Ndiaye, M.: High-resolution soil moisture mapping through the use of Cosmic-Ray Neutron Sensor and Sentinel-1 data for temperate and semi-arid environments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9688, https://doi.org/10.5194/egusphere-egu21-9688, 2021.

Degradation of large forest areas such as the Brazilian Amazon due to logging and fires can increase the human footprint way beyond deforestation. Monitoring and quantifying such changes on a large scale has been addressed by several research groups (e.g. Souza et al. 2013) by making use of freely available remote sensing data such as the Landsat archive. However, fully automatic large-scale land cover/land use mapping is still one of the great challenges in remote sensing. One problem is the availability of reliable “ground truth” labels for training supervised learning algorithms. For the Amazon area, several landcover maps with 22 classes are available from the MapBiomas project that were derived by semi-automatic classification and verified by extensive fieldwork (Project MapBiomas). These labels cannot be considered real ground-truth as they were derived from Landsat data themselves but can still be used for weakly supervised training of deep-learning models that have a potential to improve predictions on higher resolution data nowadays available. The term weakly supervised learning was originally coined by (Zhou 2017) and refers to the attempt of constructing predictive models from incomplete, inexact and/or inaccurate labels as is often the case in remote sensing. To this end, we investigate advanced deep-learning strategies on Sentinel-1 timeseries and Sentinel-2 optical data to improve large-scale automatic mapping and monitoring of landcover changes in the Amazon area. Sentinel-1 data has the advantage to be resistant to cloud cover that often hinders optical remote sensing in the tropics.

We propose new architectures that are adapted to the particularities of remote sensing data (S1 timeseries and multispectral S2 data) and compare the performance to state-of-the-art models.  Results using only spectral data were very promising with overall test accuracies of 77.9% for Unet and 74.7% for a DeepLab implementation with ResNet50 backbone and F1 measures of 43.2% and 44.2% respectively.  On the other hand, preliminary results for new architectures leveraging the multi-temporal aspect of  SAR data have improved the quality of mapping, particularly for agricultural classes. For instance, our new designed network AtrousDeepForestM2 has a similar quantitative performances as DeepLab  (F1 of 58.1% vs 62.1%), however it produces better qualitative land cover maps.

To make our approach scalable and feasible for others, we integrate the trained models in a geoprocessing tool in ArcGIS that can also be deployed in a cloud environment and offers a variety of post-processing options to the user.

Souza, J., Carlos M., et al. (2013). "Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon." Remote Sensing 5(11): 5493-5513.   

Zhou, Z.-H. (2017). "A brief introduction to weakly supervised learning." National Science Review 5(1): 44-53.

"Project MapBiomas - Collection  4.1 of Brazilian Land Cover & Use Map Series, accessed on January 2020 through the link: https://mapbiomas.org/colecoes-mapbiomas?cama_set_language=en"

How to cite: Brandmeier, M. and Cherif, E.: Taking the pulse of the Amazon rainforest by fusing multitemporal Sentinel 1 and 2 data for advanced deep-learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3749, https://doi.org/10.5194/egusphere-egu21-3749, 2021.

EGU21-9546 | vPICO presentations | GI6.1

Thermal and multispectral images from Unmanned Aerial Vehicles (UAVs) for water presence detection in temporary streams: first results

Massimo Micieli, Gianluca Botter, Giuseppe Mendicino, and Alfonso Senatore

UAVs (Unmanned Aerial Vehicles) are increasingly used for monitoring river networks with a broad range of purposes. In this contribution, we focus on the use of multispectral sensors, either in the thermal infrared band LWIR (Long-wavelength infrared, 8-15 µm) or in the infrared band NIR (Near-infrared, 0.75-1.4 µm) to map network dynamics in temporary streams. Specifically, we discuss the first results of a set of surveys carried out in 2020 within a small river catchment located in northern Calabria (southern Italy), as part of the research activities of the ERC-funded DyNET project. Preliminary, a rigorous methodology was identified to perform on-site surveys and to process and analyse the acquired images. Experimental results show that the combined use of LWIR and NIR sensors is a suitable solution for detecting water presence in channels characterized by different hydraulic and morphologic conditions. LWIR sensors alone allow one to discriminate water presence only when the thermal contrast with the surrounding environment is high. On the other hand, NIR sensors permit to detect the presence of water in most of the analyzed settings through the estimate of the Normalized Difference Water Index (NDWI). However, NIR sensors can be misled in case of shallow water depth, due to the NIR radiation emitted by the riverbed merging with that of the water. Overall, the study demonstrates that a combined LWIR/NIR approach allows addressing a broader range of conditions. Moreover, the information provided can be further enhanced by combining it with geomorphologic information and basic hydraulic concepts.

How to cite: Micieli, M., Botter, G., Mendicino, G., and Senatore, A.: Thermal and multispectral images from Unmanned Aerial Vehicles (UAVs) for water presence detection in temporary streams: first results, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9546, https://doi.org/10.5194/egusphere-egu21-9546, 2021.

EGU21-6687 | vPICO presentations | GI6.1

Mapping the groundwater level and soil moisture of a montane peat bog using UAV monitoring and machine learning

Theodora Lendzioch, Jakub Langhammer, Lukas Vlcek, and Robert Minarik

One of the best preconditions for sufficient monitoring of peat bog ecosystems requires a unique collection, processing, and analysis of spatial data to understand peat bog dynamics. Over two seasons, we sampled groundwater level (GWL), and soil moisture (SM) ground truth data at two diverse locations at the Rokytka Peat bog within the Sumava Mountains, Czechia. These data served as reference data and were modeled with a suite of potential variables derived from digital surface models (DSMs), RGB-, multispectral-, and thermal orthoimages, reflecting topo-morphometry, vegetation, and surface temperature information, generated from drone mapping. We applied 34 predictors to feed the Random forest (RF) algorithm. Predictors selection, hyperparameter tuning, and performance assessment were accompanied using Leave-Location-Out (LLO) spatial Cross-Validation (CV) joined with the forward feature selection (FFS) to overcome overfitting. The spatial CV performance statistics unveiled low (R2 = 0.12) to high (R2 = 0.78) model predictions. Predictor importance was used for model interpretation, where the temperature has proved the be a powerful impact on GWL and SM and significant other predictors' contributions such as Normalized Difference Index (NDVI), Normalized Difference Index (NDI), Enhanced Red-Green-Blue Vegetation Index (ERGBVE), Shape Index (SHP), Green Leaf Index (GLI), Brightness Index (BI), Coloration Index (CI), Redness Index (RI), Primary Colours Hue Index (HI), Overall Hue Index (HUE), SAGA Wetness Index (TWI), Plan Curvature (PlnCurv), Topographic Position Index (TPI), and Vector Ruggedness Measure (VRM). Additionally, we estimated the area of applicability (AOA) by presenting maps where the prediction model was certainly applied and where the predictions were highly uncertain because machine learning (ML) models make predictions far beyond sampling locations without sampling data and having no knowledge about these environments. The AOA method is perfectly suited and unique for decision-making about the best sampling strategy, notably for limited data to circumvent this issue. 

How to cite: Lendzioch, T., Langhammer, J., Vlcek, L., and Minarik, R.: Mapping the groundwater level and soil moisture of a montane peat bog using UAV monitoring and machine learning, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6687, https://doi.org/10.5194/egusphere-egu21-6687, 2021.

EGU21-8788 | vPICO presentations | GI6.1

Remote Sensing-based Spatiotemporal Analysis of Near-Surface Temperatures for Cities Located in Different Climatic Zones

Sriram Jallu, Poorna Chander Reddy Bommineni, and Roshan Srivastav

Urbanization has a major impact on the spatio-temporal variation of near-surface temperature for world cities. Recent studies indicate that the understanding of changes in temperature with urbanization has provided greater insights into the effects of Urban Heat Islands (UHI) on various issues such as excessive energy consumption, health hazard and climate change. In this study, spatio-temporal variations of near-surface temperature for India’s three major cities with different climatic conditions are evaluated. In addition, an attempt is made to establish a quantitative relation between land surface temperature (LST) and various geographical indices indicating vegetation cover (NDVI, Normalized Difference Vegetation Index), water surfaces (NDWI, Normalized Difference Water Index), and impervious land (NDBI, Normalized Difference Built-up Index). The dataset is selected for years 2014 to 2020 for three major cities: (i) Chennai (coastal); (ii) Hyderabad (inland); and (ii) Mumbai (coastal). The study uses Landsat – 8 OLI / TIRS images to derive land use/cover types, land surface temperature datasets, NDVI, NDBI, and NDWI. The preliminary evaluations indicate that the maximum contribution towards the UHI is impervious land, and the effect is more prominent in the areas of rapid urbanization. Urban areas relatively have a high temperature compared to the surrounding rural areas, and the effect is more prominent during night times. The analysis derived from the study will be useful for decision-makers or stakeholders to take necessary actions for reducing the effects of UHI and planning for urban sprawl.

How to cite: Jallu, S., Bommineni, P. C. R., and Srivastav, R.: Remote Sensing-based Spatiotemporal Analysis of Near-Surface Temperatures for Cities Located in Different Climatic Zones, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8788, https://doi.org/10.5194/egusphere-egu21-8788, 2021.

EGU21-8751 | vPICO presentations | GI6.1

Remote sensing of atmospheric winds using an infrared all-sky imager

Frederik Kurzrock, Louis-Etienne Boudreault, Maria Reinhardt, Sybille Y. Schoger, Roland Potthast, Quentin Millerioux, and Nicolas Schmutz

The motion of clouds at a given location can be detected using ground-based all-sky imagers that frequently acquire images of the sky dome. Motion flow is used for minute-scale forecasting of cloud cover and solar irradiance, for example in the case of forecasting photovoltaic power production. While visible-range sky cameras are often applied for this purpose, they neither allow to detect the altitude of clouds, nor accurately detect clouds at night time. However, thermal-infrared all-sky imagers, such as Reuniwatt’s Sky InSight, retrieve brightness temperatures with constant accuracy at day and night time. This allows for the retrieval of diverse cloud parameters such as cloud base height. Atmospheric wind vectors can be derived and geolocalised by combining cloud motion detection and cloud-base height retrieval. In this study, we evaluate the accuracy of atmospheric wind vector retrievals by the means of the Sky InSight. Radiosoundings and wind profiler observations are used as a reference.

How to cite: Kurzrock, F., Boudreault, L.-E., Reinhardt, M., Schoger, S. Y., Potthast, R., Millerioux, Q., and Schmutz, N.: Remote sensing of atmospheric winds using an infrared all-sky imager, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8751, https://doi.org/10.5194/egusphere-egu21-8751, 2021.

EGU21-8485 | vPICO presentations | GI6.1

Micro-dumps detection in satellite images with Scattering Transform

Luca Cicala, Sara Parrilli, Cesario Vincenzo Angelino, and Donato Amitrano

Illegal landfills are unfortunately a plague in some areas of Southern Italy and cause significant direct and indirect environmental issues, including contamination of aquifers and dioxin release in the atmosphere due to arson attacks, potentially dangerous for local populations. The Italian government, at both central and local scale, is by long time enforcing these crimes, but the surveillance of wide areas is difficult with traditional on-site methodologies, even because it is possible that landfills are located within private properties not accessible without formal authorization. Therefore, remote sensing technologies are a key to improve and make more efficient the and frequent the monitoring activities.

Crowd for the Environment (C4E) is a project funded by the Italian Ministry of University and Research, aiming at the development of an innovative framework for the identification of illegal landfills using satellite and drone remote sensing in order to support decision makers in the organization of subsequent on-site actions. To this end, a new algorithm to detect possible polluted sites or sources of pollution has been developed. Specifically, the work has been focused on two particularly challenging and inter-related targets like micro-landfills and greenhouses.

Micro-landfills are often the result of waste disposal processes from industrial or agricultural activities partially or totally clandestine. The corresponding unregistered industrial or agricultural plants are potential sources of pollution. The comparison of satellite detections with the database of legal activities allowed to determine whether or not a plant is registered and therefore potentially harmful. In the study area, located in the nearby of the city of Caserta, greenhouses are a typical example of unregistered agricultural infrastructures which could illegally dispose micro-dumps of their plastic cover after the use.

Among the tested algorithms, those working on the spatial characterization of targets based on Scattering Transform were of particular interest. Such algorithms were used to extract textural features from images and their effectiveness was tested in comparison and in conjunction with spectral features within multi-class classifiers. The results obtained on very-high resolution Pleiades images with 50 cm spatial resolution showed that these features can significantly improve the detectors of both the identified targets.  In the case of greenhouses, which are targets without significant spectral characteristics, due to their transparency and reflectivity, the features based on Scattering Transform, alone, allow to build very competitive detectors. In the case of micro-dumps, which are targets very difficult to detect from satellite, both for their size and for the heterogeneous spectral characteristics, the use of the Scattering Transform seems the most effective tool, while the combined use of spectral features does not provide particular added value.

Ultimately, the use of the Scattering Transform seems to find an interesting application in the detection of environmental criticalities, also in relation to targets which are particularly difficult to be detected due to their high spectral ambiguity.

How to cite: Cicala, L., Parrilli, S., Angelino, C. V., and Amitrano, D.: Micro-dumps detection in satellite images with Scattering Transform, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8485, https://doi.org/10.5194/egusphere-egu21-8485, 2021.

EGU21-1308 | vPICO presentations | GI6.1

Technological advances to improve the quantification of volcanic emissions

Christopher Fuchs, Jonas Kuhn, Nicole Bobrowski, and Ulrich Platt

Variations in volcanic trace gas composition and fluxes are a valuable indicator for changes in magmatic systems and therefore allow monitoring of the volcanic activity. An established method to measure trace gas emissions is to use remote sensing techniques like, for example, Differential Optical Absorption Spectroscopy (DOAS) and more recently SO2-cameras, that can quantify volcanic sulphur dioxide (SO2) emissions during quiescent degassing and eruptive phases, making it possible to correlate fluxes with volcanic activity. 

We present flux measurements of volcanic SO2 emissions based on the novel remote sensing technique of Imaging Fabry-Pérot Interferometer Correlation Spectroscopy (IFPICS) in the UV spectral range. The basic principle of IFPICS lies in the application of an Fabry-Pérot Interferometer (FPI) as wavelength selective element. The FPIs periodic transmission profile is matched to the periodic spectral absorption features of SO2, resulting in high spectral information for its detection. This technique yields a higher trace gas selectivity and sensitivity than imaging approaches based on interference filters, e.g. SO2-cameras and an increased spatio-temporal resolution over spectroscopic imaging techniques, e.g. imaging DOAS. Hence, IFPICS shows reduced cross sensitivities to broadband absorption (e.g. to ozone, aerosols), which allows the application to weaker volcanic SO2 emitters and increases the range of possible atmospheric conditions. It further raises the possibility to apply IFPICS to other trace gas species like, for example, bromine monoxide, that still can be characterized with a high spatial and temporal resolution (< 1 HZ).

In October 2020, we acquired SO2 column density distribution images of Mt Etna volcanic plume with a detection limit of 2x1017 molec cm-2, 1 s integration time, 400x400 pixel spatial, and 0.3 Hz temporal resolution.  We compare the SO2 fluxes retrieved by IFPICS with simultaneous flux measurements using the mutli-axis DOAS technique.

How to cite: Fuchs, C., Kuhn, J., Bobrowski, N., and Platt, U.: Technological advances to improve the quantification of volcanic emissions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1308, https://doi.org/10.5194/egusphere-egu21-1308, 2021.

EGU21-9620 | vPICO presentations | GI6.1

Distinguishing human related, biological, and geological carbon dioxide in the air through isotopic surveying

Giorgio Capasso, Roberto M.R. Di Martino, Antonio Caracausi, and Rocco Favara

Stable isotopes have several applications in geosciences and specifically in volcanology, fluids vs earthquakes studies, environmental surveying, and atmospheric sciences. Both geological and human-related gas sources emit carbon dioxide promoting its molar fraction increase in the lower levels of the atmosphere. The strong dependence of global warming from the carbon dioxide (CO2) concentration in the air promoted the detailed investigation of the sources of CO2. Land use inspection and the correlated increase of air CO2 concentration proved often the potential identification of the gas sources. Both the precise identification of the gas source and the specific contribution are still open challenges in environmental surveying. Isotopic signature allows both source identification and tracking fate of carbon dioxide (i.e. natural degassing in volcanic and active tectonic regions, photosynthetic fractionation in tree forests, and human-related emissions in urban zones). The isotopic signature allows evaluating the environmental impact of specific actions and better addressing the mitigation efforts by tracking fate of CO2.

This study aims to identify the CO2 sources in different ecosystems by using a laser spectrometer that allowed to determine rapidly and with high precision the isotope composition of CO2 in the space and/or at high frequency (up to 1Hz). Various environments include both volcanic, seismic and urban zones because of their strong effects on the low levels of the atmosphere were considered, showing how this kind of instruments can disclose new horizons, in many different applications and especially in the time domain. In the considered zones, both the anthropogenic and geological sources caused the increases of CO2 molar fraction in the last few centuries. Suitable case studies were: i) the air CO2 surveying at Palermo; ii) the soil CO2 emissions at Vulcano (Aeolian Islands - Italy), and iii) the punctual vent CO2 emissions at Umbertide (Perugia - Italy).

The results of this study show detailed investigation of both sources and fate of the CO2 in various environments. The results of the isotope surveying in Palermo show that air CO2 correlated with human activities (i.e. house heating, urban mobility, and landfill gas emissions). Comparison with air CO2 at Umbertide shows the greater contribution of the geogenic reservoir near the active fault of Alto Tiberina Valley. Volcanic CO2 distinguished from biological CO2 by different isotopic signature in the soil gases of Vulcano. The soil CO2 partitioning at the settled zone of Vulcano Porto occurred through both gas source identification and data interpretation through a specifically designed isotopic mixing model.

This study provides several innovative experimental solutions that are suitable to understand the complexity of carbon cycle and unexplored so far environmental scenarios.

How to cite: Capasso, G., Di Martino, R. M. R., Caracausi, A., and Favara, R.: Distinguishing human related, biological, and geological carbon dioxide in the air through isotopic surveying, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9620, https://doi.org/10.5194/egusphere-egu21-9620, 2021.

EGU21-15436 | vPICO presentations | GI6.1

Analysis of red deer Cervus elaphus behaviour and habitat modelling using data from GPS collars and available geospatial data products

Dainis Jakovels, Jevgenijs Filipovs, Agris Brauns, Alekss Vecvanags, Iveta Kocina, and Janis Ozolins

Understanding of wild animal behaviour and habitat preference are important factors for further assessment of their living space capacity. Red deer Cervus elaphus is an important game species which population has increased from 54 thousand in 2016 to 66 thousand in 2020 (22% increase in last four years) in Latvia. Meanwhile, the number of hunted animals has increased from 12 thousand in 2016 to 20 thousand in 2020 (a 67% increase in the last four years). The increasing number of red deer and other ungulate species results in increased damage to new forest stands and crops. Traditional methods for population abundance estimation and monitoring, such as grazing damage observation, pellet or snow track counts are time and resource consuming and require trained experts. Technological approaches (trail cameras, microphones and drones) have the potential to support and improve the monitoring of wildlife.

In this study, we present results based on the location data of four red deer individuals. Red deers were cached and collared in Mar-Apr 2020, their location has been recorded every 30 minutes since then. The data is used for mapping of red deer migration routes, analysis of living and feeding places as well as movement behaviour. Available geospatial data products are terrain and canopy cover information obtained from LiDAR data, land cover and vegetation density information obtained from Sentinel-2 satellite data as well as proximity to feeding places, natural resources and human settlements. Hedonic regression approach is used for preference evaluation of different factors.

Detection of wild animals is also performed using a drone equipped with thermal and RGB cameras, networks of camera traps and microphones. The data from GPS collars allow validating the detection accuracy of other technological approaches.

How to cite: Jakovels, D., Filipovs, J., Brauns, A., Vecvanags, A., Kocina, I., and Ozolins, J.: Analysis of red deer Cervus elaphus behaviour and habitat modelling using data from GPS collars and available geospatial data products, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15436, https://doi.org/10.5194/egusphere-egu21-15436, 2021.

GI6.2 – Geoscience applications of environmental radioactivity

EGU21-1264 | vPICO presentations | GI6.2 | Highlight

Environmental radioactivity in the Atlantic marine boundary layer from the SAIL monitoring campaign  

Susana Barbosa, Guiherme Amaral, Carlos Almeida, Nuno Dias, António Ferreira, Mauricio Camilo, and Eduardo Silva

Ambient radioactivity reflects a wide range of physical processes, including atmospheric and geological processes, as well as space weather and solar conditions. Gamma radiation near the Earth’s surface comes from diverse sources, including space (cosmic radiation), the earth’s atmosphere, and solid earth. In addition to the terrestrial gamma radiation originating from the radioactive decay of primordial radionuclides present in every soil and rock, gamma radiation is also continuously produced in the atmosphere from the interaction of secondary cosmic rays and upper-atmosphere gases, as well as from the decay of airborne radon (Rn-222) progeny. Therefore the temporal variability of gamma radiation contains information on a wide range of physical processes and space-earth interactions, but disentangling the different contributions remains a challenging endeavor. Continuous monitoring of gamma radiation at sea enables to remove both the terrestrial and radon exhalation contributions, allowing to examine in detail the space and atmospheric sources of ambient gamma radiation.

Gamma radiation over the Atlantic Ocean was measured on board the ship-rigged sailing ship NRP Sagres in the framework of the SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer) project. The measurements were performed continuously (every 1-second) with a NaI(Tl) scintillator counting all the gamma rays from 475 keV to 3 MeV. The casing of the instrument was adapted in order to endure the harsh oceanic conditions and installed in the mizzen mast of the ship. The counts were linked to a rigorous temporal reference frame and precise positioning through GNSS.

Here preliminary results based on the gamma radiation measurements performed from January 5th to May 9th 2020 are presented, corresponding to the journey of the ship from Lisboa to Cabo Verde, Rio de Janeiro, Montevideu, Cape Town, and back to Lisboa. The data exhibit a clear transition from the coastal to the marine environment, enabling to study in detail the temporal variation of gamma radiation in the marine boundary layer, as well as the interface between land and marine conditions in terms of environmental radioactivity.

How to cite: Barbosa, S., Amaral, G., Almeida, C., Dias, N., Ferreira, A., Camilo, M., and Silva, E.: Environmental radioactivity in the Atlantic marine boundary layer from the SAIL monitoring campaign  , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1264, https://doi.org/10.5194/egusphere-egu21-1264, 2021.

EGU21-11452 | vPICO presentations | GI6.2

Radioactivity soundings of the upper atmosphere in Finland 1962-2020

Jussi Paatero, Juha Hatakka, Rigel Kivi, and Jani Immonen

Radioactivity soundings have been performed in Finland since the early 1960s to measure radiation and radioactivity levels in the atmosphere up to the height of 40 km.  A sonde package based on a Geiger-Müller (GM) tube is carried up to the stratosphere by a balloon filled with hydrogen or helium. En route the GM tube count rate values are sent to the ground station with a radio transmitter.

Vaisala Corporation developed a radioactivity sounding system in the early 1960s. Radioactivity soundings were performed at the company's aerological test station in Helsinki as a part of development and quality assurance activities. At least once, in October 1962, these radioactivity soundings revealed the presence of abnormal radioactivity in the stratosphere over Finland due to atmospheric nuclear tests.

The Finnish Defence Forces acquired the Vaisala's radioactivity sounding system in 1963. This system was placed at the Finnish Meteorological Institute's (FMI) meteorological observatory of Jokioinen. The staff of the observatory operated the system. Initially radioactivity soundings were performed once a week but later sparser and sparser so that in 1980 only one sounding, in November after the so far last atmospheric nuclear test, was performed. Only a couple of publications have been produced from the artificial radioactivity observations in the upper atmosphere, perhaps due to the sensitive nature of the subject. After 1980 no more radioactivity soundings were performed in Finland during the 1980s, not even during the 1986 Chernobyl accident.

In the aftermath of the Chernobyl accident Vaisala developed a new generation of radioactivity sondes that are incorporated into the company's meteorological sounding systems. The FMI has performed these radioactivity soundings since the early 1990s at its sounding stations at Jokioinen, Tikkakoski and Sodankylä. Usually one or two soundings are performed per year, often during nuclear accident preparedness exercises.

The radioactivity soundings described above have brought information on cosmic radiation even if the main motivation was the surveillance of artificial radioactivity in the upper atmosphere. However, balloon soundings dedicated to cosmic radiation research have been made by the University of Oulu. These sounding activities were coordinated by SPARMO organization (Solar Particles and Radiation Monitoring Organization), later with the name SBARMO (Scientific Ballooning and Radiation Monitoring Organization). Altogether 114 soundings were performed from 1965 to 1979. In addition to scientific results these activities helped the then new university to network with the international scientific community.

Balloon-borne radiation sondes have shown to be a flexible and a cost-efficient method to obtain data on the radiation environment of the upper atmosphere. The information about the vertical distribution of a radioactive plume provided by soundings is essential for a reliable atmospheric dispersion estimation. This, in turn, helps to plan and execute protective measures, e.g. stable iodine prophylaxis. On the other hand, the altitude information about observed airborne radioactivity of unknown origin benefits the inverse modeling to find out the possible source areas of the release. This can be useful for example in detecting clandestine nuclear activities.

 

How to cite: Paatero, J., Hatakka, J., Kivi, R., and Immonen, J.: Radioactivity soundings of the upper atmosphere in Finland 1962-2020, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11452, https://doi.org/10.5194/egusphere-egu21-11452, 2021.

EGU21-15644 | vPICO presentations | GI6.2

The rain induced gamma-radiation dose rate enhancement at Järvselja SMEAR station

Urmas Hõrrak, Xuemeng Chen, Kristo Hõrrak, Uko Rand, Kaupo Komsaare, Marko Vana, Aare Luts, and Heikki Junninen

The SMEAR Estonia station (58.277663 N, 27.308266 E, 36 m a.s.l.) was established in south-east of Estonia at the Järvselja Experimental Forestry in 2012 to investigate the atmosphere-biosphere interactions and atmospheric aerosol formation and growth.

In summer 2019, the gamma-radiation monitor GammaTRACER XL2-3 (Saphymo GmbH) was set up at Järvselja station and the rain sensor DRD11A (Vaisala Oyj) in autumn 2019. These devices enable to measure the gamma-radiation dose rate and precipitation intensity, which affect the ionization rate of atmospheric air close to ground, with high accuracy and time resolution, and complement our measurement system of atmospheric ions and aerosol particles.

The gamma-radiation dose rate measurements at about 1.2 m above the ground reveled on relatively steady background about 70 nSv/h occasional events with increase up to about 110 nSv/h, which correlated well with rainfall intensity. Commonly such events last 3-4 hours, but in specific meteorological situation with continuous long-lasting rain and air mass movement from southerly directions the effect can last 2-3 days, resulting in gradual increase in gamma-radiation dose rate level during about 24 h.

Such a phenomenon is known to occur due to wet deposition of radioactive aerosol particles during rain, namely due to the radon (222 Rn) short-lived daughter progeny products (Po-218, Pb-214, Bi-214) attached to atmospheric aerosol particles. The radon (222 Rn) daughter progeny involvement is confirmed by simultaneous gamma-spectrometric measurements with SARA AGS711F (Envinet GmbH) at Tõravere station (58° 15' 52,9" N, 26° 27' 42,1", 72 m), located about 50.3 km west from the Järvselja SMEAR station. The gamma dose rates showed very similar temporal behavior when both stations were affected by the same air mass with precipitation zone passing over the stations.

To our best knowledge, the details of rain-induced enhancement of gamma-radiation dose rate and atmospheric processes behind the phenomenon are not well known and are worth future investigations. The events of rain induced gamma-radiation dose rate enhancement at Järvselja SMEAR and Tõravere station are analyzed and discussed in more detail in the presentation and the spatial representativity of the phenomenon is estimated based on the gamma-radiation monitoring network data of Estonian Early Warning System.

How to cite: Hõrrak, U., Chen, X., Hõrrak, K., Rand, U., Komsaare, K., Vana, M., Luts, A., and Junninen, H.: The rain induced gamma-radiation dose rate enhancement at Järvselja SMEAR station, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15644, https://doi.org/10.5194/egusphere-egu21-15644, 2021.

EGU21-11909 | vPICO presentations | GI6.2

Investigation on the role of elevated gamma radiation in ion production during precipitation

Xuemeng Chen, Susana Barbosa, Jussi Paatero, Markku Kulmala, and Heikki Junninen

Air ions are ubiquitous in the atmosphere. These charge carriers can be found in various forms as charged molecules, nanoclusters as well as aerosol particles. The population of air ions normally concentrates in the cluster size range (0.8 – 1.7 nm in mobility equivalent diameters) in the absence of particle formation processes. A concentration burst in the intermediate size range (1.7 – 7 nm) can be typically observed during atmospheric new particle formation (NPF) and in precipitation episodes 1. Contrary to the intermediate ions formed during NPF that favour growth to larger sizes, intermediate ion bursts resulting from precipitation tend to shrink 2,3. The production of intermediate ions during precipitation has been attributed to the Lenard effect and they are usually referred to as the balloelectric ions 3.

During precipitation the rain-out and wash-out of radon progeny increase the gamma dose at ground level 4. Being a type of ionising radiation, gamma creates positive and negative charges in the air. These charges are either lost in recombination or transformed into air ions. It is therefore interesting to understand whether the precipitation-associated elevation in gamma radiation plays any role in forming or neutralising the balloelectric ions. At SMEAR II station in Hyytiälä, Finland 5, we have conducted measurements of air ions, gamma radiation, precipitation together with other meteorological parameters. A similar establishment of the measurement set stands also at SMEAR Estonia station in Jarvseljä, Estonia 6. The data collected at Hyytiälä from 2017.7 to 2018.8 show that the intermediate ion concentration correlates with rainfall only when the precipitation intensity is greater than 1 mm/h. For milder rainfall with the precipitation intensity being 0.1-1 mm/h, the intermediate ion concentration increases with an increase in the gamma counts. The work is under progress and we intend to extend the analysis to Jarvseljä data for a comprehensive understanding of the observations.

Acknowledgements: This work received financial supports from European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme and from Estonian Research Council project PRG714.

References:

1. Tammet, H., Komsaare, K. & Hõrrak, U. Intermediate ions in the atmosphere. Atmospheric Research 135-136, 263-273, doi:10.1016/j.atmosres.2012.09.009 (2014).

2. Hõrrak, U. et al. Formation of Charged Nanometer Aerosol Particles Associated with Rainfall: Atmospheric Measurements and Lab Experiment. Report Series in Aerosol Science 80, 180-185 (2006).

3. Tammet, H., Hõrrak, U. & Kulmala, M. Negatively charged nanoparticles produced by splashing of water. Atmos. Chem. Phys. 9, 357–367 (2009).

4. Paatero, J. & Hatakka, J. Wet deposition efficiency of short-lived radon-222 progeny in central Finland. Boreal Env. Res. 4, 285-293 (1999).

5. Hari, P. & Kulmala, M. Station for measuring ecosystem-atmosphere relations (SMEAR II). Boreal Environ. Res. 10, 315-322 (2005).

6. Noe, S. M. et al. SMEAR Estonia: Perspectives of a large-scale forest ecosystem – atmosphere research infrastructure. Forestry Studies 63, doi:10.1515/fsmu-2015-0009 (2015).

How to cite: Chen, X., Barbosa, S., Paatero, J., Kulmala, M., and Junninen, H.: Investigation on the role of elevated gamma radiation in ion production during precipitation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11909, https://doi.org/10.5194/egusphere-egu21-11909, 2021.

EGU21-4497 | vPICO presentations | GI6.2

High efficiency and portable monitor of atmospheric radon concentration activity for environmental applications

Roger Curcoll Masanes, Claudia Grossi, and Arturo Vargas

The natural radioactive noble gas radon (222Rn) is originated from the decay of radium into the soil and then continuously exhaled to the lower atmosphere. Its diffusion and exhalation rate depend both on the physical and environmental conditions of the soil layers and on the meteorological conditions. With a half-life of 3.8 days and a very limited chemical activity, the 222Rn is nowadays being used as an atmospheric tracer for: i) the improvement of atmospheric transport models used, among others, to identify greenhouse gas (GHG) emission sources; ii) for the indirect estimation of GHG fluxes by the Radon Tracer Method (RTM). These previous applications need high sensitivity and precision at low radon concentrations range (< 100 Bq m-3).

A new monitor, based on alpha spectrometry of 218Po electrostatically collected on a PIPs detector, has been designed and developed at the Institute of Energy Technologies (INTE) of the Universitat Politecnica de Catlunya (UPC)  in the mark of the project ‘High efficiency monitor of atmospheric radon concentration for radiation protection and environmental applications (MARE2EA), reference: 2019-LLAV-00035, funded by the Catalan Agency for Management of University and Research Grants. The aim is building an instrument able to measure atmospheric radon concentration activities with high precision in order to be running at GHG atmospheric networks for the RTM applications.

The monitor is an improved version of a previous prototype instrument (Grossi et al., 2012, 2020). The new instrument will allow a higher efficiency, robustness and portability. In addition, it will have a GUI interface to be user friendly. Finally, in order to reduce the air sample humidity within the detection volume of the instrument which affects the 218Po collection, a portable drying system has also been built to keep the instrument ongoing without maintenance during several weeks.

 

References

Grossi, C., Arnold, D., Adame, J. A., López-Coto, I., Bolívar, J. P., De La Morena, B. A., & Vargas, A. (2012). Atmospheric 222Rn concentration and source term at El Arenosillo 100 m meteorological tower in southwest Spain. Radiation Measurements, 47(2), 149–162. https://doi.org/10.1016/j.radmeas.2011.11.006

Grossi, C., Chambers, S. D., Llido, O., Vogel, F. R., Kazan, V., Capuana, A., Werczynski, S., Curcoll, R., Delmotte, M., Vargas, A., Morguí, J.-A., Levin, I., & Ramonet, M. (2020). Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors. Atmospheric Measurement Techniques, 13(5). https://doi.org/10.5194/amt-13-2241-2020

How to cite: Curcoll Masanes, R., Grossi, C., and Vargas, A.: High efficiency and portable monitor of atmospheric radon concentration activity for environmental applications, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4497, https://doi.org/10.5194/egusphere-egu21-4497, 2021.

EGU21-9081 | vPICO presentations | GI6.2

Statistical approach to improve Radon-222 long-range atmospheric transport modelling

Arnaud Quérel, Khadija Meddouni, Denis Quélo, Thierry Doursout, and Sonia Chuzel

The IRSN operates a framework capable of modelling the occurrence of gamma dose rate peaks due to Radon-222 progeny scavenged by precipitations. This framework includes a Radon-222 exhalation flux and meteorological data as inputs to a long range atmospheric transport model (ldx), and specific post-processes for reporting or performance analysis. Ldx is used in nuclear emergency preparedness and response, and it is applied to Radon-222 and its progeny to simulate both their air concentration and deposition onto the ground. This framework is successful at forecasting, in timing and intensity, around half of the peaks actually observed by the IRSN radiation monitoring stations over France. Understanding and analysing the failures is the starting point to improve the modelling.

For a statistical evaluation of the framework performance, we confronted its results to observations of gamma dose rates over a period of six months gathering more than 12,000 peaks. We used two sets of metrics to assess the agreement between model and observations: punctually (peak by peak) and continuously (whole six months’ time series of gamma dose rate and air concentration). We also performed statistical significance tests to identify the influence of some input parameters on the results.

We found that considering a factor 5 instead of a factor 2 between observed and simulated peak values increases the percentage of successfully forecasted peaks from around 50% to above 90%, whereas increasing the permissible time lag between the two has no such effect. Overall, the model shows better recall than precision: i.e. a tendency to produce more false positives than false negatives. ANOVA tests did not point out any performance difference across factors such as land cover or time of the day. Using weather radar measurements for precipitation instead of meteorological model data also improves the reanalysis performances.

This statistical evaluation serves as a gauge to measure the benefits expected from future developments of our current framework, and by that way the future evolutions of our long range module and methodology of use in case of an emergency response, and helps to determine the relevance of alternative simulation options regarding key parameters or processes, such as exhalation and soil moisture. A well-validated framework is of interest as to assess outdoor concentrations of Radon-222.

How to cite: Quérel, A., Meddouni, K., Quélo, D., Doursout, T., and Chuzel, S.: Statistical approach to improve Radon-222 long-range atmospheric transport modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9081, https://doi.org/10.5194/egusphere-egu21-9081, 2021.

EGU21-12269 | vPICO presentations | GI6.2

Radioactivity measurements in the atmosphere and water column of Rogoznica Lake (central Adriatic)

Ivana Tucaković, Sarah Mateša, Ivana Coha, Marija Marguš, Milan Čanković, and Irena Ciglenečki

Croatian Science Foundation MARRES project (MARine lake (Rogoznica) as a model for EcoSystem functioning in a changing environment) aims to investigate the unique environment (slow exchange of seawater with the sea; atmospheric input is the only source of freshwater) of the marine lake which is an example of highly stratified (permanent anoxia bellow 9 m depth), and by climate changes affected marine system in the middle of the eastern Adriatic coast (43.53° N, 15.95° E). The area of the lake is characterized by the extensive tourism and mariculture, and the low impact of local industrial activities. It is also affected by the combined influence of long-range transport of air masses and local emissions (open-fire events).

An important part of the project is focused on the exchange and interaction between atmosphere, water column and sediment by measuring the atmospheric input (wet and dry deposition) of sulphur compounds, organic carbon, trace metals and radionuclides (Be-7, Pb-210).

This work for the first time will present the current state of the measurements of radioactivity in the Rogoznica lake area, including samples of aerosol particulate matter, PM2.5 < 2.5 um, rainwater and lake water column. Namely, the concentrations of Be-7 and Pb-210 in PM2.5 are measured to determine and correlate the dynamics of particle transport, meteorological information, especially origin of air masses and seasonal variation of PM2.5. While presence of Be-7 indicates the recent wet or dry deposition from the upper parts of the atmosphere, Pb-210 may be used as a tracer for continental air masses. Therefore, it can also indicate the influence of the pollution induced by human activity. Regarding that, special attention will be paid to compare results before and during the Covid-19 lockdown periods.

So far, preliminary results do not show significant difference in PM2.5 masses and measured radionuclide activity concentrations for the lockdown period. Be-7 and Pb-210 were regularly detected in aerosols collected on a glass fiber filters during a one-week sampling periods with the air flow rate of 2.3 m3/h. Their activity concentrations are determined by gamma spectrometry using High Purity Germanium detectors. The results are found to be correlated with PM2.5 masses, ranging from 2.9 to 12.2 Bq/m3 for Be-7 and from 0.5 to 2.5 Bq/m3 for Pb-210. First analyses show that the highest values can be related to the long-range transport of air masses and to the recorded near open-fire event. As expected, Be-7 is also detected in almost every rainwater sample (event), with the activity concentration up to 5.6 Bq/L, while low activities of Pb-210 are detected only sporadically. Related to that, Be-7 is detected in lake water column as well, but only in the surface layer and in samples collected during, or immediately after the rain events. 

Dynamics and seasonal variation of radionuclide activity concentrations in here studied samples will be discussed, and the relationships with some meteorological parameters (temperature, wind speed, relative humidity, precipitation level) as well as local and long-range transport and physico-chemical conditions in the lake water column will be established.

How to cite: Tucaković, I., Mateša, S., Coha, I., Marguš, M., Čanković, M., and Ciglenečki, I.: Radioactivity measurements in the atmosphere and water column of Rogoznica Lake (central Adriatic), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12269, https://doi.org/10.5194/egusphere-egu21-12269, 2021.

EGU21-196 | vPICO presentations | GI6.2

Field testing of a portable two-filter dual-flow-loop 222Rn detector

Scott Chambers, Viacheslav Morosh, Alan Griffiths, Alastair Williams, Stefan Röttger, and Annette Röttger

An overlapping need exists between the climate science, air quality and radiological protection communities for a robust, portable and direct monitor of atmospheric 222Rn concentrations typical of the ambient outdoor atmosphere. To reliably characterise afternoon radon concentrations, or resolve daytime vertical radon gradients in the atmospheric boundary layer (requirements for radon measurements to be used to evaluate the performance of chemical transport models), detection limits of ≤0.2 Bq m-3 at an hourly temporal resolution are required. Commercial portable radon detectors are mainly designed for indoor use, and the best of these has a detection limit of ≥2 Bq m-3 for hourly sampling, with an approximate uncertainty of 60% at typical outdoor daytime radon concentrations.  Here we introduce a portable (200 L) version of the two-filter dual-flow-loop radon detector, designed and built by ANSTO in collaboration with the EMPIR 19ENV01 traceRadon project. While not as compact as commercial monitors (standing 1.6 m tall, and 0.48 m wide), its longest component is 1.2 m, enabling transportation in a standard utility vehicle or 4x4 (and can fit inside a 19” instrument rack). Constructed of marine grade stainless steel, it is weather resistant, robust, and suitable for long-term, continuous, autonomous deployment; in fact it is fully remotely controllable if a networked computer is available. The estimated lower limit of detection is 0.17 Bq m-3 for hourly observations, and the counting uncertainty at typical ambient outdoor radon concentrations is around 7%. Additional uncertainty associated with current calibration techniques, which inject calibration gas on top of ambient sampled air, varies from 2-6%. Some objectives of the traceRadon project include establishing direct calibration traceability to the SI and developing an improved closed-loop calibration technique, using a new, low activity Radium-226 source. If successful, the absolute accuracy of the 200 L radon detector at typical ambient outdoor concentrations could be kept well below 15% for hourly observations. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. 19ENV01 traceRadon denotes the EMPIR project reference.

How to cite: Chambers, S., Morosh, V., Griffiths, A., Williams, A., Röttger, S., and Röttger, A.: Field testing of a portable two-filter dual-flow-loop 222Rn detector, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-196, https://doi.org/10.5194/egusphere-egu21-196, 2021.

EGU21-82 | vPICO presentations | GI6.2

Metrology for radiation protection:  A new European network in the foundation phase

Annette Röttger, Attila Veres, Vladimir Sochor, Massimo Pinto, Michal Derlacinski, Mihail-Razvan Ioan, Amra Sabeta, Robert Bernat, Christelle Adam-Guillermin, João Henrique Gracia Alves, Denis Glavič-Cindro, Steven Bell, Britt Wens, Linda Persson, Miloš Živanović, and Reetta Nylund

More than 23 million workers worldwide are exposed occupationally to ionizing radiation in the workplace and all people in the world are exposed to environmental radiation. Due to developments in healthcare and changes in living conditions, radiation exposure from artificial and natural sources has been increasing for years. Accurate measurement of radiation dose is key to ensuring safety, but there are two challenges to address. First, new standards and reference fields are needed due to the rapid developments in medical imaging, radiotherapy and industrial applications. Second, communication channels are needed to ensure that information on best practice in measurements reaches the people concerned effectively and quickly.

It is therefore necessary to provide access to identified problems and solutions on an international level. A European Metrology Network (EMN) under the roof of EURAMET is in the foundation phase prepared by the project supportBSS[1]. This project will prepare this future EMN by addressing this issue through the identification of stakeholder research needs and implementing a long-term ongoing dialogue between them and the metrology community. The EMN will serve as a single point of contact to address all metrological needs related to radiation protection and will relate to all environment processes in which ionising radiation and radionuclides are involved.

A Strategic Research Agenda and two roadmaps are under development, covering the metrology needs of both the Euratom Treaty and the EU Council Directive 2013/59/EURATOM (laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation). Furthermore, long-term knowledge-sharing and capacity building will be supported and a proposal for a joint and sustainable European metrology infrastructure is in the development. This will significantly strengthen radiation protection metrology and support radiation protection measures. The final goal of the network project is a harmonised, sustainable, coordinated, and smart specialised infrastructure to underpin the needs expressed in the European regulation for radiation protection.


[1] This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. 19NET03 supportBSS denotes the EMPIR project reference.

 

How to cite: Röttger, A., Veres, A., Sochor, V., Pinto, M., Derlacinski, M., Ioan, M.-R., Sabeta, A., Bernat, R., Adam-Guillermin, C., Gracia Alves, J. H., Glavič-Cindro, D., Bell, S., Wens, B., Persson, L., Živanović, M., and Nylund, R.: Metrology for radiation protection:  A new European network in the foundation phase, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-82, https://doi.org/10.5194/egusphere-egu21-82, 2021.

EGU21-173 | vPICO presentations | GI6.2 | Highlight

Radon metrology for use in climate change observation and radiation protection at the environmental level

Stefan Röttger, Annette Röttger, Claudia Grossi, Ute Karstens, Giorgia Cinelli, and Chris Rennick

Radon gas is the largest source of public exposure to naturally occurring radioactivity, and concentration maps based on atmospheric measurements aid developers to comply with EU Safety Standard Regulations. Atmospheric radon can also be used as a tracer to evaluate transport models important for supporting successful greenhouse gas (GHG) mitigation strategies. One of the most common techniques currently applied for this propose is the Radon Tracer Method (RTM). To increase the accuracy of both radiation protection measurements and those used for GHG modelling, traceability to SI units for radon exhalation rates from soil, its concentration in the atmosphere and validated models for its dispersal are needed. Thus, atmospheric networks such as the Integrated Carbon Observation System (ICOS) are interested in integrating atmospheric radon concentration measurements. The EMPIR project 19ENV01 traceRadon[1] started to provide the necessary measurement infrastructure for atmospheric radon activity concentration and radon flux measurements, with benefits for both large scientific communities. This is particularly important for GHG emission estimates that support national reporting under the Paris Agreement on climate change.

Compared to the large spatiotemporal heterogeneity of GHG fluxes, radon is emitted almost homogeneously over ice-free land and has a negligible flux from oceans. Atmospheric measurements of radon activity concentrations can be used for the assessment and improvement of atmospheric mixing and transport models.

Similarly, for radiological data, all European countries have installed networks of automatic gamma dose rate and atmospheric concentration level monitoring stations and report the information gathered to the European Radiological Data Exchange Platform (EURDEP). Currently, EURDEP exchanges real-time monitoring information from 39 countries collected from more than 5500 automatic surveillance systems. Therefore, improving contamination detection requires greater accuracy in determining environmental radon concentrations and their movement in the atmosphere.

An overlapping need exists between the climate research and radiation protection communities for improved traceable low-level outdoor radon measurements, combining the challenges of collating and modelling large datasets, with setting up new radiation protection services. The project traceRadon works on this aspect for the benefit of two large scientific communities. An overview will be presented, and first results with respect to radionuclide metrology will be discussed.


[1] This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. 19ENV01 traceRadon denotes the EMPIR project reference.

 

How to cite: Röttger, S., Röttger, A., Grossi, C., Karstens, U., Cinelli, G., and Rennick, C.: Radon metrology for use in climate change observation and radiation protection at the environmental level, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-173, https://doi.org/10.5194/egusphere-egu21-173, 2021.

EGU21-3171 | vPICO presentations | GI6.2

Radiocesium distribution in soils of Tenerife Island (Canary Islands, Spain)

María López Pérez, Pedro Ángel Salazar Carballo, María Candelaria Martín Luis, Francisco Javier Hernández, Esperanza Liger, José Carlos Fernández de Aldecoa, Antonio Catalán Acosta, and Elisa Gordo

Tenerife is the largest and most populated island of the Canary Islands; with a surface of 2,034 km2 and 917,841 inhabitants (in January 2019), it hosts 43% of the total population of the archipelago.

Large amounts of 137Cs, an artificial radionuclide with a half-life of 30.2 years, were released into the environment due to the nuclear weapon tests carried out from the 1950s to the 1970s and by nuclear power plant accidents, such as the Chernobyl in 1986. The most recent 137Cs release into the environment was due to the Fukushima Daiichi Nuclear Power Plant accident, following the earthquake and tsunami of 11 March 2011. Radionuclides released by this accident were measured in air filters collected in the Canary Islands despite the tremendous distance to the source (López-Pérez et al., 2013).

In this work, we provide the concentrations of 137Cs measured in 73 soil samples collected in 2013 in Tenerife. Besides, a second dataset of 137Cs concentrations recorded in 103 soil samples collected in 1991 (22 years before) have been used to provide information on the spatial and temporal variability of this anthropogenic radionuclide at this site.

In both surveys, sampling sites were randomly selected on a predefined 3x3 km sampling grid covering the whole island and superficial samples were collected from uncultivated fields. Radiometric measurements were performed by gamma spectrometry with a coaxial-type germanium detector (Canberra Industries Inc., USA). The activity concentration of 137Cs was directly measured by its gamma-ray photopeak at 661.65 KeV. The Minimum Detectable Activity was 0.08 Bq kg-1.

137Cs activity concentrations in the 1991 survey ranged from 0.08 to 100.90 Bq kg-1 and from 0.08 to 88.85 Bq kg-1 in 2013. Comparing the results of both campaigns, 137Cs activity concentrations were found to be rather similar, despite the 22 years gap between the measurements. We believe that, in addition to the 137Cs atmospheric fallout, there is an additional contribution to the inventory of this radionuclide in the soils of this island produced by the deposition of 137Cs-loaded dust particles frequently transported from the Sahara Desert as dust storms (Karlsson et al, 2008).

In terms of radiological risk, in some few locations, the contribution to the outdoor gamma absorbed dose from the 137Cs activity concentrations present in the soils were as high as 50%. Therefore, it is important to identify the various sources of this radionuclide to the studied sites in order to enhance the understanding of the radiological hazard produced by this man-made radionuclide.

References:

Karlsson L, Hernandez F, Rodríguez S, López-Pérez M, Hernandez-Armas J, Alonso-Pérez S, Cuevas, E. (2008). Using 137Cs and 40K to identify natural Saharan dust contributions to PM10 concentrations and air quality impairment in the Canary Islands. Atmospheric Environment, 42: 7034-7042

López-Pérez M, Ramos-López R, Perestelo NR, Duarte-Rodriguez X, Bustos JJ, Alonso-Pérez S, E. Cuevas, J. Hernández-Armas. (2013). Arrival of radionuclides released by the Fukushima accident to Tenerife (Canary Islands). Journal of Environmental Radioactivity, 116: 180-186

How to cite: López Pérez, M., Salazar Carballo, P. Á., Martín Luis, M. C., Hernández, F. J., Liger, E., Fernández de Aldecoa, J. C., Catalán Acosta, A., and Gordo, E.: Radiocesium distribution in soils of Tenerife Island (Canary Islands, Spain), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3171, https://doi.org/10.5194/egusphere-egu21-3171, 2021.

EGU21-12997 | vPICO presentations | GI6.2

Determination of anthropogenic contamination by 137Cs, 240Pu/239Pu and 235U/238U in lichens and mosses from Russian Arctic areas 

Susanna Salminen-Paatero, Paul Dutheil, Timo Sundström, Ilia Rodushkin, and Jussi Paatero

Lichen and moss samples were collected from Russian Arctic areas (Kola Peninsula, Franz Josef Land and few other locations) in the 1990s. In 2020, 137Cs was determined by HPGe gamma spectrometry from these samples after which isotopes of Pu and U were radiochemically separated from the samples. Mass ratios 240Pu/239Pu and 235U/238U were determined by ICP-MS for utilizing the characteristic isotopic fingerprints of different nuclear events. The aim of the work was to survey radioactive contamination sources in terrestrial environment in Russian Arctic regions, which have not yet been completely explored in respect to anthropogenic isotopes and their origin in the environment.

How to cite: Salminen-Paatero, S., Dutheil, P., Sundström, T., Rodushkin, I., and Paatero, J.: Determination of anthropogenic contamination by 137Cs, 240Pu/239Pu and 235U/238U in lichens and mosses from Russian Arctic areas , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12997, https://doi.org/10.5194/egusphere-egu21-12997, 2021.

EGU21-1343 | vPICO presentations | GI6.2 | Highlight

Safecast – a Citizen Science initiative for ambient dose rate mapping;  Quality assurance issues.

Petr Kuča, Jan Helebrant, and Peter Bossew

Safecast has been initiated in 2011 in Japan as response to the perceived inadequacy of official information policy about radioactive contamination. It is based on measurements of ambient dose rate (ADR) by numerous volunteers using a standardized monitor, called SAFECAST bGeigie Nano. In essence, it consists of a Geiger counter and a GPS module, data (ADR, GPS coordinates, date/time) are recorded on an SD card if operated in its survey mode.

The project quickly expanded world-wide and by end 2020, over 150 million measurements were recorded, however by far not uniformly distributed over the world (https://map.safecast.org/ ). Evidently, such amount of data cannot be reasonably acquired by institutional surveying. On the other hand, professionals can be expected to follow metrological quality assurance (QA) standards, which is usually not the case for members of the public who are mostly laypeople in metrology.

Thus, impressive as the Safecast map is, it raises questions related to QA. This is relevant for interpretation of the ADR values shown on the map, and their uncertainty and resulting reliability. We propose to distinguish between two aspects of metrological QA regarding monitoring in the context of citizen science.

(1) Metrology proper, which pertains to characterization of the measurement procedure, from sampling protocols to physical behaviour of the instrument and resulting uncertainty; this is of course equally true also for professional measuring.

(2) Real-world handling: not being familiar with metrological QA concepts, in general, it can be expected that citizen scientists deviate from QA standards more frequently and more severely than professionals. This adds to the uncertainty budget of reported values. Uncertainty impairs interpretability.

In this contribution, we report current metrological knowledge of the bGeigie Nano in the sense of aspect (1). Further, we discuss how QA in the sense of aspect (2) can be approached. We report experiments of repeated realistic handling, i.e. without caring for particularly controlled laboratory or well-defined field conditions (as in (1)) and of intentional mishandling.

It appears that QA type (2) is the more serious issue, both by contribution to the uncertainty budget and by difficulty in handling it. While the Safecast map provides – in some regions - an astonishing dense database, one must be cautious about interpreting local data, if the measurement circumstances are not known, which is the usual case. One element of addressing the problem consists in instruction of participants about correct usage.

In response to certain technical issues of the bGeigie Nano which derogate its performance, SÚRO developed an alternative but conceptually similar device called CzechRad (details in https://github.com/juhele/CzechRad) whose metrological characterization is ongoing.

How to cite: Kuča, P., Helebrant, J., and Bossew, P.: Safecast – a Citizen Science initiative for ambient dose rate mapping;  Quality assurance issues., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1343, https://doi.org/10.5194/egusphere-egu21-1343, 2021.

EGU21-5566 | vPICO presentations | GI6.2

Low-level ionizing radiation and associated risk in an urban environment: the importance of both paving and building materials

Antonio Aruta, Annalise Guarino, Pooria Ebrahimi, Salvatore Dominech, Olga Belyaeva, Gevorg Tepanosyan, and Stefano Albanese

Natural radioactivity depends on primordial radionuclides which decay across a chain of transformations to achieve a stable nuclear state. Transformations involve the emission of particles and photons whose energy can be harmful to organisms even at low-dose. K-40, Th-232 and U-238 are responsible for most of the natural emission of gamma rays from the earth’s crust and volcanic rocks are, in general, the most emissive materials.

Volcanic rocks and related volcano-sedimentary lithified deposits have been quarried for construction purposes and for road paving, since the Greek times, in the area where the city Naples is located, halfway between the volcanic districts of Phlegrean Field and Mt. Somma-Vesuvius, respectively. For centuries, lithified pyroclastic products, such as grey or yellow tuffs, have been used mainly for buildings and vertical structures; lava blocks from Phlegrean Fields and, since 18th century, from Vesuvian effusive materials have been historically used to pave the roads of the old town.

However, in the last few decades, deteriorated historical paving materials of some roads serving areas undergoing renovation have been partially replaced by volcanic materials of Etnean origin (proceeding from Sicily, indeed) or covered/replaced by non-geologic materials (NGMs) (e.g., asphalt).

Considering that 120,000 people live in the old town (over an area of 4 sqkm) being potentially exposed to low-dose ionizing gamma radiations, a survey to estimate the contribution of geological materials to the ambient dose equivalent rate (ADER) was completed. A radiological risk assessment was also completed.

Specifically, 2548 measurements of ADER (µSv/h) were made in the open air at 0.2 (ADER0.2) and at 1 m (ADER1) above the ground, respectively, using a handheld gamma-ray spectrometer. Besides, a total of 13 samples of paving materials were collected and analyzed by means of a high purity germanium detector at the Center for Ecological-Noosphere in Armenia.

Results revealed a significant activity of all materials, except for NGMs. ADER1 and ADER0.2 values ​​showed a strong dependence on the distance from the ground in the streets paved with geologic materials, while the distance from the ground resulted to be not relevant for ADER in areas paved by NGMs .

Based on the ADER1 data, a Monte Carlo simulation was conducted to calculate the outdoor excess lifetime cancer risk (ELCRout) for the population of the study area and for each district belonging to the old town.

In one of the districts showing the highest average ELCRout, 51 additional ADER1 measurements were also conducted inside private dwellings to assess the indoor ELCR (ELCRin). Finally, the total excess lifetime cancer risk (ELCRtot) was estimated by summing values of ELCRout to ELCRin.

The average ELCRout obtained for the entire study area (1.33E-03) and for individual districts (from 5.20E-04 to 1.44E-03) exceeds the world average reference value (2.9E-04).

ELCRin (4.35E-03) and ELCRtot (5.79E-03) are also higher than the average reference values proposed in the literature.

This study revealed that low-dose gamma radiations, emitted by paving or building materials of volcanic origin can pose a radiological risk to human health.

How to cite: Aruta, A., Guarino, A., Ebrahimi, P., Dominech, S., Belyaeva, O., Tepanosyan, G., and Albanese, S.: Low-level ionizing radiation and associated risk in an urban environment: the importance of both paving and building materials, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5566, https://doi.org/10.5194/egusphere-egu21-5566, 2021.

EGU21-7284 | vPICO presentations | GI6.2

Mapping the outdoor effective dose: the case study of the Umbria region (Italy)

Andrea Serafini, Matteo Albéri, Stefano Bisogno, Enrico Chiarelli, Luca Cicala, Mario De Cesare, Andrea Maino, Michele Montuschi, Andrea Motti, Norman Natali, Marco Ogna, Kassandra Giulia Cristina Raptis, Gianluigi Simone, Virginia Strati, and Fabio Mantovani

The absorbed dose rate due to natural radioactivity arises from terrestrial and cosmic sources, both contributing to the individual effective dose rate per fraction of time spent outdoor. Rocks and soils are the main reservoirs of terrestrial gamma-emitting radionuclides (e.g. 40K and radioisotopes of the 232Th and 238U chains) while high-energy particles originated from astrophysical phenomena produce a cascade of nuclear interactions which contributes to cosmic radiation decreasing in intensity with the atmosphere depth. Following the UNSCEAR 2008 report, the average exposure of the world population to the different natural radioactivity sources corresponds to about 2420 μSv/yr and the external effective dose of terrestrial and cosmic origin is 870 μSv/yr.

The Umbria region (Italy), with its high variability of sedimentary and igneous rocks (e.g. limestone, sandstone, volcanic tuff) and a population of about 880000 inhabitants well distributed between 100 m and 1000 m a.s.l., represents the ideal case for mapping the effective dose from natural sources in a multifaceted environment. The outdoor effective dose rate from terrestrial radionuclides is studied by analysing 7439 gamma spectra measuring rock and soil samples in laboratory and carrying out about 20 hours of airborne radiometric surveys. Collocated CoKriging is used for the spatial interpolation of the sparse data, adopting a high-resolution geological map as ancillary information. The obtained numerical map is integrated with the cosmic radiation effective dose rate calculated considering the effects of altitude, latitude and the solar magnetic activity cycle. The resulting map of the outdoor effective dose rate shows a median value of 632 mSv/yr and only 3% of the territory is characterized by values higher than 814 mSv/yr.

How to cite: Serafini, A., Albéri, M., Bisogno, S., Chiarelli, E., Cicala, L., De Cesare, M., Maino, A., Montuschi, M., Motti, A., Natali, N., Ogna, M., Raptis, K. G. C., Simone, G., Strati, V., and Mantovani, F.: Mapping the outdoor effective dose: the case study of the Umbria region (Italy), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7284, https://doi.org/10.5194/egusphere-egu21-7284, 2021.

As a consequence of Council Directive 2013/59/EURATOM and its transposition into national law, the German States (Länder) had to define radon-prone areas where special rules apply in order to assure protection against excessive exposure to Radon-222 in living spaces and at work. The state of Saxony-Anhalt has chosen to define these areas based on datasets of long-term average indoor Rn concentration and Rn concentration in soil-air, complemented by ambient dose rate (ADR), whose values were acquired by a measurement campaign throughout the state territory.

Saxony-Anhalt is characterized by sabulous lowlands in its northern part with little Rn exhalation, but also by granite in the secondary mountains of the Harz massif and copper-shale dominated areas in the south. Radon prone areas can therefore be expected in the latter regions.

ADR was measured from vehicles carrying both a bGeigie nano pancake detector (the standard device of the Safecast mapping project, https://safecast.org/) with automatic GPS geo-referencing and a Thermo Eberline ESM FHZ 672-2 plastic scintillator. The latter device features a natural-background rejection system which could be used to determine high ADR levels as a consequence of K-40 anomalies that needed to be rejected. An ADR map could be created which was statistically linked to geogenic Rn data and soil geochemistry.

The purpose of the resulting model is to develop an algorithm that makes ADR a predictor for identifying radon-prone areas, which is sufficiently accurate for the objective of Rn legislation. It can be used in regions lacking of indoor Rn concentration or soil-sample data, on which the identification of such areas is usually based, but whose acquisition is too time and labour consuming to be achievable in the time frame allowed for implementation of Rn legislation.

It could be demonstrated that the gamma-dose rate can be used as an additional predictor for the identification of radon-prone areas with an algorithm that applies selective averaging on the data obtained on 2 500 km of measuring trips throughout the entire state of Saxony-Anhalt.

In this contribution, the algorithm is presented together with the areas the State of Saxony-Anhalt has finally determined as radon prone, with the legal consequence for employers to do quality assured Radon measurements and take action with respect to radon mitigation, if necessary. Special emphasis is put on establishing a statistically significant relationship between the measured dose rate on the one hand and geological information and radon exhalation, on the other.

How to cite: Ilgner, C., Bossew, P., and Schneider, P.: Ambient dose rate as an additional predictor for the identification of radon-prone areas as used in the German State of Saxony-Anhalt, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15633, https://doi.org/10.5194/egusphere-egu21-15633, 2021.

The Nuclear Engineering Laboratory of the National Technical University of Athens (NEL-NTUA) is among the oldest laboratories conducting radioactivity mesurements in Greece, founded in the early sixties. One of the main activities at NEL-NTUA is environmental radioactivity studies, mainly based on gamma spectroscopic analysis. For this purpose NEL-NTUA is equipped with a variety of Germanium detectors for in-vitro and in-situ measurements. Starting back in the early eighties, environmental radioactivity studies at NEL-NTUA were significantly boosted after the Chernobyl accident in 1986  when they focused on the Chernobyl fallout radionuclides, as well as some natural radionuclides typically determined in environmental studies, namely 232Th, 226Ra and 40K. As a result of these studies maps of nine Chernobyl fallout radionuclides and the three natural radionuclides in continental Greece surface soils were produced. 

Since natural radioactivity in soil is in most cases relatively low, high volume samples had to be analyzed. Over the years, the acquisition of detectors capable of detecting low energy photons (LEGe) along with the development of techniques to correct for self-absorption of low energy photons within the sample, allowed for the accurately determination of radionuclides emitting such photons, like 234Th (63.29keV), 210Pb (46.52keV) and 241Am (59.54keV). These newer studies showed that a significant disruption of radioactive equilibrium in surface soil between 226Ra and 210Pb is very common, while radioactive equilibrium disruption between 238U and 226Ra is common as well. It is interesting to notice that the mean activity ratio 210Pb/226Ra as obtained from ~300 sample measurements is of the order of ~4, while the mean activity ratio 226Ra/238U was estimated to be around one. A mapping of radioactive equilibrium disruption that followed provided interesting results.

In the years to follow studies focused on the vertical distribution of natural (210Pb) and artificial (137Cs) radionuclides in soil and sea sediments and the study of radionuclides fractionation in soil as well as NORM. Both types of studies require the analysis of small volume samples – of the order of 20-50g or even less. Therefore, the development of techniques for sampling of soil vertical profile and the accurate analysis of small samples was of great importance. These analyses require high efficiency detectors, such as XtRa detectors, background reduction techniques, such as Compton Suppression Systems, optimized sample geometries for higher full energy peak efficiency. Sophisticated techniques for background determination and subtraction, in order to obtain accurate results for natural radionuclides which are often detected in the background, are also required.

Another field of research at NEL-NTUA is the development and improvement of techniques for monitoring of 222Rn daughters outdoors using on-line detector systems, as well as for monitoring of natural and artificial radionuclides in atmospheric precipitations and aerosols (7Be, 210Pb, 22Na) using high volume air samplers.

Aim of this work is to present the research conducted at NEL-NTUA over the years with regard to the environmental radioactivity, as well as the current activities in the field and those planned for the future.

How to cite: Anagnostakis, M.: Environmental radioactivity studies at the Nuclear Engineering Laboratory of the National Technical University of Athens, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9934, https://doi.org/10.5194/egusphere-egu21-9934, 2021.

EGU21-69 | vPICO presentations | GI6.2

Occurrence and origin of polonium-210 in a sandstone aquifer in Germany

Peggy Hofmann, Frank Wagner, Christian Lucks, and Christiane Wittwer

Polonium-210 (Po-210) is a naturally occurring high-energy alpha emitter with a high dose coefficient compared to other natural radionuclides. In groundwater, Po-210 concentrations usually are low due to its high surface reactivity and tendency to readily adsorb onto mineral surfaces. The nationwide median in drinking water in Germany is 1.4 mBq/L as shown by investigations of the Federal Office for Radiation Protection (BfS). However, some sites in southern Sachsen-Anhalt in Germany were revealed to have Po‑210 activity concentrations far above 100 mBq/L. This is of particular relevance, since the EU Council Directive 2013/51/Euratom and its national implementation in the German Drinking Water Ordinance specifies requirements for drinking water quality with regard to artificial and natural radioactive substances. These high values of Po-210 would require reduction measures according to legislation.  

In order to gain a better understanding of the occurrence and origin of Po-210 in groundwater, further groundwater wells and water supply facilities in southern Sachsen-Anhalt were selected for analysis, taking into account the regional geology. The investigated aquifers pertain to the rock sequences of the Lower, Middle and Upper Buntsandstein (Lower Triassic), the Lower Muschelkalk (Middle Triassic) and Cenozoic stratigraphic units. Unfiltered water samples from 50 sites in total were analyzed for their content of natural radionuclides, major and trace elements as well as their oxygen and hydrogen isotope composition and supplemented by the examination of drill core material from these rock sequences.

The data indicate that the elevated Po-210 activity concentrations are limited to the aquifer of the Middle Buntsandstein. The simultaneous absence of the parent nuclides lead-210 (Pb-210) and radon-222 in the water samples indicate a local release mechanism in the rock. In the Middle Buntsandstein the amount of Pb-210 would be sufficient to provide the amount of Po-210 found in solution and the available clay minerals like illite, chlorite, hematite and muscovite could serve as potential hosts for Pb-210 and Po-210. Redox-indicators and a relatively high content of dissolved organic material (DOC >1 mg/L) found in the water samples of the Middle Buntsandstein aquifer could be interpreted as an indication of microbially induced reduction processes.

Understanding the geochemical processes responsible for the mobilization of Po-210 could provide necessary information helping to minimize the human exposure caused by drinking water consumption. Therefore, further investigations will focus on the size distribution of Po-210-bearing particles, the presence of the short-lived mother nuclide bismuth-210 and the sulfate isotope distribution at selected Po-210-rich groundwater sites in this study area.

How to cite: Hofmann, P., Wagner, F., Lucks, C., and Wittwer, C.: Occurrence and origin of polonium-210 in a sandstone aquifer in Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-69, https://doi.org/10.5194/egusphere-egu21-69, 2021.

EGU21-490 | vPICO presentations | GI6.2

Characterization and analysis of groundwater recharge through tritium measurements

Chiara Telloli, Antonietta Rizzo, Stefano Salvi, and Alberto Ubaldini

The August, 2 2017 Decree, which standardized the health protection requirements from the presence of radioactive substances in the waters intended for human consumption, provides for the obligation to verify the value of two parameters relating to the radioactivity content in drinking water: the concentration of tritium, which must be less than 850 UT (unit of tritium), and the total indicative dose, related to ingestion, which must be less than 0.1 mSv / year.

Tritium atoms produced in the atmosphere, by combination with oxygen in the air, tritiated water (HTO) which, having greater molecular mass than the H2O molecule, has a shorter residence time in the atmosphere from which it tends to be removed with precipitation. The short periods of residence in the atmosphere and the short period of decay mean that the concentrations of tritium in the rains are low and almost constant, as there is a balance between the speed of formation, the removal by the rains and the total quantity of natural tritium in the environment which is ∼ 70 × 106 Ci (US Department of Energy, 2002). This means that in groundwater with a long residence time in subsoil, infiltrated before 1950 (nuclear test period), the concentration of tritium is below the analytical detection limit.

In 1960, rainwater had an abnormal concentration (due to the emission into the atmosphere following nuclear tests) corresponding to an average value of 1000 UT. In the subsoil the decay of tritium produces its continuous loss which, in the absence of rainwater recharge and without the compensation of new atmospheric inputs, causes a decrease. To date, in the absence of any infiltration, this water would contain 35 UT.

Given that waters with over 50 years generally have dilution factors from 10 to 20 times with tritium-free fossil water, today we expect, due to mixing, detectable UT values but lower than 4. Aquifer values greater than 9 UT would therefore be related to recent anthropogenic recharge or surface percolation factors.

In the case of recharge with rain water rich in tritium, the concentration reflects the balance between the loss due to decay and the supply of rain water enriched with tritium. Based on the abundance of tritium, in the absence of sources of anthropogenic contamination it is possible to establish the average age of groundwater under the age of 50. This data is very important, because by analyzing the concentrations of tritium present in groundwater it is possible to trace the age of the aquifer and / or define if the aquifer is polluted by anthropogenic activities.

ENEA's Environmental Traceability and Radiometry Laboratory is at the forefront of the analysis of radioisotopes in the environment, including low-concentration of tritium analyzes. In this regard, an activity with ARPAV of Treviso was started for the determination and evaluation of the concentrations of tritium found in groundwater samples of the area around the city of Treviso.

How to cite: Telloli, C., Rizzo, A., Salvi, S., and Ubaldini, A.: Characterization and analysis of groundwater recharge through tritium measurements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-490, https://doi.org/10.5194/egusphere-egu21-490, 2021.

EGU21-5233 | vPICO presentations | GI6.2

Monitoring dissolved radon-222 in groundwater in a volcanic island (Tenerife, Canary Islands)

Pedro Antonio Torres González, Natividad Luengo Oroz, and Lluis Pujol

Radon-222, 222Rn, is a naturally radioactive noble gas with a half-life of 3.82 days. It is a product of the 238U disintegration chain with 226Ra as parent isotope. Radon gas has traditionally been linked to magmatic and seismic activity.

In order to improve volcanic surveillance networks, 222Rn monitoring in volcanic areas is carried out by measuring its concentration in air and soils. Also, since radon-222 is soluble in water, the gas may also be dissolved into groundwater flows. The quantity of dissolved 222Rn depends on different factors such as the characteristics of the aquifer, water-rock interaction, water residence time and material content of radium.

In Tenerife there are a vast number of excavated galleries, subhorizontal water mining tunnels, that drain the main aquifer in the island. Thirteen of them have been selected in order to monitor the dissolved radon-222 concentration since October 2019 every three months. This set of galleries surrounds the main volcanic complex in the island, Teide-Pico Viejo, located in Las Cañadas caldera in central Tenerife. 

Before sampling, 10 ml of Opti-Fluor O scintillation cocktail for selective extraction of radon-222, two-phase counting method, was transferred into a 20 ml vial. During the sampling, 10 ml of water were injected into the bottom of the vial. The vial was then tightly capped, vigorously shaken and transported to the laboratory for analysis. Water samples were measured using the liquid scintillation system Quantulus 1220 from PerkinElmer.

In this work, we show the main and preliminary results, which includes both spatial and temporal distribution of the dissolved radon concentration measured in the selected sampling points for the studied period. There are galleries showing a high stability, with radon-222 activity concentrations around 20 Bq/L, whereas others show a clear seasonal influence. The maximum dissolved 222Rn value detected was 29.2 ± 2.1 Bq/L. The detection limit is 0.5 Bq/l using a 30 minutes counting time. Besides, this dataset has been compared to data previously reported by other authors, in order to find changes in dissolved radon-222 emission across time. Finally, in the aim of finding interesting relationships, dissolved 222Rn values have been studied together with in situ groundwater parameters measured in the field (temperature, pH and electric conductivity) and, in some of the sampling points, also with dissolved CO2 concentration and isotopic ratio 3He/4He corrected for air contamination, (R/Ra)c, which are parameters directly related to volcanic activity.

How to cite: Torres González, P. A., Luengo Oroz, N., and Pujol, L.: Monitoring dissolved radon-222 in groundwater in a volcanic island (Tenerife, Canary Islands), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5233, https://doi.org/10.5194/egusphere-egu21-5233, 2021.

EGU21-8804 | vPICO presentations | GI6.2

The controls of radionuclide mobility in a siliciclastic aquifer in Hungary: Hydrogeological investigations and geochemical modeling

Petra Baják, Katalin Csondor, Daniele Pedretti, Muhammad Muniruzzaman, Bálint Izsák, Márta Vargha, Ákos Horváth, Tamás Pándics, and Anita Erőss

Groundwater represents a vast majority of the readily accessible fresh water on Earth and satisfies the demand for drinking water for a large portion of the world population. However, groundwater quality can be seriously threatened by geogenic and anthropogenic contamination with elevated concentrations of hydrocarbons, pesticides, metal(loid)s or radionuclides. Understanding the controls of the release and mobility of these contaminants including radionuclides is critical in proper groundwater management. In the southern foreland of a granitic outcrop in Hungary, gross alpha activity exceeding the 0.1 Bq L–1 limit was measured in drinking water wells. Nuclide-specific measurements for uranium, radium and radon isotopes were involved. The sampling activities indicate that excess of uranium (3−753 mBq L−1) is mainly responsible for the natural radioactivity measured in drinking water. Radium was measured in low activity concentrations (<5–63 mBq L−1) with the exception of three specific wells (285–695 mBq L−1). Notable radon activity was measured in the spring waters from Velence Hills (101–314 Bq L−1 ) and in interrelation with the high radium activities. These observations were interpreted in a “groundwater flow system” context. A conceptual model explaining the elevated radioactivity of groundwater was delineated. A geochemical modeling analysis involving redox-controlled kinetic reactions and a surface complexation model was developed to support the conceptual model of uranium mobility. The results suggest that uranium distribution is sensitive to redox changes in the aquifer. Its mobility in groundwater depends on the residence time of water compared to the reaction times controlling the consumption of oxidizing species. The longer the flow route from the recharge point to an observation point where U is measured, the higher the likelihood of finding aquifer reducing conditions and low U concentrations. It is concluded that the joint application of nuclide-specific measurements, hydrogeological approach and geochemical modeling can support safe drinking water management when dealing with the excess of radionuclides in groundwater.

This topic is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 810980. This study was also supported by the ÚNKP-17-4-III-ELTE-73 New National Excellence Program of the Ministry of Human Capacities (Hungary). The results here presented have been developed in the frame of the MIUR Project “Dipartimenti di Eccellenza 2017—Le Geoscienze per la società: risorse e loro evoluzione”.

How to cite: Baják, P., Csondor, K., Pedretti, D., Muniruzzaman, M., Izsák, B., Vargha, M., Horváth, Á., Pándics, T., and Erőss, A.: The controls of radionuclide mobility in a siliciclastic aquifer in Hungary: Hydrogeological investigations and geochemical modeling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8804, https://doi.org/10.5194/egusphere-egu21-8804, 2021.

EGU21-14208 | vPICO presentations | GI6.2

Internal dose rate in quartz grains: Implications for luminescence dating 

Grzegorz Poręba, Agnieszka Szymak, Piotr Moska, Konrad Tudyka, and Grzegorz Adamiec

This study assesses how internal dose rate in quartz grains impacts luminescence dating.  In 2018, the Gliwice Luminescence Laboratory implemented innovative μDose system which combines advantages of alpha and beta counting measurement techniques with additional radioactive identification capabilities. The device allows measurements of small samples and results verification with an independent high-resolution gamma spectrometry method. 

All measurements of internal dose rate were made on  pure quartz grains after standard chemical pretreatment. Grains with diameters between 125 and 200 μm were selected for measurements. This material was dried and grounded to approx. 20 μm using a planetary ball mill prior to measurements on the μDose systems.  

Internal dose rate reported here is particularly important because of low (about 0.8-0.9 Gy/ka) or very low (0.4-0.6 Gy/ka) external dose rates. Internal dose rate in quartz grains in our measurements is a significant fraction of the total dose rate, often exceeding 10%. Ignoring this correction would make luminescence ages in our study artificially older.

Presented results were obtained with support of Polish National Science Centre, contract number 2018/30/E/ST10/00616 

How to cite: Poręba, G., Szymak, A., Moska, P., Tudyka, K., and Adamiec, G.: Internal dose rate in quartz grains: Implications for luminescence dating , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14208, https://doi.org/10.5194/egusphere-egu21-14208, 2021.

The objective of this work is to simulate the spectral gamma-ray response of NaI(Tl) scintillation detectors for airborne gamma-ray spectrometry (AGRS) using Monte Carlo radiation transport codes. The study is based on a commercial airborne gamma-ray spectrometry detector system with four individual NaI(Tl) scintillation crystals and a total volume of 16.8 l. Monte Carlo source-detector simulations were performed in an event-by-event mode with the commercial multi-purpose transport codes MCNP6.2 and FLUKA. Validation measurements were conducted using 241Am, 133Ba, 60Co, 137Cs and 152Eu radiation sources with known activities and source-detector geometries. Energy resolution functions were derived from these measurements combined with additional measurements of natural Uranium, Thorium and Potassium sources. The simulation results are in good agreement with the experimental data with a maximum relative error in the full-energy peak counts of 10%. In addition, no significant difference between the two Monte Carlo radiation transport codes was found with respect to a 95% confidence level. The validated detector model presented herein can be adopted for angular detector response analysis and calibration computations relating radionuclide activity concentrations with spectral detector counts.

How to cite: Breitenmoser, D.: Experimental and Simulated Spectral Gamma-Ray Response of a NaI(Tl) Scintillation Detector used in Airborne Gamma-Ray Spectrometry, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1345, https://doi.org/10.5194/egusphere-egu21-1345, 2021.

EGU21-8795 | vPICO presentations | GI6.2

Deposition  of plutonium isotopes in glacial environments in the Northern and Southern Hemispheres

Edyta Łokas, Giovanni Baccolo Baccolo, Caroline Clason, Przemysław Wachniew, Nozomu Takeuchi, Krzysztof Zawierucha, Dylan Beard, Roberto Ambrosini, Francesca Pittino, Andrea Franzetti, Phil Owens, Ewa Poniecka, William Blake, Massimiliano Nastasi, and Jakub Buda

Glaciers are temporary repositories for radionuclides and other airborne contaminants (eg. heavy metals). Retreat of glaciers results in the release of these contaminants to downstream ecosystems where they can be accumulated by biota, with further consequences along the trophic chain. Fallout radionuclides, and especially Pu released from nuclear weapons testing and nuclear accidents, concentrates on glacier surfaces in cryoconite granules. These aggregates of mineral and organic components are associated with biological consortia composed of archaea, algae, cyanobacteria, fungi and heterotrophic bacteria (Cook et al., 2016). Cryoconite is also responsible for local decrease ice albedo and is responsible for formation of water-filled holes. Contaminants are effectively trapped in cryoconite granules for long periods (up to decades) due to the “sticky” nature of the material. Cryoconite can thus be useful in monitoring of radionuclide deposition on glaciers (Łokas et al., 2019; Giovanni et al., 2020).

Our collective research reveals widespread incidence of Pu isotopes in cryoconite across multiple sites on both hemispheres, including Svalbard, Sweden, Norway, Iceland, Greenland, British Columbia, Alaska, the European Alps, the Caucasus, Siberia, Tien Shan, Altai, South America and Antarctica. The levels of plutonium isotopes (238,239,240Pu) found in cryoconite at these sites are orders of magnitude higher than those detected in non-glaciated environments, raising important questions around the role of glaciers, and specifically cryoconite, in concentrating levels of Pu isotopes above those found in the surrounding environment. The activity ratios of 238Pu/239+240Pu show that the plutonium-related radioactivity of cryoconite from the Northern hemisphere is compatible with the worldwide signal from the global radioactive fallout (0.025) but in some samples from Svalbard higher activity ratios are associated with an additional source of pure 238Pu, pointing to an influence of the SNAP-9A satellite burn up in the atmosphere occurred in 1964. Also activity ratios from South America and Antarctica are consistent with the global radioactive fallout ratio (including SNAP 9 re-entry) in the southern hemisphere (0.14), with an exception concerning cryoconite from the Exploradores Glacier (Chilean Patagonia, ratio 0.35). There are no known nuclear test sites near this glacier which could explain this anomalous value. However, there is also no information about the atmospheric re-entry of the automatic Interplanetary Station “Mars’96” which was launched on 16 November 1996. It fell off the coast of Chile near the border with Bolivia and was not found so far. There were considerable quantities of 238Pu on board of the station, with a total activity of 174 TBq (IAEA, 2001). We hypothesize that this event could explain the anomaly observed at Exploradores Glacier, confirming the unmatched potential of cryoconite to study environmental radioactivity in glacial contexts.

Acknowledgements

This study was supported by the National Science Center grant no. NCN 2018/31/B/ST10/03057.

References

Cook et al., 2016. Progress in Physical Geography, 40(1), 66-111.

Giovanni et al., 2020. CATENA, 191, 104577.

IAEA, 2001. International Atomic Energy Agency IAEA, Vienna).

Łokas et al., 2019. The Cryosphere, 13(7), 2075-2086.

How to cite: Łokas, E., Baccolo, G. B., Clason, C., Wachniew, P., Takeuchi, N., Zawierucha, K., Beard, D., Ambrosini, R., Pittino, F., Franzetti, A., Owens, P., Poniecka, E., Blake, W., Nastasi, M., and Buda, J.: Deposition  of plutonium isotopes in glacial environments in the Northern and Southern Hemispheres, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8795, https://doi.org/10.5194/egusphere-egu21-8795, 2021.

GI6.4 – Airborne observations in multidisciplinary environmental research using European Research Infrastructures; observations, campaigns and future plans

EGU21-15741 | vPICO presentations | GI6.4 | Highlight

EUFAR: the European Facility for Airborne Research

Philip Brown and Elisabeth Gerard

Since its creation in 2000, the European Facility for Airborne Research, EUFAR, evolved into the central network for the airborne research community in Europe. From the beginning until 2018, EUFAR has received funding within the different Framework Programmes of the European Commission. In January 2018, EUFAR became an AISBL (international non-profit association under Belgian law) establishing EUFAR as an independent legal structure and ensuring EUFAR’s future.

Via EUFAR Transnational Access, a range of aircraft and instrumentation has been made available to European researchers who do not have access to a suitable research infrastructure in their home country. This has provided both a comprehensive range of atmospheric in-situ measurements together with a variety of remote-sensing instruments and hyperspectral imagers for studies of land or water surfaces, vegetation etc. Examples of successful TA activities will be shown. In order that researchers should continue in future to have access to the most appropriate research aircraft and instrumentation to meet their science objectives independently of EC funding, EUFAR is now working to develop principles of Open Access (OA).

EUFAR supports Expert Working Group meetings to exchange knowledge and promote best practice across the range of activities involved in airborne research. These cover, for example, instrument developments, data processing software and the scientific uses of airborne data. Via its previous EC funding, EUFAR has been able to support training courses for early-career researchers to introduce them to the use of airborne measurements for environmental research. Where possible, new software tools resulting from these activities are provided openly via the EUFAR website. EUFAR also promotes access to its members' data from airborne platforms and instruments and will be working with the AERIS data centre in France to provide a data portal to assist with this.

This presentation will give an overview of EUFAR, its recent achievements and future plans.

How to cite: Brown, P. and Gerard, E.: EUFAR: the European Facility for Airborne Research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15741, https://doi.org/10.5194/egusphere-egu21-15741, 2021.

EGU21-13035 | vPICO presentations | GI6.4 | Highlight

The HEMERA Balloon Research Infrastructure

Felix Friedl-Vallon, Philippe Raizonville, André Vargas, Kristine Dannenberg, Marta Albano, Rainer Kirchhartz, Eric Vachon, Mattias Abrahamsson, Kjell Boen, Xavier Dubois, Nathalie Huret, Neil Harris, Pietro Ubertini, and Klaus Pfeilsticker

Stratospheric balloons are useful platforms for various research and technology needs. They allow to collect valuable data in many science fields, e.g. atmospheric science and astrophysics; they can be used for demonstrations in preparation of new space and Earth observation missions; they can be used to provide calibration/validation data for Earth observation space missions, or for dropping test objects from the stratosphere.

Various types of balloons are available, corresponding to different missions: Zero Pressure Balloons (ZPB) for heavy payloads (100 kg to 3 tons) and short to medium duration (1 day to several days), Sounding Balloons (SB) for very light payloads (3 kg).

Payloads can be flown at various altitudes between the ground surface up to 40 km, according the type of balloon and the kind of mission. Compared to satellites, stratospheric balloons can be operated at relatively low cost and with shorter lead times from the experiment idea to the flight.

Mid-2017, a new Research Infrastructure called HEMERA has been selected by the European Commission within its programme Horizon 2020. The HEMERA objectives are to:

  • Provide better and coordinated balloon access to the troposphere and stratosphere for scientific and technological research, in response to the scientific user needs.
  • Attract new users to enlarge the community accessing the balloon infrastructure and foster scientific and technical collaboration.
  • Enlarge the fields of science and technology research conducted with balloons.
  • Improve the balloon service offered to scientific and technical users through innovative developments.
  • Favour standardization, synergy, complementarities and industrialization through joint developments with greater cost-effectiveness.

The project is coordinated by CNES and involves 13 partners in total, from various European entities and Canada. The project was kicked-off in late January 2018 and will be executed during 2018-2022.

Six ZPB flights with a target payload mass of at least 150 kg are foreseen within HEMERA, offering free of charge access to users and scientists for various science measurements and/or for technology tests. In addition, several SB flights are foreseen. The launch sites will be Esrange in Sweden, Timmins in Canada, for the ZPB and Aire sur l'Adour in France for the SB. The selected experiments will fly on balloons during the years 2019-2022. 

Two Calls for Proposals were planned in the HEMERA project, the first was launched in 2018 and 39 answers from 12 countries have been received; 23 experiments have been selected. 31 answers have been received in the frame of the second call, from 10 countries. In total 39 experiments from 13 countries have been selected. The first HEMERA flights occurred in summer 2019 from Kiruna and Timmins.

In addition, Open Access to balloon data will be organized in the frame of the Data Center, giving access to science data collected during the flights. Networking activities are planned in order to promote the Infrastructure in the European countries, and Joint Research activities are conducted in order to improve as far as possible the balloon offer in the view of the user needs.

How to cite: Friedl-Vallon, F., Raizonville, P., Vargas, A., Dannenberg, K., Albano, M., Kirchhartz, R., Vachon, E., Abrahamsson, M., Boen, K., Dubois, X., Huret, N., Harris, N., Ubertini, P., and Pfeilsticker, K.: The HEMERA Balloon Research Infrastructure, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13035, https://doi.org/10.5194/egusphere-egu21-13035, 2021.

IAGOS (In-service Aircraft for a Global Observing System) is a European Research Infrastructure for global observations of atmospheric composition using commercial aircraft. Commercial aircraft are ideal platforms for providing long-term in-situ measurements with high vertical and temporal resolution, particularly at cruise altitude (between 9 and 13 km) in the climate-sensitive region of the atmosphere known as the upper troposphere-lower stratosphere (UTLS). IAGOS also provides landing and take-off profiles at almost 300 airports throughout the world which are of major interest for air quality issues. Fully automated instruments are permanently installed on Airbus A330 aircraft operated by different airlines. Data are collected on about 500 flights per aircraft per year. All the aircraft measure the abundances of many essential climate variables, chiefly ozone and the precursor carbon monoxide, water vapour, clouds and meteorological parameters. Additional instruments can be installed to measure nitrogen oxides, aerosols, or the greenhouse gases carbon dioxide and methane. The data are transmitted in near to real real time to weather services and are freely available for the scientific community, national air quality prediction centres and the Copernicus Atmosphere Monitoring Service (CAMS). We describe the importance of these measurements in the monitoring of global atmospheric composition and air quality. In particular, we show examples from the Copernicus Atmosphere Monitoring Service (CAMS) where IAGOS data are used in the evaluation and improvement of forecasts of air quality over Europe, and discuss how the development of the IAGOS data transmission and instrumentation may fertilize infrastructure development for other airborne platforms.

How to cite: Clark, H. and Team, I.: The IAGOS Research Infrastructure for monitoring atmospheric composition and air quality using commercial aircraft, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1269, https://doi.org/10.5194/egusphere-egu21-1269, 2021.

EGU21-9129 | vPICO presentations | GI6.4 | Highlight

SIOS’s airborne remote sensing campaigns in Svalbard 

Shridhar Jawak, Agnar Sivertsen, Veijo Pohjola, Małgorzata Błaszczyk, Jack Kohler, Hans Tømmervik, Lennart Nilsen, Marta Majerska, Thomas Kræmer, Maarten J.J.E. Loonen, Janne Søreide, Dariusz Ignatiuk, Øystein Godøy, Inger Jennings, Christiane Hübner, and Heikki Lihavainen

Svalbard Integrated Arctic Earth Observing System (SIOS) is an international collaboration of 24 research institutions from 9 countries studying the environment and climate in and around Svalbard. The global pandemic of Coronavirus disease (Covid-19) has affected the Svalbard research in a number of ways due to nationwide lockdown in many countries, strict travel restrictions in Svalbard, and quarantine regulations. Many field campaigns to Svalbard were cancelled in 2020 and campaigns in 2021 are still uncertain. In response to this challenge, we conducted practical activities to support the Svalbard science community in filling gaps in scientific observations. One of our activities involved conducting airborne remote sensing campaigns in Svalbard to support scientific projects. In 2020, SIOS supported 10 scientific projects by conducting 25 hours of aircraft and unmanned aerial vehicle (UAV)-based data collection in Svalbard. This is one of the finest ways to fill the data gap in the current situation as it is practically possible to conduct field campaigns using airborne platforms in spite of travel restrictions. We are using the aerial camera and hyperspectral sensor installed onboard the Dornier DO228 aircraft operated by the local company Lufttransport to acquire aerial images and hyperspectral data from various locations in Svalbard. The hyperspectral sensor image the ground in 186 spectral bands covering the range 400-1000 nm. Hyperspectral data can be used to map and characterise earth, ice and ocean surface features, such as minerals, vegetation, glaciers and snow cover, colour and pollutants. Further, it can be used to make 3D models of the terrain as well as searching for the presence of animals (e.g. counting seals). In addition, aerial photos are particularly useful tool to follow the seasonal dynamic changes and extent in sea ice cover, tracking icebergs, ocean productivity (Chlorophyll a) and river runoff (turbidity). Data collected from the SIOS funded airborne missions will not only help to fill a few of the data gaps resulting from the lockdown but also will be used by glaciologists, biologists, hydrologists, and other Earth system scientists to understand the state of the environment of Svalbard during these times. In 2021, we are continuing this activity by conducting more airborne campaigns in Svalbard. In this presentation, we will specifically focus on the overview of projects supported by airborne remote sensing campaigns.

How to cite: Jawak, S., Sivertsen, A., Pohjola, V., Błaszczyk, M., Kohler, J., Tømmervik, H., Nilsen, L., Majerska, M., Kræmer, T., Loonen, M. J. J. E., Søreide, J., Ignatiuk, D., Godøy, Ø., Jennings, I., Hübner, C., and Lihavainen, H.: SIOS’s airborne remote sensing campaigns in Svalbard , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9129, https://doi.org/10.5194/egusphere-egu21-9129, 2021.

EGU21-12966 | vPICO presentations | GI6.4

Development and adaptation of sensors and samplers for vertical profiling using fixed-wing drones in the context of the Cooperation to Unravel the RolE of Atmospheric Aerosols over the Amazonian Basin (CURE-3AB).

Maximilien Desservettaz, Christos Keleshis, Panayiota Antoniou, Panagiotis Vouterakos, Yunsong Liu, Christos Constantinides, Agapios Agapiou, Roland Sarda-Esteve, Dominique Baisne, Greg Kok, and Jean Sciare

The Cooperation to Unravel the Role of the Atmospheric Aerosol over the Amazon Basin using drones (CURE-3AB) project has yielded new technical solutions to perform high quality in-situ atmospheric observations in the lower troposphere (0-2 km) with Unmanned Aerial Vehicles (UAVs). An Ozonesonde (EN-SCI ECC, Model 2Z), designed for regular O3 radio sounding, has been adapted to perform on-line measurements of Ozone onboard the drone. A 3D printed low-cost pollen/spore collector has been developed to replicate reference instruments (VPPS2000) and adapted to perform onboard our UAV. Finally, an optical particle counter (AlphaSense) and a custom-made drying system have been fitted on a third drone. The three vehicle/instrument tandems will be deployed in the proximity of the Amazonian Tall Tower Observatory during the CURE-3AB campaign (delayed due to pandemic). We present the instrumental developments, setups, and preliminary test results performed with our UAVs at the Cyprus Institute private airspace.

How to cite: Desservettaz, M., Keleshis, C., Antoniou, P., Vouterakos, P., Liu, Y., Constantinides, C., Agapiou, A., Sarda-Esteve, R., Baisne, D., Kok, G., and Sciare, J.: Development and adaptation of sensors and samplers for vertical profiling using fixed-wing drones in the context of the Cooperation to Unravel the RolE of Atmospheric Aerosols over the Amazonian Basin (CURE-3AB)., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12966, https://doi.org/10.5194/egusphere-egu21-12966, 2021.

EGU21-8465 | vPICO presentations | GI6.4

Development of a small unmanned aircraft system to derive CO2 emissions of anthropogenic point sources

Maximilian Reuter, Heinrich Bovensmann, Michael Buchwitz, Jakob Borchard, Sven Krautwurst, Konstantin Gerilowski, and John P. Burrows

A reduction of the anthropogenic emissions of CO2 (carbon dioxide) is necessary to stop or slow down man-made climate change. To verify mitigation strategies, a global monitoring system such as the envisaged European Copernicus anthropogenic CO2 monitoring mission (CO2M) is required. Those satellite data are going to be complemented and validated with airborne measurements. UAV (unmanned aerial vehicle) based measurements can provide a cost-effective way to contribute to these activities. Here we present the development of a sUAS (small unmanned aircraft system) to quantify the CO2 emissions of a nearby point source from its downwind mass flux without the need for any ancillary data. Specifically, CO2 is measured by an in situ NDIR (non-dispersive infrared) detector and the wind speed and direction is measured with a 2D ultrasonic acoustic resonance anemometer. In order to minimize the effect of rotor downwash, we calibrate the anemometer by analyzing wind measurements taken while following a suitable flight pattern and assuming stationary wind conditions. We quantify the quality of the CO2 and wind measurements with an in-flight validation at the ICOS (Integrated Carbon Observation System) atmospheric station Steinkimmen (STE) near Bremen, Germany. By means of two flights downwind of the ExxonMobil natural gas processing facility in Großenkneten about 40km east of Bremen, Germany, we demonstrate how the measurements of elevated CO2 concentrations can be used to infer mass fluxes of atmospheric CO2 related to the emissions of the facility.

How to cite: Reuter, M., Bovensmann, H., Buchwitz, M., Borchard, J., Krautwurst, S., Gerilowski, K., and Burrows, J. P.: Development of a small unmanned aircraft system to derive CO2 emissions of anthropogenic point sources, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8465, https://doi.org/10.5194/egusphere-egu21-8465, 2021.

EGU21-11674 | vPICO presentations | GI6.4

Balloon-borne GLORIA hyperspectral Limb and Nadir imager in the LWIR

Erik Kretschmer, Felix Friedl-Vallon, Thomas Gulde, Michael Höpfner, Sören Johansson, Anne Kleinert, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Georg Schardt, Axel Schönfeld, Jörn Ungermann, and Gerald Wetzel

The GLORIA-B (Gimballed Limb Observer for Radiance Imaging of the Atmosphere - Balloon) instrument is an adaptation of the very successful GLORIA-AB imaging Fourier transform spectrometer (iFTS) flown on the research aircrafts HALO and M55 Geophysica. The high spectral resolution in the LWIR (Long Wave Infrared) allows for the retrieval of temperature and of a broad range of atmospheric trace gases, with the goal to retrieve O3, H2O, HNO3, C2H6, C2H2, HCOOH, CCl4, PAN, ClONO2, CFC-11, CFC-12, SF6, OCS, NH3, HCN, BrONO2, HO2NO2, N2O5 and NO2. The radiometric sensitivity of the Balloon instrument is further increased in comparison with the GLORIA-AB instrument by having two detector channels on the same focal plane array, while keeping the same concept of a cooled optical system. This system improvement was achieved with minimal adaptation of the existing optical system.

The high spatial and temporal resolution of the instrument is ensured by the imaging capability of the Fourier transform spectrometer while stabilizing the line-of-sight in elevation with the instrument and in azimuth with the balloon gondola. In a single measurement lasting 13 seconds, the atmosphere can be sounded from mid-troposphere up to flight altitude, typically 30 km, with a vertical resolution always better than 1 km for most retrieved species; a spatial resolution up to 0.3 km can be achieved in favourable conditions. Temperature retrieval precision between 0.1 and 0.2 K is expected. A spectral sampling up to 0.0625 cm-1 can be achieved.

The first flight of GLORIA-B shall take place during the late-summer polar jet turn-around at Kiruna/ESRANGE. This flight is organised in the frame of the HEMERA project and was scheduled for summer 2020, but was ultimately postponed to summer 2021. Beyond qualification of the first balloon-borne iFTS, the scientific goals of the flight are, among others, the quantification of the stratospheric bromine budget and its diurnal evolution by measuring vertical profiles of BrONO2 in combination with BrO observations by the DOAS instrument of University Heidelberg on the same platform.

How to cite: Kretschmer, E., Friedl-Vallon, F., Gulde, T., Höpfner, M., Johansson, S., Kleinert, A., Maucher, G., Neubert, T., Nordmeyer, H., Piesch, C., Preusse, P., Riese, M., Schardt, G., Schönfeld, A., Ungermann, J., and Wetzel, G.: Balloon-borne GLORIA hyperspectral Limb and Nadir imager in the LWIR, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11674, https://doi.org/10.5194/egusphere-egu21-11674, 2021.

EGU21-10874 | vPICO presentations | GI6.4

OSAS-B: a balloon-borne heterodyne spectrometer for sounding atomic oxygen in the MLT region

Martin Wienold, Alexey Semenov, Heiko Richter, and Heinz-Wilhelm Hübers

The Oxygen Spectrometer for Atmospheric Science on a Balloon (OSAS-B) is dedicated to the remote sounding of atomic oxygen in the mesosphere and lower thermosphere (MLT) region of Earth's atmosphere, where atomic oxygen is the dominant species. Quantitative radiometry of atomic oxygen via its visible and near-infrared transitions has been difficult, due to the complex excitation physics involved. OSAS-B is a heterodyne spectrometer for the thermally excited ground state transition of atomic oxygen at 4.75 THz. It will enable spectrally resolved measurements of the line shape,  which in turn enables the determination of the concentration of atomic oxygen in the MLT. Due to water absorption, this line can only be observed from high-altitude platforms such as a high-flying airplanes, balloons or satellites. Recently the first spectrally resolved observation of the 4.75-THz line has been reported using a heterodyne spectrometer on SOFIA, the Stratospheric Observatory for Infrared Astronomy [1]. Compared to SOFIA a balloon-borne instrument has the advantage of not being hampered by atmospheric water vapor absorption. OSAS-B will comprise a hot-electron bolometer mixer and a quantum-cascade laser as local oscillator in a combined helium/nitrogen dewar. A turning mirror will allow for sounding at different vertical inclinations. The  first flight of OSAS-B is planned for autumn 2022 in the frame of the European HEMERA project [2].

[1] H. Richter et al., Direct measurements of atomic oxygen in the mesosphere and lower thermosphere using terahertz heterodyne spectroscopy, accepted for publication in Communications Earth & Environment (2021).

[2] https://www.hemera-h2020.eu/

How to cite: Wienold, M., Semenov, A., Richter, H., and Hübers, H.-W.: OSAS-B: a balloon-borne heterodyne spectrometer for sounding atomic oxygen in the MLT region, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10874, https://doi.org/10.5194/egusphere-egu21-10874, 2021.

EGU21-6714 | vPICO presentations | GI6.4

Improved multi-spectral polarimetric observations of UTLS aerosol and cloud from stratospheric balloon with the Aerosol Limb Imager

Daniel Letros, Adam Bourassa, Paul Loewen, Liam Graham, Nick Lloyd, Landon Rieger, and Doug Degenstein

The Aerosol Limb Imager (ALI) is a multi-spectral imager capable designed to observe aerosol extinction and particle size profiles in the upper-troposphere lower-stratosphere. ALI uses a system of linear polarizers, a liquid crystal rotator, and an acoustic-optic tunable filter to select the linear polarization state and wavelength of limb scattered sunlight radiance between 600 nm and 1500 nm. From stratospheric balloon, spectral images have spatial resolution of <100 meters at the tangent point, and can produce useful aerosol observations between 5 km and 30 km in altitude. Of novelty is the polarimetric capability of ALI, which uses the orthogonal polarization states to detect cloud in the spectral data and facilitate its distinction from aerosol. Two previous iterations of the ALI instrument concept have already been successfully demonstrated, once in 2014 and again in 2018. Currently, a third iteration is being developed which improves upon the thermal, structural, and optical performance of the previous iterations. This improved iteration is scheduled for demonstration as part of the HEMERA program out of Kiruna, Sweden in the summer of 2021. This demonstration serves the larger objective of further proving the engineering and scientific readiness of the ALI instrument concept for eventual high-altitude aircraft and satellite platform deployments.  ALI is a proposed Canadian contribution to the NASA A-CCP satellite mission study.

How to cite: Letros, D., Bourassa, A., Loewen, P., Graham, L., Lloyd, N., Rieger, L., and Degenstein, D.: Improved multi-spectral polarimetric observations of UTLS aerosol and cloud from stratospheric balloon with the Aerosol Limb Imager, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6714, https://doi.org/10.5194/egusphere-egu21-6714, 2021.

EGU21-13420 | vPICO presentations | GI6.4

infoBalloons: an Italian High School educational self-made budget friendly STEM experience with hot air/stratospheric balloons

Paolo Tealdi, Fabrizio Innocenti, and Giovanni (John) Aimo

infoBalloons 2.0 is a selected Sounding Balloon (SB) Experiments in the 2nd HEMERA Call for Proposals (HEMERA H2020. This project has received funding from the European Union's Horizon 2020 research and Innovation programme under grant agreement No 730970).

This is a solution (self-made app/software and budget friendly IoT sensors and TC/TM communication link) to collect and then analyze data regarding atmospheric sounding, flight info/data and LPWAN (Low Power Wide Area Network) performances during a stratospheric balloon flight. Optional also to take POV photos/video of the flight.

infoBalloons 2.0 is the natural evolution of infoBalloons. The old 1.0 system reports a bunch of environmental data to an Android self-made app (available on Google Play for free) being carried in the hot air balloons using budget friendly industrial IoT sensors called Blebricks. IoT sensors communicate with the Android app installed inside the pilote’s smartphone using Bluetooth protocol and then the app partially elaborates the data and transmits them into the cloud (iSENSE platform) using a data (3G/4G) connection. infoBalloons was used several times during test flights and also for example during the International Hot Air Balloons Meeting in Mondovì in January 2019; it was developed by a group of Scientific High School students (I.I.S. “Cigna-Baruffi-Garelli” – Mondovì [Italy]) with the technical support of John Aimo Balloons - [Italy] (hot air balloons flights), Bleb Technology - [Italy] (Blebricks, the budget friendly industrial IoT sensors), iSENSE team (iSENSE is a web system for sharing and visualizing scientific data, based at the Engaging Computing Group at the University of Massachusetts Lowell [USA]) and MIT App Inventor team (CSAIL - Massachusetts Institute of Technology [USA]). The work was also presented in the Poster Session at last MIT App Inventor Summit 2019 in Cambridge, MA – USA.

How to cite: Tealdi, P., Innocenti, F., and Aimo, G. (.: infoBalloons: an Italian High School educational self-made budget friendly STEM experience with hot air/stratospheric balloons, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13420, https://doi.org/10.5194/egusphere-egu21-13420, 2021.

EGU21-7447 | vPICO presentations | GI6.4

High performance modular, compact and ruggedized processing system for airborne and balloon remote sensing instruments

Tom Neubert, Georg Schardt, Heinz Rongen, Egon Zimmermann, Thomas Gulde, Erik Kretschmer, Guido Maucher, Peter Preusse, Martin Riese, Jörn Ungermann, and Stefan van Waasen

Observations from aircraft and balloons with remote sensing instruments are an important method to investigate processes within the Earth environment. These applications require powerful computing systems that must be developed or adapted for the measurement task and requirements. In particular, imaging spectrometers generate high data rates by almost 10,000 pixels at about 4,000 frames per second. Accordingly, high performance is needed to provide operational control and data processing with high data bandwidth and the capability to store this data also during long duration flights.

A modular processing system architecture based on modified industrial grade board components has been developed to meet these high requirements for processing power and storage capacity. The major advantages of this approach are flexibility, (re)programmability, modularity and module re-use in order to attain lower development time and costs. However, it is a challenge to design this processing system to be suitable for the harsh environments of aircraft or balloon applications in terms of temperature range, humidity and vibration.

With an efficient approach ruggedized characteristics are achieved using a conduction cooled design in combination with components based on VPX standard and customized backplane transition modules in order to reduce operational risk with necessary measures of mitigation techniques. This approach results in a processing system that combines hardware and software redundancies to assure system availability and reliability for long duration flights.

In this presentation the compact flight proven system design is presented that has been used in recent years for high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard the HALO and Geophysica high-altitude aircrafts. Various system configurations and performance results will be shown, which have been achieved in the current design and will be applied in future balloon campaigns.

How to cite: Neubert, T., Schardt, G., Rongen, H., Zimmermann, E., Gulde, T., Kretschmer, E., Maucher, G., Preusse, P., Riese, M., Ungermann, J., and van Waasen, S.: High performance modular, compact and ruggedized processing system for airborne and balloon remote sensing instruments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7447, https://doi.org/10.5194/egusphere-egu21-7447, 2021.

EGU21-6470 | vPICO presentations | GI6.4

High-resolution air-quality observations onboard commercial Zeppelin flights in Germany 

Ralf Tillmann, Franz Rohrer, Georgios I. Gkatzelis, Benjamin Winter, Christian Wesolek, Tobias Schuldt, Morten Hundt, Oleg Aseev, and Astrid Kiendler-Scharr

A Zeppelin NT airship has been used as a platform for in-situ measurement of greenhouse gases and air pollutants in the planetary boundary layer (PBL). The Zeppelin especially with its long flight endurance, low air speed and potential high payload fills a gap between stationary ground based and remote sensing measurements, payload limited UAV based air monitoring, long range-high-altitude aircraft, and satellite observations. Its flight properties render unique applications for the observation of PBL dynamics and air quality monitoring. Highly resolved spatial and temporal trace gas measurements provide input required for modelling of air pollution and validation of emission inventories.

The core instrument deployed was a novel Quantum Cascade Laser (QCL) based multi-compound gas analyzer (MIRO Analytical AG) to measure in-situ concentrations of 10 greenhouse gases and air pollutants simultaneously. The analyzer measured CO2, N2O, H2O and CH4, and the pollutants CO, NO, NO2, O3, SO2 and NH3 with high precision and a measurement rate of 1 Hz. The instrument was operated remotely without the need of on-site personnel. The instrument package was complemented by electrochemical sensors for NO, NO2, Ox and CO (alphasense), an optical particle counter (alphasense), temperature, humidity, altitude and position monitoring. Three campaigns of two weeks each were conducted in 2020 comprising unattended operation during commercial passenger flights.

The acquired data set will be discussed in regard to (1) diurnal height profiles of trace gases such as NO2, (2) a detailed source attribution by fingerprinting, and (3) a comparison to observations from ground-based monitoring stations. The results demonstrate the QCL spectrometer as an all-in-one solution for air-borne trace gas monitoring. By measuring 10 compounds at once it helps to greatly reduce payload, space requirements and power consumption.

How to cite: Tillmann, R., Rohrer, F., Gkatzelis, G. I., Winter, B., Wesolek, C., Schuldt, T., Hundt, M., Aseev, O., and Kiendler-Scharr, A.: High-resolution air-quality observations onboard commercial Zeppelin flights in Germany , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6470, https://doi.org/10.5194/egusphere-egu21-6470, 2021.

EGU21-16302 | vPICO presentations | GI6.4

Capabilities and Applications of MACS Aerial Camera Systems for Environmental Research

Joerg Brauchle, Tilman Bucher, Daniel Hein, Ralf Berger, Matthias Gessner, and Karsten Stebner

High resolution remote sensing under harsh environmental condition on special carriers requires instruments which are more flexible und more ruggedized than devices off the shelf. Particularly addressing environmental research in polar and high alpine regions, a family of cameras developed by the DLR is presented. The MACS systems are specifically made for the use on airborne platforms. Due to scalability, small sensors like single sensors on rugged fixed-wing UAVs can be realized. The configuration can be extended to RGB/NIR/TIR oblique viewing rigs with up to 5 coordinated cameras on manned aircraft. By processing such images, photogrammetric products like change detection, classification, elevation models and mapping mosaics are derived for regional areas. Further applications are the evaluation of algorithms in the field of AI for spaceborne imagery or the investigation of acquiring a particular combination of spectral bands.

These systems are able to deal with extreme illumination conditions and flight envelopes. Based on recent projects, the presentation shows examples and experiences, such as acquisition of the world’s highest glacier in Nepal, thermal infrared permafrost mapping of Ny Ålesund / Svalbard and sea ice measurements with a ground resolution of 3cm in the Fram Strait. Ideas for future sensors are indicated such as an UAV-based system with instant image transmission and a lightweight, high resolution sensor for stratospheric platforms.

 

How to cite: Brauchle, J., Bucher, T., Hein, D., Berger, R., Gessner, M., and Stebner, K.: Capabilities and Applications of MACS Aerial Camera Systems for Environmental Research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16302, https://doi.org/10.5194/egusphere-egu21-16302, 2021.

Compared to ground-based or satellite measurements, atmospheric observations based on aircraft missions have many advantages, such as the potential to observe a large atmospheric volume using remote sensing measurements, among which Differential Optical Absorption Spectroscopy (DOAS) is a well established method for the observation of integrated trace gas concentrations along the light path. However, the interpretation of remote spectroscopic measurements using scattered sunlight is complicated due to the lack of prior knowledge on the light paths between sun and detector, and thus on the observed air volume. Using radiative transfer calculations, quantities commonly derived from DOAS measurements are integrated vertical columns of various trace gases, providing no information about their vertical distribution.

On the ground, tomographic approaches have been used to reconstruct the spatial distribution of trace gases by using multiple viewing directions and detectors. HAIDI, the Heidelberg Airborne Imaging DOAS Instrument, was designed to transfer this concept to the air. In addition to its excellent temporal and spatial resolution (40 m x 40 m at 1.5 km flight altitude, 266 m x 266 m at 10 km flight altitude, at 10 ms temporal resolution), HAIDI uses three separate scanning telescopes aimed at +/-45° forward- and backward looking angles and the nadir direction. In combination with a 3D radiative transfer model, this allows a reconstruction of the 3D distribution of the detected trace gases in the vicinity of the flight track.

HAIDI joined the EMerGe (Effect of Megacities on the Transport and transformation of Pollutants on the Regional to Global Scales) missions on HALO, the High Altitude and LOng range research aircraft based at DLR (German Aerospace Center) in Oberpfaffenhofen, Germany. The EMerGe missions targeted the emission outflows of megacities to investigate their compositions and the atmospheric impact of urban pollution in Europe (July 2017) and Asia (March 2018). HAIDI observed a number of trace gases such as NO2, SO2 and HCHO. For NO2 and SO2 in particular, strong plumes originating from power plants and ships were found, which were then used for inversion of the 3D distribution of the plume and emission estimation. Here we present the method and results of the HAIDI measurements during the EMeRGe missions.

How to cite: Bigge, K., Frieß, U., Pöhler, D., and Platt, U.: 3D Remote Sensing of Trace Gas Distributions with HAIDI (Heidelberg Airborne Imaging DOAS Instrument) - Power Plant and Ship Emissions observed during the EMeRGe Campaigns, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14336, https://doi.org/10.5194/egusphere-egu21-14336, 2021.

EGU21-1516 | vPICO presentations | GI6.4

A compact solar occultation instrument for the UV/Visible spectral range: instrument design and performance testing

Karolin Voss, Philip Holzbeck, Ralph Kleinschek, Robin Herlan, Katja Grossmann, Klaus Pfeilsticker, and André Butz

Spectroscopic direct sun remote sensing of the atmosphere offers an essential tool for determining atmospheric trace gas concentrations. The monitoring of ozone-depleting substances, such as halogen oxides in the middle atmosphere, contributes to observing the progress in restoring the ozone layer.

Here, we present a new compact solar occultation spectrometer for the UV/visible spectral range that can be mounted on stratospheric balloons such as deployed within the European HEMERA infrastructures. Due to its compactness, the instrument is suitable as a secondary payload.
The instrument, consisting of a solar tracker providing direct sunlight for two grating spectrometers, is designed for deployment on a high altitude balloon to measure total bromine and iodine inventories using solar occultation and the DOAS method. All components of the setup have been chosen to withstand low temperatures (>-80°C) and low pressures (>5 mbar) as expected during the flight, and to have minimal power consumption while being compact, lightweight and only cooling radiatively. To perform solar occultation measurements, the device can track the sun down to 10° below its horizon.

The solar tracker is based on a two-camera setup following the Camtracker [1]. One camera with a fish-eye lens (FoV 185°) that observes the sky gives the sun´s coarse position. The Alt-Azimuth mount projects direct sunlight onto a screen. When reaching this coarse position, the image of the second camera is used to center the solar image on the spectrometer entrance telescopes by adjusting both mirrors within a 100 Hz control loop.
The tracker can reach a tracking precision of ≤0.05° for expected perturbations of smaller than 2° s-1. In lab experiments it was shown, that the tracker could handle even faster perturbations (larger than 3° s-1).
The sunlight is coupled into the two spectrometers via a fiber-telescope setup.

Two stabilized spectrometers (Ocean Optics QE Pro Series, resolution 0.5 nm) with a wavelength range for UV (305 to 385 nm) and vis (415 to 515 nm) are assembled within an evacuated box inside a water-ice bath. The vacuum avoids vapors condensing on the CCD an it ensures a constant refractive index within the spectrometers throughout the flight. At the same time the water-ice bath acts as a thermal buffer to stabilize the temperature of both spectrometers. Stable water-ice bath temperatures were achieved for >12 hours with deviations smaller than 0.5°C.

Preliminary testing of the setup was conducted on a three-day stationary roof-based test campaign with nearly clear-sky conditions. We plan on further investigating the instrument´s performance under field conditions and finally deploy the instrument on a stratospheric balloon flight from Kiruna in summer 2021.

[1] Gisi, M. et al.: Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers, Atmospheric Measurement Techniques, URL www.atmos-meas-tech.net/4/47/2011/, 2011.

How to cite: Voss, K., Holzbeck, P., Kleinschek, R., Herlan, R., Grossmann, K., Pfeilsticker, K., and Butz, A.: A compact solar occultation instrument for the UV/Visible spectral range: instrument design and performance testing, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1516, https://doi.org/10.5194/egusphere-egu21-1516, 2021.

EGU21-13696 | vPICO presentations | GI6.4

APAR: The Next Generation of Airborne Polarimetric Doppler Weather Radar

Vanda Grubišić, Kyu Kim, and Wen-Chau Lee

A novel, airborne phased array radar (APAR) is currently under design at the NCAR Earth Observing Laboratory. This novel airborne radar is to be carried by the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band active electronically scanned arrays (AESA), strategically placed on the fuselage of the aircraft. Conceptually, the radar system is divided into the front-end, the backend, and the aircraft-specific section. The front-end primarily consists of AESAs, the backend of the signal processor, and the aircraft specific section includes a power system and a GPS antenna.

APAR, with dual-Doppler and dual polarization capabilities at a lesser attenuating C-band wavelength, is designed to enable further advancement in understanding of in-cloud microphysical and dynamical processes within a variety of precipitation systems. Such unprecedented observations, in conjunction with the advanced radar data assimilation systems, is anticipated to significantly improve understanding and predictability of hazardous weather events.

At present, and with funding from both the National Science Foundation and the National Oceanic and Atmospheric Administration, NCAR is engaged in the risk reduction and APAR preliminary design activities. In this talk, we will provide an update on the status of these activities for various system components as well as the system-level design. For the final design and development of APAR, NCAR plans to apply for the NSF Mid-scale Research Infrastructure funds in 2021. It is anticipated that the APAR final design and development will be a five-year effort.

How to cite: Grubišić, V., Kim, K., and Lee, W.-C.: APAR: The Next Generation of Airborne Polarimetric Doppler Weather Radar, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13696, https://doi.org/10.5194/egusphere-egu21-13696, 2021.

EGU21-806 | vPICO presentations | GI6.4

Exploiting new satellite connectivity means to conduct efficient measurement missions

Natividad Ramos, Rémy Gallois, and Jean-Marc Gaubert

The digitalization of airborne scientific operations has become a must to secure and optimise efforts engaged on field campaigns. Thanks to affordable communication and information technologies, the potential of these special operations can be maximized.

ATMOSPHERE has developed PLANET, a network-centric operations platform that answers the specific needs of research missions. It enables efficient coordination through real-time sharing of information between mission’s stakeholders. It is now used routinely in atmospheric and Earth observation missions, such as the measurement of traces of gases and aerosols performed by the DLR Dassault Falcon D-CMET. PLANET has recently played a major role in challenging international campaigns involving aircraft, vessels, and drones (ATOMIC/EUREC4A, MOSAiC).

Under the ESA ARTES programme, ATMOSPHERE is now leveraging the solution to provide enhanced services relying on the Iridium Next satellite constellation.

This paper reviews measurement campaigns in which the use of satellite connectivity was essential, and describes how the exploitation of new ATMOSPHERE´s applications can benefit the scientific community.

How to cite: Ramos, N., Gallois, R., and Gaubert, J.-M.: Exploiting new satellite connectivity means to conduct efficient measurement missions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-806, https://doi.org/10.5194/egusphere-egu21-806, 2021.

EGU21-16374 | vPICO presentations | GI6.4 | Highlight

ESA’s Campaign Activities in Support of Earth Observation Projects: A focus on validation

Dirk Schüttemeyer, Tania Casal, Malcom Davidson, Matthias Drusch, Julia Kubanek, Hilke Oetjen, and Marin Tudoroiu

In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm developments, calibration/validation activities, simulation of future space-borne earth observation missions, as well as application developments related to remote sensing of the atmosphere, land, oceans, solid earth and cryosphere.

ESA has conducted over 150 airborne and ground based measurement campaigns in the last 37 years, of which more than 80 were carried out since 2005. During this period a large number of campaigns have supported the validation of ESA’s satellite missions including for example SMOS and CryoSat. Ongoing activities are focusing on e.g. Sentinel-5Precursor and the preparation of upcoming Earth Explorer missions such as BIOMASS, FLEX, and FORUM. These validation campaigns aim to provide fundamental information about the confidence of data products and their required uncertainties One challenge in this context is a comprehensive understanding and characterization of measurement uncertainty of the validation dataset and the spatial and temporal support or representativity of these.

We will provide an overview of applied strategies to tackle these aspects for existing satellite missions and outline concepts for future missions, and how these integrate into broader earth observation science strategies. In addition, we will highlight recent activities and outline planned activities for the coming years.

 

How to cite: Schüttemeyer, D., Casal, T., Davidson, M., Drusch, M., Kubanek, J., Oetjen, H., and Tudoroiu, M.: ESA’s Campaign Activities in Support of Earth Observation Projects: A focus on validation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16374, https://doi.org/10.5194/egusphere-egu21-16374, 2021.

EGU21-12091 | vPICO presentations | GI6.4

Aerial Campaigns for Cal/Val purposes in the Context of Copernicus - Survey Results of the Project “Copernicus Cal/Val Solution (CCVS)”

Stefanie Holzwarth, Martin Bachmann, Bringfried Pflug, Aimé Meygret, Caroline Bès, Céline Tison, Clémence Pierangelo, Patrice Henry, Frederik Tack, Michael van Roozendael, Bernardo Motta, Martin Ligi, Riho Vendt, and Sébastien Clerc

The objective of the H2020 project “Copernicus Cal/Val Solution (CCVS)” is to define a holistic Cal/Val strategy for all ongoing and upcoming Copernicus Sentinel missions. This includes an improved calibration of currently operational or planned Copernicus Sentinel sensors and the validation of Copernicus core products generated by the payload ground segments. CCVS will identify gaps and propose long-term solutions to address currently existing constraints in the Cal/Val domain and exploit existing synergies between the missions. An overview of existing calibration and validation sources and means is needed before starting the gap analysis. In this context, this survey is concerned with measurement capabilities for aerial campaigns.

Since decades airborne observations are an essential contribution to support Earth-System model development and space-based observing programs, both in the domains of Earth Observation (radar and optical) as well as for atmospheric research. The collection of airborne reference data can be directly related to satellite observations, since they are collected in ideal validation conditions using well calibrated reference sensors. Many of these sensors are also used to validate and characterize postlaunch instrument performance. The variety of available aircraft equipped with different instrumentations ranges from motorized gliders to jets acquiring data from different heights to the upper troposphere. In addition, balloons are also used as platforms, either small weather balloons with light payload (around 3 kg), or open stratospheric balloons with big payload (more than a ton). For some time now, UAVs/drones are also used in order to acquire data for Cal/Val purposes. They offer a higher flexibility compared to airplanes, plus covering a bigger area compared to in-situ measurements on ground. On the other hand, they also have limitations when it comes to the weight of instrumentation and maximum altitude level above ground. This reflects the wide range of possible aerial measurements supporting the Cal/Val activities.

The survey will identify the different airborne campaigns. The report will include the description of campaigns, their spatial distribution and extent, ownership and funding, data policy and availability and measurement frequency. Also, a list of common instrumentation, metrological traceability, availability of uncertainty evaluation and quality management will be discussed. The report additionally deals with future possibilities e.g., planned developments and emerging technologies in instrumentation for airborne and balloon based campaigns.

This presentation gives an overview of the preliminary survey results and puts them in context with the Cal/Val requirements of the different Copernicus Sentinel missions.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 101004242.

How to cite: Holzwarth, S., Bachmann, M., Pflug, B., Meygret, A., Bès, C., Tison, C., Pierangelo, C., Henry, P., Tack, F., van Roozendael, M., Motta, B., Ligi, M., Vendt, R., and Clerc, S.: Aerial Campaigns for Cal/Val purposes in the Context of Copernicus - Survey Results of the Project “Copernicus Cal/Val Solution (CCVS)”, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12091, https://doi.org/10.5194/egusphere-egu21-12091, 2021.

EGU21-8889 | vPICO presentations | GI6.4

Sentinel-5p Validation Campaigns – Planned Activities in 2021-2022

Frederik Tack, Mahesh Sha, Alexis Merlaud, Anca Nemuc, Dirk Schuettemeyer, Claus Zehner, and Michel Van Roozendael

Sentinel-5 precursor (S-5p), launched on 13 October 2017, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality, climate, ozone and UV radiation. The S-5p characteristics, such as the fine spatial resolution, introduce many new opportunities and challenges, requiring to carefully assess the quality and validity of the generated data products by comparison with independent measurements and analyses.

While routine validation is performed within the ESA Mission Performance Center (MPC) based on a limited number of Fiducial Reference Measurements (FRM), additional validation activities including aerial and ground-based campaigns are conducted in research mode as part of the S-5p Validation Team (S5PVT). The validation activities bring together various teams and instruments to address specific validation requirements and provide a more in-depth, complete insight into the S-5p instrument performance and the fitness for purpose of its data products. The acquired reference data sets allow to address product accuracy and precision, spatial and temporal validation requirements, algorithm parameters (a priori profiles, albedo, etc.) and specific requirements, such as validation of strongly polluted and heterogeneous scenes.

Here, we present a series of decentralized activities planned to take place in 2021-2022 (s5pcampaigns.aeronomie.be), which have been identified to address key priorities for S5-p validation.

A first set of activities concentrates on the main S-5p UV-Vis tropospheric products (NO2, HCHO and SO2). Airborne deployment, consisting of both in-situ spiral and remote sensing mapping flights, is planned over cities and industrial areas in Romania (Bucharest; Jiu valley), the German Ruhr area (Cologne; Duisburg; Dusseldorf), Berlin, and Belgium (Antwerp (port); Brussels). Airborne operations will be complemented with various deployments on the ground (MAX-DOAS, car-DOAS, sun-photometer, ceilometer, lidar, etc.). The validation activities over Berlin and Bucharest are focused on recurrent airborne observations with hyperspectral imagers in order to have a large number of flights (12 to 18) over a time interval of approximately one year, in order to have a large statistical data set covering variable meteorological and geo-physical conditions, as well as different overpass configurations.

A second set of activities will focus on the validation of SWIR data products (CO and CH4). COCCON (COllaborative Carbon Column Observing Network) portable low-resolution EM27/SUN FTIR spectrometers will be deployed for an extended period at different sites in the world in order to obtain a good coverage of geophysical parameters (strong sources, background sites, sites with high humidity, etc.) and different ground scenes, e.g. very high/low albedo sites.

Additionally, synergies are created with large field campaigns, such as the Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP) and the 2021 NET-Sense HyTES Joint European Campaign which will provide airborne measurements of NO2, CO, CH4 columns and vertical profiles, among others.

The various airborne and ground-based instrument deployments will produce a key ensemble of independent reference observations. For each product, a core team will coordinate the validation tasks, making use of data collected in all relevant instrumental deployments.

How to cite: Tack, F., Sha, M., Merlaud, A., Nemuc, A., Schuettemeyer, D., Zehner, C., and Van Roozendael, M.: Sentinel-5p Validation Campaigns – Planned Activities in 2021-2022, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8889, https://doi.org/10.5194/egusphere-egu21-8889, 2021.

EGU21-11151 | vPICO presentations | GI6.4

An integrated approach for the validation of Sentinel-5P with annual observation

Dragoș Ene, Jeni Vasilescu, Mihai Boldeanu, Andreea Calcan, Magdalena Ardelean, Daniel Constantin, Alexis Merlaud, and Dirk Schüttemeyer

Validation campaign for satellite missions requires efforts in terms of planning, logistics and depends on the weather for its execution. Furthermore, passive instrumentation is more sensitive at the weather, since requires special atmospheric conditions (e.g., cloud-free sky) for optimum performance. In this paper are presented activities regarding the preparation of Sentinel 5P validation in Romania, activities funded by ESA that involve ground-based (fixed and mobile – by DOAS sensors), and airborne measurements.

Research aircraft is based on a Britten-Norman BN-2 Islander platform, custom modified to accommodate, within the cabin, instrumentation for in situ measurements of aerosols (e.g., an Aerosol Particle Sizer and a nephelometer), trace gases (e.g., Picarro, and NO2 CAPS), and NO2, SO2 and H2CO column measurements (e.g., custom made DOAS whiskbroom imager for high-resolution mapping). The aircraft modification, already certified by EASA, include also the installation of an air inlet for the in-situ measurements, a nadir window for the remote sensing, and a GPS antenna for the IMU.

Measurements are planned to start in the spring of 2021 and to last until the end of the year. Region of interest is Bucharest metropolitan area, a city affected by infringement from the EU regarding poor air quality. The strategy is to perform seasonal measurements for mapping the variability of all pollution sources, e.g.: higher production from the local power plants (providers for hot water and heating for the residential population) in winter, car traffic concentrated towards the north, east or west (depending by the season).

This variability is observed also from the TROPOMI measurements, more precisely in the NO2 column concentration. During the spring and summer, the maximum is concentrated within the city centre, while for the autumn and winter, the area is more extended. Maximum values are recorded during the winter, as are shown from the 2019 and 2020 data. Moreover, the amount of S5P measurements during the winter is fewer compared with the summer, due to the presence of clouds, thus planning and execution of a campaign during wintertime being more challenging.

How to cite: Ene, D., Vasilescu, J., Boldeanu, M., Calcan, A., Ardelean, M., Constantin, D., Merlaud, A., and Schüttemeyer, D.: An integrated approach for the validation of Sentinel-5P with annual observation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11151, https://doi.org/10.5194/egusphere-egu21-11151, 2021.

EGU21-12645 | vPICO presentations | GI6.4

Aircraft observations of NO2 and NH3 over selected locations in Germany

Lieven Clarisse, Frederik Tack, Thomas Ruhtz, Alexis Merlaud, Lara Noppen, Martin Van Damme, Dirk Schuettemeyer, Pierre Coheur, and Michel Van Roozendael

Anthropogenic atmospheric emissions of the reactive nitrogen components nitrogen dioxide (NO2) and ammonia (NH3) have majorly altered the global nitrogen cycle in the past 100 years, with devastating consequences to biodiversity, soil, water and air quality. Thanks to effective legislation, NO2 emissions are declining worldwide. Unfortunately, this is not the case for NH3 for which a recent study reports yearly increases of around 2% in Europe and the U.S. and up to 6% in East Asia. 

Both species are currently actively monitored with several satellite sounders, which provide daily global measurements. Yet, the spatial resolution of current sounders is inadequate for resolving the highly heterogonous spatial distributions of both species. This is particularly the case for point source emitters, for which satellites are currently only able to quantify the largest and most isolated ones. To fill the important gap in the monitoring landscape, a satellite called Nitrosat has been proposed in answer to ESA’s Earth Explorer call.  The satellite would allow making simultaneous measurements of NO2 and NH3 at a spatial resolution of 500 meter. In support to the Nitrosat proposal, ESA has funded a project called NITRO-CAM (Nitrogen cycle airborne measurements), which aims at mapping simultaneously NO2 and NH3 in the Greater Berlin area using aircraft measurements. It is the results of this campaign that are presented here. These can be seen as proof-of-concept for Nitrosat, but are also interesting in their own right. A larger focus is given to NH3, for which the presented measurements are the first of their kind.

Campaign flights were performed in the surroundings of Berlin in the autumn of 2020. A follow-up campaign is foreseen in early spring. Measurements are performed with BIRA’s UV-VIS spectrometer newly-developed SWING instrument for NO2 and TELOPS thermal infrared HYPER-CAM for NH3. Surveying gapless areas of at least 10 by 10 km, the measurements enable capturing the emissions of both point and area sources, and are suitable for degrading at various hypothetical satellite instrument footprints.  For NO2 specifically, Berlin and nearby power plants are targeted, while for NH3 the Piesteritz fertilizer factory is targeted, as well as rural areas in the surroundings of Berlin.   

How to cite: Clarisse, L., Tack, F., Ruhtz, T., Merlaud, A., Noppen, L., Van Damme, M., Schuettemeyer, D., Coheur, P., and Van Roozendael, M.: Aircraft observations of NO2 and NH3 over selected locations in Germany, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12645, https://doi.org/10.5194/egusphere-egu21-12645, 2021.

EGU21-1289 | vPICO presentations | GI6.4

PASTRI - Pilot for Aerial Surface Temperature Retrieval

Daniel Spengler, Max Gulde, Bierdel Marius, Welling Cassi, Stottmeister Alex, Atin Jain, and Ruhtz Thomas

PASTRI will be a joint pilot study of ConstellR, GFZ Potsdam and FU Berlin for airborne based aerial surface temperature retrieval. The mission is planned as a preparation and demonstrator mission for the upcoming spaceborne thermal satellite microsatellites of ConstellR. ConstellR will provide a land surface temperature (LST) monitoring service with an initial focus on companies in the precision farming industry. The initial minimal viable constellation (MVC) of four microsatellites will offer global, daily LST monitoring at 50 m spatial resolution with 1.5 K radiometric accuracy for a monitoring area capacity comparable to the size of Germany’s agricultural area.

The authors intend to use a six-week airborne campaign in May/June 2021 as a data delivery pilot to develop and validate the provision of an LST product. In total 18 flights are planned (3 flights/week every second week, 2 flights/day) with the FU Berlin Cessna T207A. On the technical side, the project includes the payload development and adaptation to the mechanical interface of the airplane, the actual (airborne) recording or imagery, as well as setting up the data processing pipeline. The aircraft will be instrumented with an adapted ConstellR Sensor and a thermal hyperspectral Telops HyperCam. This enables a performance evaluation of the microsatellite sensor performance against a hyperspectral reference instrument. Based on that results, final adaptions could be made for the spaceborne sensors. The flights will be performed in Central Germany at agricultural sites and will be supplemented by in-situ reference measurements.

The concept and the status of preparation of the campaign will be presented.

How to cite: Spengler, D., Gulde, M., Marius, B., Cassi, W., Alex, S., Jain, A., and Thomas, R.: PASTRI - Pilot for Aerial Surface Temperature Retrieval, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1289, https://doi.org/10.5194/egusphere-egu21-1289, 2021.

EGU21-2357 | vPICO presentations | GI6.4

WesCon 2023: Wessex UK Summertime Convection Field Campaign

Paul Barrett, Steven Abel, Humphrey Lean, Jeremy Price, Thorwald Stein, Alison Stirling, and Timothy Darlington

Faithfull physical representation of summertime convection over the United Kingdom, and beyond, remains elusive in convection permitting (CP) numerical weather prediction (NWP) models.  Biases include the incorrect representation of the size and spatial distribution characteristics of convective elements, timing errors in the diurnal cycle of convection and under-representation of high-intensity precipitation events. A key requirement for model improvement is 3D observations of convective clouds, updrafts and turbulence along with the pre-convective environment.

Increased computational power and novel parameterisation schemes (e.g. CoMORPH: scale-aware convection scheme, CASIM: Cloud AeroSols Interactive Microphysics) are on the cusp of facilitating significant advances to the representation of convective cloud systems, both at high resolution cloud resolving scales from O(100m) to O(1km) and for CP ensemble prediction systems. Observational constraints are now required to validate and develop this suite of numerical modelling and the WesCon campaign has been designed for this purpose.

Met Office and University of Reading are planning an observational field campaign from June through to August 2023 to investigate summertime convection. Focussing on the Wessex region encompassing South West and South Central England we will benefit from the remote sensing capability of  the Chilbolton Observatory to observe clouds and precipitation (including a new X-band radar) and the research radar (C-band) at Met Office Wardon Hill (Dorset) to observe precipitation structures.

Up to 80 research flight hours with the FAAM BAe146 research aircraft (Facility for Airborne Atmospheric Measurement) will probe the thermal, dynamical, updraughts and microphysical structures of the planetary boundary layer and lower free-troposphere on horizontal length-scales from the turbulence scale O(1 m) to the mesoscale (10’s kms). Ground based measurements will be deployed across the region making observations of surface exchange, turbulence and boundary layer properties. Radiosondes and dropsondes along with aircraft profiles will probe the atmosphere in the vertical.

Airborne measurements will place particular emphasis on the pre-convective environment, convective inhibition (CIN) and the early stages of the development of convective systems.  The full lifecycle of convective systems will be observed from the vantage point of remote sensing observations.

Here we present the aims and measurement strategy of the WesCon campaign and solicit interest and involvement from other modelling or observations groups within the community who may wish to join us to collaborate.

How to cite: Barrett, P., Abel, S., Lean, H., Price, J., Stein, T., Stirling, A., and Darlington, T.: WesCon 2023: Wessex UK Summertime Convection Field Campaign, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2357, https://doi.org/10.5194/egusphere-egu21-2357, 2021.

EGU21-10673 | vPICO presentations | GI6.4

Observations of Arctic melt ponds and supragacial lakes from airborne camera data

Niklas Neckel, Niels Fuchs, Angelika Humbert, Veit Helm, Gerit Birnbaum, Lars Kaleschke, and Christian Haas

In summer, melt ponds on arctic sea ice can cover up to 60% of the total sea ice area, significantly decreasing surface albedo. The latter also holds true for supraglacial lakes frequently forming in the ablation zone of the Greenland Ice Sheet. Therefore monitoring of both, melt ponds on sea ice and supraglacial lakes is of great importance. So far, detection algorithms for both phenomena have been developed seperately from each other. Here, we will use airborne optical data of supraglacial lakes acquired during a land ice campaign over north-east Greenland in 2013 and airborne images of melt ponds from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign to illustrate similarities and differences in the appearance of both phenomena. As an example study, we use an open source processing chain including the Open Drone Map software as well as the AMES stereo pipeline to generate orthorectified photo mosaics. On the basis of these datasets, we will discuss typical detection methods as well as the difficulties they face in the respective environment (f.e. confusion with shadows and bare ice). Besides a modified normalized difference water index we test an adapted random forest approach that was developed for the analysis of MOSAiC melt pond data and conclude with suggestions for future algorithm development.

How to cite: Neckel, N., Fuchs, N., Humbert, A., Helm, V., Birnbaum, G., Kaleschke, L., and Haas, C.: Observations of Arctic melt ponds and supragacial lakes from airborne camera data, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10673, https://doi.org/10.5194/egusphere-egu21-10673, 2021.

EGU21-14864 | vPICO presentations | GI6.4

SMART – Space monitoring of Arctic Tundra landscapes

Jennifer Sobiech-Wolf, Tobias Ullmann, and Wolfgang Dierking

Satellite remote sensing as well as in-situ measurements are common tools to monitor the state of Arctic environments. However, remote sensing products often lack sufficient temporal and/or spatial resolution, and in-situ measurements can only describe the environmental conditions on a very limited spatial scale. Therefore, we conducted an air-borne campaign to connect the detailed in-situ data with poor spatial coverage to coarse satellite images. The SMART campaign is part of the ongoing project „Characterization of Polar Permafrost Landscapes by Means of Multi-Temporal and Multi-Scale Remote Sensing, and In-Situ Measurements“, funded by the German Research Foundation (DFG).  The focus of the project is to close the gap between in-situ measurements and space-borne images in polar permafrost landscapes. The airborne campaign SMART was conducted in late summer 2018 in north-west Canada, focussing on the Mackenzie-Delta region, which is underlain by permafrost and rarely inhabited. The land cover is either dominated by open Tundra landscapes or by boreal forests. The Polar-5 research-aircraft from the Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Germany, was equipped with a ground penetrating radar, a hyperspectral camara, a laserscanner, and an infrared temperature sensor amongst others. In parallel to the airborne acquisition, a team collected in-situ data on ground, including manual active layer depth measurements, geophysical surveying using 2D Electric Resistivity Tomography (ERT), GPR, and mapping of additional land cover properties. The database was completed by a variety of satellite data from different platforms, e.g. MODIS, Landsat, TerraSAR-X and Sentinel-1.  As part of the project, we analysed the performance of MODIS Land surfaces temperature products compared to our air-borne infrared measurements and evaluated, how long the land surface temperatures of this Arctic environment can be considered as stable. It turned out that the MODIS data differ up to 2°C from the air-borne measurements. If this is due to the spatial difference of the measurements or a result of data processing of the MODIS LST products is part of ongoing analysis.

How to cite: Sobiech-Wolf, J., Ullmann, T., and Dierking, W.: SMART – Space monitoring of Arctic Tundra landscapes, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14864, https://doi.org/10.5194/egusphere-egu21-14864, 2021.

EGU21-14137 | vPICO presentations | GI6.4

UAV areal imagery-based wild animal detection for sustainable wildlife management 

Jevgenijs Filipovs, Amanda Berg, Jörgen Ahlberg, Alekss Vecvanags, Agris Brauns, and Dainis Jakovels

The surveillance of wild animal populations is important for wildlife sustainability, conservation and management. It has been estimated that the UAV-based survey of 100 ha large territory is ~10 times less time-consuming in comparison to surveys based on traditional field visits. Aerial surveys using thermal and visible light cameras allow remote observation of wildlife over relatively large geographical areas where the thermal imager is often used as a primary sensor for the detection of animal shape similar hot-spot, but higher-resolution visible light imaging data is used for the reduction of false-positive detections. Recent developments in unmanned aerial vehicles (UAVs), artificial intelligence and miniaturized dual imaging systems made it more flexible, affordable and accurate for aerial surveillance of wild animals. This study was conducted as part of project “ICT-based wild animal census approach for sustainable wildlife management” co-financed by the ERDF program “Industry-Driven Research” (dnr 1.1.1.1/18/A/146) and managed by the Institute for Environmental Solutions, Latvia. One part of the project activity is to develop the detection and classification workflow of wild animals from areal imaging data. This study describing data acquisition, detection and automated data pre-processing of thermal and RGB image co-registration as input for the development of animal classification algorithm. The focus of the study was a detection of the four dominant even-toed ungulate species in Latvia - elk (Alces alces), red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild boar (Sus scrofa). The data acquisition was performed over the fenced deer garden and open forest pilot territory located in Ramuļi, Latvia. The chosen UAV system was a quadrocopter platform with a dual-camera on the board. Initially, the main focus in data acquisition was over-fenced deer garden at different day times, weather conditions to collect data with animal presence as well as test different data acquisition regimes, strategies and animal behavioral response. Three flights with total coverage were performed over the deer garden area. After the post-detection of individuals, the average estimated accuracy was 88% of the known reference number of deers. Further on, drone flights were conducted over the whole pilot territory to obtain data of other species and behavioral overview in open forest land conditions. All collected data were registered in the database to annotate the weather conditions and the presence of an animal in a certain minute. In total 10 flights (3 h) were performed over the deer garden and 93 (45 h) flights over the open forest land pilot territory. The capabilities of the drone-based monitoring system with a dual-camera imaging setup will be presented.

Keywords: UAV, elk, deer, roe deer, areal imagery, dual-camera, detection

How to cite: Filipovs, J., Berg, A., Ahlberg, J., Vecvanags, A., Brauns, A., and Jakovels, D.: UAV areal imagery-based wild animal detection for sustainable wildlife management , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14137, https://doi.org/10.5194/egusphere-egu21-14137, 2021.

EGU21-6301 | vPICO presentations | GI6.4

Habitat mapping in coastal dunes using Random Forest classification of UAV images

Charmaine Cruz, Kevin McGuinness, Jerome O'Connell, James Martin, Philip Perrin, and John Connolly

The EU Habitats Directive (HD) requires that natural habitats are monitored every six years to assess habitat condition, extent and range. In Ireland, reporting for the HD is based on ecological field surveys. This field-based mapping and assessment methodology, while desirable, can be time-consuming, difficult, and expensive. It also only covers a sub-sample of sites due to cost. Thus, more efficient mapping approaches, such as remote sensing, should be considered to supplement these monitoring techniques.  

Here we present some preliminary results from the iHabiMap Project. The overall aim of iHabiMap is to develop and assess analytical approaches that use machine learning techniques to derive habitat maps from imagery acquired by Unmanned Aerial Vehicle (UAV). The project started in 2019 and to date twelve UAV surveys have been conducted acquiring very high-resolution (6 cm) multispectral imagery for five selected study sites. Ecological data were collected concurrently with each UAV survey to obtain the actual state of the recorded vegetation. The project focuses on assessing imagery from three habitat types: upland blanket bog, coastal dunes, and grassland in Ireland. In this abstract we focus on the coastal dunes.

The Random Forest (RF) machine learning algorithm using the python Scikit-learn library was utilized to identify and map the habitats. The pixel-based RF model was calibrated using a combination of ground truth data and several colour, band ratios, and topographic variables derived from the UAV data. Six separate models were generated to compare how classification accuracies change based on combinations of input variables. The methodology was initially implemented to classify four sand dune Annex I habitats: 2120 - Marram dunes; 2130 - Fixed dunes; 2170 – Dunes with creeping willow; 2190 – Dune slacks, in the Maharees site in Ireland. The results were analyzed using the standard confusion matrix to calculate overall and class-specific accuracies. Preliminary results suggest that RF can classify sand dune Annex I habitats 2120, 2130, 2170, and 2190, with overall accuracies ranging from 0.80 to 0.93, depending on the input variables. The highest accuracy was achieved using the combined spectral and topographic information. Feature importance metrics calculated from RF showed that the surface elevation and Green Normalized Vegetation Index (GNDVI) were the key input variables in the classification. The results obtained from the presented workflow demonstrate the potential of using UAV, machine learning techniques, and field data in characterizing coastal dune environments. The classification will be further expanded to explore phenological differences of the vegetation by including the temporal dimension of the data and will be tested on the upland and grassland habitats. Moreover, an upscaling methodology will be implemented to assess UAV data usability on a broader scale mapping.

How to cite: Cruz, C., McGuinness, K., O'Connell, J., Martin, J., Perrin, P., and Connolly, J.: Habitat mapping in coastal dunes using Random Forest classification of UAV images, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6301, https://doi.org/10.5194/egusphere-egu21-6301, 2021.

CC BY 4.0