ITS – Inter- and Transdisciplinary Sessions

ITS2.1/PS1.2 – Machine Learning in Planetary Sciences and Heliophysics

EGU22-5739 | Presentations | ITS2.1/PS1.2

Deep learning for surrogate modeling of two-dimensional mantle convection

Siddhant Agarwal, Nicola Tosi, Pan Kessel, Doris Breuer, and Grégoire Montavon

Mantle convection plays a fundamental role in the long-term thermal evolution of terrestrial planets like Earth, Mars, Mercury and Venus. The buoyancy-driven creeping flow of silicate rocks in the mantle is modeled as a highly viscous fluid over geological time scales and quantified using partial differential equations (PDEs) for conservation of mass, momentum and energy. Yet, key parameters and initial conditions to these PDEs are poorly constrained and often require a large sampling of the parameter space to find constraints from observational data. Since it is not computationally feasible to solve hundreds of thousands of forward models in 2D or 3D, some alternatives have been proposed. 

The traditional alternative to high-fidelity simulations has been to use 1D models based on scaling laws. While computationally efficient, these are limited in the amount of physics they can model (e.g., depth-dependent material properties) and predict only mean quantities such as the mean mantle temperature. Hence, there has been a growing interest in machine learning techniques to come up with more advanced surrogate models. For example, Agarwal et al. (2020) used feedforward neural networks (FNNs) to reliably predict the evolution of entire 1D laterally averaged temperature profile in time from five parameters: reference viscosity, enrichment factor for the crust in heat producing elements, initial mantle temperature, activation energy and activation volume of the diffusion creep. 

We extend that study to predict the full 2D temperature field, which contains more information in the form of convection structures such as hot plumes and cold downwellings. This is achieved by training deep learning algorithms on a data set of 10,525 2D simulations of the thermal evolution of the mantle of a Mars-like planet. First, we use convolutional autoencoders to compress the size of each temperature field by a factor of 142. Second,  we compare the use of two algorithms for predicting the compressed (latent) temperature fields: FNNs and long-short-term memory networks (LSTMs).  On the one hand, the FNN predictions are slightly more accurate with respect to unseen simulations (99.30%  vs. 99.22% for the LSTM). On the other hand, Proper orthogonal decomposition (POD) of the LSTM and FNN predictions shows that despite a lower mean relative accuracy, LSTMs capture the flow dynamics better than FNNs. The POD coefficients from FNN predictions sum up to 96.51% relative to the coefficients of the original simulations, while for LSTMs this metric increases to 97.66%. 

We conclude the talk by stating some strengths and weaknesses of this approach, as well as highlighting some ongoing research in the broader field of fluid dynamics that could help increase the accuracy and efficiency of such parameterized surrogate models.

How to cite: Agarwal, S., Tosi, N., Kessel, P., Breuer, D., and Montavon, G.: Deep learning for surrogate modeling of two-dimensional mantle convection, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5739, https://doi.org/10.5194/egusphere-egu22-5739, 2022.

EGU22-486 | Presentations | ITS2.1/PS1.2

Enhancing planetary imagery with the holistic attention network algorithm

Denis Maxheimer, Ioannis Markonis, Masner Jan, Curin Vojtech, Pavlik Jan, and Solomonidou Anezina

The recent developments in computer vision research in the field of Single Image Super Resolution (SISR)

can help improve the satellite imagery data quality and, thus, find application in planetary exploration.

The aim of this study is to enhance planetary surface imagery, in planetary bodies that there are

available data but in a low resolution. Here, we have applied the holistic attention network (HAN)

algorithm to a set of images of Saturn’s moon Titan from the Titan Radar Mapper instrument in its

Synthetic Aperture Radar (SAR) mode, which was on board the Cassini spacecraft. HAN can find

correlations among hierarchical layers, channels of each layer, and all positions of each channel, which

can be interpreted as an application and intersection of previously known models. The algorithm used

in our case-study was trained on 5000 grayscale images from HydroSHED Earth surface imagery dataset

resampled over different resolutions. Our experimental setup was to generate High Resolution (HR)

imagery from eight times lower resolution (x8 scale). We followed the standard workflow for this

purpose, which is to first train the network enhancing x2 scale to HR, then x4 scale to x2 scale, and

finally x8 scale to x4 scale, using subsequently the results of the previous training. The promising results

open a path for further applications of the trained model to improve the imagery data quality, and aid

in the detection and analysis of planetary surface features.

How to cite: Maxheimer, D., Markonis, I., Jan, M., Vojtech, C., Jan, P., and Anezina, S.: Enhancing planetary imagery with the holistic attention network algorithm, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-486, https://doi.org/10.5194/egusphere-egu22-486, 2022.

EGU22-692 | Presentations | ITS2.1/PS1.2

Autonomous lineament detection in Galileo images of Europa

Caroline Haslebacher and Nicolas Thomas

Lineaments are prominent features on the surface of Jupiter's moon Europa. Analysing these linear features thoroughly leads to insights on their formation mechanisms and the interactions between the subsurface ocean and the surface. The orientation and position of lineaments is also important for determining the stress field on Europa. The Europa Clipper mission is planned to launch in 2024 and will fly by Europa more than 40 times. In the light of this, an autonomous lineament detection and segmentation tool would prove useful for processing the vast amount of expected images efficiently and would help to identify processes affecting the ice sheet. 

We have trained a convolutional neural network to detect, classify and segment lineaments in images of Europa returned by the Galileo mission. The Galileo images that make up the training set are segmented manually, following a dedicated guideline. For better performance, we make use of synthetically generated data to pre-train the network. The current status of the work will be described.

How to cite: Haslebacher, C. and Thomas, N.: Autonomous lineament detection in Galileo images of Europa, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-692, https://doi.org/10.5194/egusphere-egu22-692, 2022.

EGU22-8940 | Presentations | ITS2.1/PS1.2

Mars events polyphonic detection, segmentation and classification with a hybrid recurrent scattering neural network using InSight mission data

Salma Barkaoui, Angel Bueno Rodriguez, Philippe Lognonné, Maarten De Hoop, Grégory Sainton, Mathieu Plasman, and Taichi kawamura

Since deployed on the Martian surface, the seismometer SEIS (Seismic Experiment for Interior Structure) and the APSS (Auxiliary Payload Sensors Suite) of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission have been recorded the daily Martian respectively ground acceleration and pressure. These data are essential to investigate the geophysical and atmospheric features of the red planet. So far, the InSight team were able to detect multiple Martian events. We distinguish two types: the artificial events like the lander modes or the micro-tilts known as glitches or the natural events like the pressure drops which are important to estimate the Martian subsurface and the seismic events used to study the interior structure of Mars. Despite the data complexity, the InSight team was able to catalog these events (Clinton et al 2020 for the seismic event catalog, Banfield et al., 2018, 2020 for the pressure drops catalog and Scholz et al. (2020) for the glitches catalog). However, despite all this effort, we are still in front of multiple challenges. In fact,  the seismic events' detection is limited  due to the SEIS sensitivity, which is the origin of a high noise level that may contaminate the seismic events. Thus, we can miss some of them, especially in the noisy period. Besides, their detection is very challenging and require multiple preprocessing task which is time-consuming. For the pressure drops, the detection method used in Banfield et al.  2020 is limited by a threshold equal to 0.3 Pa. Thus, the rest of pressure drops are not included. Plus, due to lack of energy, the pressure sensor was off for several days. As a result, many pressure drops were missed. As a result, being able to detect them directly on the SEIS data which are, in contrast,  provided continuously, is very important.

In this regard, the aim of this study is to overcome these challenges and thus improve the Martian events detection and provide an updated catalog automatically. For that, we were inspired of one of the main technics used today in data processing and analysis in a complete automatic way: it is the Machine Learning and particularly in our case is the Deep Learning. The architecture used for that is the “Hybrid Recurrent Scattering Neural Network” (Bueno et al 2021)  adapted for Mars

How to cite: Barkaoui, S., Bueno Rodriguez, A., Lognonné, P., De Hoop, M., Sainton, G., Plasman, M., and kawamura, T.: Mars events polyphonic detection, segmentation and classification with a hybrid recurrent scattering neural network using InSight mission data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8940, https://doi.org/10.5194/egusphere-egu22-8940, 2022.

EGU22-2765 | Presentations | ITS2.1/PS1.2

Extrapolation of CRISM based spectral feature maps using CaSSIS four-band images with machine learning techniques

Michael Fernandes, Nicolas Thomas, Benedikt Elser, Angelo Pio Rossi, Alexander Pletl, and Gabriele Cremonese

Spectroscopy provides important information on the surface composition of Mars. Spectral data can support studies such as the evaluation of potential (manned) landing sites as well as supporting determination of past surface processes. The CRISM instrument on NASA’s Mars Reconnaissance Orbiter is a high spectral resolution visible infrared mapping spectrometer currently in orbit around Mars. It records 2D spatially resolved spectra over a wavelength range of 362 nm to 3920 nm. At present data collected covers less than 2% of the planet. Lifetime issues with the cryo-coolers prevents limits further data acquisition in the infrared band. In order to extend areal coverage for spectroscopic analysis in regions of major importance to the history of liquid water on Mars (e.g. Valles Marineris, Noachis Terra), we investigate whether data from other instruments can be fused to extrapolate spectral features in CRISMto these non-spectral imaged areas. The present work will use data from the CaSSIS instrument which is a high spatial resolution colour and stereo imager onboard the European Space Agency’s ExoMars Trace Gas Orbiter (TGO). CaSSIS returns images at 4.5 m/px from the nominal 400 km altitude orbit in four colours. Its filters were selected to provide mineral diagnostics in the visible wavelength range (400 – 1100 nm). It has so far imaged around 2% of the planet with an estimated overlap of ≲0.01% of CRISM data. This study introduces a two-step pixel based reconstruction approach using CaSSIS four band images. In the first step advanced unsupervised techniques are applied on CRISM hyperspectral datacubes to reduce dimensionality and establish clusters of spectral features. Given that these clusters contain reasonable information about the surface composition, in a second step, it is feasible to map CaSSIS four band images to the spectral clusters by training a machine learning classifier (for the cluster labels) using only CaSSIS datasets. In this way the system can extrapolate spectral features to areas unmapped by CRISM. To assess the performance of this proposed methodology we analyzed actual and artificially generated CaSSIS images and benchmarked results against traditional correlation based methods. Qualitative and quantitative analyses indicate that by this novel procedure spectral features of in non-spectral imaged areas can be predicted to an extent that can be evaluated quantitatively, especially in highly feature-rich landscapes.

How to cite: Fernandes, M., Thomas, N., Elser, B., Rossi, A. P., Pletl, A., and Cremonese, G.: Extrapolation of CRISM based spectral feature maps using CaSSIS four-band images with machine learning techniques, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2765, https://doi.org/10.5194/egusphere-egu22-2765, 2022.

EGU22-2994 | Presentations | ITS2.1/PS1.2

Interpretable Solar Flare Prediction with Deep Learning

Robert Jarolim, Astrid Veronig, Tatiana Podladchikova, Julia Thalmann, Dominik Narnhofer, Markus Hofinger, and Thomas Pock

Solar flares and coronal mass ejections (CMEs) are the main drivers for severe space weather disturbances on Earth and other planets. While the geo-effects of CMEs give us a lead time of about 1 to 4 days, the effects of flares and flare-accelerated solar energetic particles (SEPs) are very immediate, 8 minutes for the enhanced radiation and as short as about 20 minutes for the highest energy SEPs arriving at Earth. Thus, predictions of solar flare occurrence at least several hours ahead are of high importance for the mitigation of severe space weather effects.

Observations and simulations of solar flares suggest that the structure and evolution of the active region’s magnetic field is a key component for energetic eruptions. The recent advances in deep learning provide tools to directly learn complex relations from multi-dimensional data. Here, we present a novel deep learning method for short-term solar flare prediction. The algorithm is based on the HMI photospheric line-of-sight magnetic field and its temporal evolution together with the coronal evolution as observed by multi-wavelengths EUV filtergrams from the AIA instrument onboard the Solar Dynamics Observatory. We train a neural network to independently identify features in the imaging data based on the dynamic evolution of the coronal structure and the photospheric magnetic field evolution, which may hint at flare occurrence in the near future.

We show that our method  can reliably predict flares six hours ahead, with 73% correct flaring predictions (89% when considering only M- and X-class flares), and 83% correct quiet active region predictions.

In order to overcome the “black box problem” of machine-learning algorithms, and thus to allow for physical interpretation of the network findings, we employ a spatio-temporal attention mechanism. This allows us to extract the emphasized regions, which reveal the neural network interpretation of the flare onset conditions. Our comparison shows that predicted precursors are associated with the position of flare occurrence, respond to dynamic changes, and align with characteristics within the active region.

How to cite: Jarolim, R., Veronig, A., Podladchikova, T., Thalmann, J., Narnhofer, D., Hofinger, M., and Pock, T.: Interpretable Solar Flare Prediction with Deep Learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2994, https://doi.org/10.5194/egusphere-egu22-2994, 2022.

EGU22-6371 | Presentations | ITS2.1/PS1.2

STIX solar flare image reconstruction and classification using machine learning

Hualin Xiao, Säm Krucker, Daniel Ryan, Andrea Battaglia, Erica Lastufka, Etesi László, Ewan Dickson, and Wen Wang

The Spectrometer Telescope for Imaging X-rays (STIX) is an instrument onboard Solar Orbiter. It measures X-rays emitted during solar flares in the energy range from 4 to 150 keV and takes X-ray images by using an indirect imaging technique, based on the Moiré effect. STIX instrument
consists of 32 pairs of tungsten grids and 32 pixelated CdTe detector units. Flare Images can be reconstructed on the ground using algorithms such as back-projection, forward-fit, and maximum-entropy after full pixel data are downloaded. Here we report a new image reconstruction and
classification model based on machine learning. Results will be discussed and compared with those from the traditional algorithms.

How to cite: Xiao, H., Krucker, S., Ryan, D., Battaglia, A., Lastufka, E., László, E., Dickson, E., and Wang, W.: STIX solar flare image reconstruction and classification using machine learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6371, https://doi.org/10.5194/egusphere-egu22-6371, 2022.

EGU22-11501 | Presentations | ITS2.1/PS1.2

Automatic detection of solar magnetic tornadoes based on computer vision methods.

Dmitrii Vorobev, Mark Blumenau, Mikhail Fridman, Olga Khabarova, and Vladimir Obridko

We propose a new method for automatic detection of solar magnetic tornadoes based on computer vision methods. Magnetic tornadoes are magneto-plasma structures with a swirling magnetic field in the solar corona, and there is also evidence for the rotation of plasma in them. A theoretical description and numerical modeling of these objects are very difficult due to the three-dimensionality of the structures and peculiarities of their spatial and temporal dynamics [Wedemeyer-Böhm et al, 2012, Nature]. Typical sizes of magnetic tornadoes vary from 102 km up to 106 km, and their lifetime is from several minutes to many hours. So far, quite a few works are devoted to their study, and there are no accepted algorithms for detecting solar magnetic tornadoes by machine methods. An insufficient number of identified structures is one of many problems that do not allow studying physics of magnetic tornadoes and the processes associated with them. In particular, the filamentous rotating structures are well delectable only at the limb, while one can only make suppositions about their presence at the solar disk.
Our method is based on analyzing SDO/AIA images at wavelengths 171 Å, 193 Å, 211 Å and 304 Å, to which several different algorithms are applied, namely, the convolution with filters, convolutional neural network, and gradient boosting. The new technique is a combination of several approaches (transfer learning & stacking) that are widely used in various fields of data analysis. Such an approach allows detecting the structures in a short time with sufficient accuracy. As test objects, we used magnetic tornadoes previously described in the literature [e.g., Wedemeyer et al 2013, ApJ; Mghebrishvili et al. 2015 ApJ]. Our method made it possible to detect those structures, as well as to reveal previously unknown magnetic tornadoes.

How to cite: Vorobev, D., Blumenau, M., Fridman, M., Khabarova, O., and Obridko, V.: Automatic detection of solar magnetic tornadoes based on computer vision methods., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11501, https://doi.org/10.5194/egusphere-egu22-11501, 2022.

The solar wind and its variability is well understood at Earth. However, at distances larger than 1AU the is less clear, mostly due to the lack of in-situ measurements. In this study we use transfer learning principles to infer solar wind conditions at Mars in periods where no measurements are available, with the aim of better illuminating the interaction between the partially magnetised Martian plasma environment and the upstream solar wind. Initially, a convolutional neural network (CNN) model for forecasting measurements of the interplanetary magnetic field, solar wind velocity, density and dynamic pressure is trained on terrestrial solar wind data. Afterwards, knowledge from this model is incorporated into a secondary CNN model which is used for predicting solar wind conditions upstream of Mars up to 5 hours in the future. We present the results of this study as well as the opportunities to expand this method for use at other planets.

How to cite: Durward, S.: Forecasting solar wind conditions at Mars using transfer learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10105, https://doi.org/10.5194/egusphere-egu22-10105, 2022.

EGU22-12762 | Presentations | ITS2.1/PS1.2

Determination of magnetopause and bow shock crossings at Mercury using neural network modelling of MESSENGER data

Alexander Lavrukhin, David Parunakian, Dmitry Nevskiy, Sahib Julka, and Ute Amerstorfer

EGU22-5721 | Presentations | ITS2.1/PS1.2

Magnetopause and bow shock models with machine learning

Ambre Ghisalberti, Nicolas Aunai, and Bayane Michotte de Welle

The magnetopause (MP) and the bow shock (BS) are the two boundaries bounding the magnetosheath, the region between the magnetosphere and the solar wind. Their position and shape depend on the upstream solar wind and interplanetary magnetic field conditions.

Predicting their shape and position is the starting point of many subsequent studies of processes controlling the coupling between the Earth’s magnetosphere and its interplanetary environment. We now have at our disposal an important amount of data from a multitude of spacecraft missions allowing for good spatial coverage, as well as algorithms based on statistical learning to automatically detect the two boundaries. From the data of 9 satellites over 20 years, we identified around 19000 crossings of the BS and 36000 crossings of the MP. They were used, together with their associated upstream conditions, to train a regression model to predict the shape and position of the boundaries. 

Preliminary results indicate that the obtained models outperform analytical models without making simplifying assumptions on the geometry and the dependency over control parameters.

How to cite: Ghisalberti, A., Aunai, N., and Michotte de Welle, B.: Magnetopause and bow shock models with machine learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5721, https://doi.org/10.5194/egusphere-egu22-5721, 2022.

EGU22-9077 | Presentations | ITS2.1/PS1.2

Automatic Detection of Interplanetary Coronal Mass Ejections

Hannah Ruedisser, Andreas Windisch, Ute V. Amerstorfer, Tanja Amerstorfer, Christian Möstl, Martin A. Reiss, and Rachel L. Bailey

Interplanetary coronal mass ejections (ICMEs) are one of the main drivers for space weather disturbances. In the past,
different machine learning approaches have been used to automatically detect events in existing time series resulting from
solar wind in situ data. However, classification, early detection and ultimately forecasting still remain challenges when facing
the large amount of data from different instruments. We propose a pipeline using a Network similar to the ResUNet++ (Jha et al. (2019)), for the automatic detection of ICMEs. Comparing it to an existing method, we find that while achieving similar results, our model outperforms the baseline regarding GPU usage, training time and robustness to missing features, thus making it more usable for other datasets.
The method has been tested on in situ data from WIND. Additionally, it produced reasonable results on STEREO A and STEREO B datasets
with less input parameters. The relatively fast training allows straightforward tuning of hyperparameters and could therefore easily be used to detect other structures and phenomena in solar wind data, such as corotating interaction regions.

How to cite: Ruedisser, H., Windisch, A., Amerstorfer, U. V., Amerstorfer, T., Möstl, C., Reiss, M. A., and Bailey, R. L.: Automatic Detection of Interplanetary Coronal Mass Ejections, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9077, https://doi.org/10.5194/egusphere-egu22-9077, 2022.

EGU22-9589 | Presentations | ITS2.1/PS1.2

Prediction of Plasma Pressure in the Outer Part of the Inner Magnetosphere using Machine Learning

Songyan Li, Elena Kronberg, and Christoforos Mouikis

EGU22-1014 | Presentations | ITS2.1/PS1.2

Automatic detection of the electron density from the WHISPER instrument onboard CLUSTER II

Emmanuel De Leon, Nicolas Gilet, Xavier Vallières, Luca Bucciantini, Pierre Henri, and Jean-Louis Rauch

The Waves of HIgh frequency and Sounder for Probing Electron density by Relaxation
(WHISPER) instrument, is part of the Wave Experiment Consortium (WEC) of the CLUSTER II
mission. The instrument consists of a receiver, a transmitter, and a wave spectrum
analyzer. It delivers active (when in sounding mode) and natural electric field spectra. The
characteristic signature of waves indicates the nature of the ambient plasma regime and, combined
with the spacecraft position, reveals the different magnetosphere boundaries and regions. The
thermal electron density can be deduced from the characteristics of natural waves in natural mode
and from the resonances triggered in sounding mode, giving access to a key parameter of scientific
interest and major driver for the calibration of particles instrument.
Until recently, the electron density derivation required a manual time/frequency domain
initialization of the search algorithms, based upon visual inspection of WHISPER active and natural
spectrograms and other datasets from different instruments onboard CLUSTER.
To automate this process, knowledge of the region (plasma regime) is highly desirable. A Multi-
Layer Perceptron model has been implemented for this purpose. For each detected region, a GRU,
recurrent network model combined with an ad-hoc algorithm is then used to determine the electron
density from WHISPER active spectra. These models have been trained using the electron density
previously derived from various semi-automatic algorithms and manually validated, resulting in an
accuracy up to 98% in some plasma regions. A production pipeline based on these models has been
implemented to routinely derive electron density, reducing human intervention up to 10 times. Work
is currently ongoing to create some models to process natural measurements where the data volume
is much higher and the validation process more complex. These models of electron density
automated determination will be useful for future other space missions.

How to cite: De Leon, E., Gilet, N., Vallières, X., Bucciantini, L., Henri, P., and Rauch, J.-L.: Automatic detection of the electron density from the WHISPER instrument onboard CLUSTER II, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1014, https://doi.org/10.5194/egusphere-egu22-1014, 2022.

EGU22-9621 | Presentations | ITS2.1/PS1.2

Machine Learning Techniques for Automated ULF Wave Recognition in Swarm Time Series

Georgios Balasis, Alexandra Antonopoulou, Constantinos Papadimitriou, Adamantia Zoe Boutsi, Omiros Giannakis, and Ioannis A. Daglis

Machine learning (ML) techniques have been successfully introduced in the fields of Space Physics and Space Weather, yielding highly promising results in modeling and predicting many disparate aspects of the geospace. Magnetospheric ultra-low frequency (ULF) waves play a key role in the dynamics of the near-Earth electromagnetic environment and, therefore, their importance in Space Weather studies is indisputable. Magnetic field measurements from recent multi-satellite missions are currently advancing our knowledge on the physics of ULF waves. In particular, Swarm satellites have contributed to the expansion of data availability in the topside ionosphere, stimulating much recent progress in this area. Coupled with the new successful developments in artificial intelligence, we are now able to use more robust approaches for automated ULF wave identification and classification. Here, we present results employing various neural networks (NNs) methods (e.g. Fuzzy Artificial Neural Networks, Convolutional Neural Networks) in order to detect ULF waves in the time series of low-Earth orbit (LEO) satellites. The outputs of the methods are compared against other ML classifiers (e.g. k-Nearest Neighbors (kNN), Support Vector Machines (SVM)), showing a clear dominance of the NNs in successfully classifying wave events.

How to cite: Balasis, G., Antonopoulou, A., Papadimitriou, C., Boutsi, A. Z., Giannakis, O., and Daglis, I. A.: Machine Learning Techniques for Automated ULF Wave Recognition in Swarm Time Series, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9621, https://doi.org/10.5194/egusphere-egu22-9621, 2022.

EGU22-12830 | Presentations | ITS2.1/PS1.2

Re-implementing and Extending the NURD Algorithm to the Full Duration of the Van Allen Probes Mission

Matyas Szabo-Roberts, Karolina Kume, Artem Smirnov, Irina Zhelavskaya, and Yuri Shprits

Generating reliable databases of electron density measurements over a wide range of geomagnetic conditions is essential for improving empirical models of electron density. The Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm has been developed for automated extraction of electron density from Van Allen Probes electric field measurements, and has been shown to be in good agreement with existing semi-automated methods and empirical models. The extracted electron density data has since then been used to develop the PINE (Plasma density in the Inner magnetosphere Neural network-based Empirical) model, an empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices.
In this study we re-implement the NURD algorithm in both Python and Matlab, and compare the performance of these implementations to each other and previous NURD results. We take advantage of a labeled training data set now being available for the full duration of the Van Allen Probes mission to train the network and generate an electron density data set for a significantly longer time period. We perform detailed comparisons between this output, electron density produced from Van Allen Probes electric field measurements using the AURA semi-automated algorithm, and electron density obtained from existing empirical models. We also present preliminary results from the PINE plasmasphere model trained on this extended NURD electron density data set.

How to cite: Szabo-Roberts, M., Kume, K., Smirnov, A., Zhelavskaya, I., and Shprits, Y.: Re-implementing and Extending the NURD Algorithm to the Full Duration of the Van Allen Probes Mission, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12830, https://doi.org/10.5194/egusphere-egu22-12830, 2022.

EGU22-12480 | Presentations | ITS2.1/PS1.2

A versatile exploration method for simulated data based on Self Organizing Maps

Maria Elena Innocenti, Sophia Köhne, Simon Hornisch, Rainer Grauer, Jorge Amaya, Jimmy Raeder, Banafsheh Ferdousi, James "Andy" Edmond, and Giovanni Lapenta

The large amount of data produced by measurements and simulations of space plasmas has made it fertile ground for the application of classification methods, that can support the scientist in preliminary data analysis. Among the different classification methods available, Self Organizing Maps, SOMs [Kohonen, 1982] offer the distinct advantage of producing an ordered, lower-dimensional representation of the input data that preserves their topographical relations. The 2D map obtained after training can then be explored to gather knowledge on the data it represents. The distance between nodes reflects the distance between the input data: one can then further cluster the map nodes to identify large scale regions in the data where plasma properties are expected to be similar.

In this work, we train SOMs using data from different simulations of different aspects of the heliospheric environment: a global magnetospheric simulation done with the OpenGGCM-CTIM-RCM code, a Particle In Cell simulation of plasmoid instability done with the semi-implicit code ECSIM, a fully kinetic simulation of single X point reconnection done with the Vlasov code implemented in MuPhy2.

We examine the SOM feature maps, unified distance matrix and SOM node weights to unlock information on the input data. We then classify the nodes of the different SOMs into a lower and automatically selected number of clusters, and we obtain, in all three cases, clusters that map well to our a priori knowledge on the three systems. Results for the magnetospheric simulations are described in Innocenti et al, 2021. 

This classification strategy then emerges as a useful, relatively cheap and versatile technique for the analysis of simulation, and possibly observational, plasma physics data.

Innocenti, M. E., Amaya, J., Raeder, J., Dupuis, R., Ferdousi, B., & Lapenta, G. (2021). Unsupervised classification of simulated magnetospheric regions. Annales Geophysicae Discussions, 1-28. 

https://angeo.copernicus.org/articles/39/861/2021/angeo-39-861-2021.pdf

How to cite: Innocenti, M. E., Köhne, S., Hornisch, S., Grauer, R., Amaya, J., Raeder, J., Ferdousi, B., Edmond, J. "., and Lapenta, G.: A versatile exploration method for simulated data based on Self Organizing Maps, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12480, https://doi.org/10.5194/egusphere-egu22-12480, 2022.

ITS2.5/NH10.8 – Artificial Intelligence for Natural Hazard and Disaster Management

The ITU/WMO/UNEP Focus Group on AI for Natural Disaster Management (FG-AI4NDM) explores the potential of AI to support the monitoring and detection, forecasting, and communication of natural disasters. Building on the presentation at EGU2021, we will show how detailed analysis of real-life use cases by an interdisciplinary, multistakeholder, and international community of experts is leading to the development of three technical reports (dedicated to best practices in data collection and handling, AI-based algorithms, and AI-based communications technologies, respectively), a roadmap of ongoing pre-standardization and standardization activities in this domain, a glossary of relevant terms and definitions, and educational materials to support capacity building. It is hoped that these deliverables will form the foundation of internationally recognized standards.

How to cite: Kuglitsch, M.: Nature can be disruptive, so can technology: ITU/WMO/UNEP Focus Group on AI for Natural Disaster Management, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8, https://doi.org/10.5194/egusphere-egu22-8, 2022.

EGU22-2879 | Presentations | ITS2.5/NH10.8

Automatically detecting avalanches with machine learning in optical SPOT6/7 satellite imagery 

Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler

Safety related applications like avalanche warning or risk management depend on timely information about avalanche occurrence. Knowledge on the locations and sizes of avalanches releasing is crucial for the responsible decision-makers. Such information is still collected today in a non-systematic way by observes in the field, for example from ski resort patrols or community avalanche services. Consequently, the existing avalanche mapping is, in particular in situations with high avalanche danger, strongly biased towards accessible terrain in proximity to (winter sport) infrastructure.

Recently, remote sensing has been shown to be capable of partly filling this gap, providing spatially continuous information on avalanche occurrences over large regions. In previous work we applied optical SPOT 6/7 satellite imagery to manually map two avalanche periods over a large part of the swiss Alps (2018: 12’500 and 2019: 9’500 km2). Subsequently, we investigated the reliability of this mapping and proved its suitability by identifying almost ¾ of all occurred avalanches (larger size 1) from SPOT 6/7 imagery. Therefore, optical SPOT data is an excellent source for continuous avalanche mapping, currently restricted by the time intensive manual mapping. To speed up this process we now propose a fully convolutional neural network (CNN) called AvaNet. AvaNet is based on a Deeplabv3+ architecture adapted to specifically learn how avalanches look like by explicitly including height information from a digital terrain model (DTM) for example. Relying on the manually mapped 24’737 avalanches for training, validation and testing, AvaNet achieves an F1 score of 62.5% when thresholding the probabilities from the network predictions at 0.5. In this study we present the results from our network in more detail, including different model variations and results of predictions on data from a third avalanche period we did not train on.

The ability to automate the mapping and therefor quickly identify avalanches from satellite imagery is an important step forward in regularly acquiring spatially continuous avalanche occurrence data. This enables the provision of essential information for the complementation of avalanche databases, making Alpine regions safer.

How to cite: Hafner, E. D., Barton, P., Caye Daudt, R., Wegner, J. D., Schindler, K., and Bühler, Y.: Automatically detecting avalanches with machine learning in optical SPOT6/7 satellite imagery , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2879, https://doi.org/10.5194/egusphere-egu22-2879, 2022.

EGU22-3422 | Presentations | ITS2.5/NH10.8

Weather history encoding for machine learning-based snow avalanche detection

Thomas Gölles, Kathrin Lisa Kapper, Stefan Muckenhuber, and Andreas Trügler

Since its start in 2014, the Copernicus Sentinel-1 programme has provided free of charge, weather independent, and high-resolution satellite Earth observations and has set major scientific advances in the detection of snow avalanches from satellite imagery in motion. Recently, operational avalanche detection from Sentinel-1 synthetic Aperture radar (SAR) images were successfully introduced for some test regions in Norway. However, current state of the art avalanche detection algorithms based on machine learning do not include weather history. We propose a novel way to encode weather data and include it into an automatic avalanche detection pipeline for the Austrian Alps. The approach consists of four steps. At first the raw data in netCDF format is downloaded, which consists of several meteorological parameters over several time steps. In the second step the weather data is downscaled onto the pixel locations of the SAR image. Then the data is aggregated over time, which produces a two-dimensional grid of one value per SAR pixel at the time when the SAR data was recorded. This aggregation function can range from simple averages to full snowpack models. In the final step, the grid is then converted to an image with greyscale values corresponding to the aggregated values. The resulting image is then ready to be fed into the machine learning pipeline. We will include this encoded weather history data to increase the avalanche detection performance, and investigate contributing factors with model interpretability tools and explainable artificial intelligence.

How to cite: Gölles, T., Kapper, K. L., Muckenhuber, S., and Trügler, A.: Weather history encoding for machine learning-based snow avalanche detection, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3422, https://doi.org/10.5194/egusphere-egu22-3422, 2022.

EGU22-7313 | Presentations | ITS2.5/NH10.8

The potential of automated snow avalanche detection from SAR images for the Austrian Alpine region using a learning-based approach

Kathrin Lisa Kapper, Stefan Muckenhuber, Thomas Goelles, Andreas Trügler, Muhamed Kuric, Jakob Abermann, Jakob Grahn, Eirik Malnes, and Wolfgang Schöner

Each year, snow avalanches cause many casualties and tremendous damage to infrastructure. Prevention and mitigation mechanisms for avalanches are established for specific regions only. However, the full extent of the overall avalanche activity is usually barely known as avalanches occur in remote areas making in-situ observations scarce. To overcome these challenges, an automated avalanche detection approach using the Copernicus Sentinel-1 synthetic aperture radar (SAR) data has recently been introduced for some test regions in Norway. This automated detection approach from SAR images is faster and gives more comprehensive results than field-based detection provided by avalanche experts. The Sentinel-1 programme has provided - and continues to provide - free of charge, weather-independent, and high-resolution satellite Earth observations since its start in 2014. Recent advances in avalanche detection use deep learning algorithms to improve the detection rates. Consequently, the performance potential and the availability of reliable training data make learning-based approaches an appealing option for avalanche detection.  

         In the framework of the exploratory project SnowAV_AT, we intend to build the basis for a state-of-the-art automated avalanche detection system for the Austrian Alps, including a "best practice" data processing pipeline and a learning-based approach applied to Sentinel-1 SAR images. As a first step towards this goal, we have compiled several labelled training datasets of previously detected avalanches that can be used for learning. Concretely, these datasets contain 19000 avalanches that occurred during a large event in Switzerland in January 2018, around 6000 avalanches that occurred in Switzerland in January 2019, and around 800 avalanches that occurred in Greenland in April 2016. The avalanche detection performance of our learning-based approach will be quantitatively evaluated against held-out test sets. Furthermore, we will provide qualitative evaluations using SAR images of the Austrian Alps to gauge how well our approach generalizes to unseen data that is potentially differently distributed than the training data. In addition, selected ground truth data from Switzerland, Greenland and Austria will allow us to validate the accuracy of the detection approach. As a particular novelty of our work, we will try to leverage high-resolution weather data and combine it with SAR images to improve the detection performance. Moreover, we will assess the possibilities of learning-based approaches in the context of the arguably more challenging avalanche forecasting problem.

How to cite: Kapper, K. L., Muckenhuber, S., Goelles, T., Trügler, A., Kuric, M., Abermann, J., Grahn, J., Malnes, E., and Schöner, W.: The potential of automated snow avalanche detection from SAR images for the Austrian Alpine region using a learning-based approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7313, https://doi.org/10.5194/egusphere-egu22-7313, 2022.

EGU22-4900 | Presentations | ITS2.5/NH10.8

A modular and scalable workflow for data-driven modelling of shallow landslide susceptibility

Ann-Kathrin Edrich, Anil Yildiz, Ribana Roscher, and Julia Kowalski

The spatial impact of a single shallow landslide is small compared to a deep-seated, impactful failure and hence its damage potential localized and limited. Yet, their higher frequency of occurrence and spatio-temporal correlation in response to external triggering events such as strong precipitation, nevertheless result in dramatic risks for population, infrastructure and environment. It is therefore essential to continuously investigate and analyze the spatial hazard that shallow landslides pose. Its visualisation through regularly-updated, dynamic hazard maps can be used by decision and policy makers. Even though a number of data-driven approaches for shallow landslide hazard mapping exist, a generic workflow has not yet been described. Therefore, we introduce a scalable and modular machine learning-based workflow for shallow landslide hazard prediction in this study. The scientific test case for the development of the workflow investigates the rainfall-triggered shallow landslide hazard in Switzerland. A benchmark dataset was compiled based on a historic landslide database as presence data, as well as a pseudo-random choice of absence locations, to train the data-driven model. Features included in this dataset comprise at the current stage 14 parameters from topography, soil type, land cover and hydrology. This work also focuses on the investigation of a suitable approach to choose absence locations and the influence of this choice on the predicted hazard as their influence is not comprehensively studied. We aim at enabling time-dependent and dynamic hazard mapping by incorporating time-dependent precipitation data into the training dataset with static features. Inclusion of temporal trigger factors, i.e. rainfall, enables a regularly-updated landslide hazard map based on the precipitation forecast. Our approach includes the investigation of a suitable precipitation metric for the occurrence of shallow landslides at the absence locations based on the statistical evaluation of the precipitation behavior at the presence locations. In this presentation, we will describe the modular workflow as well as the benchmark dataset and show preliminary results including above mentioned approaches to handle absence locations and time-dependent data.

How to cite: Edrich, A.-K., Yildiz, A., Roscher, R., and Kowalski, J.: A modular and scalable workflow for data-driven modelling of shallow landslide susceptibility, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4900, https://doi.org/10.5194/egusphere-egu22-4900, 2022.

EGU22-3212 | Presentations | ITS2.5/NH10.8

Predicting Landslide Susceptibility in Cross River State of Nigeria using Machine Learning

Joel Efiong, Devalsam Eni, Josiah Obiefuna, and Sylvia Etu

Landslides have continued to wreck its havoc in many parts of the globe; comprehensive studies of landslide susceptibilities of many of these areas are either lacking or inadequate. Hence, this study was aimed at predicting landslide susceptibility in Cross River State of Nigeria, using machine learning. Precisely, the frequency ratio (FR) model was adopted in this study. In adopting this approach, a landslide inventory map was developed using 72 landslide locations identified during fieldwork combined with other relevant data sources. Using appropriate geostatistical analyst tools within a geographical information environment, the landslide locations were randomly divided into two parts in the ratio of 7:3 for the training and validation processes respectively. A total of 12 landslide causing factors, such as; elevation, slope, aspect, profile curvature, plan curvature, topographic position index, topographic wetness index, stream power index, land use/land cover, geology, distance to waterbody and distance to major roads, were selected and used in the spatial relationship analysis of the factors influencing landslide occurrences in the study area. FR model was then developed using the training sample of the landslide to investigate landslide susceptibility in Cross River State which was subsequently validated. It was found out that the distribution of landslides in Cross River State of Nigeria was largely controlled by a combined effect of geo-environmental factors such as elevation of 250 – 500m, slope gradient of >35o, slopes facing the southwest direction, decreasing degree of both positive and negative curvatures, increasing values of topographic position index, fragile sands, sparse vegetation, especially in settlement and bare surfaces areas, distance to waterbody and major road of < 500m. About 46% of the mapped area was found to be at landslide susceptibility risk zones, ranging from moderate – very high levels. The susceptibility model was validated with 90.90% accuracy. This study has shown a comprehensive investigation of landslide susceptibility in Cross River State which will be useful in land use planning and mitigation measures against landslide induced vulnerability in the study area including extrapolation of the findings to proffer solutions to other areas with similar environmental conditions. This is a novel use of a machine learning technique in hazard susceptibility mapping.

 

Keywords: Landslide; Landslide Susceptibility mapping; Cross River State, Nigeria; Frequency ratio, Machine learning

How to cite: Efiong, J., Eni, D., Obiefuna, J., and Etu, S.: Predicting Landslide Susceptibility in Cross River State of Nigeria using Machine Learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3212, https://doi.org/10.5194/egusphere-egu22-3212, 2022.

EGU22-4250 | Presentations | ITS2.5/NH10.8

Landslide Susceptibility Modeling of an Escarpment in Southern Brazil using Artificial Neural Networks as a Baseline for Modeling Triggering Rainfall

Luísa Vieira Lucchese, Guilherme Garcia de Oliveira, Alexander Brenning, and Olavo Correa Pedrollo

Landslide Susceptibility Mapping (LSM) and rainfall thresholds are well-documented tools used to model the occurrence of rainfall-induced landslides. In the case of locations where only rainfall can be considered a main landslide trigger, both methodologies apply essentially to the same locations, and a model that encompasses both would be an important step towards a better understanding and prediction of landslide-triggering rainfall events. In this research, we employ spatially cross-validated, hyperparameter tuned Artificial Neural Networks (ANNs) to predict the susceptibility to landslides of an area in southern Brazil. In a next step, we plan to add the triggering rainfall to this Artificial Intelligence model, which will concurrently model the susceptibility and the triggering rainfall event for a given area. The ANN is of type Multi-Layer Perceptron with three layers. The number of neurons in the hidden layer was tuned separately for each cross-validation fold, using a method described in previous work. The study area is the escarpment in the limits of the municipalities of Presidente Getúlio, Rio do Sul, and Ibirama, in southern Brazil. For this area, 82 landslides scars related to the event of December 17th, 2020, were mapped. The metrics for each fold are presented and the final susceptibility map for the area is shown and analyzed. The evaluation metrics attained are satisfactory and the resulting susceptibility map highlights the escarpment areas as most susceptible to landslides. The ANN-based susceptibility mapping in the area is considered successful and seen as a baseline for identifying rainfall thresholds in susceptible areas, which will be accomplished with a combined susceptibility and rainfall model in our future work.

How to cite: Vieira Lucchese, L., Garcia de Oliveira, G., Brenning, A., and Correa Pedrollo, O.: Landslide Susceptibility Modeling of an Escarpment in Southern Brazil using Artificial Neural Networks as a Baseline for Modeling Triggering Rainfall, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4250, https://doi.org/10.5194/egusphere-egu22-4250, 2022.

EGU22-7308 | Presentations | ITS2.5/NH10.8

Building an InSAR-based database to support geohazard risk management by exploiting large ground deformation datasets 

Marta Béjar-Pizarro, Pablo Ezquerro, Carolina Guardiola-Albert, Héctor Aguilera Alonso, Margarita Patricia Sanabria Pabón, Oriol Monserrat, Anna Barra, Cristina Reyes-Carmona, Rosa Maria Mateos, Juan Carlos García López Davalillo, Juan López Vinielles, Guadalupe Bru, Roberto Sarro, Jorge Pedro Galve, Roberto Tomás, Virginia Rodríguez Gómez, Joaquín Mulas de la Peña, and Gerardo Herrera

The detection of areas of the Earth’s surface experiencing active deformation processes and the identification of the responsible phenomena (e.g. landslides activated after rainy events, subsidence due to groundwater extraction in agricultural areas, consolidation settlements, instabilities in active or abandoned mines) is critical for geohazard risk management and ultimately to mitigate the unwanted effects on the affected populations and the environment.

This will now be possible at European level thanks to the Copernicus European Ground Motion Service (EGMS), which will provide ground displacement measurements derived from time series analyses of Sentinel-1 data, using Interferometric Synthetic Aperture Radar (InSAR). The EGMS, which will be available to users in the first quarter of 2022 and will be updated annually, will be especially useful to identify displacements associated to landslides, subsidence and deformation of infrastructure.  To fully exploit the capabilities of this large InSAR datasets, it is fundamental to develop automatic analysis tools, such as machine learning algorithms, which require an InSAR-derived deformation database to train and improve them.  

Here we present the preliminary InSAR-derived deformation database developed in the framework of the SARAI project, which incorporates the previous InSAR results of the IGME-InSARlab and CTTC teams in Spain. The database contains classified points of measurement with the associated InSAR deformation and a set of environmental variables potentially correlated with the deformation phenomena, such as geology/lithology, land-surface slope, land cover, meteorological data, population density, and inventories such as the mining registry, the groundwater database, and the IGME’s land movements database (MOVES). We discuss the main strategies used to identify and classify pixels and areas that are moving, the covariables used and some ideas to improve the database in the future. This work has been developed in the framework of project PID2020-116540RB-C22 funded by MCIN/ AEI /10.13039/501100011033 and e-Shape project, with funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 820852.

How to cite: Béjar-Pizarro, M., Ezquerro, P., Guardiola-Albert, C., Aguilera Alonso, H., Sanabria Pabón, M. P., Monserrat, O., Barra, A., Reyes-Carmona, C., Mateos, R. M., García López Davalillo, J. C., López Vinielles, J., Bru, G., Sarro, R., Galve, J. P., Tomás, R., Rodríguez Gómez, V., Mulas de la Peña, J., and Herrera, G.: Building an InSAR-based database to support geohazard risk management by exploiting large ground deformation datasets , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7308, https://doi.org/10.5194/egusphere-egu22-7308, 2022.

Massive groundwater pumping for agricultural and industrial activities results in significant land subsidence in the arid world. In an acute water crisis, monitoring land subsidence and its key drivers is essential to assist groundwater depletion mitigation strategy. Physical models for aquifer simulation related to land deformation are computationally expensive. The interferometric synthetic aperture radar (InSAR) technique provides precise deformation mapping yet is affected by tropospheric and ionospheric errors. This study explores the capabilities of the deep learning approach coupled with satellite-derived variables in modeling subsidence, spatially and temporally, from 2016 to 2020 and predicting subsidence in the near future by using a recurrent neural network (RNN) in the Shabestar basin, Iran. The basin is part of the Urmia Lake River Basin, embracing 6.4 million people, yet has been primarily desiccated due to the over-usage of water resources in the basin. The deep learning model incorporates InSAR-derived land subsidence and its satellite-based key drivers such as actual evapotranspiration, Normalized Difference Vegetation Index (NDVI), land surface temperature, precipitation to yield the importance of critical drivers to inform groundwater governance. The land deformation in the area varied between -93.2 mm/year to 16 mm/year on average in 2016-2020. Our findings reveal that precipitation, evapotranspiration, and vegetation coverage primarily affected land subsidence; furthermore, the subsidence rate is predicted to increase rapidly. The phenomenon has the same trend with the variation of the Urmia Lake level. This study demonstrates the potential of artificial intelligence incorporating satellite-based ancillary data in land subsidence monitoring and prediction and contributes to future groundwater management.

How to cite: Zhang, Y. and Hashemi, H.: InSAR-Deep learning approach for simulation and prediction of land subsidence in arid regions, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2011, https://doi.org/10.5194/egusphere-egu22-2011, 2022.

Landslide inventories are essential for landslide susceptibility mapping, hazard modelling, and further risk mitigation management. For decades, experts and organisations worldwide have preferred manual visual interpretation of satellite and aerial images. However, there are various problems associated with manual inventories, such as manual extraction of landslide borders and their representation with polygons, which is a subjective process.  Manual delineation is affected by the applied methodology, the preferences of the experts and interpreters, and how much time and effort are invested in the inventory generating process. In recent years, a vast amount of research related to semi-automated and automatic mapping of landslide inventories has been carried out to overcome these issues. The automatic generation of landslide inventories using Artificial Intelligence (AI) techniques is still in its early phase as currently there is no published research that can create a ground truth representation of landslide situation after a landslide triggering event. The evaluation metrics in recent literature show a range of 50-80% of F1-score in terms of landslide boundary delineation using AI-based models. However, very few studies claim to have achieved more than 80% F1 score with the exception of those employing the testing of their model evaluation in the same study area. Therefore, there is still a research gap between the generation of AI-based landslide inventories and their usability for landslide hazard and risk studies. In this study, we explore several inventories developed by AI and manual delineation and test their usability for assessing landslide hazard.

How to cite: Meena, S. R., Floris, M., and Catani, F.: Can landslide inventories developed by artificial intelligence substitute manually delineated inventories for landslide hazard and risk studies?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11422, https://doi.org/10.5194/egusphere-egu22-11422, 2022.

EGU22-6690 | Presentations | ITS2.5/NH10.8

A machine learning-based ensemble model for estimation of seawater quality parameters in coastal area

Xiaotong Zhu, Jinhui Jeanne Huang, Hongwei Guo, Shang Tian, and Zijie Zhang

The precise estimation of seawater quality parameters is crucial for decision-makers to manage coastal water resources. Although various machine learning (ML)-based algorithms have been developed for seawater quality retrieval using remote sensing technology, the performance of these models in the application of specific regions remains significant uncertainty due to the different properties of coastal waters. Moreover, the prediction results of these ML models are unexplainable. To address these problems, an ML-based ensemble model was developed in this study. The model was applied to estimate chlorophyll-a (Chla), turbidity, and dissolved oxygen (DO) based on Sentinel-2 satellite imagery in Shenzhen Bay, China. The optimal input features for each seawater quality parameter were selected from the nine simulation scenarios which generated from eight spectral bands and six spectral indices. A local explanation method called SHapley Additive exPlanations (SHAP) was introduced to quantify the contributions of various features to the predictions of the seawater quality parameters. The results suggested that the ensemble model with feature selection enhanced the performance for three types of seawater quality parameters estimations (The errors were 1.7%, 1.5%, and 0.02% for Chla, turbidity, and DO, respectively). Furthermore, the reliability of the model performance was further verified for mapping the spatial distributions of water quality parameters during the model validation period. The spatial-temporal patterns of seawater quality parameters revealed that the distributions of seawater quality were mainly influenced by estuary input. Correlation analysis demonstrated that air temperature (Temp) and average air pressure (AAP) exhibited the closest relationship with Chla. The DO was most relevant with Temp, and turbidity was not sensitive to Temp, average wind speed (AWS), and AAP. This study enhanced the prediction capability of seawater quality parameters and provided a scientific coastal waters management approach for decision-makers.

How to cite: Zhu, X., Huang, J. J., Guo, H., Tian, S., and Zhang, Z.: A machine learning-based ensemble model for estimation of seawater quality parameters in coastal area, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6690, https://doi.org/10.5194/egusphere-egu22-6690, 2022.

EGU22-79 | Presentations | ITS2.5/NH10.8

Assessing the impact of sea-level rise on future compound flooding hazards in the Kapuas River delta

Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert

Compound flooding hazard in estuarine delta is increasing due to mean sea-level rise (SLR) as the impact of climate change. Decision-makers need future hazard analysis to mitigate the event and design adaptation strategies. However, to date, no future hazard analysis has been made for the Kapuas River delta, a low-lying area on the west coast of the island of Borneo, Indonesia. Therefore, this study aims to assess future compound flooding hazards under SLR over the delta, particularly in Pontianak (the densest urban area over the region). Here we consider three SLR scenarios due to climate change, i.e., low emission scenario (RCP2.6), medium emission scenario (RCP4.5), and high emission scenario (RCP8.5). We implement a machine-learning technique, i.e., the multiple linear regression (MLR) algorithm, to model the river water level dynamics within the city. We then predict future extreme river water levels due to interactions of river discharges, rainfalls, winds, and tides. Furthermore, we create flood maps with a likelihood of areas to be flooded in 100 years return period (1% annual exceedance probability) due to the expected sea-level rise. We find that the extreme 1% return water level for the study area in 2100 is increased from about 2.80 m (current flood frequency state) to 3.03 m (under the RCP2.6), to 3.13 m (under the RCP4.5), and 3.38 m (under the RCP8.5).

How to cite: Sampurno, J., Vallaeys, V., Ardianto, R., and Hanert, E.: Assessing the impact of sea-level rise on future compound flooding hazards in the Kapuas River delta, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-79, https://doi.org/10.5194/egusphere-egu22-79, 2022.

EGU22-4730 | Presentations | ITS2.5/NH10.8

floodGAN – A deep learning-based model for rapid urban flood forecasting

Julian Hofmann and Holger Schüttrumpf

Recent urban flood events revealed how severe and fast the impacts of heavy rainfall can be. Pluvial floods pose an increasing risk to communities worldwide due to ongoing urbanization and changes in climate patterns. Still, pluvial flood warnings are limited to meteorological forecasts or water level monitoring which are insufficient to warn people against the local and terrain-specific flood risks. Therefore, rapid flood models are essential to implement effective and robust early warning systems to mitigate the risk of pluvial flooding. Although hydrodynamic (HD) models are state-of-the-art for simulation pluvial flood hazards, the required computation times are too long for real-time applications.

In order to overcome the computation time bottleneck of HD models, the deep learning model floodGAN has been developed. FloodGAN combines two adversarial Convolutional Neural Networks (CNN) that are trained on high-resolution rainfall-flood data generated from rainfall generators and HD models. FloodGAN translates the flood forecasting problem into an image-to-image translation task whereby the model learns the non-linear spatial relationships of rainfall and hydraulic data. Thus, it directly translates spatially distributed rainfall forecasts into detailed hazard maps within seconds. Next to the inundation depth, the model can predict the velocities and time periods of hydraulic peaks of an upcoming rainfall event. Due to its image-translation approach, the floodGAN model can be applied for large areas and can be run on standard computer systems, fulfilling the tasks of fast and practical flood warning systems.

To evaluate the accuracy and generalization capabilities of the floodGAN model, numerous performance tests were performed using synthetic rainfall events as well as a past heavy rainfall event of 2018. Therefore, the city of Aachen was used as a case study. Performance tests demonstrated a speedup factor of 106 compared to HD models while maintaining high model quality and accuracy and good generalization capabilities for highly variable rainfall events. Improvements can be obtained by integrating recurrent neural network architectures and training with temporal rainfall series to forecast the dynamics of the flooding processes.

How to cite: Hofmann, J. and Schüttrumpf, H.: floodGAN – A deep learning-based model for rapid urban flood forecasting, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4730, https://doi.org/10.5194/egusphere-egu22-4730, 2022.

EGU22-4266 | Presentations | ITS2.5/NH10.8

Camera Rain Gauge Based on Artificial Intelligence

Raffaele Albano, Nicla Notarangelo, Kohin Hirano, and Aurelia Sole

Flood risk monitoring, alert and adaptation in urban areas require near-real-time fine-scale precipitation observations that are challenging to obtain from currently available measurement networks due to their costs and installation difficulties. In this sense, newly available data sources and computational techniques offer enormous potential, in particular, the exploiting of not-specific, widespread, and accessible devices.

This study proposes an unprecedented system for rainfall monitoring based on artificial intelligence, using deep learning for computer vision, applied to cameras images. As opposed to literature, the method is not device-specific and exploits general-purpose cameras (e.g., smartphones, surveillance cameras, dashboard cameras, etc.), in particular, low-cost device, without requiring parameter setting, timeline shots, or videos. Rainfall is measured directly from single photographs through Deep Learning models based on transfer learning with Convolutional Neural Networks. A binary classification algorithm is developed to detect the presence of rain. Moreover, a multi-class classification algorithm is used to estimate a quasi-instantaneous rainfall intensity range. Open data, dash-cams in Japan coupled with high precision multi-parameter radar XRAIN, and experiments in the NIED Large Scale Rainfall Simulator combined to form heterogeneous and verisimilar datasets for training, validation, and test. Finally, a case study over the Matera urban area (Italy) was used to illustrate the potential and limitations of rainfall monitoring using camera-based detectors.

The prototype was deployed in a real-world operational environment using a pre-existent 5G surveillance camera. The results of the binary classifier showed great robustness and portability: the accuracy and F1-score value were 85.28% and 85.13%, 0.86 and 0.85 for test and deployment, respectively, whereas the literature algorithms suffer from drastic accuracy drops changing the image source (e.g. from 91.92% to 18.82%). The 6-way classifier results reached test average accuracy and macro-averaged F1 values of 77.71% and 0.73, presenting the best performances with no-rain and heavy rainfall, which represents critical condition for flood risk. Thus, the results of the tests and the use-case demonstrate the model’s ability to detect a significant meteorological state for early warning systems. The classification can be performed on single pictures taken in disparate lighting conditions by common acquisition devices, i.e. by static or moving cameras without adjusted parameters. This system does not suit scenes that are also misleading for human visual perception. The proposed method features readiness level, cost-effectiveness, and limited operational requirements that allow an easy and quick implementation by exploiting pre-existent devices with a parsimonious use of economic and computational resources.

Altogether, this study corroborates the potential of non-traditional and opportunistic sensing networks for the development of hydrometeorological monitoring systems in urban areas, where traditional measurement methods encounter limitations, and in data-scarce contexts, e.g. where remote-sensed rainfall information is unavailable or has broad resolution respect with the scale of the proposed study. Future research will involve incremental learning algorithms and further data collection via experiments and crowdsourcing, to improve accuracy and at the same time promote public resilience from a smart city perspective.

How to cite: Albano, R., Notarangelo, N., Hirano, K., and Sole, A.: Camera Rain Gauge Based on Artificial Intelligence, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4266, https://doi.org/10.5194/egusphere-egu22-4266, 2022.

Background and objective: The fields of urban resilience to flooding and data science are on a collision course giving rise to the emerging field of smart resilience. The objective of this study is to propose and demonstrate a smart flood resilience framework that leverages various heterogeneous community-scale big data and infrastructure sensor data to enhance predictive risk monitoring and situational awareness.

Smart flood resilience framework: The smart flood resilience framework focuses on four core capabilities that could be augmented through the use of heterogeneous community-scale big data and analytics techniques: (1) predictive flood risk mapping: prediction capability of imminent flood risks (such as overflow of channels) to inform communities and emergency management agencies to take preparation and response actions; (2) automated rapid impact assessment: the ability to automatically and quickly evaluate the extent of flood impacts (i.e., physical, social, and economic impacts) to enable crisis responders and public officials to allocate relief and rescue resources on time; (3) predictive infrastructure failure prediction and monitoring: the ability to anticipate imminent failures in infrastructure systems as a flood event unfolds; and (4) smart situational awareness capabilities: the capability to derive proactive insights regarding the evolution of flood impacts (e.g., disrupted access to critical facilities and spatio-temporal patterns of recovery) on the communities.

Case study: We demonstrate the components of these core capabilities in the smart flood resilience framework in the context of the 2017 Hurricane Harvey in Harris. First, with Bayesian network modeling and deep learning methods, we reveal the use of flood sensor data for the prediction of floodwater overflow in channel networks and inundation of co-located road networks. Second, we discuss the use of social media data and machine learning techniques for assessing the impacts of floods on communities and sensing emotion signals to examine societal impacts. Third, we illustrate the use of high-resolution traffic data in network-theoretic models for now-casting of flood propagation on road networks and the disrupted access to critical facilities such as hospitals. Fourth, we leverage location-based and credit card transaction data in advanced spatial data analytics to proactively evaluate the recovery of communities and the impacts of floods on businesses.

Significances: This study shows that the significance of different core capabilities of the smart flood resilience framework in helping emergency managers, city planners, public officials, responders, and volunteers to better cope with the impacts of catastrophic flooding events.

How to cite: Mostafavi, A. and Yuan, F.: Smart Flood Resilience: Harnessing Community-Scale Big Data for Predictive Flood Risk Monitoring, Rapid Impact Assessment, and Situational Awareness, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-781, https://doi.org/10.5194/egusphere-egu22-781, 2022.

Flood events cause substantial damage to infrastructure and disrupt livelihoods. There is a need for the development of an innovative, open-access and real-time disaster map pipeline which is automatically initiated at the time of a flood event to highlight flooded regions, potential damage and vulnerable communities. This can help in directing resources appropriately during and after a disaster to reduce disaster risk. To implement this pipeline, we explored the integration of three heterogeneous data sources which include remote sensing data, social sensing data and geospatial sensing data to guide disaster relief and response. Remote sensing through satellite imagery is an effective method to identify flooded areas where we utilized existing deep learning models to develop a pipeline to process both optical and radar imagery. Whilst this can offer situational awareness right after a disaster, satellite-based flood extent maps lack important contextual information about the severity of structural damage or urgent needs of affected population. This is where the potential of social sensing through microblogging sites comes into play as it provides insights directly from eyewitnesses and affected people in real-time. Whilst social sensing data is advantageous, these streams are usually extremely noisy where there is a need to build disaster relevant taxonomies for both text and images. To develop a disaster taxonomy for social media texts, we conducted literature review to better understand stakeholder information needs. The final taxonomy consisted of 30 categories organized among three high-level classes. This built taxonomy was then used to label a large number of tweet texts (~ 10,000) to train machine learning classifiers so that only relevant social media texts are visualized on the disaster map. Moreover, a disaster object taxonomy for social media images was developed in collaboration with a certified emergency manager and trained volunteers from Montgomery County, MD Community Emergency Response Team. In total, 106 object categories were identified and organized as a hierarchical  taxonomy with  three high-level classes and 10 sub-classes. This built taxonomy will be used to label a large set of disaster images for object detection so that machine learning classifiers can be trained to effectively detect disaster relevant objects in social media imagery. The wide perspective provided by the satellite view combined with the ground-level perspective from locally collected textual and visual information helped us in identifying three types of signals: (i) confirmatory signals from both sources, which puts greater confidence that a specific region is flooded, (ii) complementary signals that provide different contextual information including needs and requests, disaster impact or damage reports and situational information, and (iii) novel signals when both data sources do not overlap and provide unique information. We plan to fuse the third component, geospatial sensing, to perform flood vulnerability analysis to allow easy identification of areas/zones that are most vulnerable to flooding. Thus, the fusion of remote sensing, social sensing and geospatial sensing for rapid flood mapping can be a powerful tool for crisis responders.

How to cite: Ofli, F., Akhtar, Z., Sadiq, R., and Imran, M.: Triangulation of remote sensing, social sensing, and geospatial sensing for flood mapping, damage estimation, and vulnerability assessment, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7561, https://doi.org/10.5194/egusphere-egu22-7561, 2022.

Tropical Cyclones (TCs) are deadly but rare events that cause considerable loss of life and property damage every year. Traditional TC forecasting and tracking methods focus on numerical forecasting models, synoptic forecasting and statistical methods. However, in recent years there have been several studies investigating applications of Deep Learning (DL) methods for weather forecasting with encouraging results.

We aim to test the efficacy of several DL methods for TC nowcasting, particularly focusing on Generative Adversarial Neural Networks (GANs) and Recurrent Neural Networks (RNNs). The strengths of these network types align well with the given problem: GANs are particularly apt to learn the form of a dataset, such as the typical shape and intensity of a TC, and RNNs are useful for learning timeseries data, enabling a prediction to be made based on the past several timesteps.

The goal is to produce a DL based pipeline to predict the future state of a developing cyclone with accuracy that measures up to current methods.  We demonstrate our approach based on learning from high-resolution numerical simulations of TCs from the Indian and Pacific oceans and discuss the challenges and advantages of applying these DL approaches to large high-resolution numerical weather data.

How to cite: Steptoe, H. and Xirouchaki, T.: Deep Learning for Tropical Cyclone Nowcasting: Experiments with Generative Adversarial and Recurrent Neural Networks, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1650, https://doi.org/10.5194/egusphere-egu22-1650, 2022.

EGU22-10495 | Presentations | ITS2.5/NH10.8

Flash flood susceptibility modelling using advanced machine learning algorithms. Case study of the Rheraya watershed,Morocco

Akram Elghouat, Ahmed Algouti, and Abdellah Algouti

EGU22-6576 | Presentations | ITS2.5/NH10.8

Swept Away: Flooding and landslides in Mexican poverty nodes

Silvia García, Raul Aquino, and Walter Mata

Natural disasters should be examined within a risk-perspective framework where both natural threat and vulnerability are considered as intricate components of an extremely complex equation. The trend toward more frequent floods and landslides in Mexico in recent decades is not only the result of more intense rainfall, but also a consequence of increased vulnerability. As a multifactorial element, vulnerability is a low-frequency modulating factor of the risk dynamics to intense rainfall. It can be described in terms of physical, social, and economical factors. For instance, deforested or urbanized areas are the physical and social factors that lead to the deterioration of watersheds and an increased vulnerability to intense rains. Increased watershed vulnerability due to land-cover changes is the primary factor leading to more floods, particularly over pacific Mexico. ln some parts of the country, such as Colima, the increased frequency of intense rainfall (i.e., natural hazard) associated with high-intensity tropical cyclones and hurricanes is the leading cause of more frequent floods.

 

In this research an intelligent rain management-system is presented. The object is built to forecast and to simulate the components of risk, to stablish communication between rescue/aid teams and to help in preparedness activities (training). Detection, monitoring, analysis and forecasting of the hazards and scenarios that promote floods and landslides, is the main task. The developed methodology is based on a database that permits to relate heavy rainfall measurements with changes in land cover and use, terrain slope, basin compactness and communities’ resilience as key vulnerability factors. A neural procedure is used for the spatial definition of exposition and susceptibility (intrinsic and extrinsic parameters) and Machine Learning techniques are applied to find the If-Then relationships. The capability of the intelligent model for Colima, Mexico was tested by comparing the observed and modeled frequency of landslides and floods for ten years period. It was found that over most of the Mexican territory, more frequent floods are the result of a rapid deforestation process and that landslides and their impact on communities are directly related to the unauthorized growth of populations in high geo-risk areas (due to forced migration because of violence or extreme poverty) and the development of civil infrastructure (mainly roads) with a high impact on the natural environment. Consequently, the intelligent rain-management system offers the possibility to redesign and to plan the land use and the spatial distribution of poorest communities.

How to cite: García, S., Aquino, R., and Mata, W.: Swept Away: Flooding and landslides in Mexican poverty nodes, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6576, https://doi.org/10.5194/egusphere-egu22-6576, 2022.

EGU22-3283 | Presentations | ITS2.5/NH10.8

Assessment of Flood-Damaged Cropland Trends Under Future Climate Scenarios Using Convolutional Neural Network

Rehenuma Lazin, Xinyi Shen, and Emmanouil Anagnostou

Every year flood causes severe damages in the cropland area leading to global food insecurity. As climate change continues, floods are predicted to be more frequent in the future. To cope with the future climate impacts, mitigate damages, and ensure food security, it is now imperative to study the future flood damage trends in the cropland area. In this study, we use a convolutional neural network (CNN) to estimate the damages (in acre) in the corn and soybean lands across the mid-western USA with projections from climate models. Here, we extend the application of the CNN model developed by Lazin et. al, (2021) that shows ~25% mean relative error for county-level flood-damaged crop loss estimation. The meteorological variables are derived from the reference gridMet datasets as predictors to train the model from 2008-2020. We then use downscaled climate projections from Multivariate Adaptive Constructed Analogs (MACA) dataset in the trained CNN model to assess future flood damage patterns in the cropland in the early (2011-2040), mid (2041-2070), and late (2071-2100) century, relative to the baseline historical period (1981-2010). Results derived from this study will help understand the crop loss trends due to floods under climate change scenarios and plan necessary arrangements to mitigate damages in the future.

 

Reference:

[1] Lazin, R., Shen, X., & Anagnostou, E. (2021). Estimation of flood-damaged cropland area using a convolutional neural network. Environmental Research Letters16(5), 054011.

How to cite: Lazin, R., Shen, X., and Anagnostou, E.: Assessment of Flood-Damaged Cropland Trends Under Future Climate Scenarios Using Convolutional Neural Network, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3283, https://doi.org/10.5194/egusphere-egu22-3283, 2022.

EGU22-1510 | Presentations | ITS2.5/NH10.8

From virtual environment to real observations: short-term hydrological forecasts with an Artificial Neural Network model.

Renaud Jougla, Manon Ahlouche, Morgan Buire, and Robert Leconte

Machine learning model approaches for hydrological forecasts are nowadays common in research. Artificial Neural Network (ANN) is one of the most popular due to its good performance on watersheds with different hydrologic regimes and over several timescales. A short-term (1 to 7 days ahead) forecast model was explored to predict streamflow. This study focused on the summer season defined from May to October. Cross-validation was done over a period of 16 years, each time keeping a single year as a validation set.

The ANN model was parameterized with a single hidden layer of 6 neurons. It was developed in a virtual environment based on datasets generated by the physically based distributed hydrological model Hydrotel (Fortin et al., 2012). In a preliminary analysis, several combinations of inputs were assessed, the best combining precipitation and temperature with surface soil moisture and antecedent streamflow. Different spatial discretizations were compared. A semi-distributed discretization was selected to facilitate transferring the ANN model from a virtual environment to real observations such as remote sensing soil moisture products or ground station time series.

Four watersheds were under study: the Au Saumon and Magog watersheds located in south Québec (Canada); the Androscoggin watershed in Maine (USA); and the Susquehanna watershed located in New-York and Pennsylvania (USA). All but the Susquehanna watershed are mainly forested, while the latter has a 57% forest cover. To evaluate whether a model with a data-driven structure can mimic a deterministic model, ANN and Hydrotel simulated flows were compared. Results confirm that the ANN model can reproduce streamflow output from Hydrotel with confidence.

Soil moisture observation stations were deployed in the Au Saumon and Magog watersheds during the summers 2018 to 2021. Meteorological data were extracted from the ERA5-Land reanalysis dataset. As the period of availability of observed data is short, the ANN model was trained in a virtual environment. Two validations were done: one in the virtual environment and one using real soil moisture observations and flows. The number and locations of the soil moisture probes slightly differed during each of the four summers. Therefore, four models were trained depending on the number of probes and their location. Results highlight that location of the soil moisture probes has a large influence on the ANN streamflow outputs and identifies more representative sub-regions of the watershed.

The use of remote sensing data as inputs of the ANN model is promising. Soil moisture datasets from SMOS and SMAP missions are available for the four watersheds under study, although downscaling approaches should be applied to bring the spatial resolution of those products at the watershed scale. One other future lead could be the development of a semi-distributed ANN model in virtual environment based on a restricted selection of hydrological units based on physiographic characteristics. The future L-band NiSAR product could be relevant for this purpose, having a finer spatial resolution compared to SMAP and SMOS and a better penetration of the signal in forested areas than C-band SAR satellites such as Sentinel-1 and the Radarsat Constellation Mission.

How to cite: Jougla, R., Ahlouche, M., Buire, M., and Leconte, R.: From virtual environment to real observations: short-term hydrological forecasts with an Artificial Neural Network model., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1510, https://doi.org/10.5194/egusphere-egu22-1510, 2022.

According to UNDRR2021, there are 389 reported disasters in 2020. Disasters claim the lives of 15,080 people, 98.4 million people are affected globally, and US171.3 billion dollars are spent on economic damage. International agreements such as the Sendai framework for disaster risk reduction encourage the use of social media to strengthen disaster risk communication. With the advent of new technologies, social media has emerged out to be an important source of information in disaster management, and there is an increase in social media activity whilst disasters. Social media is the fourth most used platform for accessing emergency information. People seek to contact family, friends and search for food, water, transportation, and shelter. During cataclysmic events, the critical information posted on social media is immersed in irrelevant information. To assist and streamline emergency situations, staunch methodologies are required for extracting relevant information. The research study explores new-fangled deep learning methods for automatically identifying the relevancy of disaster-related social media messages. The contributions of this study are three-fold. Firstly, we present a hybrid deep learning-based framework to ameliorate the classification of disaster-related social media messages. The data is gathered from the Twitter platform, using the Search Application Programming Interface. The messages that contain information regarding the need, availability of vital resources like food, water, electricity, etc., and provide situational information are categorized into relevant messages. The rest of the messages are categorized into irrelevant messages. To demonstrate the applicability and effectiveness of the proposed approach, it is applied to the thunderstorm and cyclone Fani dataset. Both the disasters happened in India in 2019. Secondly, the performance of the proposed approach is compared with baseline methods, i.e., convolutional neural network, long short-term memory network, bidirectional long short-term memory network. The results of the proposed approach outperform the baseline methods. The performance of the proposed approach is evaluated using multiple metrics. The considered evaluation metrics are accuracy, precision, recall, f-score, area under receiver operating curve, area under precision-recall curve. The accurate and inaccurate classifications are shown on both the datasets. Thirdly, to incorporate our evaluated models into a working application, we extend an existing application DisDSS, which has been granted copyright invention award by Government of India. We call the newly extended system DisDSS 2.0, which integrates our framework to address the disaster relevancy identification issue. The output from the research study is helpful for disaster managers to make effective decisions on time. It bridges the gap between the decision-makers and citizens during disasters through the lens of deep learning.

How to cite: Singla, A., Agrawal, R., and Garg, A.: DisDSS 2.0: A Multi-Hazard Web-based Disaster Management System to Identify Disaster-Relevancy of a Social Media Message for Decision-Making Using Deep Learning Techniques, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-266, https://doi.org/10.5194/egusphere-egu22-266, 2022.

EGU22-6758 | Presentations | ITS2.5/NH10.8

AI-enhanced Integrated Alert System for effective Disaster Management

Pankaj Kumar Dalela, Saurabh Basu, Sandeep Sharma, Anugandula Naveen Kumar, Suvam Suvabrata Behera, and Rajkumar Upadhyay

Effective communication systems supported by Information and Communication Technologies (ICTs) are integral and important components for ensuring comprehensive disaster management. Continuous warning monitoring, prediction, dissemination, and response coordination along with public engagement by utilizing the capabilities of emerging technologies including Artificial Intelligence (AI) can assist in building resilience and ensuring Disaster Risk Reduction. Thus, for effective disaster management, an Integrated Alert System is proposed which encapsulates all concerned disaster management authorities, alert forecasting and disseminating agencies under a single umbrella for alerting the targeted public through various communication channels. Enhancing the capabilities of the system through AI, its integral part includes the data-driven citizen-centric Decision Support System which can help disaster managers by performing complete impact assessment of disaster events through configuration of decision models developed by learning inter-relationships of different parameters. The system needs to be capable of identification of possible communication means to address community outreach, prediction of scope of alert, providing influence of alert message on targeted vulnerable population, performing crowdsourced data analysis, evaluating disaster impact through threat maps and dashboards, and thereby, providing complete analysis of the disaster event in all phases of disaster management. The system aims to address challenges including limited communication channels utilization and audience reach, language differences, and lack of ground information in decision making posed by current systems by utilizing the latest state of art technologies.

How to cite: Dalela, P. K., Basu, S., Sharma, S., Kumar, A. N., Behera, S. S., and Upadhyay, R.: AI-enhanced Integrated Alert System for effective Disaster Management, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6758, https://doi.org/10.5194/egusphere-egu22-6758, 2022.

EGU22-10276 | Presentations | ITS2.5/NH10.8

Weather and climate in the AI-supported early warning system DAKI-FWS

Elena Xoplaki, Andrea Toreti, Florian Ellsäßer, Muralidhar Adakudlu, Eva Hartmann, Niklas Luther, Johannes Damster, Kim Giebenhain, Andrej Ceglar, and Jackie Ma

The project DAKI-FWS (BMWi joint-project “Data and AI-supported early warning system to stabilise the German economy”; German: “Daten- und KI-gestütztes Frühwarnsystem zur Stabilisierung der deutschen Wirtschaft”) develops an early warning system (EWS) to strengthen economic resilience in Germany. The EWS enables better characterization of the development and course of pandemics or hazardous climate extreme events and can thus protect and support lives, jobs, land and infrastructures.

The weather and climate modules of the DAKI-FWS use state-of-the-art seasonal forecasts for Germany and apply innovative AI-approaches to prepare very high spatial resolution simulations. These are used for the climate-related practical applications of the project, such as pandemics or subtropical/tropical diseases, and contribute to the estimation of the outbreak and evolution of health crises. Further, the weather modules of the EWS objectively identify weather and climate extremes, such as heat waves, storms and droughts, as well as compound extremes from a large pool of key data sets. The innovative project work is complemented by the development and AI-enhancement of the European Flood Awareness System model, LISFLOOD, and forecasting system for Germany at very high spatial resolution. The model combined with the high-end output of the seasonal forecast prepares high-resolution, accurate flood risk assessment. The final output of the EWS and hazard maps not only support adaptation, but they also increase preparedness providing a time horizon of several months ahead, thus increasing the resilience of economic sectors to impacts of the ongoing anthropogenic climate change. The weather and climate modules of the EWS provide economic, political, and administrative decision-makers and the general public with evidence on the probability of occurrence, intensity and spatial and temporal extent of extreme events as well as with critical information during a disaster.

How to cite: Xoplaki, E., Toreti, A., Ellsäßer, F., Adakudlu, M., Hartmann, E., Luther, N., Damster, J., Giebenhain, K., Ceglar, A., and Ma, J.: Weather and climate in the AI-supported early warning system DAKI-FWS, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10276, https://doi.org/10.5194/egusphere-egu22-10276, 2022.

EGU22-1662 | Presentations | ITS2.5/NH10.8

Exploring the challenges of Digital Twins for weather & climate through an Atmospheric Dispersion modelling prototype

Stephen Haddad, Peter Killick, Aaron Hopkinson, Tomasz Trzeciak, Mark Burgoyne, and Susan Leadbetter

Digital Twins present a new user-centric paradigm for developing and using weather & climate simulations that is currently being widely embraced, for example through large projects such as Destination Earth led by ECMWF.  In this project we have taken a smaller scale approach in understanding the opportunities and challenges in translating the Digital Twin concept from the original domain of manufacturing and the built environment to modelling of the earth’s atmosphere.

We describe our approach to creating a Digital Twin based on the Met Office’s Atmospheric Dispersion simulation package called NAME. We will discuss the advantages of doing this, such as the ability of nonexpert users to more easily produce scientifically valid simulations of dispersion events, such as industrial fires, and easily obtain results to feed into downstream analysis, for example of health impacts. We will describe the requirements of each of the key components of a digital twin and potential implementation approaches.

We will describe how a Digital Twin framework enables multiple models to be joined together to model complex systems as required for atmospheric concentrations around chemical spills or fires modelled by NAME. Overall, we outline a potential project blueprint for future work to improve usability and scientific throughput of existing modelling systems by creating a Digital Twins from core current modelling code and data gathering systems.

How to cite: Haddad, S., Killick, P., Hopkinson, A., Trzeciak, T., Burgoyne, M., and Leadbetter, S.: Exploring the challenges of Digital Twins for weather & climate through an Atmospheric Dispersion modelling prototype, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1662, https://doi.org/10.5194/egusphere-egu22-1662, 2022.

Overview:

Operations Risk Insight (ORI) with Watson is an IBM AI application on the cloud.  ORI analyzes thousands of news sources and alert services daily.  There are too many data sources, warnings, watches and advisories for an individual to understand.  For example, during a week in 2021 with record wildfires, hurricanes and COVID hotspots across the US, thousands of impacting risk events hit key points of interest to IBM globally and were analyzed in real time.  

Which events impacted IBM’s business, and which didn’t? ORI has saved IBM millions of dollars annually for the past 5 years.  Our non-profit disaster relief partners have used ORI to respond more effectively to the needs of the vulnerable groups impacted by disasters.  Find out how disaster response leaders identify severe risks using Watson, the Hybrid Cloud, Big Data, Machine Learning and AI.

Presentation Objectives:

The objectives of this session are:

  • Educate the audience on a pragmatic and relevant IBM internal use case for an AI on the Cloud application, using many Watson and The Weather Company API's, plus machine learning running on IBM's cloud.
  • Obtain feedback and suggestions from the audience on how to expand and improve the machine learning and data analysis for this application to expanded the value for natural disaster response leaders. .
  • Inspire others to create their own grass roots cognitive project and learn more about AI and cloud technologies.
  • Discuss how this relates to the Call for Code and is used by Disaster Relief Agencies for free to assist the most vulnerable in society.

References Links:  

  • ORI has been featured in two Cloud Pak for Data (CP4D) workbooks:  CP4D Watson Studio Tutorial on Risk Analysis: https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/f2ee8dbf-e6af-4b00-90ca-8f7fee77c377/view and the Flood Risk Project: https://dataplatform.dev.cloud.ibm.com/exchange/public/entry/view/def444923c771f3f20285820dc072eac  Each demonstrate the application and methods for Machine Learning to be applied to AI for Natural Disaster Management (NDM). 
  • IBM use case for non-profit partners: https://newsroom.ibm.com/ORI-nonprofits-disaster
  • NC Tech article: https://www.ednc.org/nonprofits-and-artificial-intelligence-join-forces-for-covid-19-relief/
  • Supply Chain Management Review (SCMR) interview: https://www.scmr.com/article/nextgen_supply_chain_interview_tom_ward
  • Supply Chain navigator article: http://scnavigator.avnet.com/article/january-2017/the-missing-link/

How to cite: Ward, T. and Kanwar, R.: IBM Operations Risk Insights with Watson:  a multi-hazard risk, AI for Natural Disaster Management use case, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1230, https://doi.org/10.5194/egusphere-egu22-1230, 2022.

EGU22-9406 | Presentations | ITS2.5/NH10.8

Building exposure datasets using street-level imagery and deep learning object detection models 

Luigi Cesarini, Rui Figueiredo, Xavier Romão, and Mario Martina

The built environment is constantly under the threat of natural hazards, and climate change will only exacerbate such perils. The assessment of natural hazard risk requires exposure models representing the characteristics of the assets at risk, which are crucial to subsequently estimate damage and impacts of a given hazard to such assets. Studies addressing exposure assessment are expanding, in particular due to technological progress. In fact, several works are introducing data collected from volunteered geographic information (VGI), user-generated content, and remote sensing data. Although these methods generate large amounts of data, they typically require a time-consuming extraction of the necessary information. Deep learning models are particularly well suited to perform this labour-intensive task due to their ability to handle massive amount of data.

In this context, this work proposes a methodology that connects VGI obtained from OpenStreetMap (OSM), street-level imagery from Google Street View (GSV) and deep learning object detection models to create an exposure dataset of electrical transmission towers, an asset particularly vulnerable to strong winds among other perils (i.e., ice loads and earthquakes). The main objective of the study is to establish and demonstrate a complete pipeline that first obtains the locations of transmission towers from the power grid layer of OSM’s world infrastructure, and subsequently assigns relevant features of each tower based on the classification returned from an object detection model over street-level imagery of the tower, obtained from GSV.

The study area for the initial application of the methodology is the Porto district (Portugal), which has an area of around 1360 km2 and 5789 transmission towers. The area was found to be representative given its diverse land use, containing both densely populated settlements and rural areas, and the different types of towers that can be found. A single-stage detector (YOLOv5) and a two-stage detector (Detectron2) were trained and used to perform identification and classification of towers. The first task was used to test the ability of a model to recognize whether a tower is present in an image, while the second task assigned a category to each tower based on a taxonomy derived from a compilation of the most used type of towers. Preliminary results on the test partition of the dataset are promising. For the identification task, YOLOv5 returned a mean average precision (mAP) of 87% for an intersection over union (IoU) of 50%, while Detectron2 reached a mAP of 91% for the same IoU. In the classification problem, the performances were also satisfactory, particularly when the models were trained on a sufficient number of images per class. 

Additional analyses of the results can provide insights on the types of areas for which the methodology is more reliable. For example, in remote areas, the long distance of a tower to the street might prevent the object to be identified in the image. Nevertheless, the proposed methodology can in principle be used to generate exposure models of transmission towers at large spatial scales in areas for which the necessary datasets are available.

 

How to cite: Cesarini, L., Figueiredo, R., Romão, X., and Martina, M.: Building exposure datasets using street-level imagery and deep learning object detection models , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9406, https://doi.org/10.5194/egusphere-egu22-9406, 2022.

EGU22-6568 | Presentations | ITS2.5/NH10.8

Harnessing Machine Learning and Deep Learning applications for climate change risk assessment: a survey

Davide Mauro Ferrario, Elisa Furlan, Silvia Torresan, Margherita Maraschini, and Andrea Critto

In the last years there has been a growing interest around Machine Learning (ML) in climate risk/ multi-risk assessment, steered mainly by the growing amount of data available and the reduction of associated computational costs. Extracting information from spatio-temporal data is critically important for problems such as extreme events forecasting and assessing risks and impacts from multiple hazards. Typical challenges in which AI and ML are now being applied require understanding the dynamics of complex systems, which involve many features with non-linear relations and feedback loops, analysing the effects of phenomena happening at different time scales, such as slow-onset events (sea level rise) and short-term episodic events (storm surges, floods) and estimating uncertainties of long-term predictions and scenarios. 
While in the last years there were many successful applications of AI/ML, such as Random Forest or Long-Short Term Memory (LSTM) in floods and storm surges risk assessment, there are still open questions and challenges that need to be addressed. In fact, there is a lack of data for extreme events and Deep Learning (DL) algorithms often need huge amounts of information to disentangle the relationships among hazard, exposure and vulnerability factors contributing to the occurrence of risks. Moreover, the spatio-temporal resolution can be highly irregular and need to be reconstructed to produce accurate and efficient models. For example, using data from meteorological ground stations can offer accurate datasets with fine temporal resolution, but with an irregular distribution in the spatial dimension; on the other hand, leveraging on satellite images can give access to more spatially refined data, but often lacking the temporal dimension (fewer events available to due atmospheric disturbances). 
Several techniques have been applied, ranging from classical multi-step forecasting, state-space and Hidden Markov models to DL techniques, such as Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). ANN and Deep Generative Models (DGM) have been used to reconstruct spatio-temporal grids and modelling continuous time-series, CNN to exploit spatial relations, Graph Neural Networks (GNN) to extract multi-scale localized spatial feature and RNN and LSTM for multi-scale time series prediction.  
To bridge these gaps, an in-depth state-of-the-art review of the mathematical and computer science innovations in ML/DL techniques that could be applied to climate /multi-risk assessment was undertaken. The review focuses on three possible ML/DL applications: analysis of spatio-temporal dynamics of risk factors, with particular attention on applications for irregular spatio-temporal grids; multivariate analysis for multi-hazard interactions and multiple risk assessment endpoints; analysis of future scenarios under climate change. We will present the main outcomes of the scientometric and systematic review of publications across the 2000- 2021 timeframe, which allowed us to: i) summarize keywords and word co-occurrence networks, ii) highlight linkages, working relations and co-citation clusters, iii) compare ML and DL approaches with classical statistical techniques and iv) explore applications at the forefront of the risk assessment community.

How to cite: Ferrario, D. M., Furlan, E., Torresan, S., Maraschini, M., and Critto, A.: Harnessing Machine Learning and Deep Learning applications for climate change risk assessment: a survey, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6568, https://doi.org/10.5194/egusphere-egu22-6568, 2022.

EGU22-11872 | Presentations | ITS2.5/NH10.8

Recent Advances in Deep Learning for Spatio-Temporal Drought Monitoring, Forecasting and Model Understanding

María González-Calabuig, Jordi Cortés-Andrés, Miguel-Ángel Fernández-Torres, and Gustau Camps-Valls

Droughts constitute one of the costliest natural hazards and have seriously destructive effects on the ecological environment, agricultural production and socio-economic conditions. Their elusive and subjective definition, due to the complex physical, chemical and biological processes of the Earth system they involve, makes their management an arduous challenge to researchers, as well as decision and policy makers. We present here our most recent advances in machine learning models in three complementary lines of research about droughts: monitoring, forecasting and understanding. While monitoring or detection is about gaining the time series of drought maps and discovering underlying patterns and correlations, forecasting or prediction is to anticipate future droughts. Last but not least, understanding or explaining models by means of expert-comprehensible representations is equally important as accurately addressing these tasks, especially for their deployment in real scenarios. Thanks to the emergence and success of deep learning, all of these tasks can be tackled by the design of spatio-temporal data-driven approaches built on the basis of climate variables (soil moisture, precipitation, temperature, vegetation health, etc.) and/or satellite imagery. The possibilities are endless, from the design of convolutional architectures and attention mechanisms to the use of generative models such as Normalizing Flows (NFs) or Generative Adversarial Networks (GANs), trained both in a supervised and unsupervised manner, among others. Different application examples in Europe from 2003 onwards are provided, with the aim of reflecting on the possibilities of the strategies proposed, and also of foreseeing alternatives and future lines of development. For that purpose, we make use of several mesoscale (1 km) spatial and 8 days temporal resolution variables included in the Earth System Data Cube (ESDC) [Mahecha et al., 2020] for drought detection, while high resolution (20 m, 5 days) Sentinel-2 data cubes, extracted from the extreme summer track in EarthNet2021 [Requena-Mesa et al., 2021], are considered for forecasting.

 

References

Mahecha, M. D., Gans, F., Brandt, G., Christiansen, R., Cornell, S. E., Fomferra, N., ... & Reichstein, M. (2020). Earth system data cubes unravel global multivariate dynamics. Earth System Dynamics, 11(1), 201-234.

Requena-Mesa, C., Benson, V., Reichstein, M., Runge, J., & Denzler, J. (2021). EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1132-1142).

How to cite: González-Calabuig, M., Cortés-Andrés, J., Fernández-Torres, M.-Á., and Camps-Valls, G.: Recent Advances in Deep Learning for Spatio-Temporal Drought Monitoring, Forecasting and Model Understanding, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11872, https://doi.org/10.5194/egusphere-egu22-11872, 2022.

EGU22-11787 | Presentations | ITS2.5/NH10.8

Explainable deep learning for wildfire danger estimation

Michele Ronco, Ioannis Prapas, Spyros Kondylatos, Ioannis Papoutsis, Gustau Camps-Valls, Miguel-Ángel Fernández-Torres, Maria Piles Guillem, and Nuno Carvalhais

Deep learning models have been remarkably successful in a number of different fields, yet their application to disaster management is obstructed by the lack of transparency and trust which characterises artificial neural networks. This is particularly relevant in the field of Earth sciences where fitting is only a tiny part of the problem, and process understanding becomes more relevant [1,2]. In this regard, plenty of eXplainable Artificial Intelligence (XAI) algorithms have been proposed in the literature over the past few years [3]. We suggest that combining saliency maps with interpretable approximations, such as LIME, is useful to extract complementary insights and reach robust explanations. We address the problem of wildfire forecasting for which interpreting the model's predictions is of crucial importance to put into action effective mitigation strategies. Daily risk maps have been obtained by training a convolutional LSTM with ten years of data of spatio-temporal features, including weather variables, remote sensing indices and static layers for land characteristics [4]. We show how the usage of XAI allows us to interpret the predicted fire danger, thereby shortening the gap between black-box approaches and disaster management.

 

[1] Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences

Gustau Camps-Valls, Devis Tuia, Xiao Xiang Zhu, Markus Reichstein (Editors)

Wiley \& Sons 2021

[2] Deep learning and process understanding for data-driven Earth System Science

Reichstein, M. and Camps-Valls, G. and Stevens, B. and Denzler, J. and Carvalhais, N. and Jung, M. and Prabhat

Nature 566 :195-204, 2019

[3] Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

 Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, Klaus-Robert Müller (Editors)

LNCS, volume 11700, Springer 

[4] Deep Learning Methods for Daily Wildfire Danger Forecasting

Ioannis Prapas, Spyros Kondylatos, Ioannis Papoutsis, Gustau Camps-Valls, Michele Ronco, Miguel-Ángel Fernández-Torres, Maria Piles Guillem, Nuno Carvalhais

arXiv: 2111.02736


 

How to cite: Ronco, M., Prapas, I., Kondylatos, S., Papoutsis, I., Camps-Valls, G., Fernández-Torres, M.-Á., Piles Guillem, M., and Carvalhais, N.: Explainable deep learning for wildfire danger estimation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11787, https://doi.org/10.5194/egusphere-egu22-11787, 2022.

EGU22-12432 | Presentations | ITS2.5/NH10.8

Building wildfire intelligence at the edge: bridging the gap from development to deployment

Maria João Sousa, Alexandra Moutinho, and Miguel Almeida

The increased frequency, intensity, and severity of wildfire events in several regions across the world has highlighted several disaster response infrastructure hindrances that call for enhanced intelligence gathering pipelines. In this context, the interest in the use of unmanned aerial vehicles for surveillance and active fire monitoring has been growing in recent years. However, several roadblocks challenge the implementation of these solutions due to their high autonomy requirements and energy-constrained nature. For these reasons, the artificial intelligence development focus on large models hampers the development of models suitable for deployment onboard these platforms. In that sense, while artificial intelligence approaches can be an enabling technology that can effectively scale real-time monitoring services and optimize emergency response resources, the design of these systems imposes: (i) data requirements, (ii) computing constraints and (iii) communications limitations. Here, we propose a decentralized approach, reflecting upon these three vectors.

Data-driven artificial intelligence is central to both handle multimodal sensor data in real-time and to annotate large amounts of data collected, which are necessary to build robust safety-critical monitoring systems. Nevertheless, these two objectives have distinct implications computation-wise, because the first must happen on-board, whereas the second can leverage higher processing capabilities off-board. While autonomy of robotic platforms drives mission performance, being a key reason for the need for edge computing of onboard sensor data, the communications design is essential to mission endurance as relaying large amounts of data in real-time is unfeasible energy-wise. 

For these reasons, real-time processing and data annotation must be tackled in a complimentary manner, instead of the general practice of only targeting overall accuracy improvement. To build wildfire intelligence at the edge, we propose developments on two tracks of solutions: (i) data annotation and (ii) on the edge deployment. The need for considerable effort in these two avenues stems from both having very distinct development requirements and performance evaluation metrics. On the one hand, improving data annotation capacity is essential to build high quality databases that can provide better sources for machine learning. On the other hand, for on the edge deployment the development architectures need to compromise on robustness and architectural parsimony in order to be efficient for edge processing. Whereas the first objective is driven foremost by accuracy, the second goal must emphasize timeliness.

Acknowledgments
This work was supported by FCT – Fundação para a Ciência e a Tecnologia, I.P., through IDMEC, under project Eye in the Sky, PCIF/SSI/0103/2018, and through IDMEC, under LAETA, project UIDB/50022/2020. M. J. Sousa acknowledges the support from FCT, through the Ph.D. Scholarship SFRH/BD/145559/2019, co-funded by the European Social Fund (ESF).

How to cite: Sousa, M. J., Moutinho, A., and Almeida, M.: Building wildfire intelligence at the edge: bridging the gap from development to deployment, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12432, https://doi.org/10.5194/egusphere-egu22-12432, 2022.

Main purpose of current research article is to present latest findings on automatic methods of manipulating social network data for developing seismic intensity maps. As case study the author selected the 2020 Samos earthquake event (Mw= 7, 30 October 2020, Greece). That earthquake event had significant consequences to the urban environment along with 2 deaths and 19 injuries. Initially an automatic approach, presented recently in the international literature was applied producing thus seismic intensity maps from tweets. Furthermore, some initial findings regarding the use of machine learning in various parts of the automatic methodology were presented along with potential of using photos posted in social networks. The data used were several thousands tweets and instagram posts.The results, provide vital findings in enriching data sources, data types, and effective rapid processing.

How to cite: Arapostathis, S. G.: The Samos earthquake event (Mw = 7, 30 October 2020, Greece) as case study for applying machine learning on texts and photos scraped from social networks for developing seismic intensity maps., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7129, https://doi.org/10.5194/egusphere-egu22-7129, 2022.

Induced subsidence and seismicity caused by the production of hydrocarbons in the Groningen gas field (the Netherlands) is a widely known issue facing this naturally aseismic region (Smith et al., 2019). Extraction reduces pore-fluid pressure leading to accumulation of small elastic and inelastic strains and an increase in effective vertical stress driving compaction of reservoir sandstones.

Recent studies (Pijnenburg et al., 2019a, b and Verberne et al., 2021) identify grain-scale deformation of intergranular and grain-coating clays as largely responsible for accommodating (permanent) inelastic deformation at small strains relevant to production (≤1.0%). However, their distribution, microstructure, abundance, and contribution to inelastic deformation remains unconstrained, presenting challenges when evaluating grain-scale deformation mechanisms within a natural system. Traditional methods of mineral identification are costly, labor-intensive, and time-consuming. Digital imaging coupled with machine-learning-driven segmentation is necessary to accelerate the identification of clay microstructures and distributions within reservoir sandstones for later large-scale analysis and geomechanical modeling.

We performed digital imaging on thin-sections taken from core recovered from the highly-depleted Zeerijp ZRP-3a well located at the most seismogenic part of the field. The core was kindly made available by the field operator, NAM. Optical digital images were acquired using the Zeiss AxioScan optical light microscope at 10x magnification with a resolution of 0.44µm and compared to backscattered electron (BSE) digital images from the Zeiss EVO 15 Scanning Electron Microscope (SEM) at varying magnifications with resolutions ranging from 0.09µm - 2.24 µm. Digital images were processed in ilastik, an interactive machine-learning-based toolkit for image segmentation that uses a Random Forest classifier to separate clays from a digital image (Berg et al., 2019).

Comparisons between segmented optical and BSE digital images indicate that image resolution is the main limiting factor for successful mineral identification and image segmentation, especially for clay minerals. Lower resolution digital images obtained using optical light microscopy may be sufficient to segment larger intergranular/pore-filling clays, but higher resolution BSE images are necessary to segment smaller micron to submicron-sized grain-coating clays. Comparing the same segmented optical image (~11.5% clay) versus BSE image (~16.3% clay) reveals an error of ~30%, illustrating the potential of underestimating the clay content necessary for geomechanical modeling.

Our analysis shows that coupled automated electron microscopy with machine-learning-driven image segmentation has the potential to provide statistically relevant and robust information to further constrain the role of clay films on the compaction behavior of reservoir rocks.

 

References:

Berg, S. et al., Nat Methods 16, 1226–1232 (2019).

(NAM) Nederlandse Aardolie Maatschappij BV (2015).

Pijnenburg, R. P. J. et al., Journal of Geophysical Research: Solid Earth, 124 (2019a).

Pijnenburg, R. P. J. et al., Journal of Geophysical Research: Solid Earth, 124, 5254–5282. (2019b)

Smith, J. D. et al., Journal of Geophysical Research: Solid Earth, 124, 6165–6178. (2019)

Verberne, B. A. et al., Geology, 49 (5): 483–487. (2020)

How to cite: Vogel, H., Amiri, H., Plümper, O., Hangx, S., and Drury, M.: Applications of digital imaging coupled with machine-learning for aiding the identification, analysis, and quantification of intergranular and grain-coating clays within reservoirs rocks., EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7915, https://doi.org/10.5194/egusphere-egu22-7915, 2022.

EGU22-7711 | Presentations | ITS2.5/NH10.8

Global sensitivity analyses to characterize the risk of earth fissures in subsiding basins

Yueting Li, Claudia Zoccarato, Noemi Friedman, András Benczúr, and Pietro Teatini

Earth fissure associated with groundwater pumping is a severe geohazard jeopardizing several subsiding basins generally in arid countries (e.g., Mexico, Arizona, Iran, China, Pakistan). Up to 15 km long, 1–2 m wide, 15–20 m deep, and more than 2 m vertically dislocated fissures have been reported. A common geological condition favoring the occurrence of earth fissures is the presence of shallow bedrock ridge buried by compacting sedimentary deposits. This study aims to improve the understanding of this mechanism by evaluating the effects of various factors on the risk of fissure formation and development. Several parameters playing a role in the fissure occurrence have been considered, such as the shape of the bedrock ridge, the aquifer thickness, the pressure depletion in the aquifer system, and its compressibility. A realistic case is developed where the characteristics of fissure like displacements and stresses are quantified with aid of a numerical approach based on finite elements for the continuum and interface elements for the discretization of the fissures. Modelling results show that the presence of bedrock ridge causes tension accumulation around its tip and results in fissure opening from land surface downward after long term piezometry depletion. Different global sensitivity analysis methods are applied to measure the importance of each single factor (or group of them) on the quantity of interest, i.e., the fissure opening. A conventional variance-based method is first presented with Sobol indices computed from Monte Carlo simulations, although its accuracy is only guaranteed with a high number of forward simulations. As alternatives, generalized polynomial chaos expansion and gradient boosting tree are introduced to approximate the forward model and implement the corresponding sensitivity assessment at a significantly reduced computational cost. All the measures provide similar results that highlight the importance of bedrock ridge in earth fissuring. Generally, the steeper bedrock ridge the higher the risk of significant fissure opening. Pore pressure depletion is secondarily key factor which is essential for fissure formation.

How to cite: Li, Y., Zoccarato, C., Friedman, N., Benczúr, A., and Teatini, P.: Global sensitivity analyses to characterize the risk of earth fissures in subsiding basins, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7711, https://doi.org/10.5194/egusphere-egu22-7711, 2022.

ITS2.6/AS5.1 – Machine learning for Earth System modelling

EGU22-124 | Presentations | ITS2.6/AS5.1

Unsupervised machine learning driven Prospectivity analysis of REEs in NE India

Malcolm Aranha and Alok Porwal

Traditional mineral prospectivity modelling for mineral exploration and targeting relies heavily on manual data filtering and processing to extract desirable geologic features based on expert knowledge. It involves the integration of geological predictor maps that are manually derived by time-consuming and labour-intensive pre-processing of primary geoscientific data to serve as spatial proxies of mineralisation processes. Moreover, the selection of these spatial proxies is guided by conceptual genetic modelling of the targeted deposit type, which may be biased by the subjective preference of an expert geologist. This study applies Self-Organising Maps (SOM), a neural network-based unsupervised machine learning clustering algorithm, to gridded geophysical and topographical datasets in order to identify and delineate regional-scale exploration targets for carbonatite-alkaline-complex-related REE deposits in northeast India. The study did not utilise interpreted and processed or manually generated data, such as surface or bed-rock geological maps, fault traces, etc., and relies on the algorithm to identify crucial features and delineate prospective areas. The obtained results were then compared with those obtained from a previous supervised knowledge-driven prospectivity analysis. The results were found to be comparable. Therefore, unsupervised machine learning algorithms are reliable tools to automate the manual process of mineral prospectivity modelling and are robust, time-saving alternatives to knowledge-driven or supervised data-driven prospectivity modelling. These methods would be instrumental in unexplored terrains for which there is little or no geological knowledge available. 

How to cite: Aranha, M. and Porwal, A.: Unsupervised machine learning driven Prospectivity analysis of REEs in NE India, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-124, https://doi.org/10.5194/egusphere-egu22-124, 2022.

EGU22-9833 | Presentations | ITS2.6/AS5.1

Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress

Laura Laurenti, Elisa Tinti, Fabio Galasso, Luca Franco, and Chris Marone

Earthquakes forecasting and prediction have long, and in some cases sordid, histories but recent work has rekindled interest in this area based on advances in short-term early warning, hazard assessment for human induced seismicity and successful prediction of laboratory earthquakes.

In the lab, frictional stick-slip events provide an analog for the full seismic cycle and such experiments have played a central role in understanding the onset of failure and the dynamics of earthquake rupture. Lab earthquakes are also ideal targets for machine learning (ML) techniques because they can be produced in long sequences under a wide range of controlled conditions. Indeed, recent work shows that labquakes can be predicted from fault zone acoustic emissions (AE). Here, we generalize these results and explore additional ML and deep learning (DL) methods for labquake prediction. Key questions include whether improved ML/DL methods can outperform existing models, including prediction based on limited training, or if such methods can successfully forecast beyond a single seismic cycle for aperiodic failure. We describe significant improvements to existing methods of labquake prediction using simple AE statistics (variance) and DL models such as Long-Short Term Memory (LSTM) and Convolution Neural Network (CNN). We demonstrate: 1) that LSTMs and CNNs predict labquakes under a variety of conditions, including pre-seismic creep, aperiodic events and alternating slow and fast events and 2) that fault zone stress can be predicted with fidelity (accuracy in terms of R2 > 0.92), confirming that acoustic energy is a fingerprint of the fault zone stress. We predict also time to start of failure (TTsF) and time to the end of Failure (TTeF). Interestingly, TTeF is successfully predicted in all seismic cycles, while the TTsF prediction varies with the amount of fault creep before an event. We also report on a novel autoregressive forecasting method to predict future fault zone states, focusing on shear stress. This forecasting model is distinct from existing predictive models, which predict only the current state. We compare three modern approaches in sequence modeling framework: LSTM, Temporal Convolution Network (TCN) and Transformer Network (TF). Results are encouraging in forecasting the shear stress at long-term future horizons, autoregressively. Our ML/DL prediction models outperform the state of the art and our autoregressive model represents a novel forecasting framework that could enhance current methods of earthquake forecasting.

How to cite: Laurenti, L., Tinti, E., Galasso, F., Franco, L., and Marone, C.: Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9833, https://doi.org/10.5194/egusphere-egu22-9833, 2022.

EGU22-10711 | Presentations | ITS2.6/AS5.1

A new approach toward integrated inversion of reflection seismic and gravity datasets using deep learning

Mahtab Rashidifard, Jeremie Giraud, Mark Jessell, and Mark Lindsay

Reflection seismic data, although sparsely distributed due to the high cost of acquisition, is the only type of data that can provide high-resolution images of the crust to reveal deep subsurface structures and the architectural complexity that may vector attention to minerally prospective regions. However, these datasets are not commonly considered in integrated geophysical inversion approaches due to computationally expensive forward modeling and inversion. Common inversion techniques on reflection seismic images are mostly utilized and developed for basin studies and have very limited application for hard-rock studies. Post-stack acoustic impedance inversions, for example, rely a lot on extracted petrophysical information along drilling borehole for depth correction purposes which are not necessarily available. Furthermore, the available techniques do not allow simple, automatic integration of seismic inversion with other geophysical datasets. 

 

 We introduce a new methodology that allows the utilization of the seismic images within the gravity inversion technique with the purpose of 3D boundary parametrization of the subsurface. The proposed workflow is a novel approach for incorporating seismic images into the integrated inversion techniques which relies on the image-ray method for depth-to-time domain conversion of seismic datasets. This algorithm uses a convolutional neural network to iterate over seismic images in time and depth domains. This iterative process is functional to compensate for the low depth resolution of the gravity datasets. We use a generalized level-set technique for gravity inversion to link the interfaces of the units with the depth-converted seismic images. The algorithm has been tested on realistic synthetic datasets generated from scenarios corresponding to different deformation histories. The preliminary results of this study suggest that post-stack seismic images can be utilized in integrated geophysical inversion algorithms without the need to run computationally expensive full wave-form inversions.  

How to cite: Rashidifard, M., Giraud, J., Jessell, M., and Lindsay, M.: A new approach toward integrated inversion of reflection seismic and gravity datasets using deep learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10711, https://doi.org/10.5194/egusphere-egu22-10711, 2022.

EGU22-7044 | Presentations | ITS2.6/AS5.1

Seismic Event Characterization using Manifold Learning Methods

Yuri Bregman, Yochai Ben Horin, Yael Radzyner, Itay Niv, Maayan Kahlon, and Neta Rabin

Manifold learning is a branch of machine learning that focuses on compactly representing complex data-sets based on their fundamental intrinsic parameters. One such method is diffusion maps, which reduces the dimension of the data while preserving its geometric structure. In this work, diffusion maps are applied to several seismic event characterization tasks. The first task is automatic earthquake-explosion discrimination, which is an essential component of nuclear test monitoring. We also use this technique to automatically identify mine explosions and aftershocks following large earthquakes. Identification of such events helps to lighten the analysts’ burden and allow for timely production of reviewed seismic bulletins.

The proposed methods begin with a pre-processing stage in which a time–frequency representation is extracted from each seismogram while capturing common properties of seismic events and overcoming magnitude differences. Then, diffusion maps are used in order to construct a low-dimensional model of the original data. In this new low-dimensional space, classification analysis is carried out.

The algorithm’s discrimination performance is demonstrated on several seismic data sets. For instance, using the seismograms from EIL station, we identify arrivals that were caused by explosions at the nearby Eshidiya mine in Jordan. The model provides a visualization of the data, organized by its intrinsic factors. Thus, along with the discrimination results, we provide a compact organization of the data that characterizes the activity patterns in the mine.

Our results demonstrate the potential and strength of the manifold learning based approach, which may be suitable to other in other geophysics domains.

How to cite: Bregman, Y., Ben Horin, Y., Radzyner, Y., Niv, I., Kahlon, M., and Rabin, N.: Seismic Event Characterization using Manifold Learning Methods, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7044, https://doi.org/10.5194/egusphere-egu22-7044, 2022.

EGU22-12489 | Presentations | ITS2.6/AS5.1

“Fully-automated” clustering method for stress inversions (CluStress)

Lukács Kuslits, Lili Czirok, and István Bozsó

As it is well-known, stress fields are responsible for earthquake formation. In order to analyse stress relations in a study area using focal mechanisms’ (FMS) inversions, it is vital to consider three fundamental criteria:

(1)       The investigated area is characterized by a homogeneous stress field.

(2)       The earthquakes occur with variable directions on pre-existing faults.

(3)       The deviation of the fault slip vector from the shear stress vector is minimal (Wallace-Bott hypothesis).

The authors have attempted to develop a “fully-automated” algorithm to carry out the classification of the earthquakes as a prerequisite of stress estimations. This algorithm does not call for the setting of hyper-parameters, thus subjectivity can be reduced significantly and the running time can also decrease. Nevertheless, there is an optional hyper-parameter that is eligible to filter outliers, isolated points (earthquakes) in the input dataset.

In this presentation, they show the operation of this algorithm in case of synthetic datasets consisting of different groups of FMS and a real seismic dataset. The latter come from a survey area in the earthquake-prone Vrancea-zone (Romania). This is a relatively small region (around 30*70 km) in the external part of SE-Carpathians where the distribution of the seismic events is quite dense and heterogeneous.

It shall be noted that though the initial results are promising, further developments are still necessary. The source codes are soon to be uploaded to a public GitHub repository which will be available for the whole scientific community.

How to cite: Kuslits, L., Czirok, L., and Bozsó, I.: “Fully-automated” clustering method for stress inversions (CluStress), EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12489, https://doi.org/10.5194/egusphere-egu22-12489, 2022.

EGU22-1255 | Presentations | ITS2.6/AS5.1

A Deep Learning approach to de-bias Air Quality forecasts, using heterogeneous Open Data sources as reference

Antonio Pérez, Mario Santa Cruz, Johannes Flemming, and Miha Razinger

The degradation of air quality is a challenge that policy-makers face all over the world. According to the World Health Organisation, air pollution causes an estimate of 7 million premature deaths every year. In this context, air quality forecasts are crucial tools for decision- and policy-makers, to achieve data-informed decisions.

Global forecasts, such as the Copernicus Atmosphere monitoring service model (CAMS), usually exhibit biases: systematic deviations from observations. Adjusting these biases is typically the first step towards obtaining actionable air quality forecasts. It is especially relevant in health-related decisions, when the metrics of interest depend on specific thresholds.

AQ (Air quality) - Bias correction was a project funded by the ECMWF Summer of Weather Code (ESOWC) 2021 whose aim is to improve CAMS model forecasts for air quality variables (NO2, O3, PM2.5), using as a reference the in-situ observations provided by OpenAQ. The adjustment, based on machine learning methods, was performed over a set of specific interesting locations provided by the ECMWF, for the period June 2019 to March 2021.

The machine learning approach uses three different deep learning based models, and an extra neural network that gathers the output of the three previous models. From the three DL-based models, two of them are independent and follow the same structure built upon the InceptionTime module: they use both meteorological and air quality variables, to exploit the temporal variability and to extract the most meaningful features of the past [t-24h, t-23h, … t-1h] and future [t, t+1h, …, t+23h] CAMS predictions. The third model uses the station static attributes (longitude, latitude and elevation), and a multilayer perceptron interacts with the station attributes. The extracted features from these three models are fed into another multilayer perceptron, to predict the upcoming errors with hourly resolution [t, t+1h, …, t+23h]. As a final step, 5 different initializations are considered, assembling them with equal weights to have a more stable regressor.

Previous to the modelisation, CAMS forecasts of air quality variables were actually biassed independently from the location of interest and the variable (on average: biasNO2 = -22.76, biasO3 = 44.30, biasPM2.5 = 12.70). In addition, the skill of the model, measured by the Pearson correlation, did not reach 0.5 for any of the variables—with remarkable low values for NO2 and O3 (on average: pearsonNO2 = 0.10, pearsonO3 = 0.14).

AQ-BiasCorrection modelisation properly corrects these biases. Overall, the number of stations that improve the biases both in train and test sets are: 52 out of 61 (85%) for NO2, 62 out of 67 (92%) for O3, and 80 out of 102 (78%) for PM2.5. Furthermore, the bias improves with declines of -1.1%, -9.7% and -13.9% for NO2, O3 and PM2.5 respectively. In addition, there is an increase in the model skill measured through the Pearson correlation, reaching values in the range of 100-400% for the overall improvement of the variable skill.

How to cite: Pérez, A., Santa Cruz, M., Flemming, J., and Razinger, M.: A Deep Learning approach to de-bias Air Quality forecasts, using heterogeneous Open Data sources as reference, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1255, https://doi.org/10.5194/egusphere-egu22-1255, 2022.

EGU22-12574 | Presentations | ITS2.6/AS5.1 | Highlight

SWIFT-AI: Significant Speed-up in Modelling the Stratospheric Ozone Layer

Helge Mohn, Daniel Kreyling, Ingo Wohltmann, Ralph Lehmann, Peter Maass, and Markus Rex

Common representations of the stratospheric ozone layer in climate modeling are widely considered only in a very simplified way. Neglecting the mutual interactions of ozone with atmospheric temperature and dynamics has the effect of making climate projections less accurate. Although, more elaborate and interactive models of the stratospheric ozone layer are available, they require far too much computation time to be coupled with climate models. Our aim with this project was to break new ground and pursue an interdisciplinary strategy that spans the fields of machine learning, atmospheric physics and climate modelling.

In this work, we present an implicit neural representation of the extrapolar stratospheric ozone chemistry (SWIFT-AI). An implicitly defined hyperspace of the stratospheric ozone chemistry offers a continuous and even differentiable representation that can be parameterized by artificial neural networks. We analysed different parameter-efficient variants of multilayer perceptrons. This was followed by an intensive, as far as possible energy-efficient search for hyperparameters involving Bayesian optimisation and early stopping techniques.

Our data source is the Lagrangian chemistry and transport model ATLAS. Using its full model of stratospheric ozone chemistry, we focused on simulating a wide range of stratospheric variability that will occur in future climate (e.g. temperature and meridional circulation changes). We conducted a simulation for several years and created a data-set with over 200E+6 input and output pairs. Each output is the 24h ozone tendency of a trajectory. We performed a dimensionality reduction of the input parameters by using the concept of chemical families and by performing a sensitivity analysis to choose a set of robust input parameters.

We coupled the resulting machine learning models with the Lagrangian chemistry and transport model ATLAS, substituting the full stratospheric chemistry model. We validated a two-year simulation run by comparing to the differences in accuracy and computation time from both the full stratospheric chemistry model and the previous polynomial approach of extrapolar SWIFT. We found that SWIFT-AI consistently outperforms the previous polynomial approach of SWIFT, both in terms of test data and simulation results. We discovered that the computation time of SWIFT-AI is more than twice as fast as the previous polynomial approach SWIFT and 700 times faster than the full stratospheric chemistry scheme of ATLAS, resulting in minutes instead of weeks of computation time per model year – a speed-up of several orders of magnitude.

To ensure reproducibility and transparency, we developed a machine learning pipeline, published a benchmark dataset and made our repository open to the public.

In summary, we could show that the application of state-of-the-art machine learning methods to the field of atmospheric physics holds great potential. The achieved speed-up of an interactive and very precise ozone layer enables a novel way of representing the ozone layer in climate models. This in turn will increase the quality of climate projections, which are crucial for policy makers and of great importance for our planet.

How to cite: Mohn, H., Kreyling, D., Wohltmann, I., Lehmann, R., Maass, P., and Rex, M.: SWIFT-AI: Significant Speed-up in Modelling the Stratospheric Ozone Layer, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12574, https://doi.org/10.5194/egusphere-egu22-12574, 2022.

EGU22-5746 | Presentations | ITS2.6/AS5.1

Model Output Statistics (MOS) and Machine Learning applied to CAMS O3 forecasts: trade-offs between continuous and categorical skill scores

Hervé Petetin, Dene Bowdalo, Pierre-Antoine Bretonnière, Marc Guevara, Oriol Jorba, Jan Mateu armengol, Margarida Samso Cabre, Kim Serradell, Albert Soret, and Carlos Pérez García-Pando

Air quality (AQ) forecasting systems are usually built upon physics-based numerical models that are affected by a number of uncertainty sources. In order to reduce forecast errors, first and foremost the bias, they are often coupled with Model Output Statistics (MOS) modules. MOS methods are statistical techniques used to correct raw forecasts at surface monitoring station locations, where AQ observations are available. In this study, we investigate to what extent AQ forecasts can be improved using a variety of MOS methods, including persistence (PERS), moving average (MA), quantile mapping (QM), Kalman Filter (KF), analogs (AN), and gradient boosting machine (GBM). We apply our analysis to the Copernicus Atmospheric Monitoring Service (CAMS) regional ensemble median O3 forecasts over the Iberian Peninsula during 2018–2019. A key aspect of our study is the evaluation, which is performed using a very comprehensive set of continuous and categorical metrics at various time scales (hourly to daily), along different lead times (1 to 4 days), and using different meteorological input data (forecast vs reanalyzed).

Our results show that O3 forecasts can be substantially improved using such MOS corrections and that this improvement goes much beyond the correction of the systematic bias. Although it typically affects all lead times, some MOS methods appear more adversely impacted by the lead time. When considering MOS methods relying on meteorological information and comparing the results obtained with IFS forecasts and ERA5 reanalysis, the relative deterioration brought by the use of IFS is minor, which paves the way for their use in operational MOS applications. Importantly, our results also clearly show the trade-offs between continuous and categorical skills and their dependencies on the MOS method. The most sophisticated MOS methods better reproduce O3 mixing ratios overall, with lowest errors and highest correlations. However, they are not necessarily the best in predicting the highest O3 episodes, for which simpler MOS methods can give better results. Although the complex impact of MOS methods on the distribution and variability of raw forecasts can only be comprehended through an extended set of complementary statistical metrics, our study shows that optimally implementing MOS in AQ forecast systems crucially requires selecting the appropriate skill score to be optimized for the forecast application of interest.

Petetin, H., Bowdalo, D., Bretonnière, P.-A., Guevara, M., Jorba, O., Armengol, J. M., Samso Cabre, M., Serradell, K., Soret, A., and Pérez Garcia-Pando, C.: Model Output Statistics (MOS) applied to CAMS O3 forecasts: trade-offs between continuous and categorical skill scores, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-864, in review, 2021.

How to cite: Petetin, H., Bowdalo, D., Bretonnière, P.-A., Guevara, M., Jorba, O., Mateu armengol, J., Samso Cabre, M., Serradell, K., Soret, A., and Pérez García-Pando, C.: Model Output Statistics (MOS) and Machine Learning applied to CAMS O3 forecasts: trade-offs between continuous and categorical skill scores, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5746, https://doi.org/10.5194/egusphere-egu22-5746, 2022.

EGU22-6553 | Presentations | ITS2.6/AS5.1

Can simple machine learning methods predict concentrations of OH better than state of the art chemical mechanisms?

Sebastian Hickman, Paul Griffiths, James Weber, and Alex Archibald

Concentrations of the hydroxyl radical, OH, control the lifetime of methane, carbon monoxide and other atmospheric constituents.  The short lifetime of OH, coupled with the spatial and temporal variability in its sources and sinks, makes accurate simulation of its concentration particularly challenging. To date, machine learning (ML) methods have been infrequently applied to global studies of atmospheric chemistry.

We present an assessment of the use of ML methods for the challenging case of simulation of the hydroxyl radical at the global scale, and show that several approaches are indeed viable.  We use observational data from the recent NASA Atmospheric Tomography Mission to show that machine learning methods are comparable in skill to state of the art forward chemical models and are capable, if appropriately applied, of simulating OH to within observational uncertainty.  

We show that a simple ridge regression model is a better predictor of OH concentrations in the remote atmosphere than a state of the art chemical mechanism implemented in a forward box model. Our work shows that machine learning may be an accurate emulator of chemical concentrations in atmospheric chemistry, which would allow a significant speed up in climate model runtime due to the speed and efficiency of simple machine learning methods. Furthermore, we show that relatively few predictors are required to simulate OH concentrations, suggesting that the variability in OH can be quantitatively accounted for by few observables with the potential to simplify the numerical simulation of atmospheric levels of key species such as methane. 

How to cite: Hickman, S., Griffiths, P., Weber, J., and Archibald, A.: Can simple machine learning methods predict concentrations of OH better than state of the art chemical mechanisms?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6553, https://doi.org/10.5194/egusphere-egu22-6553, 2022.

EGU22-7113 | Presentations | ITS2.6/AS5.1 | Highlight

Coupling regional air quality simulations of EURAD-IM with street canyon observations - a machine learning approach

Charlotte Neubacher, Philipp Franke, Alexander Heinlein, Axel Klawonn, Astrid Kiendler-Scharr, and Anne-Caroline Lange

State of the art atmospheric chemistry transport models on regional scales as the EURAD-IM (EURopean Air pollution Dispersion-Inverse Model) simulate physical and chemical processes in the atmosphere to predict the dispersion of air pollutants. With EURAD-IM’s 4D-var data assimilation application, detailed analyses of the air quality can be conducted. These analyses allow for improvements of atmospheric chemistry forecast as well as emission source strength assessments. Simulations of EURAD-IM can be nested to a spatial resolution of 1 km, which does not correspond to the urban scale. Thus, inner city street canyon observations cannot be exploited since here, anthropogenic pollution vary vastly over scales of 100 m or less.

We address this issue by implementing a machine learning (ML) module into EURAD-IM, forming a hybrid model that enable bridging the representativeness gap between model resolution and inner-city observations. Thus, the data assimilation of EURAD-IM is strengthened by additional observations in urban regions. Our approach of the ML module is based on a neural network (NN) with relevant environmental information of street architecture, traffic density, meteorology, and atmospheric pollutant concentrations from EURAD-IM as well as the street canyon observation of pollutants as input features. The NN then maps the observed concentration from street canyon scale to larger spatial scales.

We are currently working with a fully controllable test environment created from EURAD-IM forecasts of the years 2020 and 2021 at different spatial resolutions. Here, the ML model maps the high-resolution hourly NO2 concentration to the concentration of the low resolution model grid. It turns out that it is very difficult for NNs to learn the hourly concentrations with equal accuracy using diurnal cycles of pollutant concentrations. Thus, we develop a model that uses an independent NN for each hour to support time-of-day learning. This allows to reduce the training error by a factor of 102. As a proof of concept, we trained the ML model in an overfitting regime where the mean squared training error reduce to 0.001% for each hour. Furthermore, by optimizing the hyperparameters and introducing regularization terms to reduce the overfitting, we achieved a validation error of 9−12% during night and 9−16% during day.

How to cite: Neubacher, C., Franke, P., Heinlein, A., Klawonn, A., Kiendler-Scharr, A., and Lange, A.-C.: Coupling regional air quality simulations of EURAD-IM with street canyon observations - a machine learning approach, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7113, https://doi.org/10.5194/egusphere-egu22-7113, 2022.

EGU22-7755 | Presentations | ITS2.6/AS5.1

Up- and Downscaling of Carbon dioxide (CO2) concentrations in an Urban Environment

Alain Retière and H. Gijs van den Dool

EGU22-5631 | Presentations | ITS2.6/AS5.1

Autonomous Assessment of Source Area Distributions for Sections in Lagrangian Particle Release Experiments

Carola Trahms, Patricia Handmann, Willi Rath, Matthias Renz, and Martin Visbeck

Lagrangian experiments for particle tracing in atmosphere or ocean models and their analysis are a cornerstone of earth-system studies. They cover diverse study objectives such as the identification of pathways or source regions. Data for Lagrangian studies are generated by releasing virtual particles in one or in multiple locations of interest and simulating their advective-diffusive behavior backwards or forwards in time. Identifying main pathways connecting two regions of interest is often done by counting the trajectories that reach both regions. Here, the exact source and target region must be defined manually by a researcher. Manually defining the importance and exact location of these regions introduces a highly subjective perspective into the analysis. Additionally, to investigate all major target regions, all of them must be defined manually and the data must be analyzed accordingly. This human element slows down and complicates large scale analyses with many different sections and possible source areas.

We propose to significantly reduce the manual aspect by automatizing this process. To this end, we combine methods from different areas of machine learning and pattern mining into a sequence of steps. First, unsupervised methods, i.e., clustering, identify possible source areas on a randomized subset of the data. In a successive second step, supervised learning, i.e., classification, labels the positions along the trajectories according to their most probable source area using the previously automatically identified clusters as labels. The results of this approach can then be compared quantitatively to the results of analyses with manual definition of source areas and border-hitting-based labeling of the trajectories. Preliminary findings suggest that this approach could indeed help greatly to objectify and fasten the analysis process for Lagrangian Particle Release Experiments.

How to cite: Trahms, C., Handmann, P., Rath, W., Renz, M., and Visbeck, M.: Autonomous Assessment of Source Area Distributions for Sections in Lagrangian Particle Release Experiments, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5631, https://doi.org/10.5194/egusphere-egu22-5631, 2022.

EGU22-4493 | Presentations | ITS2.6/AS5.1 | Highlight

Semi-automatic tuning procedure for a GCM targeting continental surfaces: a first experiment using in situ observations

Maëlle Coulon--Decorzens, Frédérique Cheruy, and Frédéric Hourdin

The tuning or calibration of General Circulation Models (GCMs) is an essential stage for their proper behavior. The need to have the best climate projections in the regions where we live drives the need to tune the models in particular towards the land surface, bearing in mind that the interactions between the atmosphere and the land surface remain a key source of uncertainty in regional-scale climate projections [1].

For a long time, this tuning has been done by hand, based on scientific expertise and has not been sufficiently documented [2]. Recent tuning tools offer the possibility to accelerate climate model development, providing a real tuning formalism as well as a new way to understand climate models. High Tune explorer is one of these statistic tuning tool, involving machine learning and based on uncertainty quantification. It aims to reduce the range of free parameters that allow realistic model behaviour [3]. A new automatic tuning experiment was developed with this tool for the atmospheric component of the IPSL GCM model, LMDZ. It was first tuned at the process level, using several single column test cases compared to large eddies simulations; and then at the global level by targeting radiative metrics at the top of the atmosphere [4].

We propose to add a new step to this semi-automatic tuning procedure targeting atmosphere and land-surface interactions. The first aspect of the proposition is to compare coupled atmosphere-continent simulations (here running LMDZ-ORCHIDEE) with in situ observations from the SIRTA observatory located southwest of Paris. In situ observations provide hourly joint colocated data with a strong potential for the understanding of the processes at stake and their representation in the model. These data are also subject to much lower uncertainties than the satellite inversions with respect to the surface observations. In order to fully benefit from the site observations, the model winds are nudged toward reanalysis. This forces the simulations to follow the effective meteorological sequence, thus allowing the comparison between simulations and observations at the process time scale. The removal of the errors arising from the representation of large-scale dynamics makes the tuning focus on the representation of physical processes «at a given meteorological situation». Finally, the model grid is zoomed in on the SIRTA observatory in order to reduce the computational cost of the simulations while preserving a fine mesh around this observatory.

We show the results of this new tuning step, which succeeds in reducing the domain of acceptable free parameters as well as the dispersion of the simulations. This method, which is less computationally costly than global tuning, is therefore a good way to precondition the latter. It allows the joint tuning of atmospheric and land surface models, traditionally tuned separately [5], and has the advantage of remaining close to the processes and thus improving their understanding.

References:

[1] Cheruy et al., 2014, https://doi.org/10.1002/2014GL061145

[2] Hourdin et al., 2017, https://doi.org/10.1175/BAMS-D-15-00135.1

[3] Couvreux et al., 2021, https://doi.org/10.1029/2020MS002217

[4] Hourdin et al., 2021, https://doi.org/10.1029/2020MS002225

[5] Cheruy et al., 2020, https://doi.org/10.1029/2019MS002005

How to cite: Coulon--Decorzens, M., Cheruy, F., and Hourdin, F.: Semi-automatic tuning procedure for a GCM targeting continental surfaces: a first experiment using in situ observations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4493, https://doi.org/10.5194/egusphere-egu22-4493, 2022.

EGU22-9348 | Presentations | ITS2.6/AS5.1

Data-driven modelling of soil moisture: mapping organic soils

Doran Khamis, Matt Fry, Hollie Cooper, Ross Morrison, and Eleanor Blyth

Improving our understanding of soil moisture and hydraulics is crucial for flood prediction, smart agriculture, modelling nutrient and pollutant spread and evaluating the role of land as a sink or source of carbon and other greenhouse gases. State of the art land surface models rely on poorly-resolved soil textural information to parametrise arbitrarily layered soil models; soils rich in organic matter – key to understanding the role of the land in achieving net zero carbon – are not well modelled. Here, we build a predictive data-driven model of soil moisture using a neural network composed of transformer layers to process time series data from point-sensors (precipitation gauges and sensor-derived estimates of potential evaporation) and convolutional layers to process spatial atmospheric driving data and contextual information (topography, land cover and use, location and catchment behaviour of water bodies). We train the model using data from the COSMOS-UK sensor network and soil moisture satellite products and compare the outputs with JULES to investigate where and why the models diverge. Finally, we predict regions of high peat content and propose a way to combine theory with our data-driven approach to move beyond the sand-silt-clay modelling framework.

How to cite: Khamis, D., Fry, M., Cooper, H., Morrison, R., and Blyth, E.: Data-driven modelling of soil moisture: mapping organic soils, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9348, https://doi.org/10.5194/egusphere-egu22-9348, 2022.

Accurate streamflow forecasts can provide guidance for reservoir managements, which can regulate river flows, manage water resources and mitigate flood damages. One popular way to forecast streamflow is to use bias-corrected meteorological forecasts to drive a calibrated hydrological model. But for cascade reservoirs, such approaches suffer significant deficiencies because of the difficulty to simulate reservoir operations by physical approach and the uncertainty of meteorological forecasts over small catchment. Another popular way is to forecast streamflow with machine learning method, which can fit a statistical model without inputs like reservoir operating rules. Thus, we integrate meteorological forecasts, land surface hydrological model and machine learning to forecast hourly streamflow over the Yantan catchment, which is one of the cascade reservoirs in the Hongshui River with streamflow influenced by both the upstream reservoir water release and the rainfall runoff process within the catchment.

Before evaluating the streamflow forecast system, it is necessary to investigate the skill by means of a series of specific hindcasts that isolate potential sources of predictability, like meteorological forcing and the initial condition (IC). Here, we use ensemble streamflow prediction (ESP)/reverse ESP (revESP) method to explore the impact of IC on hourly stream prediction. Results show that the effect of IC on runoff prediction is 16 hours. In the next step, we evaluate the hourly streamflow hindcasts during the rainy seasons of 2013-2017 performed by the forecast system. We use European Centre for Medium-Range Weather Forecasts perturbed forecast forcing from the THORPEX Interactive Grand Global Ensemble (TIGGE-ECMWF) as meteorological inputs to perform the hourly streamflow hindcasts. Compared with the ESP, the hydrometeorological ensemble forecast approach reduces probabilistic and deterministic forecast errors by 6% during the first 7 days. After integrated the long short-term memory (LSTM) deep learning method into the system, the deterministic forecast error can be further reduced by 6% in the first 72 hours. We also use historically observed streamflow to drive another LSTM model to perform an LSTM-only streamflow forecast. Results show that its skill sharply dropped after the first 24 hours, which indicates that the meteorology-hydrology modeling approach can improve the streamflow forecast.

How to cite: Liu, J. and Yuan, X.: Reservoir inflow forecast by combining meteorological ensemble forecast, physical hydrological simulation and machine learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7093, https://doi.org/10.5194/egusphere-egu22-7093, 2022.

Numerical weather prediction (NWP) models are currently popularly used for operational weather forecast in meteorological centers. The NWP models describe the flow of fluids by employing a set of governing equations, physical parameterization schemes and initial and boundary conditions. Thus, it often face bias of prediction due to insufficient data assimilation, assumptions or approximations of dynamical and physical processes. To make gridded forecast of rainfall with high confidence, in this study, we present a data-driven deep learning model for correction of rainfall from NWP model, which mainly includes a confidence network and a combinatorial network. Meanwhile, a focal loss is introduced to deal with the characteristics of longtail-distribution of rainfall. It is expected to alleviate the impact of the large span of rainfall magnitude by transferring the regression problem into several binary classification problems. The deep learning model is used to correct the gridded forecasts of rainfall from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model (ECMWF-IFS) with a forecast lead time of 24 h to 240 h in Eastern China. First, the rainfall forecast correction problem is treated as an image-to-image translation problem in deep learning under the neural networks. Second, the ECMWF-IFS forecasts and rainfall observations in recent years are used as training, validation, and testing datasets. Finally, the correction performance of the new machine learning model is evaluated and compared to several classical machine learning algorithms. By performing a set of experiments for rainfall forecast error correction, it is found that the new model can effectively forecast rainfall over East China region during the flood season of the year 2020. Experiments also demonstrate that the proposed approach generally performs better in bias correction of rainfall prediction than most of the classical machine learning approaches .

How to cite: Ma, L.: A Deep Learning Bias Correction Approach for Rainfall Numerical Prediction, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2095, https://doi.org/10.5194/egusphere-egu22-2095, 2022.

EGU22-4923 | Presentations | ITS2.6/AS5.1

Constrained Generative Adversarial Networks for Improving Earth System Model Precipitation

Philipp Hess, Markus Drüke, Stefan Petri, Felix Strnad, and Niklas Boers

The simulation of precipitation in numerical Earth system models (ESMs) involves various processes on a wide range of scales, requiring high temporal and spatial resolution for realistic simulations. This can lead to biases in computationally efficient ESMs that have a coarse resolution and limited model complexity. Traditionally, these biases are corrected by relating the distributions of historical simulations with observations [1]. While these methods successfully improve the modelled statistics, unrealistic spatial features that require a larger spatial context are not addressed.

Here we apply generative adversarial networks (GANs) [2] to transform precipitation of the CM2Mc-LPJmL ESM [3] into a bias-corrected and more realistic output. Feature attribution shows that the GAN has correctly learned to identify spatial regions with the largest bias during training. Our method presents a general bias correction framework that can be extended to a wider range of ESM variables to create highly realistic but computationally inexpensive simulations of future climates. We also discuss the generalizability of our approach to projections from CMIP6, given that the GAN is only trained on historical data.

[1] A.J. Cannon et al. "Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?." Journal of Climate 28.17 (2015): 6938-6959.

[2] I. Goodfellow et al. "Generative adversarial nets." Advances in neural information processing systems 27 (2014).

[3] M. Drüke et al. "CM2Mc-LPJmL v1.0: Biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model." Geoscientific Model Development 14.6 (2021): 4117--4141.

How to cite: Hess, P., Drüke, M., Petri, S., Strnad, F., and Boers, N.: Constrained Generative Adversarial Networks for Improving Earth System Model Precipitation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4923, https://doi.org/10.5194/egusphere-egu22-4923, 2022.

EGU22-8719 | Presentations | ITS2.6/AS5.1

Multi-station Multivariate Multi-step Convection Nowcasting with Deep Neural Networks

Sandy Chkeir, Aikaterini Anesiadou, and Riccardo Biondi

Extreme weather nowcasting has always been a challenging task in meteorology. Many research studies have been conducted to accurately forecast extreme weather events, related to rain rates and/or wind speed thresholds, in spatio-temporal scales. Over decades, this field gained attention in the artificial intelligence community which is aiming towards creating more accurate models using the latest algorithms and methods.  

In this work, within the H2020 SESAR ALARM project, we aim to nowcast rain and wind speed as target features using different input configurations of the available sources such as weather stations, lightning detectors, radar, GNSS receivers, radiosonde and radio occultations data. This nowcasting task has been firstly conducted at 14 local stations around Milano Malpensa Airport as a short-term temporal multi-step forecasting. At a second step, all stations will be combined, meaning that the forecasting becomes a spatio-temporal problem. Concretely, we want to investigate the predicted rain and wind speed values using the different inputs for two case scenarios: for each station, and joining all stations together. 

The chaotic nature of the atmosphere, e.g. non-stationarity of the driving series of each weather feature, makes the predictions unreliable and inaccurate and thus dealing with these data is a very delicate task. For this reason, we have devoted some work to cleaning, feature engineering and preparing the raw data before feeding them into the model architectures. We have managed to preprocess large amounts of data for local stations around the airport, and studied the feasibility of nowcasting rain and wind speed targets using different data sources altogether. The temporal multivariate driving series have high dimensionality and we’ve  made multi-step predictions for the defined target functions.

We study and test different machine learning architectures starting from simple multi-layer perceptrons to convolutional models, and Recurrent Neural Networks (RNN) for temporal and spatio-temporal nowcasting. The Long Short-Term Memory (LSTM) encoder decoder architecture outperforms other models achieving more accurate predictions for each station separately.  Furthermore, to predict the targets in a spatio-temporal scale, we will deploy a 2-layer spatio-temporal stacked LSTM model consisting of independent LSTM models per location in the first LSTM layer, and another LSTM layer to finally predict targets for multi-steps ahead. And the results obtained with different algorithm architectures applied to a dense network of sensors are to be reported.

How to cite: Chkeir, S., Anesiadou, A., and Biondi, R.: Multi-station Multivariate Multi-step Convection Nowcasting with Deep Neural Networks, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8719, https://doi.org/10.5194/egusphere-egu22-8719, 2022.

EGU22-3977 | Presentations | ITS2.6/AS5.1 | Highlight

Learning quasi-geostrophic turbulence parametrizations from a posteriori metrics

Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, and Redouane Lguensat

Machine learning techniques are now ubiquitous in the geophysical science community. They have been applied in particular to the prediction of subgrid-scale parametrizations using data that describes small scale dynamics from large scale states. However, these models are then used to predict temporal trajectories, which is not covered by this instantaneous mapping. Following the model trajectory during training can be done using an end-to-end approach, where temporal integration is performed using a neural network. As a consequence, the approach is shown to optimize a posteriori metrics, whereas the classical instantaneous training is limited to a priori ones. When applied on a specific energy backscatter problem, found in quasi-geostrophic turbulent flows, the strategy demonstrates long-term stability and high fidelity statistical performance, without any increase in computational complexity during rollout. These improvements may question the future development of realistic subgrid-scale parametrizations in favor of differentiable solvers, required by the a posteriori strategy.

How to cite: Frezat, H., Le Sommer, J., Fablet, R., Balarac, G., and Lguensat, R.: Learning quasi-geostrophic turbulence parametrizations from a posteriori metrics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3977, https://doi.org/10.5194/egusphere-egu22-3977, 2022.

EGU22-7135 | Presentations | ITS2.6/AS5.1 | Highlight

How to calibrate a climate model with neural network based physics?

Blanka Balogh, David Saint-Martin, and Aurélien Ribes

Unlike the traditional subgrid scale parameterizations used in climate models, current neural network (NN) parameterizations are only tuned offline, by minimizing a loss function on outputs from high resolution models. This approach often leads to numerical instabilities and long-term biases. Here, we propose a method to design tunable NN parameterizations and calibrate them online. The calibration of the NN parameterization is achieved in two steps. First, some model parameters are included within the NN model input. This NN model is fitted at once for a range of values of the parameters, using an offline metric. Second, once the NN parameterization has been plugged into the climate model, the parameters included among the NN inputs are optimized with respect to an online metric quantifying errors on long-term statistics. We illustrate our method with two simple dynamical systems. Our approach significantly reduces long-term biases of the climate model with NN based physics.

How to cite: Balogh, B., Saint-Martin, D., and Ribes, A.: How to calibrate a climate model with neural network based physics?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7135, https://doi.org/10.5194/egusphere-egu22-7135, 2022.

EGU22-6479 | Presentations | ITS2.6/AS5.1

Parameter inference and uncertainty quantification for an intermediate complexity climate model

Benedict Roeder, Jakob Schloer, and Bedartha Goswami

Well-adapted parameters in climate models are essential to make accurate predictions
for future projections. In climate science, the record of precise and comprehensive obser-
vational data is rather short and parameters of climate models are often hand-tuned or
learned from artificially generated data. Due to limited and noisy data, one wants to use
Bayesian models to have access to uncertainties of the inferred parameters. Most popu-
lar algorithms for learning parameters from observational data like the Kalman inversion
approach only provide point estimates of parameters.
In this work, we compare two Bayesian parameter inference approaches applied to the
intermediate complexity model for the El Niño-Southern Oscillation by Zebiak & Cane. i)
The "Calibrate, Emulate, Sample" (CES) approach, an extension of the ensemble Kalman
inversion which allows posterior inference by emulating the model via Gaussian Processes
and thereby enables efficient sampling. ii) The simulation-based inference (SBI) approach
where the approximate posterior distribution is learned from simulated model data and
observational data using neural networks.
We evaluate the performance of both approaches by comparing their run times and the
number of required model evaluations, assess the scalability with respect to the number
of inference parameters, and examine their posterior distributions.

How to cite: Roeder, B., Schloer, J., and Goswami, B.: Parameter inference and uncertainty quantification for an intermediate complexity climate model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6479, https://doi.org/10.5194/egusphere-egu22-6479, 2022.

EGU22-6674 | Presentations | ITS2.6/AS5.1

The gravity wave parameterization calibration problem: A 1D QBO model testbed

Ofer Shamir, L. Minah Yang, David S. Connelly, and Edwin P. Gerber

An essential step in implementing any new parameterization is calibration, where the parameterization is adjusted to work with an existing model and yield some desired improvement. In the context of gravity wave (GW) momentum transport, calibration is necessitated by the facts that: (i) Some GWs are always at least partially resolved by the model, and hence a parameterization should only account for the missing waves. Worse, the parameterization may need to correct for the misrepresentation of under-resolved GWs, i.e., coarse vertical resolution can bias GW breaking level, leading to erroneous momentum forcing. (ii) The parameterized waves depend on the resolved solution for both their sources and dissipation, making them susceptible to model biases. Even a "perfect" parameterization could then yield an undesirable result, e.g., an unrealistic Quasi-Biennial Oscillation (QBO).  While model-specific calibration is required, one would like a general "recipe" suitable for most models. From a practical point of view, the adoption of a new parameterization will be hindered by a too-demanding calibration process. This issue is of particular concern in the context of data-driven methods, where the number of tunable degrees of freedom is large (possibly in the millions). Thus, more judicious ways for addressing the calibration step are required. 

To address the above issues, we develop a 1D QBO model, where the "true" gravity wave momentum deposition is determined from a source distribution and critical level breaking, akin to a traditional physics-based GW parameterization. The control parameters associated with the source consist of the total wave flux (related to the total precipitation for convectively generated waves) and the spectrum width (related to the depth of convection). These parameters can be varied to mimic the variability in GW sources between different models, i.e., biases in precipitation variability. In addition, the model’s explicit diffusivity and vertical advection can be varied to mimic biases in model numerics and circulation, respectively. The model thus allows us to assess the ability of a data-driven parameterization to (i) extrapolate, capturing the response of GW momentum transport to a change in the model parameters and (ii) be calibrated, adjusted to maintain the desired simulation of the QBO in response to a change in the model parameters. The first property is essential for a parameterization to be used for climate prediction, the second, for a parameterization to be used at all. We focus in particular on emulators of the GW momentum transport based on neural network and regression trees, contrasting their ability to satisfy both of these goals.  

 

How to cite: Shamir, O., Yang, L. M., Connelly, D. S., and Gerber, E. P.: The gravity wave parameterization calibration problem: A 1D QBO model testbed, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6674, https://doi.org/10.5194/egusphere-egu22-6674, 2022.

With the goal of developing a data-driven parameterization of unresolved gravity waves (GW) momentum transport for use in general circulation models (GCMs), we investigate neural network architectures that emulate the Alexander-Dunkerton 1999 (AD99) scheme, an existing physics-based GW parameterization. We analyze the distribution of errors as functions of shear-related metrics in an effort to diagnose the disparity between online and offline performance of the trained emulators, and develop a sampling algorithm to treat biases on the tails of the distribution without adversely impacting mean performance. 

It has been shown in previous efforts [1] that stellar offline performance does not necessarily guarantee adequate online performance, or even stability. Error analysis reveals that the majority of the samples are learned quickly, while some stubborn samples remain poorly represented. We find that the more error-prone samples are those with wind profiles that have large shears– this is consistent with physical intuition as gravity waves encounter a wider range of critical levels when experiencing large shear;  therefore parameterizing gravity waves for these samples is a more difficult, complex task. To remedy this, we develop a sampling strategy that performs a parameterized histogram equalization, a concept borrowed from 1D optimal transport. 

The sampling algorithm uses a linear mapping from the original histogram to a more uniform histogram parameterized by $t \in [0,1]$, where $t=0$ recovers the original distribution and $t=1$ enforces a completely uniform distribution. A given value $t$ assigns each bin a new probability which we then use to sample from each bin. If the new probability is smaller than the original, then we invoke sampling without replacement, but limited to a reduced number consistent with the new probability. If the new probability is larger than the original, then we repeat all the samples in the bin up to some predetermined maximum repeat value (a threshold to avoid extreme oversampling at the tails). We optimize this sampling algorithm with respect to $t$, the maximum repeat value, and the number and distribution (uniform or not) of the histogram bins. The ideal combination of those parameters yields errors that are closer to a constant function of the shear metrics while maintaining high accuracy over the whole dataset. Although we study the performance of this algorithm in the context of training a gravity wave parameterization emulator, this strategy can be used for learning datasets with long tail distributions where the rare samples are associated with low accuracy. Instances of this type of datasets are prevalent in earth system dynamics: launching of gravity waves, and extreme events like hurricanes, heat waves are just a few examples. 

[1] Espinosa, Z. I., A. Sheshadri, G. R. Cain, E. P. Gerber, and K. J. DallaSanta, 2021: A Deep Learning Parameterization of Gravity Wave Drag Coupled to an Atmospheric Global Climate Model,Geophys. Res. Lett., in review. [https://edwinpgerber.github.io/files/espinosa_etal-GRL-revised.pdf]

How to cite: Yang, L. and Gerber, E.: Sampling strategies for data-driven parameterization of gravity wave momentum transport, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5766, https://doi.org/10.5194/egusphere-egu22-5766, 2022.

All oceanic general circulation models (GCMs) include parametrizations of the unresolved subgrid-scale (eddy) effects on the large-scale motions, even at the (so-called) eddy-permitting resolutions. Among the many problems associated with the development of accurate and efficient eddy parametrizations, one problem is a reliable decomposition of a turbulent flow into resolved and unresolved (subgrid) scale components. Finding an objective way to separate eddies is a fundamental, critically important and unresolved problem. 
Here a statistically consistent correlation-based flow decomposition method (CBD) that employs the Gaussian filtering kernel with geographically varying topology – consistent with the observed local spatial correlations – achieves the desired scale separation. CBD is demonstrated for an eddy-resolving solution of the classical midlatitude double-gyre quasigeostrophic (QG) circulation, that possess two asymmetric gyres of opposite circulations and a strong meandering eastward jet, such as the Gulf Stream in the North Atlantic and Kuroshio in the North Pacific. CBD facilitates a comprehensive analysis of the feedbacks of eddies on the large-scale flow via the transient part of the eddy forcing. A  `product integral' based on time-lagged correlation between the diagnosed eddy forcing and the evolving large-scale flow, uncovers robust `eddy backscatter' mechanism. Data-driven augmentation of non-eddy-resolving ocean model by stochastically-emulated eddy fields allows to restore the missing eddy-driven features, such as the merging western boundary currents, their eastward extension and low-frequency variabilities of gyres.

  • N. Argawal, Ryzhov, E.A., Kondrashov, D., and P.S. Berloff, 2021: Correlation-based flow decomposition and statistical analysis of the eddy forcing, Journal of Fluid Mechanics, 924, A5. doi:10.1017/jfm.2021.604

  • N. Argawal, Kondrashov, D., Dueben, P., Ryzhov, E.A., and P.S. Berloff, 2021: A comparison of data-driven approaches to build low-dimensional ocean modelsJournal of Advances in Modelling Earth Systems, doi:10.1029/2021MS002537

 

How to cite: Kondrashov, D.: Towards physics-informed stochastic parametrizations of subgrid physics in ocean models, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6859, https://doi.org/10.5194/egusphere-egu22-6859, 2022.

EGU22-8279 | Presentations | ITS2.6/AS5.1

Using deep learning to improve the spatial resolution of the ocean model

Ihor Hromov, Georgy Shapiro, Jose Ondina, Sanjay Sharma, and Diego Bruciaferri

For the ocean models, the increase of spatial resolution is a matter of significant importance and thorough research. Computational resources limit our capabilities of the increase in model resolution. This constraint is especially true for the traditional dynamical models, for which an increase of a factor of two in the horizontal resolution results in simulation times increased approximately tenfold. One of the potential methods to relax this limitation is to use Artificial Intelligence methods, such as Neural Networks (NN). In this research, NN is applied to ocean circulation modelling. More specifically, NN is used on data output from the dynamical model to increase the spatial resolution of the model output. The main dataset being used is Sea Surface Temperature data in 0.05- and 0.02-degree horizontal resolutions for Irish Sea. 

Several NN architectures were applied to address the task. Generative Adversarial Networks (GAN), Convolutional Neural Networks (CNN) and Multi-level Wavelet CNN. They are used in other areas of knowledge in problems related to the increase of resolution. The work will contrast and compare the efficiency of and present a provisional assessment of the efficiency of each of the methods. 

How to cite: Hromov, I., Shapiro, G., Ondina, J., Sharma, S., and Bruciaferri, D.: Using deep learning to improve the spatial resolution of the ocean model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8279, https://doi.org/10.5194/egusphere-egu22-8279, 2022.

EGU22-11420 | Presentations | ITS2.6/AS5.1

Histroy Matching for the tuning of coupled models: experiments on the Lorenz 96 model

Redouane Lguensat, Julie Deshayes, and Venkatramani Balaji

The process of relying on experience and intuition to find good sets of parameters, commonly referred to as "parameter tuning" keeps having a central role in the roadmaps followed by dozens of modeling groups involved in community efforts such as the Coupled Model Intercomparison Project (CMIP). 

In this work, we study a tool from the Uncertainty Quantification community that started recently to draw attention in climate modeling: History Matching also referred to as "Iterative Refocussing". The core idea of History Matching is to run several simulations with different set of parameters and then use observed data to rule-out any parameter settings which are "implausible". Since climate simulation models are computationally heavy and do not allow testing every possible parameter setting, we employ an emulator that can be a cheap and accurate replacement. Here a machine learning algorithm, namely, Gaussian Process Regression is used for the emulating step. History Matching is then a good example where the recent advances in machine learning can be of high interest to climate modeling.

One objective of this study is to evaluate the potential for history matching to tune a climate system with multi-scale dynamics. By using a toy climate model, namely, the Lorenz 96 model, and producing experiments in perfect-model setting, we explore different types of applications of HM and highlight the strenghts and challenges of using such a technique. 

How to cite: Lguensat, R., Deshayes, J., and Balaji, V.: Histroy Matching for the tuning of coupled models: experiments on the Lorenz 96 model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11420, https://doi.org/10.5194/egusphere-egu22-11420, 2022.

EGU22-5681 | Presentations | ITS2.6/AS5.1

AtmoDist as a new pathway towards quantifying and understanding atmospheric predictability

Sebastian Hoffmann, Yi Deng, and Christian Lessig

The predictability of the atmosphere is a classical problem that has received much attention from both a theoretical and practical point of view. In this work, we propose to use a purely data-driven method based on a neural network to revisit the problem. The analysis is built upon the recently introduced AtmoDist network that has been trained on high-resolution reanalysis data to provide a probabilistic estimate of the temporal difference between given atmospheric fields, represented by vorticity and divergence. We define the skill of the network for this task as a new measure of atmospheric predictability, hypothesizing that the prediction of the temporal differences by the network will be more susceptible to errors when the atmospheric state is intrinsically less predictable. Preliminary results show that for short timescales (3-48 hours) one sees enhanced predictability in warm season compared to cool season over northern midlatitudes, and lower predictability over ocean compared to land. These findings support the hypothesis that across short timescales, AtmoDist relies on the recurrences of mesoscale convection with coherent spatiotemporal structures to connect spatial evolutions to temporal differences. For example, the prevalence of mesoscale convective systems (MCSs) over the central US in boreal warm season can explain the increase of mesoscale predictability there and oceanic zones marked by greater predictability corresponds well to regions of elevated convective activity such as the Pacific ITCZ. Given the dependence of atmospheric predictability on geographic location, season, and most importantly, timescales, we further apply the method to synoptic scales (2-10 days), where excitation and propagation of large-scale disturbances such as Rossby wave packets are expected to provide the connection between temporal and spatial differences. The design of the AtmoDist network is thereby adapted to the prediction range, for example, the size of the local patches that serve as input to AtmoDist is chosen based on the spatiotemporal atmospheric scales that provide the expected time and space connections.

By providing to the community a powerful, purely data-driven technique for quantifying, evaluating, and interpreting predictability, our work lays the foundation for efficiently detecting the existence of sub-seasonal to seasonal (S2S) predictability and, by further analyzing the mechanism of AtmoDist, understanding the physical origins, which bears major scientific and socioeconomic significances.

How to cite: Hoffmann, S., Deng, Y., and Lessig, C.: AtmoDist as a new pathway towards quantifying and understanding atmospheric predictability, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5681, https://doi.org/10.5194/egusphere-egu22-5681, 2022.

EGU22-2058 | Presentations | ITS2.6/AS5.1

Deep learning for ensemble forecasting

Rüdiger Brecht and Alexander Bihlo
Ensemble prediction systems are an invaluable tool for weather prediction. Practically, ensemble predictions are obtained by running several perturbed numerical simulations. However, these systems are associated with a high computational cost and often involve statistical post-processing steps to improve their qualities.
Here we propose to use a deep-learning-based algorithm to learn the statistical properties of a given ensemble prediction system, such that this system will not be needed to simulate future ensemble forecasts. This way, the high computational costs of the ensemble prediction system can be avoided while still obtaining the statistical properties from a single deterministic forecast. We show preliminary results where we demonstrate the ensemble prediction properties for a shallow water unstable jet simulation on the sphere. 

How to cite: Brecht, R. and Bihlo, A.: Deep learning for ensemble forecasting, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2058, https://doi.org/10.5194/egusphere-egu22-2058, 2022.

EGU22-9734 | Presentations | ITS2.6/AS5.1

High Impact Weather Forecasts in Southern Brazil using Ensemble Precipitation Forecasts and Machine Learning

Cesar Beneti, Jaqueline Silveira, Leonardo Calvetti, Rafael Inouye, Lissette Guzman, Gustavo Razera, and Sheila Paz

In South America, southern parts of Brazil, Paraguay and northeast Argentina are regions particularly prone to high impact weather (intensive lightning activity, high precipitation, hail, flash floods and occasional tornadoes), mostly associated with extra-tropical cyclones, frontal systems and Mesoscale Convective Systems. In the south of Brazil, agricultural industry and electrical power generation are the main economic activities. This region is responsible for 35% of all hydro-power energy production in the country, with long transmission lines to the main consumer regions, which are severely affected by these extreme weather conditions. Intense precipitation events are a common cause of electricity outages in southern Brazil, which ranks as one of the regions in Brazil with the highest annual lightning incidence, as well. Accurate precipitation forecasts can mitigate this kind of problem. Despite improvements in the precipitation estimates and forecasts, some difficulties remain to increase the accuracy, mainly related to the temporal and spatial location of the events. Although several options are available, it is difficult to identify which deterministic forecast is the best or the most reliable forecast. Probabilistic products from large ensemble prediction systems provide a guide to forecasters on how confident they should be about the deterministic forecast, and one approach is using post processing methods such as machine learning (ML), which has been used to identify patterns in historical data to correct for systematic ensemble biases.

In this paper, we present a study, in which we used 20 members from the Global Ensemble Forecast System (GEFS) and 50 members from European Centre for Medium-Range Weather Forecasts (ECMWF)  during 2019-2021,  for seven daily precipitation thresholds: 0-1.0mm, 1.0mm-15mm, 15mm-40mm, 40mm-55mm, 55mm-105mm, 105mm-155mm and over 155mm. A ML algorithm was developed for each day, up to 15 days of forecasts, and several skill scores were calculated, for these daily precipitation thresholds. Initially, to select the best members of the ensembles, a gradient boosting algorithm was applied, in order to improve the skill of the model and reduce processing time. After preprocessing the data, a random forest classifier was used to train the model. Based on hyperparameter sensitivity tests, the random forest required 500 trees, a maximum tree depth of 12 levels, at least 20 samples per leaf node, and the minimization of entropy for splits. In order to evaluate the models, we used a cross-validation on a limited data sample. The procedure has a single parameter that refers to the number of groups that a given data sample is to be split into. In our work we created a twenty-six fold cross validation with 30 days per fold to verify the forecasts. The results obtained by the RF were evaluated through estimated value versus observed value. For the forecast range, we found values above 75% for the precision metrics in the first 3 days, and around 68% in the next days. The recall was also around 80% throughout the entire forecast range,  with promising results to apply this technique operationally, which is our intent in the near future. 

How to cite: Beneti, C., Silveira, J., Calvetti, L., Inouye, R., Guzman, L., Razera, G., and Paz, S.: High Impact Weather Forecasts in Southern Brazil using Ensemble Precipitation Forecasts and Machine Learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9734, https://doi.org/10.5194/egusphere-egu22-9734, 2022.

EGU22-12765 | Presentations | ITS2.6/AS5.1

Supervised machine learning to estimate instabilities in chaotic systems: computation of local Lyapunov exponents

Daniel Ayers, Jack Lau, Javier Amezcua, Alberto Carrassi, and Varun Ojha

Weather and climate are well known exemplars of chaotic systems exhibiting extreme sensitivity to initial conditions. Initial condition errors are subject to exponential growth on average, but the rate and the characteristic of such growth is highly state dependent. In an ideal setting where the degree of predictability of the system is known in real-time, it may be possible and beneficial to take adaptive measures. For instance a local decrease of predictability may be counteracted by increasing the time- or space-resolution of the model computation or the ensemble size in the context of ensemble-based data assimilation or probabilistic forecasting.

Local Lyapunov exponents (LLEs) describe growth rates along a finite-time section of a system trajectory. This makes the LLEs the ideal quantities to measure the local degree of predictability, yet a main bottleneck for their real-time use in  operational scenarios is the huge computational cost. Calculating LLEs involves computing a long trajectory of the system, propagating perturbations with the tangent linear model, and repeatedly orthogonalising them. We investigate if machine learning (ML) methods can estimate the LLEs based only on information from the system’s solution, thus avoiding the need to evolve perturbations via the tangent linear model. We test the ability of four algorithms (regression tree, multilayer perceptron, convolutional neural network and long short-term memory network) to perform this task in two prototypical low dimensional chaotic dynamical systems. Our results suggest that the accuracy of the ML predictions is highly dependent upon the nature of the distribution of the LLE values in phase space: large prediction errors occur in regions of the attractor where the LLE values are highly non-smooth.  In line with classical dynamical systems studies, the neutral LLE is more difficult to predict. We show that a comparatively simple regression tree can achieve performance that is similar to sophisticated neural networks, and that the success of ML strategies for exploiting the temporal structure of data depends on the system dynamics.

How to cite: Ayers, D., Lau, J., Amezcua, J., Carrassi, A., and Ojha, V.: Supervised machine learning to estimate instabilities in chaotic systems: computation of local Lyapunov exponents, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12765, https://doi.org/10.5194/egusphere-egu22-12765, 2022.

EGU22-5980 | Presentations | ITS2.6/AS5.1 | Highlight

Probabilistic forecasting of heat waves with deep learning

George Miloshevich, Valerian Jacques-Dumas, Pierre Borgnat, Patrice Abry, and Freddy Bouchet
Extreme events such as storms, floods, cold spells and heat waves are expected to have an increasing societal impact with climate change. However the study of rare events is complicated due to computational costs of highly complex models and lack of observations. However, with the help of machine learning synthetic models for forecasting can be constructed and cheaper resampling techniques can be developed. Consequently, this may also clarify more regional impacts of climate change. .

In this work, we perform detailed analysis of how deep neural networks (DNNs) can be used in intermediate-range forecasting of prolonged heat waves of duration of several weeks over synoptic spatial scales. In particular, we train a convolutional neural network (CNN) on the 7200 years of a simulation of a climate model. As such, we are interested in probabilistic prediction (committor function in transition theory). Thus we discuss the proper forecasting scores such as Brier skill score, which is popular in weather prediction, and cross-entropy skill, which is based on information-theoretic considerations. They allow us to measure the success of various architectures and investigate more efficient pipelines to extract the predictions from physical observables such as geopotential, temperature and soil moisture. A priori, the committor is hard to visualize as it is a high dimensional function of its inputs, the grid points of the climate model for a given field. Fortunately, we can construct composite maps conditioned to its values which reveal that the CNN is likely relying on the global teleconnection patterns of geopotential. On the other hand, soil moisture signal is more localized with predictive capability over much longer times in future (at least a month). The latter fact relates to the soil-atmosphere interactions. One expects the performance of DNNs to greatly improve with more data. We provide quantitative assessment of this fact. In addition, we offer more details on how the undersampling of negative events affects the knowledge of the committor function. We show that transfer learning helps ensure that the committor is a smooth function along the trajectory. This will be an important quality when such a committor will be applied in rare event algorithms for importance sampling. 
 
While DNNs are universal function approximators the issue of extrapolation can be somewhat problematic. In addressing this question we train a CNN on a dataset generated from a simulation without a diurnal cycle, where the feedbacks between soil moisture and heat waves appear to be significantly stronger. Nevertheless, when the CNN with the given weights is validated on a dataset generated from a simulation with a daily cycle the predictions seem to generalize relatively well, despite a small reduction in skill. This generality validates the approach. 
 

How to cite: Miloshevich, G., Jacques-Dumas, V., Borgnat, P., Abry, P., and Bouchet, F.: Probabilistic forecasting of heat waves with deep learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5980, https://doi.org/10.5194/egusphere-egu22-5980, 2022.

Recently, an increase in forecast skill of the seasonal climate forecast for winter in Europe has been achieved through an ensemble subsampling approach by way of predicting the mean winter North Atlantic Oscillation (NAO) index through linear regression (based on the autumn state of the four predictors sea surface temperature, Arctic sea ice volume, Eurasian snow depth and stratospheric temperature) and the sampling of the ensemble members which are able to reproduce this NAO state. This thesis shows that the statistical prediction of the NAO index can be further improved via nonlinear methods using the same predictor variables as in the linear approach. This likely also leads to an increase in seasonal climate forecast skill. The data used for the calculations stems from the global reanalysis by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5. The available time span for use in this thesis covered only 40 years from 1980 till 2020, hence it was important to use a method that still yields statistically significant and meaningful results under those circumstances. The nonlinear method chosen was k-nearest neighbor, which is a simple, yet powerful algorithm when there is not a lot of data available. Compared to other methods like neural networks it is easy to interpret. The resulting method has been developed and tested in a double cross-validation setting. While sea ice in the Barents-Kara sea in September-October shows the most predictive capability for the NAO index in the subsequent winter as a single predictor, the highest forecast skill is achieved through a combination of different predictor variables.

How to cite: Hauke, C., Ahrens, B., and Dalelane, C.: Prediction of the North Atlantic Oscillation index for the winter months December-January-February via nonlinear methods, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12628, https://doi.org/10.5194/egusphere-egu22-12628, 2022.

EGU22-13228 | Presentations | ITS2.6/AS5.1 | Highlight

Developing a data-driven ocean forecast system

Rachel Furner, Peter Haynes, Dan Jones, Dave Munday, Brooks Paige, and Emily Shuckburgh

The recent boom in machine learning and data science has led to a number of new opportunities in the environmental sciences. In particular, process-based weather and climate models (simulators) represent the best tools we have to predict, understand and potentially mitigate the impacts of climate change and extreme weather. However, these models are incredibly complex and require huge amounts of High Performance Computing resources. Machine learning offers opportunities to greatly improve the computational efficiency of these models by developing data-driven emulators.

Here I discuss recent work to develop a data-driven model of the ocean, an integral part of the weather and climate system. Much recent progress has been made with developing data-driven forecast systems of atmospheric weather, highlighting the promise of these systems. These techniques can also be applied to the ocean, however modelling of the ocean poses some fundamental differences and challenges in comparison to modelling the atmosphere, for example, oceanic flow is bathymetrically constrained across a wide range of spatial and temporal scales.

We train a neural network on the output from an expensive process-based simulator of an idealised channel configuration of oceanic flow. We show the model is able to learn well the complex dynamics of the system, replicating the mean flow and details within the flow over single prediction steps. We also see that when iterating the model, predictions remain stable, and continue to match the ‘truth’ over a short-term forecast period, here around a week.

 

How to cite: Furner, R., Haynes, P., Jones, D., Munday, D., Paige, B., and Shuckburgh, E.: Developing a data-driven ocean forecast system, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13228, https://doi.org/10.5194/egusphere-egu22-13228, 2022.

EGU22-654 | Presentations | ITS2.6/AS5.1

On the derivation of data-driven models for partially observed systems

Said Ouala, Bertrand Chapron, Fabrice Collard, Lucile Gaultier, and Ronan Fablet

When considering the modeling of dynamical systems, the increasing interest in machine learning, artificial intelligence and more generally, data-driven representations, as well as the increasing availability of data, motivated the exploration and definition of new identification techniques. These new data-driven representations aim at solving modern questions regarding the modeling, the prediction and ultimately, the understanding of complex systems such as the ocean, the atmosphere and the climate. 

In this work, we focus on one question regarding the ability to define a (deterministic) dynamical model from a sequence of observations. We focus on sea surface observations and show that these observations typically relate to some, but not all, components of the underlying state space, making the derivation of a deterministic model in the observation space impossible. In this context, we formulate the identification problem as the definition, from data, of an embedding of the observations, parameterized by a differential equation. When compared to state-of-the-art techniques based on delay embedding and linear decomposition of the underlying operators, the proposed approach benefits from all the advances in machine learning and dynamical systems theory in order to define, constrain and tune the reconstructed sate space and the approximate differential equation. Furthermore, the proposed embedding methodology naturally extends to cases in which a dynamical prior (derived for example using physical principals) is known, leading to relevant physics informed data-driven models. 

How to cite: Ouala, S., Chapron, B., Collard, F., Gaultier, L., and Fablet, R.: On the derivation of data-driven models for partially observed systems, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-654, https://doi.org/10.5194/egusphere-egu22-654, 2022.

EGU22-5219 | Presentations | ITS2.6/AS5.1 | Highlight

Neural Partial Differential Equations for Atmospheric Dynamics

Maximilian Gelbrecht and Niklas Boers

When predicting complex systems such as parts of the Earth system, one typically relies on differential equations which can often be incomplete, missing unknown influences or higher order effects. Using the universal differential equations framework, we can augment the equations with artificial neural networks that can compensate these deficiencies. We show that this can be used to predict the dynamics of high-dimensional spatiotemporally chaotic partial differential equations, such as the ones describing atmospheric dynamics. In a first step towards a hybrid atmospheric model, we investigate the Marshall Molteni Quasigeostrophic Model in the form of a Neural Partial Differential Equation. We use it in synthetic examples where parts of the governing equations are replaced with artificial neural networks (ANNs) and demonstrate how the ANNs can recover those terms.

How to cite: Gelbrecht, M. and Boers, N.: Neural Partial Differential Equations for Atmospheric Dynamics, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5219, https://doi.org/10.5194/egusphere-egu22-5219, 2022.

EGU22-4062 | Presentations | ITS2.6/AS5.1

Climatological Ocean Surface Wave Projections using Deep Learning

Peter Mlakar, Davide Bonaldo, Antonio Ricchi, Sandro Carniel, and Matjaž Ličer

We present a numerically cheap machine-learning model which accurately emulates the performances of the surface wave model Simulating WAves Near Shore (SWAN) in the Adriatic basin (north-east Mediterranean Sea).

A ResNet50 inspired deep network architecture with customized spatio-temporal attention layers was used, the network being trained on a 1970-1997 dataset of time-dependent features based on wind fields retrieved from the COSMO-CLM regional climate model (The authors acknowledge Dr. Edoardo Bucchignani (Meteorology Laboratory, Centro Italiano Ricerche Aerospaziali -CIRA-, Capua, Italy), for providing the COSMO-CLM wind fields). SWAN surface wave model outputs for the period of 1970-1997 are used as labels. The period 1998-2000 is used to cross-validate that the network very accurately reproduces SWAN surface wave features (i.e. significant wave height, mean wave period, mean wave direction) at several locations in the Adriatic basin. 

After successful cross validation, a series of projections of ocean surface wave properties based on climate model projections for the end of 21st century (under RCP 8.5 scenario) are performed, and shifts in the emulated wave field properties are discussed.

How to cite: Mlakar, P., Bonaldo, D., Ricchi, A., Carniel, S., and Ličer, M.: Climatological Ocean Surface Wave Projections using Deep Learning, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4062, https://doi.org/10.5194/egusphere-egu22-4062, 2022.

EGU22-2893 | Presentations | ITS2.6/AS5.1 | Highlight

Bias Correction of Operational Storm Surge Forecasts Using Neural Networks 

Paulina Tedesco, Jean Rabault, Martin Lilleeng Sætra, Nils Melsom Kristensen, Ole Johan Aarnes, Øyvind Breivik, and Cecilie Mauritzen

Storm surges can give rise to extreme floods in coastal areas. The Norwegian Meteorological Institute (MET Norway) produces 120-hour regional operational storm surge forecasts along the coast of Norway based on the Regional Ocean Modeling System (ROMS). Despite advances in the development of models and computational capability, forecast errors remain large enough to impact response measures and issued alerts, in particular, during the strongest storm events. Reducing these errors will positively impact the efficiency of the warning systems while minimizing efforts and resources spent on mitigation.

Here, we investigate how forecasts can be improved with residual learning, i.e., training data-driven models to predict, and correct, the error in the ROMS output. For this purpose, sea surface height data from stations around Norway were collected and compared with the ROMS output.

We develop two different residual learning frameworks that can be applied on top of the ROMS output. In the first one, we perform binning of the model error, conditionalized by pressure, wind, and waves. Clear error patterns are visible when the error conditioned by the wind is plotted in a polar plot for each station. These error maps can be stored as correction lookup tables to be applied on the ROMS output. However, since wind, pressure, and waves are correlated, we cannot simultaneously correct the error associated with each variable using this method. To overcome this limitation, we develop a second method, which resorts to Neural Networks (NNs) to perform nonlinear modeling of the error pattern obtained at each station. 

The residual NN method strongly outperforms the error map method, and is a promising direction for correcting storm surge models operationally. Indeed, i) this method is applied on top of the existing model and requires no changes to it, ii) all predictors used for NN inference are available operationally, iii) prediction by the NN is very fast, typically a few seconds per station, and iv) the NN correction can be provided to a human expert who gets to inspect it, compare it with the ROMS output, and see how much correction is brought by the NN. Using this NN residual error correction method, the RMS error in the Oslofjord is reduced by typically 7% for lead times of 24 hours, 17% for 48 hours, and 35% for 96 hours.

How to cite: Tedesco, P., Rabault, J., Sætra, M. L., Kristensen, N. M., Aarnes, O. J., Breivik, Ø., and Mauritzen, C.: Bias Correction of Operational Storm Surge Forecasts Using Neural Networks , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2893, https://doi.org/10.5194/egusphere-egu22-2893, 2022.

EGU22-11924 | Presentations | ITS2.6/AS5.1

Automated detection and classification of synoptic scale fronts from atmospheric data grids

Stefan Niebler, Peter Spichtinger, Annette Miltenberger, and Bertil Schmidt

Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for research of synoptic scale phenomena. We developed a deep neural network to detect and classify fronts from multi-level ERA5 reanalysis data. Model training and prediction is evaluated using two different regions covering Europe and North America with data from two weather services. Due to a label deformation step performed during training we are able to directly generate frontal lines with no further thinning during post processing. Our network compares well against the weather service labels with a Critical Success Index higher than 66.9% and a Object Detection Rate of more than 77.3%. Additionally the frontal climatologies generated from our networks ouput are highly correlated (greater than 77.2%) to climatologies created from weather service data. Evaluation of cross sections of our detection results provide further insight in the characteristics of our predicted fronts and show that our networks classification is physically plausible.

How to cite: Niebler, S., Spichtinger, P., Miltenberger, A., and Schmidt, B.: Automated detection and classification of synoptic scale fronts from atmospheric data grids, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11924, https://doi.org/10.5194/egusphere-egu22-11924, 2022.

EGU22-20 | Presentations | ITS2.6/AS5.1

PRECISIONPOP: a multi-scale monitoring system for poplar plantations integrating field, aerial and satellite remote sensing

Francesco Chianucci, Francesca Giannetti, Clara Tattoni, Nicola Puletti, Achille Giorcelli, Carlo Bisaglia, Elio Romano, Massimo Brambilla, Piermario Chiarabaglio, Massimo Gennaro, Giovanni d'Amico, Saverio Francini, Walter Mattioli, Domenico Coaloa, Piermaria Corona, and Gherardo Chirici

Poplar (Populus spp.) plantations are globally widespread in the Northern Hemisphere, and provide a wide range of benefits and products, including timber, carbon sequestration and phytoremediation. Because of poplar specific features (fast growth, short rotation) the information needs require frequent updates, which exceed the traditional scope of National Forest Inventories, implying the need for ad-hoc monitoring solutions.

Here we presented a regional-level multi-scale monitoring system developed for poplar plantations, which is based on the integration of different remotely-sensed informations at different spatial scales, developed in Lombardy (Northern Italy) region. The system is based on three levels of information: 1) At plot scale, terrestrial laser scanning (TLS) was used to develop non-destructive tree stem volume allometries in calibration sites; the produced allometries were then used to estimate plot-level stand parameters from field inventory; additional canopy structure attributes were derived using field digital cover photography. 2) At farm level, unmanned aerial vehicles (UAVs) equipped with multispectral sensors were used to upscale results obtained from field data. 3) Finally, both field and unmanned aerial estimates were used to calibrate a regional-scale supervised continuous monitoring system based on multispectral Sentinel-2 imagery, which was implemented and updated in a Google Earth Engine platform.

The combined use of multi-scale information allowed an effective management and monitoring of poplar plantations. From a top-down perspective, the continuous satellite monitoring system allowed the detection of early warning poplar stress, which are suitable for variable rate irrigation and fertilizing scheduling. From a bottom-up perspective, the spatially explicit nature of TLS measurements allows better integration with remotely sensed data, enabling a multiscale assessment of poplar plantation structure with different levels of detail, enhancing conventional tree inventories, and supporting effective management strategies. Finally, use of UAV is key in poplar plantations as their spatial resolution is suited for calibrating metrics from coarser remotely-sensed products, reducing or avoiding the need of ground measurements, with a significant reduction of time and costs.

How to cite: Chianucci, F., Giannetti, F., Tattoni, C., Puletti, N., Giorcelli, A., Bisaglia, C., Romano, E., Brambilla, M., Chiarabaglio, P., Gennaro, M., d'Amico, G., Francini, S., Mattioli, W., Coaloa, D., Corona, P., and Chirici, G.: PRECISIONPOP: a multi-scale monitoring system for poplar plantations integrating field, aerial and satellite remote sensing, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-20, https://doi.org/10.5194/egusphere-egu22-20, 2022.